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Abstract3

4

The abscission process is strongly involved in a series of physiological events; an optimal5

execution of this process is of major importance for species survival. Environmental variation6

impacts species development and abscission process with varying effects over developmental7

stages. The identification of the environmental factors as well as the time periods at which8

they modulate the abscission process is crucial to deal with climate changes. Considering9

environmental variables as time series, i.e. groups of correlated variables, poses a statistical10

challenge in selecting relevant groups and temporally correlated variables within them. In11

this study, we address these objectives by introducing and discussing four Bayesian group12
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fused priors through a general parametrization. In particular, we highlighted that the horse-13

shoe prior on differences with a unique global parameter over groups combined with a normal14

half-Cauchy distribution on coefficients outperformed the extension of the usual fused priors,15

which consists of assuming Laplace distributions on coefficients and their differences. The16

fruit abscission of oil palm trees motivated this development. This application, based on an17

impressive experimental design in Benin Republic, illustrated performances of the proposed18

prior to select environmental variables as well as successive past environmental variations19

involved in the timing of bunch harvesting.20

21

Keywords: Bayesian variable selection, Fusion and Fused priors, Horseshoe prior, Struc-22

tured variables.23

24

1 Introduction25

Understanding the impact of environmental variables on development and adaptation pro-26

cesses is crucial in facing to climate changes. Abscission consists of the shedding of various27

parts of organisms, such as leaves during autumn or flowers after fertilization. It is one of28

the most important adaptation process. This biological mechanism is highly sensitive to cli-29

mate conditions and to their variations over the growing seasons and years. The abscission30

process could be illustrated by the well-known leaf senescence and fall of deciduous trees,31

which was delayed in response to an increase in temperature between 1931 and 2010 in the32

northern hemisphere (Gill et al., 2015). Environmental stress may severely impact abscission33

processes due to complex regulations involving exogenous and endogenous signals (Sawicki34

et al., 2015). For instance, drought stress can induce activation and premature flower ab-35

scission in lupine (Wilmowicz et al., 2021) or tomato plants (Reichardt et al., 2020) and so36
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negatively impact crop productivity.37

38

In many contexts, while it is clear that environmental variables have consequences on39

organ losses, it is not yet clear which one, either exogenous (climate, soil,...) or endogenous40

(development, carbon status,...), is responsible for the responses observed and at which stages41

of the organ development or the abscission process the regulation occurs. For the oil palm42

trees, the abscission time is critical because fruit bunches are harvested when the first fruits43

detach and fall to the ground. A premature abscission of fruits can lower the oil yield if the44

optimal maturity is not reached, while too much abscission leads to extra work in collecting45

detached fruits on the ground. A recent study has shown that environmental variables,46

such as temperature or solar radiation, alter the oil palm tree reproductive development by47

modulating the timing of fruit drop (Tisné et al., 2020). In this paper, we aim to identify48

over the environment experienced by the fruit bunch the relevant environmental variables49

and the periods at which they have an effect in the phenotypic variations of fruit abscission.50

Considering environmental variables as time series, i.e groups of temporally correlated51

variables, raises at least two challenges both related to model regularization and variable52

selection. The first one is the selection of groups (environmental variables). The second one53

is the selection of correlated variables within groups (time periods). Natural ordering of vari-54

ables within groups can lead to potentially high correlation between consecutive variables.55

These dependencies have to be taken into account to avoid ill-conditioned problems and56

over-fitting, but also to better reflect reality and detect successive meaningful time periods.57

58

Considerable attention has been paid in the last decades to variable and group selection.59

Developed methods are mainly related to penalized likelihood techniques in a frequentist60

context, or to the use of appropriate priors reflecting desired penalties in a Bayesian context.61

Among others, the Least absolute shrinkage and selection operator (Lasso, Tibshirani, 1996),62
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the Smoothly Clipped Absolute Deviation (Fan and Li, 2001) penalty or yet the Elastic-Net63

(Zou and Hastie, 2005) are classically used. Note that Elastic-Net is well adapted when vari-64

ables are correlated. This approach is based on the combination of `1- and `2-norms on the65

penalization term, combining shrinkage properties from Lasso and regularization capacities66

from Ridge regression (Hoerl and Kennard, 1970). In a Bayesian multiple linear regression67

context, the set of priors for variable selection has also been extensively developed. We may68

cite among others, the spike-and-slab prior (Mitchell and Beauchamp, 1988; George and69

McCulloch, 1993, 1997), the Bayesian Lasso prior (Park and Casella, 2008), the Elastic-Net70

prior (Kyung et al., 2010), the normal-Gamma prior (Griffin et al., 2010) and the horse-71

shoe (HS) prior (Carvalho et al., 2010; Piironen et al., 2017). Nevertheless, these methods72

do not take into account a potential group structure within covariates. Lasso extensions to73

group selection have been developed in frequentist (Yuan and Lin, 2006) or Bayesian (Kyung74

et al., 2010; Liquet et al., 2017) contexts. In order to select groups as well as variables within75

groups, Xu et al. (2015) proposed the sparse group Lasso prior. This approach mimics the76

frequentist sparse group Lasso penalty introduced by Simon et al. (2013). Xu et al. (2016)77

extended such a prior considering a horseshoe prior and a scale mixture of independent78

