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Abstract
Multiple interval graphs are a well-known generalization of interval graphs introduced in the 1970s
to deal with situations arising naturally in scheduling and allocation. A d-interval is the union of d

intervals on the real line, and a graph is a d-interval graph if it is the intersection graph of d-intervals.
In particular, it is a unit d-interval graph if it admits a d-interval representation where every interval
has unit length.

Whereas it has been known for a long time that recognizing 2-interval graphs and other related
classes such as 2-track interval graphs is NP-complete, the complexity of recognizing unit 2-interval
graphs remains open. Here, we settle this question by proving that the recognition of unit 2-interval
graphs is also NP-complete. Our proof technique uses a completely different approach from the other
hardness results of recognizing related classes. Furthermore, we extend the result for unit d-interval
graphs for any d ⩾ 2, which does not follow directly in graph recognition problems –as an example,
it took almost 20 years to close the gap between d = 2 and d > 2 for the recognition of d-track
interval graphs. Our result has several implications, including that recognizing (x, . . . , x) d-interval
graphs and depth r unit 2-interval graphs is NP-complete for every x ⩾ 11 and every r ⩾ 4.
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1 Introduction

Interval graphs are undirected graphs formed from a set of intervals on the real line, with a
vertex for each interval and an edge between vertices whose intervals intersect. In particular,
they are chordal and perfect graphs. Due to its numerous applications the class of interval
graphs is one of the most well-studied classes of graphs [27, 12, 23]. These include DNA
mapping [33], resource allocation problems in scheduling theory [1] and ecological niche and
food web [6].

The practical applications of interval graphs have led to the study of various generalizations,
including multiple interval graphs [22, 29, 16]. A graph is a d-interval graph if each vertex
is associated with a d-interval (the union of d disjoint intervals on the real line) instead
of a simple interval, and again, there is an edge between two vertices if and only if the
corresponding d-intervals overlap at some point of the real line. This generalization enables us
to model more complex situation arising naturally in scheduling and allocation problems, such
as multi-task scheduling, allocation of multiple associated linear resources, or transmission of
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continuous-media data [2]. Applications to bioinformatics, namely to model DNA sequence
similarity or RNA secondary structure [19, 30], increased the interest in this class of graphs.

Inside the class of multiple interval graphs, different restrictions have been studied. One
of the most natural ones is the subclass of unit d-interval graphs, which corresponds to
d-interval graphs that have an interval representation where every interval has unit length.
Unit multiple intervals can be applied, for example, to model tasks of the same duration in
scheduling.

Apart from their concrete applications, another reason why interval graphs have been
widely studied in the literature is because many problems that are NP-hard in general graphs
become polynomial-time solvable when restricted to interval graphs: colorability, clique,
independent set, or Hamiltonian cycle, to name a few. In particular, recognizing interval
graphs is also polynomial, and more precisely, it can be done in linear time [4, 7]. Furthermore,
there exist multiple characterizations of interval graphs, including a characterization in terms
of forbidden induced subgraphs [21]. This is also the case for unit interval graphs [25], which
are exactly graphs that do not contain any claw, tent, net, or induced cycle of length at least
4. Unit interval graphs are also characterized as interval graphs that are claw-free [27].

However, for multiple interval graphs, most problems remain hard, even their recognition,
and they do not have any simple characterization. In particular, they are neither chordal
graphs nor perfect graphs. It is known that Maximum Clique remains NP-complete in
multiple interval graphs, even for unit 2-intervals [13], and so do other problems such as
Independent Set or Dominating Set [2, 5]. The parameterized complexity of some of
these problems in multiple interval graphs has also been studied, see for instance [18, 10].
With respect to the recognition of multiple interval graphs, it was proven to be NP-hard in
1984 [31]. More precisely, West and Shmoys showed that determining whether the interval
number of a graph (i.e., the smallest integer d such that the graph has a disjoint d-interval
representation) is smaller or equal to d, for any d ⩾ 2, is NP-complete. Furthermore, they
also proved that for any r ⩾ 3 and any d ⩾ 2, determining whether a graph has an r-depth
d-interval representation (i.e., a d-interval representation with at most r intervals sharing
a common point) is NP-complete. On the other hand, the complexity of recognizing depth
2 d-interval graphs is still open, although it is known to be polynomial for depth 2 unit
d-interval graphs [18]. The above-mentioned proof of hardness (for unrestricted depth) was
then adapted by Gambette and Vialette for balanced 2-intervals [15], which are 2-interval
graphs that admit a representation such that every 2-interval is composed of two intervals
of the same length, while intervals of different 2-intervals can have different lengths. In the
same paper, the authors also initiate the study of the recognition of unit 2-interval graphs
and of (x, x) 2-interval graphs (where the two disjoint open intervals have integer endpoints
and have length x), but the complexity of both problems remained unsettled. Note that
contrary to the previous characterization by Roberts of unit interval graphs, unit 2-interval
graphs cannot be characterized as K1,5-free 2-interval graphs [28].

Another well-studied generalization of interval graphs are d-track interval graphs, where
each vertex is associated to the union of d disjoint intervals, each in a different parallel line
called track. Gyárfás and West proved that their recognition is NP-hard for d = 2, and
conjectured the same for d ⩾ 3 [17]. This conjecture was proven way later in [18] by Jiang,
who also showed that recognition remains hard for unit d-track interval graphs for any d ⩾ 2,
but left the recognition of unit d-interval graphs as an open question.

