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Introduction
This poster investigates the challenges of dynamic memory allocations in a hierarchical parallel context using the SYCL 2020[1] programming model and extensions. The study explores
memory management using different parallelism paradigms. We study the performance, productivity and memory footprint of each implementation. Dynamic allocations in nested
parallel for loops can be found in many situations, such as the semi-Lagragian advection scheme in the GYSELA[2] plasma turbulence simulation code.

•Application: 1D advection inside a multi-
dimensionnal space:

– x: advected dimension

– y: independant advection problems

• Sizes representative of the GYSELA use-case

–nx: size of one advection problem (1.103)

–ny: number of advection problems in 1 node (2.106)
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Algorithm of the semi-Lagrangian advection

Minimal theoretical memory footprint
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The minimal theoretical memory footprint (f ) depends on the parallelism strategy, and on p, the degree of
parallelism, px and py the parallelism along x and y, respectively. One buffer of nx double elements of 8 bytes
is allocated for each of the py iterations over y executed concurrently. To get a sense of the orders of magnitude,
we use pCPU = 64 corresponding to the number of cores on a typical server CPU and pGPU = 105, the number
of active threads typically required to fill a GPU. We identify the level of cache where our GYSELA use-case
would fit using each strategy on an NVIDIA A100 GPU (192KB L1, 40MB L2, and 40GB RAM).
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Thememory footprint recalls the
results of the block above. The
performance is detailed in the
plots below. The productivity is a
personal feeling based on the code
detailed in the block on the right.
The experiments ran on two dif-
ferent hardware architectures: In-
tel Xeon Gold 6230 for CPU, and
NVIDIA A100 40GB for GPU.
We used hipSYCL 0.9.4 acceler-
ated CPU and CUDA backends.

Implementations

Each implementation provides a different set of tools. More tools
give more control over the optimizations but make the implementa-
tion harder, decreasing the productivity factor.

•Control over work groups (wg) local sizes (lsize)

• local_accessor, shared memory within the same work-group

•A mapping between a physical iteration space (psize) and a
logical iteration space (=lsize)

• Sequential
Using C++ for loops. tmp slice is al-
located only once and reused for each in-
dependant 1D advection problem in y

• NDRange
By specifying a global iteration space (the
size of the global buffer) divided into lo-
cal iteration spaces (i.e. the size of a work
group). The number of work groups is de-
duced by the SYCL implementation.

• Hierarchical
By specifying the number of work groups
and their local sizes. In addition, these
kernels allow a finer optimization by pro-
viding a control on physical and logical
iteration spaces sizes.

BasicRange kernels are implemented us-
ing a classical parallel_for mapped
onto a sycl::range. These kernels are
out-of-place and require a second buffer

that is the same size of the global buffer.

• BasicRange2D
Using a range corresponding to the global
buffer range range<2>(ny, nx), thus
accessing the values with a unique 2D
sycl::id.

• BasicRange1D
Using a 1D range along the y dimension
range<1>(ny) and sequentially iterating
on x.

• Scoped
is an hipSYCL extension to SYCL’s hier-
archical parallelism[3]. This type of ker-
nel is primarily oriented towards compile-
time allocations rather than dynamic al-
locations.

Conclusion
It is not trivial to be able to finely control memory allocations in a hierarchical parallel context while guaran-
teeing code portability and performance. BasicRange kernels, the default and simplest way to write parallel
loops in SYCL does not allow managing work-groups nor writing hierarchical nested for each loops, resulting
in a poor performance as well as a large memory footprint in our experiments. This emphasizes the need of
other ways to express parallelism, such as the Hierarchical or Scoped kernels, which seem to be the most suited
for our needs although we loose the ease-of-use of BR kernels.

References
[1] “SYCL 2020 Specification (revision 6)”. In: (2020).

[2] V. Grandgirard et al.“A 5D gyrokinetic full- f global semi-Lagrangian code for flux-driven ion turbulence simulations”.

In: (2016).

[3] Tom Deakin et al. “Benchmarking and Extending SYCL Hierarchical Parallelism”. In: 2021.

[4] Christian R. Trott et al. “Kokkos 3: Programming Model Extensions for the Exascale Era”. In: (2022).

[5] Aksel Alpay et al. “Exploring the possibility of a hipSYCL-based implementation of oneAPI”. In: 2022.

[6] Philip Salzmann et al. “Celerity: How (Well) Does the SYCL API Translate to Distributed Clusters?” In: 2022.

[7] S.J. Pennycook et al. “Implications of a metric for performance portability”. In: (2019).


