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4 Forêts et Sociétés, Cirad, F-34398 Montpellier, France,
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Abstract4

5

The process of abscission - the shedding of parts of an organism - is closely linked to a6

series of physiological events whose optimal execution is key to the survival of the species.7

Environmental variations impact species development, and in particular abscission processes8

at multiple developmental stages. Identifying environmental factors and the times at which9

they modulate the abscission process is crucial, particularly in the context of climate change.10

Considering environmental variables as time series, i.e. groups of variables correlated over11

time, poses statistical problems for selecting the relevant groups, the environmental vari-12

ables, and the variables correlated within them, the time periods. In this paper, we address13

these objectives by introducing and discussing a set of Bayesian fused and fusion priors via14

a general parameterization. This paper highlights a trade-off between the priors used on dif-15

ferences and coefficients. In particular, we show the effectiveness of horseshoe-type priors on16

differences as well as on coefficients with appropriate parameterizations in terms of selection,17

estimation and algorithmic stability whatever the number of groups and their size. The study18

was motivated by fruit abscission in oil palms, which impacts the bunch harvesting timing.19

Disturbance of abscission can therefore affect oil yield and quality, and consequently have20

an impact on economic income. This application, which is based on an experimental design21

in Benin Republic, illustrates the performance of the proposed prior in selecting both envi-22

ronmental variables and the developmental stages involved in the timing of bunch harvesting.23

24

Keywords: Bayesian variable selection, Fusion and Fused priors, Horseshoe prior, Struc-25
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tured variables.26

27

1 Introduction28

Understanding the impact of environmental variables on development and adaptation pro-29

cesses is crucial when addressing climate change concerns. Abscission, which consists of30

the shedding of various parts of organisms, for example leaves in the fall or flowers after31

fertilization, is one of the most important adaptation process. This biological mechanism is32

highly sensitive to climate conditions and to climate variations both over the growing sea-33

sons and between years. A good example of the abscission process is leaf senescence and fall34

in deciduous trees, which was shown to be delayed in the northern hemisphere in response35

to increasing temperatures between 1931 and 2010 (Gill et al., 2015). Environmental stress36

can severely impact abscission processes due to complex regulations involving exogenous and37

endogenous signals (Sawicki et al., 2015). For instance, drought stress has been shown to38

induce activation and premature flower abscission in lupine (Wilmowicz et al., 2021) and in39

tomato plants (Reichardt et al., 2020) with a negative impact on crop productivity.40

41

While in many contexts, it is clear that environmental variables can cause organ losses,42

it is not yet clear which one, among exogenous variables (e.g. climate, soil) or endogenous43

variables (e.g. development stage, carbon status) are responsible for the responses observed44

and at which stages of the organ development or of the abscission process the regulation45

occurs. The exact time at which abscission occurs is critical for the oil palm, because fruit46

bunches are harvested when the first fruits detach and fall to the ground. Thus, premature47

abscission of fruits will reduces the yield of oil palm if optimal maturity is not reached, while48

excessive abscission requires additional work collecting detached fruits on the ground. A49

recent study showed that environmental variables, such as temperature or solar radiation,50

affect the reproductive development of the oil palm tree by modulating the timing of fruit51

drop (Tisné et al., 2020).52

53

In this paper, we identify the relevant environmental variables experienced by the fruit54

bunch and the periods that have an effect on the phenotypic variations of fruit abscission in55

the oil palm. Considering environmental variables as time series, i.e. groups of temporally56

correlated variables, poses at least two statistical challenges related to model regularization57

and variable selection. The first challenge is to select the groups, i.e. the environmental vari-58

ables. The second is to select the correlated variables within groups, i.e. the time periods.59

Such time structure within groups leads to high correlation between consecutive measures of60

a given environmental variable. These dependencies have to be taken into account to avoid61

ill-conditioned problems and over-fitting, but also to better reflect reality and detect suc-62

cessive meaningful time periods. In the following, groups refer to an environmental variable63

measured over time. However, alternative structures could be also considered, such as those64

induced by biological pathways.65
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66

In recent decades, considerable attention has been paid to the selection of variables67

and groups. The methods developed up to now are mainly related to penalized likelihood68

techniques in a frequentist context, or to the use of appropriate priors reflecting desired69

penalties in a Bayesian context. Among others, the Least Absolute Shrinkage and Selection70

Operator (Lasso, Tibshirani, 1996), the Smoothly Clipped Absolute Deviation (Fan and Li,71

2001) penalty or the Elastic-Net (Zou and Hastie, 2005) are most widely used. Note that72

Elastic-Net is appropriate when the variables are correlated. This approach is based on the73

combination of `1- and `2-norms on the penalization term, combining shrinkage properties74

from Lasso and regularization capacities from Ridge regression (Hoerl and Kennard, 1970).75

In a Bayesian multiple linear regression context, the set of priors for variable selection has76

also been extensively developed. Priors can be categorized in two classes: spike-and-slab77

priors (George and McCulloch, 1993) and continuous shrinkage priors (Polson and Scott,78

2011). The latter class was originally developed to obtain the Bayesian version of penalized79

likelihood methods. Among those we are familiar with, we cite the Bayesian Lasso prior80

(Park and Casella, 2008), the Elastic-Net prior (Kyung et al., 2010), the normal-Gamma81

prior (Griffin et al., 2010) and the horseshoe (HS) prior (Carvalho et al., 2010; Piironen82

et al., 2017). However, these methods were not designed to account for potential group83

structures within covariates. To address this limitation, Lasso extensions to group selection84

were developed in frequentist (Yuan and Lin, 2006) or Bayesian (Kyung et al., 2010; Liquet85

et al., 2017) contexts. In order to select groups as well as variables within groups, Xu et al.86

(2015) proposed the sparse group Lasso prior. This approach mimics the frequentist sparse87

group Lasso penalty introduced by Simon et al. (2013). Xu et al. (2016) extended this prior88

by considering a horseshoe prior and a scale mixture of independent Gaussian distributions89

with three levels of variance parameters: one global and common to all coefficients, one90

specific to each group, and one for each coefficient.91

92

However, the above methods do not allow serial correlations between successive time93

occurrences within groups to be taken into account. These dependencies may lead to iden-94

tifiability problems that affect the estimation task which aims to assign similar effects to95

two adjacent variables. In a linear regression context, to allow the integration of this in-96

formation and to constrain estimation, Land and Friedman (1997) and Tibshirani et al.97

(2005) introduced the fusion and fused Lasso. The fusion Lasso penalizes the `1-norm of98

successive differences in parameters, and the fused Lasso combines the fusion Lasso with99

the usual Lasso penalization on each coefficient. Kyung et al. (2010) proposed a Bayesian100

fused Lasso with a Bayesian Lasso prior on differences and also on each coefficient. However,101

several authors pointed out that the Bayesian Lasso, which uses Laplace distribution, does102

not sufficiently shrink (Carvalho et al., 2010; Polson and Scott, 2011) leading to biased and103

smooth estimations without possible abrupt changes (Faulkner and Minin, 2018). To allow104

more flexibility and sparser estimations, other continuous shrinkage priors, with stronger105

mass on zero and heavier tails, have been investigated on differences. For instance, Rue106

and Held (2005) and Song and Cheng (2020) used a Student distribution on the differences,107
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Shimamura et al. (2019) considered normal-Exponential-Gamma (NEG) distribution, while108