Multiple track interval graphs can be seen as the union of interval graphs. In the same
manner, d-boxicity graphs can be seen as the intersection of interval graphs. Boxicity is
a graph invariant introduced by Roberts [26] and it is the minimum dimension in which a
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graph can be represented as the intersection graph of boxes. Furthermore, given a graph
G = (V, E), it corresponds to the minimum number of interval graphs on the set of vertices
V such that the intersection of their edge sets is G. Their recognition is NP-complete [8, 32],
even for d = 2 [20].

In this paper, we finally settle the complexity of the recognition of unit 2-interval graphs,
answering the open question by Jiang [18]. To do so, we prove that it is NP-hard by
reducing from Satisfiability instead of Hamiltonian Path, which has been often used for
proving the hardness of the recognition of variants of interval graphs. The reductions from
Hamiltonian path in triangle-free cubic graphs used previously to prove the hardness of
recognizing d-interval graphs, balanced d-interval graphs and d-track interval graphs all use
a special vertex which is adjacent to n vertices of a triangle free graph, and therefore, cannot
be directly adapted for unit 2-interval graphs. We then extend the hardness result for unit
d-interval graphs, for any d ⩾ 2. Note that, as pointed out in the concluding remarks of [18],
recognition problems are very different from optimization problems, and the boundary of a
graph class is not necessarily harder than that of a subclass1. Thus, even though one would
expect the recognition of unit d-interval graphs to be hard for any d if it’s hard for d = 2, it
is not directly implied.

Our result has several consequences, namely that recognizing (x, . . . , x) d-interval graphs
and depth r unit d-interval graphs is NP-complete for every x ⩾ 11 and every r ⩾ 4. Finally,
our reduction implies as well a lower bound under the ETH.

Structure of the paper. The paper is organized as follows. Section 2 briefly introduces
the necessary concepts and definitions. In Section 3, we present the results of the paper.
First, in Subsection 3.1, we prove that a generalization of the recognition of unit 2-intervals,
Colored unit 2-interval recognition, is NP-complete. Then, we use this result in
Subsection 3.2 to prove the main theorem of the paper, which states the NP-completeness of
Unit 2-interval recognition. Finally, we present several implications of our result in
Subsection 3.3, namely the NP-completeness of recognizing unit d-interval graphs for every
d ⩾ 2, and of recognizing (x, . . . , x) d-interval graphs and depth r unit d-interval graphs for
every x ⩾ 11 and every r ⩾ 4. We conclude with some directions for future work in Section 4.

2 Definitions

An interval is a set of real numbers of the form [a, b] := {x ∈ R | a ⩽ x ⩽ b}.2
A d-interval is the union of d disjoint intervals. A d-interval is balanced if all its d intervals

have the same length, and unit when this common length is 1. A family F of d-intervals
is balanced (resp., unit) if it comprises only balanced (resp., unit) d-intervals. Notice that,
for d ⩾ 2, different d-intervals of a same balanced family may comprise 1-intervals with
different lengths. A family F of d-intervals can be used as a representation of the graph
Ω (F ) having the d-intervals of F as its vertex set, and where two d-intervals are adjacent if

1 As an example, the class of K1,5-free graphs, which admits a brute-force O(n6) time recognition
algorithm, contains the class of unit 2-track interval graphs, which is NP-hard to recognize [18].

2 In the literature, it is not always specified whether the intervals considered for the intersection repres-
entation of interval graphs are open or closed. As discussed in [24], the reason for this might be that
both definitions lead to the same class of finite graphs [14], even for unit interval graphs. However, note
that if we allow the use of both open and closed intervals within one representation, then the class of
unit interval graphs obtained is not the same as if we only allowed open or closed intervals within one
representation [24].
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and only if their intersection is not empty. A graph G is called a (possibly balanced, unit)
d-interval graph when it admits a representation F consisting only of (respectively balanced,
unit) d-intervals. Notice that the representing family is not unique (in fact, even only by
translating all intervals by a same value, we already obtain an infinite number of them).
Multiple interval graphs generalize the standard notion of interval graphs (special case for
d = 1). In this paper, we will use the term unit 1-interval (resp. unit 1-interval graph) to
denote a classical unit interval (resp. a classical unit interval graph), to avoid confusion with
a unit 2-interval (resp. unit 2-interval graphs).

Note that many references do not specify whether the intervals of a d-interval must be
disjoint or not, and some even define them as the union of d not necessarily disjoint intervals
[29]. However, this might be related to the fact that, when there are no restrictions on the
length of the intervals, the two definitions lead to the same class of graphs. This is not true
for unit d-intervals, so we study the case where disjointness is required, as in the hardness
proof of recognizing multiple interval graphs [31].

A d-interval graph is proper when it admits a representing family F such that no 1-interval
is properly contained in another one. The classes of proper and unit 1-interval graphs are
equivalent, and they correspond exactly to K1,3-free interval graphs. The graph K1,3 is the
star with 3 leaves, and is also called a claw. Equivalently, unit interval graphs are known to
be exactly those graphs that do not contain any claw, tent, net, or cycle of length at least 4
as an induced subgraph [25].

A d-interval is a (x1, . . . , xd) d-interval if the d disjoint intervals are open, have integer
endpoints, and have lengths x1, . . . , xd, respectively.

The depth of a family of intervals is the maximum number of intervals that share a
common point, and the representation depth of a d-interval graph is the minimum depth of
any d-interval representation of the graph.