Gaussian distributions with three levels of variance parameters: one global and common to79

all coefficients, one specific to each group and one for each coefficient.80

81

The above methods do not allow serial correlations between successive variables within82

groups to be taken into account. These dependencies may lead to identifiability problems83

impacting the estimation task which aims to assign similar effects for two adjacent variables.84

In a linear regression context, to allow the integration of this information and to constrain85

estimation, Land and Friedman (1997) and Tibshirani et al. (2005) introduce the fusion and86

fused Lasso. The fusion Lasso penalizes the `1-norm of successive differences of parameters,87

and the fused Lasso combines the fusion Lasso with the usual Lasso penalization on each88
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coefficient. Kyung et al. (2010) proposed a Bayesian fused Lasso with a Bayesian Lasso prior89

on differences and also on each coefficient. However, various studies pointed out that the90

Bayesian Lasso prior, which uses Laplace distribution on coefficients, does not shrink enough91

each coefficient or differences towards zero, leading to biased (Carvalho et al., 2010; Polson92

and Scott, 2011) and smooth estimations without possible abrupt changes (Faulkner and93

Minin, 2018). To allow more flexibility and sparser estimations, other continuous shrinkage94

priors, with stronger mass on zero and heavier tails, have been investigated on differences.95

For instance, Rue and Held (2005) and Song and Cheng (2020) used a Student distribution96

on the differences, Shimamura et al. (2019) considered normal-Exponential-Gamma (NEG)97

distribution, while Faulkner and Minin (2018) and Kakikawa et al. (2023) placed a HS prior98

on differences. Note that, all of these approaches place a Laplace distribution on regression99

coefficients. These methodologies show good properties in terms of prediction accuracy but100

also to estimate smooth functions with potentially abrupt changes. However, they have101

been designed for only one group. A direct extension of Bayesian fused Lasso to multi-group102

context has been proposed by Aláız et al. (2013). Zhang et al. (2014) used this multi-group103

version for the slab part of a group spike-and-slab prior. Theses methods can suffer from low104

shrinkage properties of the Bayesian Lasso, leading to poor estimations when the number of105

covariates within groups is large.106

107

In this paper, we propose via a thorough simulation study, to investigate the trade-off108

between strong shrinkage prior on coefficients and their differences. Results evidence the109

interest of considering distributions on coefficients with heavier tails than the usual Laplace110

distribution resulting to propose the horsehoe normal half-Cauchy (HS-NhC) fused prior.111

Two extensions of this prior to the multi-group context assuming either global shrinkage112

parameters at the group level or one global shrinkage parameter common to all groups have113

been developed. These priors are compared to multi-group extensions of priors proposed by114
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Faulkner and Minin (2018) and Kakikawa et al. (2023). This paper is organized as follows.115

Section 2 is dedicated to the construction of Bayesian group fused priors in linear regression116

context. Using simulated data, section 3 is devoted to compare and evaluate the efficiency117

of the proposed priors according to the number of groups, their size, and the signal-to-noise118

ratio. Section 4 aims at identifying environmental variables and time periods affecting the119

oil palm fruit abscission process.120

2 Model121

2.1 Notation and model122

Let y = (y1, . . . , yn)′ be a n-continuous response vector and X = [X1, . . . ,XG] a (n× GT )-123

matrix concatenating G known groups of covariates measured at T regular spaced times. For124

all g = 1, . . . , G, Xg =
[
x′g1, . . . ,x

′
gT

]
denotes a (n× T )-matrix concatenating vectors xgt =125

(x1gt, . . . , xngt) for t = 1, . . . , T . In this paper, y corresponds to the abscission time measured126

on n = 1, 173 bunches from l = 140 oil palm trees. Each Xg describes environmental variable.127

As many bunches are from the same palm tree, we use a linear mixed model such that:128

y = µ1 +
G∑
g=1

Xgβg + Zα + ε, (1)

where µ is an intercept, 1 a n-vector of 1, βg a T -vector of regression coefficients associated129

to group g, and α = (α1, . . . , αl)
′ a l-vector of random effects assumed Gaussian distributed130

with zero expectation and variance equal to σ2
α. This random effect allows to take into131

account the dependence between observations done on a same oil palm tree. Finally, ε is132

a n-vector of independent Gaussian residuals with zero mean and variance equal to σ2Idn133

independent from α.134
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2.2 Prior construction135