Kakikawa et al. (2023) placed an HS prior on differences. Note that all Bayesian fused priors109

place a Laplace distribution on regression coefficients. Some alternative priors, such as the110

HS fusion priors, assume only distributions on differences (Faulkner and Minin, 2018). These111

methodologies show prediction accuracy but are also able to estimate smooth functions with112

potentially abrupt changes. However, they were only designed for one-group. A direct ex-113

tension of Bayesian fused Lasso to multi-group context was proposed by Aláız et al. (2013).114

Zhang et al. (2014) used this multi-group version in a group spike-and-slab prior. Although115

promising, these methods may suffer from the low shrinkage properties of the Bayesian Lasso,116

leading to poor estimations when the number of groups is large and their size is small.117

118

In this paper, we use a thorough simulation study to investigate the trade-off between119

shrinkage priors on coefficients and on their differences. Our results provide evidence in favor120

of using distributions with heavier tails than the usual Laplace distribution. In particular,121

we promote the use of horseshoe priors with random local parameters for both components122

but with a fixed global parameter for coefficients while remaining random for differences.123

Consequently, two extensions to the multi-group context are developed, assuming that the124

global shrinkage parameter is either specific to each group, or common to all groups. In this125

work, we also extend to the multi-group case, the fused priors proposed by Kakikawa et al.126

(2023) or the fusion one developed by Faulkner and Minin (2018) in the one-group context.127

Prior performances are compared through intensive simulations using different settings: the128

number of groups, their size and the residual variance.129

The rest of the paper is organized as follows. Section 2 is dedicated to the construction of130

Bayesian fused priors in a linear regression framework, considering both the one-group and131

multi-group cases. Using simulated data, section 3 compares and evaluates the efficiency of132

the proposed priors according to the different settings. Section 4 identifies the environmental133

variables and time periods that affect the fruit abscission process in oil palm.134

2 Model135

2.1 Notation and model136

Let y = (y1, . . . , yn)′ be a n-continuous response vector and X = [X1, . . . ,XG] an (n×GT )-137

matrix concatenating G matrices. For all g = 1, . . . , G, Xg =
[
x′g1, . . . ,x

′
gT

]
is an (n × T )-138

matrix describing a variable measured at T regularly spaced times with xgt = (x1gt, . . . , xngt)139

for t = 1, . . . , T140

In this paper, y corresponds to the abscission time measured on n = 1, 173 bunches141

collected from l = 140 oil palm trees. Each Xg describes an environmental variable. As142

many bunches originate from the same palm tree, we used a linear mixed model such that:143

y = µ1 +
G∑

g=1

Xgβg + Zα+ ε, (1)
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where µ denotes the intercept, 1 a n-vector of 1, βg = (βg1, . . . , βgt, . . . , βgT )′ a T -vector of re-144

gression coefficients associated with environmental variable g (i.e. group g), α = (α1, . . . , αl)
′

145

a l-vector of random effects assumed Gaussian distributed with zero expectation and variance146

equal to σ2
α, and Z the known associated design matrix of dimension (n × l). This random147

effect enables to account for the dependence between observations made on the same oil148

palm tree. Finally, ε is a n-vector of residuals assumed to follow a Gaussian distribution149

Nn(0, σ2In) independent from α.150

2.2 Prior construction151

In a Bayesian framework, the usual approach accounting for structure within features while152

imposing sparsity on coefficients, relies on the use of fused-type priors. Such priors consist153

in placing continuous shrinkage priors on the regression coefficients and their successive154

differences. The most commonly used is the Bayesian fused Lasso (Kyung et al., 2010) that155

assumes Laplace distribution, also called normal-Exponential (NE) distribution, on both156

components. In the one group case (β ≡ β1), the associated conditional prior distribution157

for β is of the following form:158

π(β|σ2, λ, υ) ∝
T∏
t=1

Laplace(βt|0, υ, σ2)
T∏
t=2

Laplace(βt − βt−1|0, λ, σ2), (2)

where υ and λ are positive hyperparameters. However, the Laplace prior suffers from pos-159

terior inconsistency notably due to its exponentially light tails (Castillo et al., 2015). To160

overcome these drawbacks, several authors have proposed using continuous shrinkage priors161

on differences with heavy tails such as Student (Song and Cheng, 2020), normal-Exponential-162

Gamma (NEG, Shimamura et al. (2019)) or horseshoe (HS, Kakikawa et al. (2023)) distribu-163

tions combined with a Laplace distribution on coefficients. All continuous shrinkage priors164

can be reformulated as a scale mixture of Gaussian distributions (Andrews and Mallows,165

1974), meaning that for fused-type prior, conditioned on the scale parameters, the regression166

coefficients and their differences follow normal distributions. A general formulation of the167

conditional prior distribution of β is then given by:168

π(β|σ2, υ2,γ2, λ2,ω2) ∝
T∏
t=1

N (βt|0, υ2γ2
t σ

2)
T∏
t=2

N (βt − βt−1|0, λ2ω2
t σ

2). (3)

This formulation refers to a global-local parametrization with local shrinkage parameters γt169

and ωt and global shrinkage parameters, υ and λ, respectively associated with coefficients170

and their differences. The global parameters shrink all coefficients towards zero while local171

parameters allow true non-zero effects to escape from overall shrinkage. The usual continuous172

shrinkage distributions can then be recovered by placing specific prior distributions on the173

shrinkage parameters (see Table 1).174

The fused-type priors reported in the literature (see Table 1) focuses on the distribution175

assumption for differences but never on the prior distributions for coefficients. The Bayesian176
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Prior names Difference prior Coefficient prior References

NEωtλ – NEγtυ λ2 ∼ IG(a, b) υ2 ∼ IG(s, r) (Kyung et al., 2010)

ω2
t ∼ Exp(1/2) γ2

t ∼ Exp(1/2)

NEGωt
1 – NEγtυ λ = 1 υ2 ∼ IG(s, r) (Shimamura et al., 2019)

ω2
t |ψt ∼ Exp(ψt) γ2

t ∼ Exp(1/2)
ψt ∼ G(a, b)

HSωtλ – NEγtυ λ ∼ C+(0, 1) υ2 ∼ IG(s, r) (Kakikawa et al., 2023)

ωt ∼ C+(0, 1) γ2
t ∼ Exp(1/2)

HSωtλ – HSγtυ λ ∼ C+(0, 1) υ ∼ C+(0, 1)
ωt ∼ C+(0, 1) γt ∼ C+(0, 1)

HSωtλ – HSγt1 λ ∼ C+(0, 1) υ = 1
ωt ∼ C+(0, 1) γt ∼ C+(0, 1)

Table 1: Fused priors in the one-group context (G = 1). Exp, C+, and IG(a, b) denote
the exponential, the half-Cauchy, and the inverse-Gamma distributions. a, b, s and r are
additional hyperparameters either to be set or inferred.