The hierarchy of subclasses of d-interval graphs is as follows [15, 18]: (x, . . . , x) ⊂
(x + 1, . . . , x + 1) ⊂ unit ⊂ balanced ⊂ unrestricted.

The problem Unit 2-interval recognition is defined as follows.

Unit 2-interval recognition
Input: A graph G = (V, E)
Task: Decide whether G has a unit 2-interval representation.

Furthermore, we define a more general version of the above problem, which will be useful
to prove the hardness of Unit 2-interval recognition.

Colored unit 2-interval recognition
Input: A graph G = (V, E) and a coloring γ : V → {white, black}.
Task: Decide whether G has a unit 2-interval representation where:

each white vertex is represented by a unit 2-interval,
each black vertex is represented by a unit 1-interval.

We refer to this representation as a colored unit 2-interval representation.

3 Hardness of recognizing unit multiple interval graphs

In this section, we prove the main result of this paper, which is the hardness of recognizing
unit 2-interval graphs, used later on to prove the hardness of recognizing unit d-intervals
for every d ⩾ 2. The result for d = 2 is obtained in two steps. We first prove that the more
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general version Colored unit 2-interval representation is NP-complete, and then
reduce this problem to Unit 2-interval recognition, which yields the main result of this
paper.

3.1 Hardness of Colored Unit 2-Interval Recognition
Before proceeding to the hardness proof of Colored unit 2-interval recognition, we
first introduce the variant of SAT that we will reduce from. In the following, we use the
term “j-clause” to refer to a clause that contains exactly j literals.

▶ Lemma 1 ([11]). Satisfiability is NP-complete even when restricted to CNF-formulae
such that:
1. Every clause contains either 3 literals (3-clause) or 2 literals (2-clause).
2. Each variable appears in exactly one 3-clause.
3. Each 3-clause is positive monotone, i.e., is comprised of three positive literals.
4. Each variable occurs exactly in three clauses, once negated and twice positive.

Proof. This Lemma is proven in [11, Lemma 2.1]. Note that condition (2) is not explicitly
stated in the Lemma’s original statement. However, upon close examination of the proof
of Lemma 2.1 given in [11], one can see that condition (2) holds for all the instances of
Satisfiability produced by the proposed reduction if we reduce from an instance of 3-SAT.
Specifically, in the proof, each occurrence of a variable in the original formula is replaced by
a new variable, and each new variable (which corresponds to an occurrence of an original
variable) also appears in two new 2-clauses. Since the new variable occurs only in these three
clauses, it follows that there is exactly one occurrence in a 3-clause if the original instance is
an instance form 3-SAT. ◀

We can now proceed to the proof of hardness of Colored Unit 2-Interval Recogni-
tion.

▶ Theorem 2. Colored Unit 2-Interval Recognition is NP-complete, even for graphs
of degree at most 6.

The rest of the subsection is dedicated to the proof of Theorem 2. We first describe the
construction used for the reduction and then prove its correctness.

Construction Let Ψ be an instance of the variant of SAT described in Lemma 1, formed
by a set of Boolean variables x1, . . . , xn and a set of clauses C1, . . . , Cm. We construct an
equivalent instance (GΨ, γΨ) of Colored unit 2-interval recognition as follows.

For every variable xi, we introduce the variable gadget V̂i (truth setting component),
which is the vertex-colored graph on three black vertices Ai, Bi, Ci and three white vertices
x1

i , x2
i and xN

i , with all edges between a black vertex and a white vertex, plus the edges
(x1

i , x2
i ), (Ci, Ai) and (Ci, Bi). We anticipate that the white vertices of V̂i will be adjacent

also to vertices outside V̂i; in order to underline this distinction, these three vertices are
called public, and the black vertices are called private.

Figure 1 illustrates the variable gadget V̂i. Notice that the three white node x1
i , x2

i , xN
i

correspond each to precisely one of the occurrences of the represented variable xi: vertex xN
i

represents the negated occurrence of xi, vertex x1
i represents the positive occurrence in a

3-clause, and vertex x2
i represent the positive occurrence in a 2-clause. Therefore, we refer to

them as literal vertices. Furthermore, note that a vertex of V̂i is adjacent to Ai if and only if
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Ai

Bi

Ci

x1
i

x2
i

xN
i

Figure 1 Variable gadget V̂i corresponding to a variable xi. Black vertices are displayed with a
black background.

Ai

Bi

Ci

x1
i

x2
i

xN
i

Aj

Bj

Cj

x1
j

x2
j

xN
j

AkBk

Ck

x1
k x2

k xN
k

Figure 2 Clause gadget Ĉα associated to a 3-clause Cα = (xi ∨ xj ∨ xk). Note that in the final
graph, each vertex xm

i , xm
j , xm

k , for every m ∈ {1, 2, N}, will be incident to exactly 2 edges linking
them to vertices outside their variable gadget.

it is adjacent to Bi; and being private, these two nodes will remain false twins also in G. We
will exploit this symmetry to simplify the case analysis.

To conclude the construction, we show how to encode each clause Cα, for α = 1, . . . , m.
If Cα is a 3-clause, then it is monotone positive, i.e., Cα = (xi ∨ xj ∨ xk) for some i, j, k ∈
{1, . . . , n}, and all that is needed is to introduce the three edges (x1

i , x1
j), (x1

j , x1
k), (x1

k, x1
i ).