In Bayesian framework and when G = 1, a usual approach to take into account time structure136

within covariate matrix and to impose sparsity on coefficients relies on the use of the Bayesian137

fused prior. This prior consists in placing independent shrinkage priors on both regression138

coefficients and their successive differences. A general formulation is given by:139

T∏
t=1

1√
2πυ2γ2

t σ
2

exp

(
− β2

t

2υ2γ2
t σ

2

)
and

T∏
t=2

1√
2πλ2ω2

t σ
2

exp

(
−(βt − βt−1)2

2λ2ω2
t σ

2

)
. (2)

This formulation considers a global-local parametrization with local shrinkage parameters140

γt and ωt as well as global shrinkage parameters, υ and λ, respectively specific to coeffi-141

cients and their differences. Global parameters perform shrinkage on all coefficients and142

their differences, whereas local parameters allow true large effects to escape from overall143

shrinkage. Fused-type priors are originally based on the use of the Laplace distribution, also144

called normal-Exponential (NE) distribution, for regression parameters and their differences.145

However, Laplace prior faces posterior inconsistency notably due to its exponentially light146

tail (Castillo et al., 2015). To overcome such drawbacks, alternative priors with heavier147

tails, such as t-Student, NEG distributions or yet HS priors on differences combined with a148

Laplace distribution on coefficients have been proposed (see Table 1). The use of Laplace149

distribution for coefficients has not yet been questioned. In this paper, according to investi-150

gations using simulations, we propose a normal half-Cauchy (NhC) distribution on regression151

coefficients with a horseshoe distribution on their differences as an alternative steady prior152

face to dimension complexity and signal-to-noise ratio. This prior, denoted HS-NhC prior,153

is defined as follows:154
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T∏
t=1

1√
2πγ2

t σ
2

exp

(
− β2

t

2γ2
t σ

2

)
and

T∏
t=2

1√
2πλ2ω2

t σ
2

exp

(
−(βt − βt−1)2

2λ2ω2
t σ

2

)
, (3)

where γt (t = 1, . . . , T ), λ, and ωt (t = 2, . . . , T ) follow a half-Cauchy distribution.155

Prior names Difference prior Coefficient prior Reference

Fused NE-NE λ2 ∼ IG(a, b) υ2 ∼ IG(s, r) (Kyung et al., 2010)

ω2
t ∼ Exp(1/2) γ2

t ∼ Exp(1/2)

Fused NEG-NE λ2 = 1 υ2 ∼ IG(s, r) (Shimamura et al., 2019)

ω2
t |ψt ∼ Exp(ψt) γ2

t ∼ Exp(1/2)
ψt ∼ G(a, b)

Fused HS-NE λ ∼ C+(0, 1) υ2 ∼ IG(s, r) (Kakikawa et al., 2023)

ωt ∼ C+(0, 1) γ2
t ∼ Exp(1/2)

Fused HS-HS λ ∼ C+(0, 1) υ ∼ C+(0, 1)
ωt ∼ C+(0, 1) γj ∼ C+(0, 1)

Fused HS-NhC λ ∼ C+(0, 1) υ = 1
ωt ∼ C+(0, 1) γt ∼ C+(0, 1)

Table 1: Fused priors in the one group context (G = 1).

A natural extension of the proposed prior to the multi-group context consists in assuming156

that parameters controlling sparsity on coefficients and differences are group specific, such157

that:158

Tg∏
t=1

1√
2πγ2

gtσ
2

exp

(
−

β2
gt

2γ2
gtσ

2

)
and

Tg∏
t=2

1√
2πλ2

gω
2
gtσ

2
exp

(
−(βgt − βgt−1)2

2λ2
gω

2
gtσ

2

)
. (4)

This prior (see Eq. 4) relies on a large set of parameters and it is well-know that the159

inference of the global parameters (λg, g = 1, . . . , G) is complex and can lead to poor results160

in terms of selection (Piironen et al., 2017). In the multi-group context, the number of161

groups as well as their size may reinforce such difficulties. We therefore suggest an alternative162

parametrization assuming one global parameter (λg = λ) to control shrinkage over all groups163
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while keeping local parameters ωgt. This prior is defined by:164

Tg∏
t=1

1√
2πγ2

gtσ
2

exp

(
−

β2
gt

2γ2
gtσ

2

)
and

Tg∏
t=2

1√
2πλ2ω2

gtσ
2

exp

(
−

(βgt − βg(t−1))
2

2λ2ω2
gtσ

2

)
. (5)

In the following, priors assuming group specific shrinkage parameters λg will be referred165

to specific priors, while priors assuming λg = λ will be denoted global priors (see Table 2).166

2.3 MCMC implementation167

Bayesian inference of the proposed models is achieved using Markov chain Monte Carlo168

(MCMC) algorithm sampling. As the full conditional distributions of each parameter have169

a closed form, an efficient Gibbs sampler algorithm (Gilks et al., 1995) is used.170