Laplace is systematically advocated. However, as mentioned above, Laplace distribution177

involves posterior inconsistency (Castillo et al., 2015). In this paper, we propose priors178

with HS distribution on differences, as proposed by (Kakikawa et al., 2023) but also on179

coefficients, which remain steady when dimension or complexity increase. We explored two180

parametrizations for the global shrinkage parameter υ either by half-Cauchy C+(0, 1), or181

fixing it (see the last two lines in Table 1). According to the results of the simulation, the182

prior that assumes a global shrinkage parameter set to 1 appeared to be more consistent and183

was consequently chosen. Given that the density of the half-Cauchy distribution C+(0, 1)184

defined on R+ is equal to p(x) = 2
π(1+x2)

, this prior, denoted by HSωtλ – HSγt1 , is defined as185

follows:186

p(β|σ2) ∝
T∏
t=1

∫
1√

2πγ2
t σ

2
exp

(
− β2

t

2γ2
t σ

2

)
2

π(1 + γ2
t )
dγ2

t

×
∫ [ T∏

t=2

∫
1√

2πλ2ω2
t σ

2
exp

(
−(βt − βt−1)2

2λ2ω2
t σ

2

)
2

π(1 + ω2
t )
dω2

t

]
2

π(1 + λ2)
dλ2. (4)

Equation (4) can be reformulated in a multivariate form as follows:187

p(β|σ2) ∝
∫
· · ·
∫

(σ2)−
2T−1

2 (λ2)−
T−1
2 (5)

×
T∏
t=1

(γ2
t )
− 1

2

T∏
t=2

(ω2
t )
− 1

2 exp

(
− 1

2σ2
β′
(

Υ−1 +D>Ω−1D/λ2

)
β

)

× p(λ)
T∏
t=1

p(γt)
T∏
t=2

p(ωt)dλ
T∏
t=1

dγt

T∏
t=2

dωt.
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where D is the known T × (T − 1)-matrix associated with the finite difference operator188

of order 1, and Υ = diag(γ2
1 , . . . , γ

2
T ) and Ω = diag(ω2

1, . . . , ω
2
T−1) the (T − 1) × (T − 1)-189

diagonal matrices of local parameters. p(.) is the density of the half-Cauchy distribution190

C+(0, 1). Now it is straightforward to express the distribution of coefficients β conditionally191

to the shrinkage parameters:192

β|σ2, λ,γ,ω ∼ NT
(

0, σ2

(
Υ−1 +D>Ω−1D/λ2

)−1)
(6)

This formulation is appropriate for MCMC implementation.193

A direct and natural extension of the proposed prior (see Eq. 4) to the multi-group194

context consists in assuming that the shrinkage parameters that control sparsity are group195

specific. Formally, the density function can be expressed as follows:196

p(β|σ2) ∝
G∏
g=1

T∏
t=1

∫
1√

2πγ2
gtσ

2
exp

(
−

β2
gt

2γ2
gtσ

2

)
2

π(1 + γ2
gt)
dγ2

gt

×
∫  T∏

t=2

∫
1√

2πλ2
gω

2
gtσ

2
exp

(
−(βgt − βgt−1)2

2λ2
gω

2
gtσ

2

)
2

π(1 + ω2
gt)
dω2

t

 2

π(1 + λ2
g)
dλ2

g (7)

This prior is hereafter denoted HS
ωgt
λg

– HS
γgt
1 . However, this prior (see Eq. 7) relies on a large197

set of global shrinkage parameters (λg, g = 1, . . . , G). The inference for such parameters198

is known to be complex and can lead to poor results mostly in terms of selection (Piironen199

et al., 2017). In the multi-group context, the number of groups as well as their size will200

reinforce such difficulties. We therefore suggest an alternative parametrization assuming a201

single global parameter (λg = λ) to control shrinkage over all groups while keeping local202

parameters ωgt specific to groups. In the following, this prior is denoted by HS
ωgt
λ – HS

γgt
1203

and its density function is equal to:204

p(β|σ2) ∝
G∏
g=1

T∏
t=1

∫
1√

2πγ2
gtσ

2
exp

(
−

β2
gt

2γ2
gtσ

2

)
2

π(1 + γ2
gt)
dγ2

gt

×
∫  T∏

t=2

∫
1√

2πλ2ω2
gtσ

2
exp

(
−(βgt − βgt−1)2

2λ2ω2
gtσ

2

)
2

π(1 + ω2
gt)
dω2

t

 2

π(1 + λ2)
dλ2 (8)

A similar strategy can be applied to extend Kyung et al. (2010)’s and Kakikawa et al.205

(2023)’s priors to the multi-group context. In the following, the fused priors proposed by206

Kyung et al. (2010) are denoted by: NE
ωgt
λg

– NE
γgt
υg , and NE

ωgt
λ – NE

γgt
υg and Kakikawa207

et al. (2023)’s fused priors are denoted by HS
ωgt
λg

– NE
γgt
υg , and HS

ωgt
λ – NE

γgt
υg . Priors for β208

coefficients as well as the associated shrinkage hyper-parameter distributions are summarized209

in Table 2.210
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Prior names Difference prior Coefficient prior

HS
ωgt
λg

– HS
γgt
1 λg ∼ C+(0, 1) υg = υ = 1

ωgt ∼ C+(0, 1) γgt ∼ C+(0, 1)

λg = λ υg = υ = 1
HS

ωgt
λ – HS

γgt
1 λ ∼ C+(0, 1) γgt ∼ C+(0, 1)

ωgt ∼ C+(0, 1)

NE
ωgt
λg

– NE
γgt
υg λ2

g ∼ IG(a, b) υ2
g ∼ IG(s, r)

ω2
gt ∼ Exp(1/2) γ2

gt ∼ Exp(1/2)

λ2
g = λ2 υ2

g ∼ IG(s, r)

NE
ωgt
λ – NE

γgt
υg λ2 ∼ IG(a, b) γ2

gt ∼ Exp(1/2)

ω2
gt ∼ Exp(1/2)

HS
ωgt
λg

– NE
γgt
υg λg ∼ C+(0, 1) υ2

g ∼ IG(s, r)

ωgt ∼ C+(0, 1) γ2
gt ∼ Exp(1/2)

λg = λ υ2
g ∼ IG(s, r)

HS
ωgt
λ – NE

γgt
υg λ ∼ C+(0, 1) γ2

gt ∼ Exp(1/2)

ωgt ∼ C+(0, 1)

λg = λ
HS

ωgt
λ λ ∼ C+(0, 1)

ωgt ∼ C+(0, 1)

Table 2: Fused priors in the multi-group context. Exp, C+, and IG(a, b) denote the expo-
nential, the half-Cauchy, and the inverse-Gamma distributions. a, b, s and r are additional
hyperparameters either to be set or inferred.