These three edges comprise the clause gadget (see Figure 2).
If Cα is a 2-clause, say Cα = (xr

i ∨ xs
j) with i, j ∈ {1, . . . , n} and r, s ∈ {2, N}, then we

introduce a public black vertex Lα
i,j with a private black neighbor pα

i,j and we add the four
edges (xr

i , xs
j), (xr

i , Lα
i,j), (xs

j , Lα
i,j) and (Lα

i,j , pα
i,j). These four edges together with the two

vertices added comprise the clause gadget (see Figure 3).

Ai

Bi

Ci

x1
i

x2
i

xN
i

Aj

Bj

Cj

x1
j

x2
j

xN
j

Lα
i,j

pα
i,j

Figure 3 Gadget for a 2-clause Ĉα of the form Cα = (xi ∨ xj).
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The description of the reduction is complete. Clearly, GΨ has at most 6n + 2m vertices
and at most 12n + 4m edges. We next introduce a few notions to ease the proof that GΨ is
a colored unit 2-interval graph if and only if Ψ is satisfiable.

▶ Definition 3. Given a colored graph (G, γ), we say that a pair (S, f) formed by a graph S

and a function f : V (S) 7→ V (G) is a split of (G, γ) if f satisfies the following conditions:
|f−1(v)| = 1 for every v ∈ V (G) with γ(v) = black.
|f−1(v)| = 2 for every v ∈ V (G) with γ(v) = white.
For every vertex v of G, f−1(v) is an independent set in S.
For every edge (s, t) of S, (f(s), f(t)) is an edge of G.
For every edge (u, v) of G, there exist two vertices s and t in f−1({u, v}) such that (s, t)
is an edge of S.

▶ Definition 4. We define the family of splits of G that lead to a unit 1-interval graph as
SU (G) := {(S, f) | (S, f) is a split of G and S is a unit 1-interval graph}.

The next lemma shows how a split (S, f) of a colored graph G can be used to certify that
G is a colored unit 2-interval graph. This has the advantage of being a truly combinatorial
certificate, whereas the number of interval families representing a same graph is infinite with
the power of the continuous as soon as at least one exists. Trotter and Harary [29] have
already studied vertex splitting in the context of turning a graph into an interval graph.

▶ Lemma 5. A colored graph (G, γ) is a colored unit 2-interval graph if and only if the
family SU (G) is not empty.

Proof. Suppose that G is a colored unit 2-interval graph with V = Vwhite ∪ Vblack. Then,
by assumption, there exists a collection of unit 2-intervals Dwhite = {(I1(v), I2(v)) | v ∈
Vwhite} and a collection of unit intervals Iblack = {I1(v) | v ∈ Vblack} such that G ≃
Ω (Dwhite ∪ Iblack). Let F be the family of 1-intervals formed by the ground set of Dwhite ∪
Iblack. Let S be the 1-interval graph defined as the intersection graph of the family F , i.e.,
S ≃ Ω(F). Consider the function f : V (S) 7→ V (G) such that:

For every I1(v) ∈ Dblack, f(I1(v)) = v.
For every pair I1(v), I2(v) ∈ Dwhite, f(I1(v)) = f(I2(v)) = v.

By construction, f satisfies all the conditions in Definition 3. Indeed, the first three conditions
follow directly by definition, while the last two conditions follow because if we have an edge
(Ij(u), Ik(v)) in S, for some j, k ∈ {1, 2}, this is equivalent to the 2-intervals associated to
vertices u and v of G intersecting, so there is an edge (u, v) in G. Therefore, (S, f) is a split
of (G, γ).

Conversely, suppose that there exists a split (S, f) of (G, γ) that satisfies the property
of being a unit interval graph. Then, there exists a collection of unit intervals I = {I1(s) |
s ∈ V (S)} such that S ≃ Ω (I). Since (S, f) is a split of (G, γ), we know that there exists a
map f : V (S) 7→ V (G) satisfying the conditions in Definition 3. We construct a colored unit
2-interval representation of G, i.e., a collection of unit 2-intervals Dwhite = {(I1(v), I2(v)) |
v ∈ Vwhite} and a collection of unit 1-intervals Iblack = {I1(v) | v ∈ Vblack}, as follows:

For every v ∈ V (G) with γ(v) = black, we let I1(v) = I1(s), where s = f−1(v).
For every v ∈ V (G) with γ(v) = white, we let I1(v) = I1(s) and I2(v) = I1(t), where
{s, t} = f−1(v).

By construction, this is a colored unit 2-interval representation of G, as the last two conditions
of f ensure that we preserve the same edges. ◀
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We can now proceed to study the shape of the possible splits (S, f) ∈ SU (GΨ). Let (S, f)
be a split of a graph G. For every vertex v ∈ V (G), we call each element of the set f−1(v)
a representative of v. In particular, if v is a white node, we denote its two representatives
in V (S) by f−1

1 (v) and f−1
2 (v). For simplicity, when we refer to an arbitrary representative

of a vertex or to the unique representative of a black vertex, we abuse notation and denote
it by its label in V (G). Furthermore, given an edge (u, v) ∈ G, we call the edge (s, t) ∈ S,
a representative of (u, v) if s ∈ f−1(u) and t ∈ f−1(v). Furthermore, given a split (S, f)
of the graph GΨ, we denote by S[V̂i] the subgraph of S induced by the vertices of the
variable gadget V̂i (i.e., vertices Ai, Bi, Ci, f−1

1 (xN
i ), f−1

1 (x1
i ), f−1

1 (x2
i ), f−1

2 (xN
i ), f−1

2 (x1
i )

and f−1
2 (x2

i )). Finally, we say that a representative of a literal vertex is an isolated vertex if
it is not adjacent to any of the private vertices of its variable gadget (i.e., it is not adjacent
to Ai, Bi or Ci).