Following Kyung et al. (2010), combining independant priors (Eq. 5) on regression171

coefficients and their differences leads to a synthetic multivariate expression:172

βg|γg, λ2,ωg, σ
2 ∼ NT (0, σ2Q−1

g ), g = 1, . . . , G (6)

where Qg is equal to173

Qg =

(
Υ−1
g +D>g Ω−1

g Dg/λ
2

)
. (7)

The first matrix, Υ−1
g , refers to regression parameters, and the second, D>g Ω−1

g Dg/λ
2 to the174

differences. Dg is the known T × (T − 1)-matrix associated to the finite differences operator175

of order 1, and Ωg = diag(ω2
g1
, . . . , ω2

gT−1
) and Υg = diag(γg1, . . . , γgTg) the (T − 1) × (T −176

1)-diagonal matrices of local parameters. According to this multivariate formulation and177

conjugacy properties, the posterior distribution of regression parameters β, is a multivariate178

Gaussian distribution (see Appendix A).179

Shrinkage parameters follow half-Cauchy distribution, which may be rewritten as a scale180
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mixture of inverse-Gamma distributions as introduced by Makalic and Schmidt (2015):181

x ∼ C+(0, 1) ⇔ x2|ξ ∼ IG(1/2, 1/ξ), ξ ∼ IG(1/2, 1),

This simplifies the computation of full conditional distributions. Thus, for instance for the182

global shrinkage parameter λ2 defined in Eq. (5), its full conditional distribution is given by183

:184

λ2|. ∼ IG

(
1 + T

2
,
1

ξ
+

G∑
g=1

β>gD
>Ω−1

g Dβg
2σ2

)
, and ξ|. ∼ IG(1, 1 + 1/λ2).

The remaining full conditional distributions along with the hierarchical representation of185

the proposed models are provided in Appendix. Code to implement the proposed models186

is available in the R language (R Core Team, 2023) on GitHub: https://github.com/187

Heuclin/GroupFusedHorseshoe.188

Prior names Difference prior Coefficient prior

Specific HS-NE λg ∼ C+(0, 1) υ2
g ∼ IG(s, r)

ωgt ∼ C+(0, 1) γ2
gt ∼ Exp(1/2)

Global HS-NE λg = λ
λ ∼ C+(0, 1) υ2

g ∼ IG(s, r)

ωgt ∼ C+(0, 1) γ2
gt ∼ Exp(1/2)

Specific HS-NhC λg ∼ C+(0, 1)
ωgt ∼ C+(0, 1) γgt ∼ C+(0, 1)

Global HS-NhC λg = λ
λ ∼ C+(0, 1)
ωgt ∼ C+(0, 1) γgt ∼ C+(0, 1)

Table 2: Fused priors in the multi-group context.

3 Simulation study189

This section aims to demonstrate performances of the HS-NhC group fused priors, and in190

particular its global version (λg = λ), in terms of shrinkage properties, parameter estimation191

and algorithmic stability according to the number of groups, their size, and the signal-to-192

10

https://github.com/Heuclin/GroupFusedHorseshoe
https://github.com/Heuclin/GroupFusedHorseshoe
https://github.com/Heuclin/GroupFusedHorseshoe


noise ratio. We compare results obtained using HS-NhC group fused priors with the three193

alternative priors: the global and specific HS-NE and the global HS-HS. In this simulation194

study, p = 1500 covariates were generated. We assumed that p was divided into G = 1, 10, 30195

or 100 groups. Covariates within each group were generated from a p
G

-multivariate Gaussian196

distribution with zero mean and a covariance matrix defined by a first-order autoregressive197

(AR1) structure with a parameter fixed to 0.95. Functional effects were defined as the198

combination of different smooth functions: a continuous smooth function as proposed by199

Faulkner and Minin (2018) and piece-wise functions (Tibshirani et al., 2014):200

βt =



sin(4t/T − 2) + 2e−30(4t/T−2)2 t < T

0.5 t ∈ [T + 1, 2T ]

−0.5 t ∈ [2T + 1, (2 + 1/2)T ]

0.5 t ∈ [3T + 1, (3 + 1/3)T ]

−0.5 t ∈ [4T + 1, (4 + 1/4)T ]

0 otherwise

where T = min
(

p
max(10,G)

, 60
)

. Finally n = 150 observations were sampled with residual

standard deviations equal to 1 or 4. We assessed the relative performances of priors using

mean squared errors either of the non-zero coefficients or only of the true zeroes, and the

Matthews Correlation Coefficient (MCC ) to summarize the selection (shrinkage) property of

the different priors (Matthews, 1975). By denoting Cnz = {t : βt 6= 0} and Cz = {t : βt = 0}

the sets of indices of non-zero and true zero coefficients respectively, the performances are
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calculated through:

MSEnz =
1

|Cnz|
∑
t∈Cnz

(βt − β̂t)2; MSEz =
1

|Cz|
∑
t∈Cz

(βt − β̂t)2; and

MCC =
TP × TN − FP × FN√

(TP + FP)(TP + FN )(TN + FP)(TN + FN )

where TP ,TN ,FP ,FN correspond to True (T) and False (F) negatives (N) and positives201

(P), respectively. Each criterion was averaged over 30 repetitions.202

In the one group context (G = 1), results showed that HS-NhC and HS-NE had very203

close performances whatever the signal-to-noise ratio and clearly outperformed the usual204

NE-NE prior (see Table 3). We also observed that shrinkage properties have been reinforced205

using NhC on coefficients (see MSEz column in Table 3). These results tended to confirm206

that using priors with heavier tails compared to Laplace distribution on coefficients could207

improve results. However assuming a horseshoe prior on coefficients leads to erroneous results208

by shrinking towards zero all the coefficients.209

Priors σ2 MCC MSEz MSEnz
HS NhC 1 0.90688 0.00003 0.01485

HS NE 1 0.90018 0.00067 0.05000
HS HS 1 0.06456 0.00000 2.33525
NE NE 1 0.21203 0.00273 0.04602

HS NhC 16 0.81803 0.00012 0.05151
HS NE 16 0.88696 0.00091 0.05639
HS HS 16 0.06620 0.00000 2.45363
NE NE 16 0.13722 0.00517 0.05561

Table 3: Matthews Correlation Coefficient (MCC ), mean squared errors of the true zeroes
(MSEz), and mean squared errors of the non-zero coefficients MSEnz using the different
priors with residual variance σ2 equal to 1 or 16, and G = 1.

In the multi-group context, the HS-NhC priors outperformed the HS-NE priors whatso-210

ever the global or specific versions (see Figure 1). Moreover, we observed that global and211

specific HS-NhC versions performed similarly well in terms of selection (see Figure 1-a) and212
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estimation of non-zero coefficients (see Figure 1-b). We also noted that results obtained using213

global and specific HS-NE versions presented close patterns. These results highlighted that214

the simplified versions assuming a global shrinkage parameter λg = λ is efficient while being215

more parsimonious. However, when looking at the convergence evaluation, we observed that216

the specific HS-NE prior could fail when the number of groups increased, which in part, can217

be explained by the reduction of the number of observations within groups (see Table B1 in218

Appendix B). Those convergence failures had never been observed for the specific HS-NhC219

prior, however we noted that a large number of groups may slightly impacted HS-NhC priors.220

For instance, when the number of groups was set to 100 leading to a group size equal to 15221

and a residual variance set to 1, MCC values were equal to 0.959 and 0.951 for global and222

specific HS-NhC priors, respectively. This can be explained by the difficulties in estimat-223

ing global shrinkage hyperparameters at the group level with few measurements as already224

been noted in the literature (Piironen et al., 2017). A higher signal-to-noise ratio slightly225

impacted the results, for example the MCC values were equal to 0.92 for σ2 = 1 and to 0.89226

for σ2 = 16. Finally, to evaluate the use of prior on coefficients, we compared the global227

HS-NhC fused prior with a global fusion prior. While results were close for moderate number228

of groups (G = 5 or 10), all criteria were highly impacted when the number of groups was229

greater than 30. Even for G = 100 the fusion did not converge, demonstrating therefore the230

importance of priors on coefficients for numerical regularization.231

To sum up, the global HS-NhC prior appeared highly stable and insensitive to the number232

of groups, the magnitude of signal-to-noise ratio, and is clearly more parsimonious than its233

specific version. Moreover, the use of the NhC distribution on coefficients compared to the234

Laplace distribution do not require the specification of hyperparameters, as it is the case in235

Inverse Gamma distribution. In the following, all results obtained on the real dataset are236

thus based on the global HS-NhC prior.237
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Figure 1: (a) Mean squared errors of the true zero coefficients MSEz, (b) Mean squared
errors of the non-zeroes (MSEnz), and (c) Matthews Correlation Coefficient (MCC ) using
the different priors with residual variance σ2 equal to 1, and G = 5, 10, 30, 100.
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4 The abscission dataset238

This application aims at identifying environmental variables and time periods affecting the239

oil palm fruit abscission process (Tisné et al., 2020). The dataset is provided by “le Centre de240