Conditionally on shrinkage parameters, βg are distributed according to a multivariate211

Gaussian distribution:212

βg|Υg, λ
2,Ωg, σ

2 ∼ NT
(

0, σ2

(
Υ−1
g +

1

λ2
D>g Ω−1

g Dg

)−1)
(9)

where Υg = diag(γ2
g1
, . . . , γ2

gT
), Ωg = diag(ω2

g1
, . . . , ω2

gT−1
) and Dg is the known T × (T − 1)-213

matrix associated with the finite difference operator of order 1.214

2.3 MCMC implementation215

Bayesian inference is achieved using a Markov chain Monte Carlo (MCMC) algorithm. Ac-216

cording to Makalic and Schmidt (2015), half-Cauchy distribution can be expressed as a scale217

mixture of inverse-Gamma distributions218

x ∼ C+(0, 1) ⇔ x2|ξ ∼ IG(1/2, 1/ξ), ξ ∼ IG(1/2, 1).

Thus, all full conditional distributions have closed form. An efficient Gibbs sampling al-219

gorithm can consequently be implemented. Full conditional distributions are detailed in220

appendices A.1, A.2 and A.3 for HSωtλ – HSγt1 , HS
ωgt
λg

– HS
γgt
1 and HS

ωgt
λ – HS

γgt
1 respec-221

tively. Details for NEωt
λ – NEγt

υ and HSωtλ – NEγt
υ are provided in related papers (Kyung222

8



et al., 2010; Kakikawa et al., 2023). Computer codes are freely available on the follow-223

ing GitHub page: https://github.com/Heuclin/GroupFusedHorseshoe. Simulations (for224

reproducibility) and MCMC functions were implemented in R (R Core Team, 2023).225

3 Simulation study226

This section provides evidence for the improved performances of the proposed priors com-227

pared to the existing ones. First, we discuss the advantages of adding heavy tail distributions228

on coefficients compared to the usual Laplace priors used in the one-group context. Then229

we show the efficiency of the new priors in terms of shrinkage properties, parameter esti-230

mation and algorithmic stability in different settings: the number of groups, their size and231

the residual variance. The simulations are performed as follows. The number of individuals,232

n, was set to 150. The number of covariates, p, was set to 1500. We assumed that p was233

divided into G = 1, 10, 30 or 100 groups. Covariates within each group were sampled from a234

p
G

-multivariate Gaussian distribution with zero mean and a covariance matrix defined as a235

first-order autoregressive (AR1) structure with the correlation parameter set at 0.95. Func-236

tional effects were defined as the combination of different functions: a continuous smooth237

function, as proposed by Faulkner and Minin (2018), and a piece-wise function of varying238

size (Tibshirani et al., 2014):239

βt =



sin(4t/T − 2) + 2e−30(4t/T−2)2 t < T
0.5 t ∈ [T + 1, 2T ]
−0.5 t ∈ [2T + 1, (2 + 1/2)T ]
0.5 t ∈ [3T + 1, (3 + 1/3)T ]
−0.5 t ∈ [4T + 1, (4 + 1/4)T ]

0 otherwise

where T = min
(

p
max(10,G)

, 60
)

. Finally, the residual variance, σ2, was set at 1 or 16. 100

replicated datasets were generated for each combination of parameters G and σ2. Perfor-
mance was evaluated using the mean squared error calculated either on true zeros (MSEz)
or on non-zero coefficients (MSEnz) as measures of the estimation accuracy. We also used
the Matthew Correlation Coefficient (MCC, Matthews (1975)), the True Positive Rate on
all non-zero coefficients (TPR) and the True Positive Rate on groups (TPRgr) as measures
of the selection quality. For all methods, a variable is deemed relevant if the 95% credible
interval of its regression coefficient does not contain zero, and a group is selected if it contains
at least one significant variable. By denoting Cz = {t : βt = 0} and Cnz = {t : βt 6= 0},
the sets of indices of true zero and non-zero coefficients respectively, the performances are
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calculated through:

MSEz =
1

|Cz|
∑
t∈Cz

(βt − β̂t)2; MSEnz =
1

|Cnz|
∑
t∈Cnz

(βt − β̂t)2;

MCC =
TP × TN − FP × FN√

(TP + FP)(TP + FN )(TN + FP)(TN + FN )
;

TPR =
TP

|Cnz|
; and TPRgr =

TPgr
G

where β̂t is the posterior mean of the regression coefficient for the variableXt, and TP ,TN ,FP ,FN240

correspond to True (T) and False (F) negative (N) and positive (P) coefficients, respectively.241

TPgr is the true positive groups. Each criterion was averaged over the 100 replicates. For242

each repetition, the MCMC algorithm was run for 15, 000 iterations, the first 3, 000 used as243

burn-in and a thinning of 2.244

245

As shown in Table 3, in the one-group context (G = 1), the performances of HSωtλ – HSγt1246

and HSωtλ – NEγt
υ were close regardless of the value of the residual variance. Both clearly247

outperformed the standard NEωt
λ – NEγt

υ and NEGωt
1 – NEγt

υ priors, which demonstrated248

comparable performance. These results showed that using priors with heavy tails, compared249

to Laplace distribution on differences, considerably improves performances. Similar results250

were observed by Kakikawa et al. (2023). However, assuming a horseshoe prior when the251

global shrinkage parameter on coefficients is random and distributed as a half-Cauchy, HSωtλ252

– HSγtυ , led to convergence problems. Such prior shrunk all coefficients towards zero, in253

that sense it failed to converge in almost all cases. These findings are consistent with those254

reported by Kakikawa et al. (2023) and evidenced a trade-off between shrinkage priors placed255

on coefficients and their differences. We also observed that shrinkage properties were slightly256

reinforced using horseshoe prior with a fixed global shrinkage parameter (HSγt1 ) on coefficients257

compared to the use of a Laplace prior (NEγt
υ ) (see MSEz column in Table 3).258

In the multi-group context, Figure 1 and Table B.4 in Appendix B showed that priors as-259

suming HS distributions on both the coefficients and their differences yielded highly relevant260

results, regardless of the value of the residual variance and the number of groups. For priors261

combining a HS distribution on differences with a NE distribution on coefficients, results262

were number of group dependent. The use of NE distribution priors on both components263

led to poor results or even did not converge when number of group was high. Such pri-264

ors did not sufficiently shrink parameters, leading to an overestimation of zero coefficients265

strongly impacting algorithm convergences. These findings confirmed the importance of us-266

ing a heavy-tailed distributions on differences, as observed in the one-group context and in267

Kakikawa et al. (2023). Figures B.1 in the Appendix B presented the estimated coefficients268

profiles for all priors for a given scenario. As expected, the NEωt
λ – NEγt

υ prior resulted in269

noisy estimations along with wide credible intervals.270

We now gain insights into the results obtained with priors using HS on differences. For a271

small to moderate number of groups (G = 5 or 10), performance in terms of variable selection272

was similar across all priors, with MCC values ranging from 0.89 to 0.98. False Positive Rates273
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σ2 Priors MSEz MSEnz MCC TPR Counts

1 HSωtλ – HSγt1 0.00004 0.016 0.91 84 95
1 HSωtλ – HSγtυ 0.00000 2.662 0.07 1 100
1 HSωtλ – NEγtυ 0.00068 0.050 0.90 84 91
1 NEωtλ – NEγtυ 0.00273 0.046 0.21 5 100
1 NEGωt

1 – NEγtυ 0.00326 0.047 0.04 0 100

16 HSωtλ – HSγt1 0.00012 0.050 0.82 71 89
16 HSωtλ – HSγtυ 0.00000 2.562 0.07 1 94
16 HSωtλ – NEγtυ 0.00092 0.055 0.89 81 87
16 NEωtλ – NEγtυ 0.00516 0.054 0.15 3 96
16 NEGωt

1 – NEγtυ 0.00612 0.056 0.03 0 100

Table 3: Mean squared errors of the true zeroes (MSEz), the true non-zeroes (MSEnz),
the Matthews Correlation Coefficient (MCC), and the True Positive Rate on all non-zero
coefficients (TPR) using priors defined in Table 1 with residual variance σ2 equal to 1 or 16
in the one-group context (G = 1). All criteria were averaged over 100 simulated datasets.
The last column, Counts, gives the number of MCMC runs that reached convergence. A
value lower than 100 indicates that some runs failed to converge, mainly due to numerical
instabilities.