▶ Claim 6. Let (S, f) be an arbitrary graph in SU (GΨ). Then, none of the black vertices of
S[V̂i] can be adjacent to both representatives of a literal vertex. Furthermore, if a black vertex
is adjacent to a representative of x1

i and to a representative of x2
i , these two representatives

must be adjacent to each other.

Proof. Suppose that the two representatives of a literal vertex are adjacent to the same
black vertex. If the literal vertex is x1

i or x2
i , the black vertex would be a center of a K1,3

with these two representatives plus a representative of the vertex xN
i as leaves. If the literal

vertex is xN
i , the black vertex would be a center of a K1,3 with the two representatives of

xN
i and one of x1

i or x2
i as leaves. Since the graph K1,3 is a forbidden induced subgraph

for unit 1-interval graphs, this contradicts the fact that S belongs to SU (GΨ). Finally, if a
black vertex is adjacent to a representative of x1

i and to a representative of x2
i which are not

adjacent, the black vertex would be a center of a K1,3 with these two representatives plus a
representative of xN

i as leaves. ◁

▶ Claim 7. Let (S, f) be an arbitrary split in SU (GΨ). Then, for every variable xi with
i ∈ {1, . . . , n}, the subgraph S[V̂i] satisfies at least one of the following two conditions, up to
symmetry:
1. The vertex f−1

1 (xN
i ) is adjacent to Ai and the vertex f−1

2 (xN
i ) is adjacent to Bi.

2. The vertices f−1
1 (x1

i ) and f−1
1 (x2

i ) are adjacent to each other and to Ai, and the vertices
f−1

2 (x1
i ) and f−1

2 (x2
i ) are adjacent to each other and to Bi.

Proof. By the properties of f , for every edge (u, v) ∈ GΨ, there exist elements s, t ∈ V (S)
with f−1(u) = s and f−1(v) = t such that (s, t) is an edge in S.

Suppose condition 1 does not hold, i.e., one of the representatives of xN
i , say f−1

1 (xN
i ), is

adjacent to both Ai and Bi. We will show that if condition 2 does not hold either, S cannot
be a unit 1-interval graph. Assume that one of the representatives of x1

i or x2
i , say f−1

1 (x1
i )

(resp. f−1
1 (x2

i )), is adjacent to both Ai and Bi. Then, S contains an induced cycle of length
four:

(
f−1

1 (xN
i ), Bi, f−1

1 (x1
i ), Ai

)
(resp.

(
f−1

1 (xN
i ), Bi, f−1

1 (x2
i ), Ai

)
). This is a forbidden

induced subgraph for unit 1-interval graphs, so it contradicts the hypothesis. Thus, it follows
that, up to symmetry, vertices f−1

1 (x1
i ) and f−1

1 (x2
i ) need to be adjacent to Ai, and vertices

f−1
2 (x1

i ) and f−1
2 (x2

i ), to Bi. Finally, by Claim 6, f−1
1 (x1

i ) and f−1
1 (x2

i ) need to be adjacent
to each other, so condition 2 must hold.

Conversely, suppose condition 2 does not hold, i.e., at least one of the representatives of
x1

i or x2
i , say f−1

1 (x1
i ) w.l.o.g., is adjacent to both Ai and Bi. We will see that condition 1

must hold in order for S to be a unit 1-interval graph. Indeed, if a single representative of
xN

i , say f−1
1 (xN

i ), is adjacent to both Ai and Bi, then S contains an induced cycle of size
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four:
(
f−1

1 (xN
i ), Bi, f−1

1 (x1
i ), Ai

)
. Therefore, one representative of xN

i must be adjacent to
Ai and the other, to Bi. ◁

The previous claim implies that there are four possible configuration of S[V̂i] such that it
does not contain any induced cycles of length greater or equal to 4.

▶ Lemma 8. Let (S, f) be a split of GΨ such that S[V̂i] does not contain any induced cycles
of length greater or equal to 4. Then, S satisfies one of the following conditions:
1. The vertex f−1

1 (xN
i ) is adjacent to Ai and the vertex f−1

2 (xN
i ) is adjacent to Bi, while

for the rest of the literal vertices, there exists an element in the image via f−1 that is an
isolated vertex.

2. The vertices f−1
1 (x1

i ) and f−1
1 (x2

i ) are adjacent to each other and to Ai, and the vertices
f−1

2 (x1
i ) and f−1

2 (x2
i ) are adjacent to each other and to Bi, while f−1(xN

i ) contains an
isolated vertex.

3. The images of x1
i and x2

i via f−1 are as in Case 1 and f−1(xN
i ) is as in Case 2 (see the

graph in Figure 4).
4. Either the image of x1

i or the image of x2
i via f−1 is as in Case 1 (w.l.o.g., assume it is

f−1(x1
i )) so that both representatives of x1

i are adjacent to the non-isolated representative
of x2

i ; and f−1(xN
i ) is as in Case 2.