Recherches Agricoles-Plantes Pérennes” (CRA-PP) of the national institute for agricultural241

research of Benin Republic (INRAB) which manages an oil palm seed garden involving a242

self-pollinated population of 140 oil palm trees planted between 2000 and 2005 in a single243

homogeneous field plot. Each palm tree produced between 1 and 8 bunches per year over244

all the experiment time from 2014 until 2018. The manual pollination date, different for245

each bunch, was recorded and the bunch was monitored up to its harvest. A total of 1, 173246

bunches were considered over multiple years, taking advantage of the climatic seasonality and247

the continuous fruit production of this species. We used the number of days from pollination248

to fruit drop (DFD) as the response variable. DFD is the classical harvest time indicator and249

its variation integrates different underlying abscission processes at different developmental250

stages.251

Additionally, nine environmental variables were used. Five climatic variables were recorded252

from 2014 until 2018: the maximum and minimum temperature (Tmax, Tmin, in ◦C), the253

relative air humidity (RH, in %), the rainfall (R, in mm) and the solar radiation (SR, in254

cal.cm−2.d−1). Four ecophysiological variables were calculated using climate and individ-255

ual production data: two exogenous variables including the maximum daily vapor pressure256

deficit (VPD), the fraction of transpirable soil water (FTSW), and two endogenous (trophic)257

variables: the supply–demand ratio (SD) and the daily reproductive demand (DRD) (see258

Tisné et al. (2020) for further details of the calculations). These variables can have ponc-259

tual or cumulative effects, depending on the biological process or the developmental stage.260

Temperature can have ponctual effects as the arrest of growth at low temperatures, but261

also cumulative effects on developmental rates that led to the thermal time development.262
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Figure 2: Raw and calculated environmental variables (top panel) and example of bunch
production for two oil palm individuals along with their endogenous variables (middle and
bottom panels). Raw and calculated variables (heatmaps) as well as bunches (horizontal
segments) are plotted over the experiment duration, from 2014 to 2018. The segments
for bunches are represented from the manual pollination (black diamong) to the harvest,
the yellow to red color indicating increasing DFD. SR: Solar Radiation; FTSW: Fraction
of transpirable soil water; R: rainfall; VPD: Vapor pressure deficit; RH: Relative humid-
ity; Tmin/Tmax: minimun/maximum temperatures; SD: supply-demand ratio; DRD: Daily
reproductive demand.
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A three-day time grid, from −180 (individualization of the floral meristem) to +180 (ripe263

fruit) days after pollination, was used to calculate either the average values over three days264

(Tmax, Tmin, RH, VPD, FTSW, DRD, and SD) or the cumulative values over 15 days (R265

and SR) of each variable. This experimental design thus leads to nine groups of covariates266

(G = 9) measured at T = 121 times. Within each matrix the ith row corresponds to the267

ith bunch analyzed and the tth column corresponds to the value of the corresponding cli-268

matic/ecophysiological variable at time t for each bunch. All matrices have been scaled to269

obtain a similar order of magnitude. All results are based on 20 MCMC runs initialized at270

random starting values and 50,000 iterations with a burn-in of 20,000 and a thining of 10. A271

group is considered selected if at least one regression effect within it has a credible interval272

that does not contain zero.273

DRD SD SR Tmin

−180 −120 −60 0 60 120 180 −180 −120 −60 0 60 120 180 −180 −120 −60 0 60 120 180 −180 −120 −60 0 60 120 180

−1.0

−0.5

0.0

0.5

1.0

1.5

time

Figure 3: Non-zero coefficient profile estimation provided by the global HS-NhC prior on the
abscission dataset. Gray shadows represent the 95% credible interval. Colors represent the
different categories of environmental variables, green is for photosynthesis variables (DRD,
SR, SD) and red is for temperature variable.

Comparison with previous studies and biological interpretation274

275

Estimated coefficient profiles provided by the the global HS-NhC prior are very clear276
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and allow identification of relevant time periods of four variables (Tmin, SR, DRD, and277

SD). Two types of patterns are observed: with smooth effects for Tmin and SR and with278

punctual effects for DRD and SD. The Tmin variable is negatively associated with DFD279

during the inflorescence development from day −180 to −100, while the three other variables280

are associated with DFD at the end of the fruit bunch development. SR, the solar radiation281

variable, is positively associated with DFD from day 120 to 180, at the final stage before the282

fruit drop. The DRD variable is punctually associated with DFD at days 99 and 105 after283

pollination, first positively before an inversion of the association direction at day 100. The284

SD factor is negatively associated with DFD with a peak at day 160.285

The striking pattern of DRD around day 100 after pollination observed in Tisné et al.286

(2020), is thus confirmed and corresponds to the “lag period” of the oil palm fruit bunch de-287

velopment between the cell division/expansion phase and the maturation phase (Tranbarger288

et al., 2011). The selection of the DRD variable at this key developmental stage suggests289

that the considered fruit bunch integrates current and future whole plant photosynthate290

demand due to concomitant developing bunches, to modulate its maturation and abscission291

timing. Such carbohydrate-based regulation is commonly found in fruit tree species and292

leads to the wave of abscission concerning fruitlets (Sawicki et al., 2015), the only difference293

being that the oil palm regulates ripe fruit abscission timing instead of dropping unripe294

fruits. In contrast with DRD and SD that have similar punctual patterns with those of295