(FPR), not reported here, were systematically equal to zero. Regarding group selection,274

all priors enjoyed TPRgr values close to 1, highlighting their ability to accurately identify275

the relevant groups of variables. In terms of estimating non-zero coefficients, priors gave276

comparable results, with MSEnz values ranging from 0.010 to 0.032. For the zero coefficients,277

as observed in the one-group context, the shrinkage property was slightly enhanced when278

using an HS prior on the coefficients (see the MSEz column in Table B.4 in Appendix B).279

When number of groups increased (G = 30 or 100), performances of HS
ωgt
λg

– HS
γgt
1 and280

HS
ωgt
λ – HS

γgt
1 were not impacted and results were comparable to those obtained when the281

number of group was small (less or equal to 10). In contrast, as shown in Figure 1, HS
ωgt
λ282

– NE
γgt
υg , HS

ωgt
λg

– NE
γgt
υg and the fusion prior, HS

ωgt
λ , which assumed distribution only on283

differences (Faulkner and Minin, 2018), performances were group dependent. When the284

number of groups was equal to 30, over the 100 runs and whatever the value of the residual285

variance (1 or 16), approximately 89% of times MCMC reached convergences for HS
ωgt
λ –286

NE
γgt
υg while HS

ωgt
λg

– NE
γgt
υg systematically failed to converge (see Table B.4 in Appendix287

B). For the fusion HS
ωgt
λ , all criteria were slightly deteriorated. For example MCC values288

were lower than 0.9 while were closed to one when number of groups was equal to 10. For289

G = 100, all priors excepted using the HS – HS type priors, failed to convergence. These290

results could be explained by the reduction in the number of observations within groups291

avoiding either an appropriate inference of global parameters, υg, at the group level (see292

Table B.4 in Appendix B) or because the distribution tail used for the coefficients was293

not heavy enough. These results underscored the importance of carefully defining priors294

on coefficients to ensure numerical regularization and reinforced trade-off shrinkage priors295

placed on coefficients and their differences.296
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Results evidenced no differences in terms of selection and estimation performances be-297

tween HS
ωgt
λ – HS

γgt
1 and HS

ωgt
λg

– HS
γgt
1 (see Figure 1c) and in estimating non-zero and zero298

coefficients (see Figure 1b). Focusing on algorithmic performances and stability, again both299

priors achieved convergence across all tested scenarios. A higher residual variance had only a300

slight impact on the results. For instance, the MCC values remained close to 0.9 for σ2 = 1301

and 16, whatever the number of groups. To sum up, these findings encouraged favoring the302

simplified version, which assumes a single global shrinkage parameter λg = λ, resulting in a303

more parsimonious prior.304

4 Real application: determinisms of abscission in oil305

palm306

4.1 The abscission dataset307

The objective of the application is to identify the environmental variables and time periods308

of the inflorescence and bunch development that affect the oil palm fruit abscission process309

(Tisné et al., 2020). The dataset was provided by “le Centre de Recherches Agricoles-Plantes310

Pérennes” (CRA-PP) of the national institute for agricultural research of Benin Republic311

(INRAB) which manages an oil palm seed garden involving a self-pollinated population312

of 140 oil palm trees planted between 2000 and 2005 in a single homogeneous field plot.313

Each palm tree produced between 1 and 8 bunches per year over the whole period of the314

experiment from 2014 to 2018 (see the examples of two individual oil palms in Figure 2c).315

The manual pollination date differed for each bunch. The date was recorded and the bunch316

was monitored up to harvest (see Figure 2c). A total of 1, 173 bunches were considered317

over multiple years to take advantage of the climatic seasonality and the continuous fruit318

production of this species. We used the number of days from pollination to fruit drop (DFD)319

as the response variable. DFD is the classical harvest indicator and its variation integrates320

different underlying abscission processes at different developmental stages.321

Additionally, nine covariates were used as predictors. Five climate variables were recorded322

from 2014 to 2018: maximum and minimum temperature (Tmax, Tmin, in ◦C, see top left323

panel Fig. 2a), relative air humidity (RH, in %), rainfall (R, in mm) and solar radiation (SR,324

in cal.cm−2.d−1, see bottom left panel Fig. 2a). Note that climate variables are similar for325

all individuals but vary between months and years. Errorbars reflect such variations. Four326

ecophysiological variables were calculated using climate and individual production data: two327

exogenous variables, the maximum daily vapor pressure deficit (VPD), the fraction of tran-328

spirable soil water (FTSW, see right panel Fig. 2a), and two endogenous (trophic) variables:329

the supply–demand ratio (SD) and the daily reproductive demand (DRD, see left panel330

Fig. 2b). More details are available in Tisné et al. (2020). Contrary to climate variables,331

ecophysiological variables are fixed among years but vary between individuals. Error-bars332

summarize such variability. We also added the auto-correlation function (ACF) illustrating333

strong dependencies between successive measurements thus reinforcing regularization chal-334

lenges (see right panel Fig. 2b). These variables can have punctual or cumulative effects,335
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(a) Mean squared error of the true zeroes (b) Mean squared error of the true non-zeroes

(c) Matthews correlation coefficient

Figure 1: Boxplots of mean squared errors of the true zeroes 1a, the true non-zeroes 1b and
of the Matthews correlation coefficient 1c over 100 replicates for priors defined in Table 2.
Colors refer to number of groups varying from 5 to 100. The residual variance is set to one.
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(a)

(b)

(c)