Proof. We have already shown that one of the conditions of Claim 7 must hold. If condition 1
holds, then we have three possible configurations of f−1(x1

i ) and f−1(x2
i ): either both literal

vertices have a representative that is isolated (Case 1), only one of them has a representative
that is isolated (Case 4), or none of them has an isolated representative (Case 3). On the
other hand, if condition 2 holds, the we only have two possible configurations of f−1(xN

i ):
one representative of xN

i is isolated (Case 2), or none of them is (Case 3). Finally, note that
in Case 4, both representatives of x1

i need to be adjacent to the non-isolated representative
of x2

i by Claim 6.
◀

The next two claims are devoted to proving that if (S, f) is a split of (GΨ, γ) contained in
the family SU (GΨ), then Cases 3 and 4 of Lemma 8 are not possible. To do so, observe that
by construction, since every variable appears exactly in three clauses (twice positive and once
negated), we know that in GΨ, the vertices xN

i , x1
i and x2

i all have two incident edges linking
them with vertices outside of the variable gadget, called external edges in the following. The
neighbors outside of the variable gadget are external vertices, and they constitute private
neighbors of the vertices of the variable gadget, as it is not possible for two different vertices
of the variable gadget to be incident to the same external neighbor. We will see that if S is
as in Case 3 or Case 4, then the vertices of S[V̂i] create an induced net with the external
neighbors. Since nets are a forbidden induced subgraph for (unit) interval graphs, then S

cannot be a unit 1-interval graph.

▶ Claim 9. Let S be an arbitrary graph in SU (GΨ). Then, for every variable xi with
i ∈ {1, . . . , n}, the subgraph S[V̂i] cannot be as in Case 3 of Lemma 8.

Proof. Suppose that S[V̂i] is as in Case 3 of Lemma 8, i.e., as in Figure 4 (where Ci could be
in the neighborhood of the other representatives of the vertices, but thanks to the symmetry,
these cases are equivalent). We distinguish two cases:

The two external edges incident to x1
i and x2

i are incident to two representatives that are
adjacent. Then, either f−1

1 (xN
i ), Ai, f−1

1 (x1
i ), f−1

1 (x2
i ), a private neighbor of f−1

1 (x1
i ) and

a private neighbor of f−1
1 (x2

i ) form a net; or f−1
2 (xN

i ), Bi, f−1
2 (x1

i ), f−1
2 (x2

i ), a private
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neighbor of f−1
2 (x1

i ) and a private neighbor of f−1
2 (x2

i ) form a net (see the red net in
Figure 4).
Otherwise, at least one of f−1

1 (x1
i ) or f−1

1 (x2
i ) will be incident to an external edge. Then,

Ci, Ai, f−1
1 (x1

i ) or Ci, Ai, f−1
1 (x2

i ) will create a net together with Bi, f−1
1 (xN

i ), and the
corresponding external neighbor of f−1

1 (x1
i ) or f−1

1 (x2
i ), respectively (see the blue net in

Figure 4).

Ai

Bi

Ci

f−1
1 (x1

i ) x1
l

f−1
1 (x2

i )

f−1
2 (x1

i ) x1
j

f−1
2 (x2

i ) x1
k

f−1
1 (xN

i )

f−1
2 (xN

i )

Figure 4 Configuration of S[V̂i] described in Case 3 of Lemma 8. In red, the net created if both
f−1

2 (x1
i ) and f−1

2 (x2
i ) have an external neighbor. In blue, the net created if f−1

1 (x1
i ) has an external

neighbor.

In both cases, we have a forbidden induced subgraph for (unit) interval graphs, contra-
dicting the hypothesis that S is a unit interval graph.

◁

▶ Claim 10. Let (S, f) be an arbitrary split in SU (GΨ). Then, for every variable xi with
i ∈ {1, . . . , n}, the subgraph S[V̂i] cannot be as in Case 4 of Lemma 8.

Proof. Suppose that S[V̂i] is as in Case 4 of Lemma 8, i.e., as in Figure 5. By construction,
x2

i and at least one of f−1
1 (x1

i ) or f−1
2 (x1

i ) have an external neighbor. We distinguish two
cases:

The vertex f−1
1 (x1

i ) has an external neighbor. Then, vertices Ai, f−1
1 (x1

i ), x2
i , xN

i , and the
external neighbors of x2

i and f−1
1 (x1

i ) form a net (see the red net in Figure 5).
The vertex f−1

2 (x1
i ) has an external neighbor. Then, vertices Bi, f−1

2 (x1
i ), x2

i , xN
i , and the

external neighbors of x2
i and f−1

2 (x1
i ) form a net (see the blue net in Figure 5).

In both cases, we have a forbidden induced subgraph for (unit) interval graphs, contra-
dicting the hypothesis that S is a unit interval graph. ◁

The proof of Claim 10 uses similar arguments to that of Claim 9 and is thus omitted
here. Recall that in Case 1 of Lemma 8, one of the representatives of x1

i and one of the
representatives of x2

i are isolated; and in Case 2 of Lemma 8, one of the representatives of
xN

i is isolated. Therefore, we obtain the following result.

▶ Claim 11. Let (S, f) be an arbitrary split in the family SU (GΨ). Then, for every variable
xi with i ∈ {1, . . . , n}, the subgraph S[V̂i] satisfies exactly one of the following two conditions:
1. There is a representative of x1

i and a representative of x2
i that are isolated vertices (they

are either two non-adjacent vertices or they form a K2).
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Ai

Bi

Ci

f−1
1 (x1

i ) x1
j

x1
k

x1
l

f−1
2 (x1

i )

x2
i

f−1
1 (xN

i )

f−1
2 (xN

i )

Figure 5 Configuration of S[V̂i] described in Case 4 of Lemma 8. In red, the net created if
f−1

1 (x1
i ) has an external neighbor, and in blue, the net created if f−1

2 (x1
i ) has an external neighbor

(edge (x2
i , x1

l ) is part of both nets and is depicted in purple).