Tisné et al. (2020) study, Tmin effect profile is different, showing a continuous moderate296

effect instead of many weak effects spread over the −180 to −100 period. The SR factor297

was not selected by Tisné et al. (2020) but it has a positive effect from day 120 to 180298

using our prior. These discrepancies may be due to the cumulative nature of both Tmin299

and SR effects at their respective developmental stages. Hence, the Tmin effect at the early300

inflorescence developmental stages could be related to thermal time which is known to be301

associated with developmental rates. In the period identified, the differentiation of floral302
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organs occurs (Adam et al., 2011) and variation in cumulative thermal time could modulate303

the developmental program and ultimately the fruit drop timing. Concerning the cumulative304

effect of the radiation, it was identified all over the final stage before fruit drop that cor-305

responds to the fruit maturation with intensive lipid accumulation, which is highly related306

to photosynthate availability (Tranbarger et al., 2011). Our proposed prior, which has been307

designed to estimate smooth and flexible coefficient profile is then well suited to study the308

effect of cumulative effect variables in addition to the punctual effect variables that were309

identified consistently between both approaches.310

5 Conclusion311

We proposed four Bayesian fused priors in the multi-group context (see Table 2). We showed312

that the combination of a normal half-Cauchy on coefficients and a horseshoe on their dif-313

ferences is more efficient and stable than the natural extension of the HS-NE fused prior314

whatever the number of groups (G ≥ 1), the size of groups, and the signal-to-noise ratio.315

The proposed general formulation (see Eq. 2) encompasses most priors already developed316

in the literature as shown in Table 1. Through simulations, we evidenced the importance of317

placing heavy-tailed distributions with a spike at zero on the differences (Kakikawa et al.,318

2023) and considering a distribution with a heavier tail property than the usual Laplace prior319

on coefficients. However, we showed that using a horseshoe prior on both coefficients and320

their differences resulted in poor performances, as it tended to shrink all parameters towards321

zero. We noted the advantage of fused-type priors on fusion-type priors mainly when the322

number of groups was large with a moderate to small size.323

324

From a biological point of view, the proposed prior clearly identifies four environmental325

variables as well as periods at which they affect the oil palm abscission process. By providing326
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flexibility in the estimation of regression coefficient profiles, we identify one supplementary327

environmental variable than the previous study, and improve the interpretability of the re-328

gression profiles. Moreover, by giving high predictive performances, the proposed prior may329

be a useful tool to assist biologists in identifying the best time to harvest the bunches.330

331

The global HS-NhC prior may be directly applied to a broad type of applications such332

as in the near infrared spectroscopy context, which involves one group of ordered variables333

through a spectrum, or in the genetic mapping context, where markers may be viewed as334

groups of ordered variables at the chromosome level. To take into account multi-dimensional335

indexation (spatial or spatio-temporal structures) instead of only one dimensional indexation336

(time structure), this prior should be extended even if it raises computational challenges.337
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Aláız, C. M., Barbero, A., and Dorronsoro, J. R. (2013). Group fused lasso. In International344

Conference on Artificial Neural Networks, pages 66–73. Springer.345

Carvalho, C. M., Polson, N. G., and Scott, J. G. (2010). The horseshoe estimator for sparse346

signals. Biometrika, 97(2):465–480.347

20



Castillo, I., Schmidt-Hieber, J., and van der Vaart, A. (2015). Bayesian linear regression348

with sparse priors. The Annals of Statistics, 43(5):1986–2018.349

Fan, J. and Li, R. (2001). Variable selection via nonconcave penalized likelihood and its350

oracle properties. Journal of the American Statistical Association, 96(456):1348–1360.351

Faulkner, J. R. and Minin, V. N. (2018). Locally adaptive smoothing with markov random352

fields and shrinkage priors. Bayesian analysis, 13(1):225–252.353

George, E. I. and McCulloch, R. E. (1993). Variable selection via gibbs sampling. Journal354

of the American Statistical Association, 88(423):881–889.355

George, E. I. and McCulloch, R. E. (1997). Approaches for bayesian variable selection.356

Statistica Sinica, 7(2):339–373.357

Gilks, W., Richardson, S., and Spiegelhalter, D. (1995). Markov Chain Monte Carlo in358

Practice. CRC press.359

Gill, A. L., Gallinat, A. S., Sanders-DeMott, R., Rigden, A. J., Short Gianotti, D. J.,360

Mantooth, J. A., and Templer, P. H. (2015). Changes in autumn senescence in northern361

hemisphere deciduous trees: a meta-analysis of autumn phenology studies. Annals of362

botany, 116(6):875–888.363

Griffin, J. E., Brown, P. J., et al. (2010). Inference with normal-gamma prior distributions364

in regression problems. Bayesian analysis, 5(1):171–188.365

Hoerl, A. E. and Kennard, R. W. (1970). Ridge regression: Biased estimation for nonorthog-366

onal problems. Technometrics, 12(1):55–67.367

Kakikawa, Y., Shimamura, K., and Kawano, S. (2023). Bayesian fused lasso modeling via368

horseshoe prior. Japanese Journal of Statistics and Data Science, 6(2):705–727.369