Figure 2: Panel 2a corresponds to raw (Tmin, Tmax, R, RH and SR) and calculated (RH,
VPD and FTSW) climate variable over times. Error bars are the inter-annual variability.
Panel 2b presents the time-varying average of the endogenous variables DRD and SD (left
panels). Error bars are calculated among individuals. Auto-correlation function associated
to both variables is presented as an example (right panel). Panel 2c corresponds to raw and
calculated environmental variables (top panel) and example of bunch production for two oil
palm individuals along with their endogenous variables (middle and bottom panels). Raw
and calculated variables (heatmaps) as well as bunches (horizontal segments) are plotted
over the experiment duration, from 2014 to 2018. The segments for bunches are represented
from the manual pollination (black diamonds) to the harvest, the yellow to red color in-
dicating increasing DFD. DFD: days to fruit drop; SR: Solar Radiation; FTSW: Fraction
of transpirable soil water; R: rainfall; VPD: Vapor pressure deficit; RH: Relative humid-
ity; Tmin/Tmax: minimun/maximum temperatures; SD: supply-demand ratio; DRD: Daily
reproductive demand.
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depending on the biological process or the developmental stage concerned. Temperature336

can have punctual effects such as stopping growth at low temperatures, but also cumulative337

effects on developmental rates that led to the thermal time development. A three-day time338

grid, from −180 (individualization of the floral meristem) to +180 (ripe fruit) days after339

pollination, was used to calculate either the average values over three days (Tmax, Tmin,340

RH, VPD, FTSW, DRD, and SD) or the cumulative values over 15 days (R and SR) of341

each variable. This experimental design led to nine groups of covariates (G = 9) measured342

T = 121 times. Within each matrix, the ith row corresponds to the ith bunch analyzed,343

and the tth column corresponds to the value of the corresponding climatic/ecophysiological344

variable at time t for each bunch (see bottom panel 2c). All matrices were scaled to obtain345

a similar order of magnitude. All the results are based on 20 MCMC runs initialized at346

random starting values and 50,000 iterations with a burn-in of 20,000 and a thinning of 10.347

A group is considered selected if at least one regression effect within it has a credible interval348

that does not contain zero.349

4.2 Identification of determinism of abscission and biological in-350

terpretation351

The coefficient profiles estimated using HS
ωgt
λ – HS

γgt
1 prior are very clear and allow the352

identification of relevant time periods of four variables (DRD, SD, SR, and Tmin, see Figure353

3). Two types of patterns can be observed: smooth effects for Tmin and SR and punctual354

effects for DRD and SD. The Tmin variable is negatively associated with DFD during the355

development of the inflorescence from day −180 to −100, while the three other variables are356

associated with DFD at the end of the fruit bunch development. SR, the solar radiation357

variable, is positively associated with DFD from day 120 to 180, at the final stage before358

fruit drop. The DRD variable is punctually associated with DFD at days 99 and 105 after359

pollination, first positively before an inversion of the association direction at day 100. The360

SD factor is negatively associated with DFD with a peak at day 160.361

The striking pattern of DRD around day 100 after pollination (see Figure 3) was also362

observed by Tisné et al. (2020) and corresponds to the ”lag period” of the oil palm fruit363

bunch development between the cell division/expansion phase and the maturation phase364

(Tranbarger et al., 2011). The selection of the DRD variable at this key developmental stage365

suggests that to modulate its maturation and abscission timing, the fruit bunch concerned366

integrates current and future whole plant photosynthate demand due to concomitant devel-367

oping bunches. Such carbohydrate-based regulation is common in fruit tree species and leads368

to the wave of abscission that affects fruitlets (Sawicki et al., 2015), the only difference being369

that the oil palm regulates the timing of ripe fruit abscission rather than dropping unripe370

fruits. In contrast with DRD and SD which have similar punctual patterns to those reported371

in the Tisné et al. (2020) study, the profile of the Tmin effect is different, with a continuous372

moderate effect instead of many weak effects spread out over the −180 to −100 period (see373

Figure 3). The SR factor was not selected by Tisné et al. (2020), but using our prior, it374

has a positive effect from day 120 to 180 (see Figure 3). These discrepancies may be due to375
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Figure 3: Estimated non-zero coefficient profile provided by the HS
ωgt
λ – HS

γgt
1 prior using

the abscission dataset. Gray shadowed areas indicate the 95% credible interval. Colors
represent the different categories of environmental variables, green is for photosynthesis
variables (DRD, SR, SD) and red is for temperature variables.

the cumulative nature of both Tmin and SR effects at their respective developmental stages.376

Hence, the Tmin effect at the early inflorescence developmental stages could be linked to377

thermal time, which is known to be associated with development rates. The differentiation of378

floral organs occurs in the period identified (Adam et al., 2011) and variations in cumulative379

thermal time could modulate the developmental program and ultimately the timing of fruit380

drop. The cumulative effect of radiation was identified throughout the final stage before381

fruit drop that corresponds to fruit maturation with intensive accumulation of lipids and is382

closely linked to photosynthate availability (Tranbarger et al., 2011). Our proposed prior,383

which was designed to estimate a smooth and flexible coefficient profile is thus well suited to384

study the effect of cumulative effect variables in addition to the punctual effect variables that385

were consistently identified in both approaches, in line with the group penalized approach386

used in Tisné et al. (2020).387

5 Conclusion388

In this paper, we propose a set of original fused-type priors adapted to both the one-group and389

the multi-group context. In particular, we call for the use of horseshoe priors on differences390

and on coefficients. We show that prior with heavier tail distribution compared to the391

usual Laplace distribution is efficient not only for selection and estimation but also for392

algorithmic stability mainly when the number of groups is large and the groups are small.393

However, we also show that there is a trade-off between prior assumptions made on differences394

and on coefficients. The use of a full horseshoe prior for differences and coefficients with395

random global shrinkage parameters, HSωtλ – HS
γgt
υ , led to inconsistent results, shrinking396
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all parameters to zero. While using a NE distribution on coefficients combined with a397

HS distribution on differences may lead to poor and unstable results especially when the398

number of groups is large and their size is low. To sum up, this work promote the use of a399

horseshoe prior distribution with a global shrinkage parameter fixed at 1 for coefficients and400

a random global parameter for differences but common to all groups. Such prior appears as401

a appropriate trade-off between efficiency and parsimony.402

From a biological point of view, the proposed prior clearly identifies four environmental403

variables as well as the periods during which they affect the abscission process of oil palm404

trees. By allowing flexibility in the estimation of regression coefficient profiles, we identified405

an additional environmental variable to those identified in a previous study using a group406

penalized approach on the same data, and improved the biological interpretation of the407

regression profiles. The proposed prior will help biologists identify the best time to harvest408

the bunches.409

The proposed prior can be directly applied to a broad range of applications particu-410

larly because the considered groups may vary in size. For exemple, it can be used in the411

near-infrared spectroscopy context, which involves one-group of ordered variables through412

a spectrum, or in the genetic mapping context, where markers can be viewed as groups413

of ordered variables at the chromosome level. To account for multi-dimensional indexa-414

tion (spatial or spatio-temporal structures) instead of only one-dimensional indexation (time415

structure), this prior should be extended even if it raises computational challenges.416
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Tisné, S., Denis, M., Domonhédo, H., Pallas, B., Cazemajor, M., Tranbarger, T. J., and487

Morcillo, F. (2020). Environmental and trophic determinism of fruit abscission and outlook488

with climate change in tropical regions. Plant-Environment Interactions, 1(1):17–28.489
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Appendices512

A Prior details, Bayesian hierarchical models and full513

conditional distributions514

A.1 The HSωt

λ – HSγt1 prior for one-group515

The equation (4) can be reformulated as a hierarchical model using the global-local parametriza-516

tion of Gaussian scale mixture representation:517

β|σ2, λ,γ,ω ∼ NT (0, σ2Q−1)

λ ∼ C+(0, 1)

ωt ∼ C+(0, 1) t = 1, . . . , T

γt ∼ C+(0, 1) t = 1, . . . , T

σ2 ∼ C+(0, 1)

where Q is the matrix equal to518

Q =
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T


which is equivalent to519

Q =

(
Υ−1 +D>Ω−1D/λ2

)
.