I1(Ci)

I1(Ai) I1(Bi)

I1(xN
i ) I2(xN

i )

I1(x1
i )

I1(x2
i )

(a)

I1(Ci)

I1(Ai) I1(Bi)

I1(x1
i ) I2(x1

i )

I1(x2
i ) I2(x2

i )

I1(xN
i )

(b)

Figure 6 Representation of the variable gadget associated to the true value (left, 6a) or false
value (right, 6b).

2. One of the representatives of xN
i is an isolated vertex.

Proof. Combining Lemma 8 with Claims 9 and 10, it follows that S[V̂i] is either as in Case 1
or as in Case 2 of Lemma 8, which means that either one representative of each of x1

i and x2
i

is isolated, or that one representative of xN
i is isolated, respectively. These options correspond

to the interval representations in Figure 6a and Figure 6b, respectively. The reader can check
the previous assertion observing the figures, and verify that the external edges incident to
each of the vertices x1

i , x2
i and xN

i can be added in both representations, as we always have
either a whole free interval (not depicted in the figures) or one extreme of the interval free
for each of the vertices.

◁

The correctness of the reduction now follows from the two lemmas below.

▶ Lemma 12. If Ψ is satisfiable, then the constructed graph GΨ = (V, E), V = Vwhite ∪Vblack,
admits a colored unit 2-interval representation.

Proof. Given a satisfying assignment ϕ of Ψ, we explain how to construct a colored unit
2-interval representation of GΨ, i.e., a collection of unit 2-intervals Dwhite = {(I1(v), I2(v)) |
v ∈ Vwhite} and a collection of unit 1-intervals Iblack = {I1(v) | v ∈ Vblack} such that
G ≃ Ω (Dwhite ∪ Iblack). Note that by Lemma 5, if GΨ is a colored unit 2-interval graph,
then there exists a split (S, f) in the family SU (GΨ), and we know how to construct a colored
unit 2-interval representation of GΨ given a unit 1-interval representation of S by defining
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I1(Ci)

I1(Ai) I1(Bi)

I1(x1
i ) I2(x1

i )

I1(x2
i )

I2(x2
j )

I2(x1
k)

I2(x2
i )

I1(xN
i )

Figure 7 Representation of a 3-clause (xi ∨ xj ∨ xk), where xi is set to false while xj , xk are set
to true.

the 2-interval associated to a white vertex v ∈ Vwhite as the union of the interval associated
to f−1

1 (v) and the interval associated to f−1
2 (v); and the 1-interval associated to a black

vertex v ∈ Vblack as the interval associated to the single vertex f−1(v).
For each variable xi with i ∈ {1, . . . , n}, if Φ(xi) = true, we represent the variable gadget

V̂i as shown in Figure 6a, which corresponds exactly to Case 1 of Claim 11. On the other
hand, if Φ(xi) = false, we represent V̂i as in Figure 6b, which corresponds to Case 2 of
Claim 11. Notice that in both representations, the literals that are true have an isolated
representative, i.e., one of the intervals associated to them is unused in the representation of
V̂i and remains completely free to display intersections with external neighbors.

After this, it only remains to explain the connections introduced by the clauses.

▶ Claim 13. Given a 3-clause (xi ∨ xj ∨ xk), there exists a unit interval representation of
the subgraph of GΨ induced by the vertices of the variable gadgets V̂i, V̂j and V̂k.

Proof. Each of the variable gadgets can be represented as in Figure 6a or Figure 6b. To
represent the edges associated to the 3-clauses, we first notice that, since the 3-clauses are
positive monotone, true literals correspond to true variables. As we are assuming that we
have a satisfying assignment, we only have three cases (up to symmetry), which correspond to
the three variables being true; exactly two variables being true; and only one variable being
true. The literals that are true have a whole free interval to display the intersection, whereas
the literals that are false only have the extreme of an interval (while the other extreme is
glued to the rest of the representation of the gadget, see Figure 6b). Let (xi ∨ xj ∨ xk) be a
3-clause, with i, j, k ∈ {1, . . . , n}. If the three variables are true, we can easily represent the
clause by making the three free intervals of the variables – w.l.o.g. I2(x1

i ), I2(x1
j), I2(x1

k) –
intersect at the same time. On the other hand, if only one variable – say xi – is false, we
can add the two free intervals –I2(x1

j ), I2(x1
k) – to the corresponding extreme of the gadget

of the false variable, as in Figure 7. Finally, if two variables are false – say xi, xk –, then
we need to merge the two interval representations associated to their gadgets and add the
free interval – I2(x1

j ) – in the middle, as in Figure 8. Note that the interval representations
given in the figures are not unit, but they are proper, so at the end we will be able to use
the algorithm described in [3] to turn it into a unit one. ◁

After representing all the 3-clauses, we can assume that the representations of some of
the variable gadgets have been merged two by two (we will never have to merge a gadget
more than once since a variable occurs in exactly one 3-clause in Ψ) and we can fix them in
the real line separated from one another. The separation between them can be arbitrarily
large, and needs to be at least greater than the space needed to place the remaining intervals.
The variable gadgets that have not been merged can also be fixed in the real line, while the
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I1(Ci)

I1(Ai) I1(Bi)

I1(x2
i ) I2(x2

i )

I1(x1
i )

I2(x1
j )

I2(x1
i )

I1(xN
i )

I1(Ck)

I1(Ak) I1(Bk)

I1(x2
k) I2(x2

k)

I1(x1
k)

I2(x1
k)

I1(xN
k )

Figure 8 Representation of a 3-clause (xi ∨ xj ∨ xk), where xi and xk are set to false and xj is
set to true.