21



Kyung, M., Gill, J., Ghosh, M., Casella, G., et al. (2010). Penalized regression, standard370

errors, and bayesian lassos. Bayesian Analysis, 5(2):369–411.371

Land, S. R. and Friedman, J. H. (1997). Variable fusion: A new adaptive signal regres-372

sion method. Technical report, Technical Report 656, Department of Statistics, Carnegie373

Mellon University.374

Liquet, B., Mengersen, K., Pettitt, A., Sutton, M., et al. (2017). Bayesian variable selection375

regression of multivariate responses for group data. Bayesian Analysis, 12(4):1039–1067.376

Makalic, E. and Schmidt, D. F. (2015). A simple sampler for the horseshoe estimator. IEEE377

Signal Processing Letters, 23(1):179–182.378

Matthews, B. W. (1975). Comparison of the predicted and observed secondary structure of t4379

phage lysozyme. Biochimica et Biophysica Acta (BBA)-Protein Structure, 405(2):442–451.380

Mitchell, T. J. and Beauchamp, J. J. (1988). Bayesian variable selection in linear regression.381

Journal of the american statistical association, 83(404):1023–1032.382

Park, T. and Casella, G. (2008). The bayesian lasso. Journal of the American Statistical383

Association, 103(482):681–686.384

Piironen, J., Vehtari, A., et al. (2017). Sparsity information and regularization in the horse-385

shoe and other shrinkage priors. Electronic Journal of Statistics, 11(2):5018–5051.386

Polson, N. G. and Scott, J. G. (2011). Shrink Globally, Act Locally: Sparse Bayesian387

Regularization and Prediction. In Bayesian Statistics 9. Oxford University Press.388

R Core Team (2023). R: A Language and Environment for Statistical Computing. R Foun-389

dation for Statistical Computing, Vienna, Austria.390

22



Reichardt, S., Piepho, H.-P., Stintzi, A., and Schaller, A. (2020). Peptide signaling for391

drought-induced tomato flower drop. Science, 367(6485):1482–1485.392

Rue, H. and Held, L. (2005). Gaussian Markov random fields: theory and applications.393

Chapman and Hall/CRC press.394

Sawicki, M., Aı̈t Barka, E., Clément, C., Vaillant-Gaveau, N., and Jacquard, C. (2015).395

Cross-talk between environmental stresses and plant metabolism during reproductive or-396

gan abscission. Journal of Experimental Botany, 66(7):1707–1719.397

Shimamura, K., Ueki, M., Kawano, S., and Konishi, S. (2019). Bayesian generalized fused398

lasso modeling via neg distribution. Communications in Statistics-Theory and Methods,399

48(16):4132–4153.400

Simon, N., Friedman, J., Hastie, T., and Tibshirani, R. (2013). A sparse-group lasso. Journal401

of computational and graphical statistics, 22(2):231–245.402

Song, Q. and Cheng, G. (2020). Bayesian fusion estimation via t shrinkage. Sankhya A,403

82(2):353–385.404

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal405

Statistical Society: Series B (Methodological), 58(1):267–288.406

Tibshirani, R., Saunders, M., Rosset, S., Zhu, J., and Knight, K. (2005). Sparsity and407

smoothness via the fused lasso. Journal of the Royal Statistical Society: Series B (Statis-408

tical Methodology), 67(1):91–108.409

Tibshirani, R. J. et al. (2014). Adaptive piecewise polynomial estimation via trend filtering.410

The Annals of Statistics, 42(1):285–323.411

23
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Appendix437

A. Bayesian hierarchical models and full conditional distributions438

A1. The group fused HS-NhC global.439

The Bayesian hierarchical model used for the MCMC implementation of the group fused

HS-NhC global is given by:

y|µ,β, α, σ2 ∼ Nn(µ+
G∑
g=1

Xgβg + Zα, σ2In)

µ ∼ U(−∞,∞)
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).440
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The corresponding full conditional distributions for the model parameters are given by:

µ|. ∼ N
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A2. The group fused HS-NhC global.441

The Bayesian hierarchical model for the MCMC implementation of the group fused HS-NhC

specific is given by:

y|µ,β, α, σ2 ∼ Nn(µ+
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where Υg = diag(υ2
g1
, . . . , υ2
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B. Convergence evaluation.442

443

σ2 g HS-NE global HS-NE specific HS-NhC global HS-NhC specific
1 5 30 30 30 30
1 10 30 30 30 30
1 30 30 20 30 30
1 100 26 3 30 30
16 5 30 30 30 30
16 10 30 30 30 30
16 30 30 17 30 30
16 100 26 6 30 30

Table B1: Number of Monte Carlo Markov chains that have converged over 30 replicates in
the multi-group context for each scenario.
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