The first matrix, Υ−1, refers to regression parameters, and the second, D>Ω−1D/λ2 to the520

differences. D is the known T×(T−1)-matrix associated to the finite differences operator of521

order 1, and Ω = diag(ω2
1, . . . , ω

2
T−1) and Υg = diag(γ2

1 , . . . , γ
2
T ) the (T−1)×(T−1)-diagonal522

matrices of local parameters.523

In order to compute the full conditional distributions, we use the scale mixture of inverse-524

Gamma distribution representation of the half-Cauchy distribution (Makalic and Schmidt,525
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2015). The resulting hierarchical model is the following:526

y|µ,β, α, σ2 ∼ Nn(µ+Xβ + Zα, σ2In)

µ ∼ U(−∞,∞)

β|σ2, λ,γ,ω ∼ NT (0, σ2Q−1)

λ2|ξ ∼ IG(
1

2
,

1

η
), ξ ∼ IG(

1

2
, 1)

ω2
t |φt ∼ IG(

1

2
,

1

φt
), φt ∼ IG(

1

2
, 1), t = 1, . . . , T

γ2
t |ηt ∼ IG(

1

2
,

1

ηt
), ηt ∼ IG(

1

2
, 1), t = 1, . . . , T

α|σ2
u ∼ NP (0, σ2

αA), σ2
α ∼ IG

(
1

2
,
1

2

)
σ2|a ∼ IG(

1

2
,

1

a
), a ∼ IG(

1

2
, 1)

The corresponding full conditional distributions for the model parameters are given by:527

µ|. ∼ N
(

1

n
1
>(y −Xβ −Zα),

σ2

n

)
β|. ∼ NT

(
Σb
X>

σ2
(y − µ1− Zα), Σb = σ2

(
X>X + Υ−1 +

D>Ω−1D

λ2

)−1)
λ2|. ∼ IG

(
1 + T

2
,

1

ξ
+

G∑
g=1

β>D>Ω−1Dβ

2σ2

)
, ξ|. ∼ IG(1, 1 + 1/λ2)

ω2
j |. ∼ IG

(
1,

1

φj
+

((Dβ)[j])
2

2σ2λ2

)
, φj|. ∼ IG(1, 1 + 1/ω2

j ), j = 1, . . . , T − 1

υ2
t |. ∼ IG

(
1,

1

ηt
+
β>t βt
2σ2

)
, ηt|. ∼ IG(1, 1 + 1/υ2

t ), t = 1, . . . , T

α|. ∼ NP
(

Σα
Z>

σ2
(y − µ1−Xβ), Σα =

(
A−1

σ2
α

+
Z>Z

σ2

)−1)
σ2
α|. ∼ IG

(
1 + P

2
,

1

2
+ α>A−1α

)
σ2|. ∼ IG

(
1 + T + n

2
,

1

a
+

1

2
β>
(

Υ−1 +
D>Ω−1D

λ2

)
β +

1

2
||y − µ1−Xβ − Zα||22

)
a|. ∼ IG(1, 1 + 1/σ2)

A.2 The HS
ωgt

λg
– HSγgt1 prior for multi-group528

As previously detailed for the HSωtλ – HSγt1 prior for one-group (see Appendix A.1), the529

HS
ωgt
λg

– HSγgt1 prior given in equation 7 can be reformulated as a hierarchical model using530
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global-local parametrization of Gaussian scale mixture representation. Also, using the scale531

mixture of inverse-Gamma distribution representation of the half-Cauchy distribution, the532

resulting Bayesian hierarchical model for the MCMC implementation of the HS
ωgt
λg

– HSγgt1533

prior is given by:534

y|µ,β, α, σ2 ∼ Nn(µ+
G∑
g=1

Xgβg + Zα, σ2In)

µ ∼ U(−∞,∞)

βg|Υg, λ
2
g,Ωg, σ

2 ∼ NT
(

0, σ2

(
Υ−1
g +

1

λ2
g

D>g Ω−1
g Dg

)−1)
Υ2
gt|ηgt ∼ IG

(
1

2
,

1

ηgt

)
, ηgt ∼ IG

(
1

2
, 1

)
, g = 1, . . . , G, t = 1, . . . , T

λ2
g|ψg ∼ IG

(
1

2
,

1

ψg

)
, ψg ∼ IG

(
1

2
, 1

)
, g = 1, . . . , G

ω2
gj
|φgj ∼ IG

(
1

2
,

1

φgj

)
, φgj ∼ IG

(
1

2
, 1

)
, g = 1, . . . , G, j = 1, . . . , T − 1

α|σ2
u ∼ NP (0, σ2

αA), σ2
α ∼ IG

(
1

2
,
1

2

)
σ2|a ∼ IG

(
1

2
,

1

a

)
, a ∼ IG

(
1

2
, 1

)
where Υg = diag(υ2

g1
, . . . , υ2

gT
), Ωg = diag(ω2

g1
, . . . , ω2

gT−1
) and Dg is the known T × (T − 1)-535

matrix associated with the finite difference operator of order 1.536
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The corresponding full conditional distributions for the model parameters are given by:

µ|. ∼ N
(

1

n
1
>(y −

G∑
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σ2

n

)
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∑
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)
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υ2
gt |. ∼ IG

(
1,

1

ηgt
+
β>gtβgt
2σ2

)
, ηgt|. ∼ IG(1, 1 + 1/υ2

gt), g = 1, . . . , G, t = 1, . . . , T

α|. ∼ NP
(

Σα
Z>

σ2
(y − µ1−

G∑
g=1

Xgβg),Σα =

(
A−1

σ2
α

+
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σ2

)−1)
σ2
α|. ∼ IG

(
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2
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1

2
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)
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1
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1
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g Dg
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g

)
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1

2
||y − µ1−

G∑
g=1

Xgβg − Zα||22
)

a|. ∼ IG(1, 1 + 1/σ2)

A.3 The HS
ωgt

λ – HSγgt1 prior for multi-groups537

As previously detailed for the HSωtλ – HSγt1 prior for one-group (see Appendix A.1), the HS
ωgt
λ538

– HSγgt1 prior giving in equation 8 can be reformulated as a hierarchical model using the539

global-local parametrization of Gaussian scale mixture representation. Also, using the scale540

mixture of inverse-Gamma distribution representation of the half-Cauchy distribution, the541

resulting Bayesian hierarchical model for the MCMC implementation of the Global HS
ωgt
λ –542

HSγgt1 prior is given by:543
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y|µ,β, α, σ2 ∼ Nn(µ+
G∑
g=1

Xgβg + Zα, σ2In)

µ ∼ U(−∞,∞)

βg|Υg, λ
2,Ωg, σ

2 ∼ NT
(

0, σ2

(
Υ−1
g +

1

λ2
D>g Ω−1
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)−1)
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1
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1
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)
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1

2
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)
, g = 1, . . . , G, t = 1, . . . , T

λ2|ξ ∼ IG
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1

2
,
1
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)
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, 1
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1
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1
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, g = 1, . . . , G, j = 1, . . . , T − 1
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u ∼ NP (0, σ2

αA), σ2
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(
1

2
,
1

2

)
σ2|a ∼ IG

(
1

2
,

1

a

)
, a ∼ IG

(
1

2
, 1

)
where Υg = diag(γ2

g1
, . . . , γ2

gT
), Ωg = diag(ω2

g1
, . . . , ω2

gT−1
) and Dg is the known T × (T − 1)-544

matrix associated with the finite difference operator of order 1.545
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The corresponding full conditional distributions for the model parameters are given by:

µ|. ∼ N
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1
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1
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a|. ∼ IG(1, 1 + 1/σ2)
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B Simulation results546
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σ2 G Priors MSEz MSEnz MCC TPR TPRgp Counts

1 5 HS
ωgt

λ – HSγgt1 0.00007 0.016 0.91 85 100 100

1 5 HS
ωgt

λg
– HSγgt1 0.00008 0.015 0.92 85 100 100

1 5 HS
ωgt

λ – NE
γgt
υg 0.00039 0.026 0.95 91 100 100

1 5 HS
ωgt

λg
– NE

γgt
υg 0.00039 0.023 0.95 91 100 100

1 5 NE
ωgt

λ – NE
γgt
υg 0.00324 0.046 0.03 0 31 100

1 5 NE
ωgt

λg
– NE

γgt
υg 0.00169 0.030 0.33 12 100 100

1 5 HS
ωgt

λ 0.00020 0.011 0.96 97 100 99

1 10 HS
ωgt

λ – HSγgt1 0.00006 0.013 0.92 87 100 100

1 10 HS
ωgt

λg
– HSγgt1 0.00005 0.012 0.93 87 100 100

1 10 HS
ωgt

λ – NE
γgt
υg 0.00019 0.011 0.96 93 100 100

1 10 HS
ωgt

λg
– NE

γgt
υg 0.00020 0.010 0.96 93 100 99

1 10 NE
ωgt

λ – NE
γgt
υg 0.00339 0.047 0.00 0 2 100

1 10 NE
ωgt

λg
– NE

γgt
υg 0.00123 0.025 0.37 16 53 100

1 10 HS
ωgt

λ 0.00023 0.010 0.95 98 100 100

1 30 HS
ωgt

λ – HSγgt1 0.00003 0.008 0.96 93 100 100

1 30 HS
ωgt

λg
– HSγgt1 0.00003 0.005 0.97 94 100 100

1 30 HS
ωgt

λ – NE
γgt
υg 0.00011 0.009 0.98 97 100 89

1 30 NE
ωgt

λ – NE
γgt
υg 0.00332 0.051 0.00 0 1 73

1 30 NE
ωgt

λg
– NE

γgt
υg 0.00097 0.022 0.44 22 47 14

1 30 HS
ωgt

λ 0.00035 0.013 0.88 98 100 100

1 100 HS
ωgt

λ – HSγgt1 0.00004 0.026 0.96 92 100 100

1 100 HS
ωgt

λg
– HSγgt1 0.00005 0.021 0.95 91 100 100

16 5 HS
ωgt

λ – HSγgt1 0.00014 0.029 0.89 82 100 100

16 5 HS
ωgt

λg
– HSγgt1 0.00014 0.028 0.90 82 100 100

16 5 HS
ωgt

λ – NE
γgt
υg 0.00055 0.032 0.94 90 100 100

16 5 HS
ωgt

λg
– NE

γgt
υg 0.00054 0.030 0.94 90 100 100

16 5 NE
ωgt

λ – NE
γgt
υg 0.00384 0.049 0.03 0 37 100

16 5 NE
ωgt

λg
– NE

γgt
υg 0.00242 0.035 0.30 10 100 100

16 5 HS
ωgt

λ 0.00058 0.017 0.94 96 100 101

16 10 HS
ωgt

λ – HSγgt1 0.00012 0.025 0.91 84 100 100

16 10 HS
ωgt

λg
– HSγgt1 0.00012 0.021 0.91 85 100 100

16 10 HS
ωgt

λ – NE
γgt
υg 0.00040 0.022 0.95 92 100 100

16 10 HS
ωgt

λg
– NE

γgt
υg 0.00039 0.018 0.95 92 100 94

16 10 NE
ωgt

λ – NE
γgt
υg 0.00405 0.049 0.01 0 5 100

16 10 NE
ωgt

λg
– NE

γgt
υg 0.00196 0.031 0.34 13 52 100

16 10 HS
ωgt

λ 0.00059 0.017 0.94 96 100 100

16 30 HS
ωgt

λ – HSγgt1 0.00008 0.022 0.95 91 100 100

16 30 HS
ωgt

λg
– HSγgt1 0.00008 0.012 0.95 91 100 100

16 30 HS
ωgt

λ – NE
γgt
υg 0.00036 0.021 0.97 96 100 89

16 30 NE
ωgt

λ – NE
γgt
υg 0.00398 0.052 0.00 0 1 75

16 30 NE
ωgt

λg
– NE

γgt
υg 0.00182 0.031 0.38 16 40 15

16 30 HS
ωgt

λ 0.00115 0.022 0.87 96 100 99

16 100 HS
ωgt

λ – HSγgt1 0.00011 0.035 0.92 85 100 100

16 100 HS
ωgt

λg
– HSγgt1 0.00015 0.042 0.90 81 100 100

Table B.4: Mean squared errors of the true zeroes (MSEz), the true non-zeroes (MSEnz), the
Matthews Correlation Coefficient (MCC), the True Positive Rate on all non-zero coefficients
(TPR) and on selected groups (TPRgp) using the different priors with residual variance σ2

equal to 1 or 16, and a number of groups equal to 5, 10, 30 or 100. All the criteria were
calculated over the 100 replications and averaged. The last column gives the number of
simulations that were reach convergence (Counts).
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(a) HS
ωgt
λ – HSγgt1 (b) HS

ωgt
λg

– HS
γgt
1

(c) HS
ωgt
λ – NE

γgt
υg (d) HS

ωgt
λg

– NE
γgt
υg

(e) NE
ωgt
λ – NE

γgt
υg (f) NE

ωgt
λg

– NE
γgt
υg

(g) HS
ωgt
λ

Figure B.1: MCMC chain for the fused priors (Fig. B.1a, B.1b, B.1c, B.1d, B.1e, B.1f) and
fusion prior (Fig. B.1g) for one simulation with setting equal to: residual variance fix to
one and number of groups set to five. The red line is the true profile of coefficients. The
black line is the estimated profile and gray shadow is the credible interval at 95%. The
vertical dashed line delimits the groups. Only the first 400 coefficients are represented for
more visibility.
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