I1(Ci)

I1(Ai) I1(Bi)

I1(x2
i ) I2(x2

i )

I1(x1
i )

I2(x2
m)

I1(Lm,i)

I1(pm,i) I2(x2
l )

I1(Ll,k)

I1(pl,k)

I1(x1
i )

I2(x1
j )

I2(x1
i )

I1(xN
i )

I1(Ck)

I1(Ak) I1(Bk)

I1(x2
k) I2(x2

k)

I1(x1
k)

I2(x1
k)

I1(xN
k )

Figure 9 Representation of a longest contiguous block of intervals, where each color represents
the intervals associated to a different variable. A longest contiguous block occurs when there is
a clause (xi ∨ xj ∨ xk), where xi and xk are set to false and both of them also appear as positive
literals in a 2-clause.

unused free intervals (corresponding to true literals), the intervals I1(Lα
i,j), and the intervals

I1(pα
i,j) remain unplaced.
Now, to display the 2-clauses, we distinguish two cases. First, if both literals are true,

then there exists a free interval for each, and we can represent the clause in a separate part
of the real line (there is one Lα

i,j and one pα
i,j per clause, so these intervals will never cause

a problem). Secondly, if one of the literals is false, then the free interval associated to the
true literal needs to be glued to the extreme of the representation of the variable gadget
of the false one. Note that there is always one free extreme because the 3-clauses use at
most one extreme per variable gadget (and we can extend Ij(x2

i ) to allow the intersection
while keeping the representation proper). Note also that we will never need more than two
extremes to obtain a representation because, since each variable occurs twice positive and
once negated, we can have at most two false literals (when the variable is set to false).

Since we have constructed a proper interval representation, we can now use the algorithm
described in [3] to turn the representation into a unit one, as mentioned before.

◀

Let us now prove the converse implication.

▶ Lemma 14. If the constructed graph GΨ = (V, E), V = Vwhite ∪ Vblack, admits a colored
unit 2-interval representation, then the original formula Ψ is satisfiable.

Proof. Assume that the constructed graph GΨ admits a colored unit 2-interval representation
where black vertices are represented by unit 1-intervals and white vertices are represented by
unit 2-intervals. As in Claim 11, we study the splits (S, f) ∈ SU (GΨ).

We have already seen in Claim 11 that there are only two possible configurations for
S[V̂i], up to symmetry. Let us assign a truth value to each of the configurations. If S[V̂i]
satisfies condition 1 of Claim 11, we set Φ(xi) = true. Otherwise, if it satisfies condition 2 of
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Ai

Bi

Ci

f−1
1 (x1

i )

f−1
1 (x2

i )

x1
j

x1
k

f−1
2 (x1

i )

f−1
2 (x2

i )

xN
i

Figure 10 In red, the net created if both representatives of x1
i are incident to the clause gadget

in S and f−1
1 (x2

i ) is incident to an external edge.

Claim 11, then we set Φ(xi) = false. Recall that this implies that there is a representative
of the vertices representing true literals which remains isolated from its variable gadget.

The following claims restrict the structure of a representable clause gadget. Both use
similar arguments, so only the first proof is included here. Given a clause gadget Ĉα in G,
we define the clause gadget S[Ĉα] in S as the set of representatives of the edges and vertices
of Ĉα.

▶ Claim 15. Let (S, f) be an arbitrary split in SU (GΨ). Then, for every 3-clause, at least
one of the representatives of the literal vertices incident to the clause gadget in S must be an
isolated vertex.

Proof. Towards a contradiction, we assume that there exists a 3-clause gadget in S such that
none of the representatives of the literal vertices adjacent to the clause gadget are isolated.
Let Cα = xi ∨ xj ∨ xk, with i, j, k ∈ {1, . . . , n} be a (monotone positive) 3-clause. Each of
the literal vertices has two external neighbors. In S, either the two external neighbors are
incident to the same representative of the literal vertices (and thus only one representative is
incident to the clause gadget), or each of them is incident to a different representative. We
distinguish two cases, depending on whether only one representative of each literal vertex is
incident to the clause gadget, or whether there is at least one literal vertex such that both of
its representatives are incident to the clause gadget:

If only one representative of each literal vertex is incident to the clause gadget in S, then
w.l.o.g., the clause gadget is formed by edges {(f−1

1 (x1
i ), f−1

1 (x1
j)), (f−1

1 (x1
j), f−1

1 (x1
k)),

(f−1
1 (x1

k), f−1
1 (x1

i ))}. By assumption, none of the vertices incident to the clause gadget
in S are isolated, so they are all connected to at least one black vertex of their variable
gadget. Thus, without loss of generality, {f−1

1 (x1
i ), f−1

1 (x1
j ), f−1

1 (x1
k), Ai, Aj , Ak} form a

net (the readers can convince themselves looking at Figure 2). Note that when we say
without loss of generality, we are using the symmetry between Ai and Bi.
If there is at least one literal vertex such that both of its representatives are incident to the
clause gadget, then w.l.o.g., the clause gadget in S contains edges {(f−1

1 (x1
i ), f−1

1 (x1
j)),

(f−1
1 (x1

k), f−1
2 (x1

i ))} (and eventually, edges between representatives of x1
j and x1

k). Then,
since one of the representative of x2

i also has a private neighbor outside of the variable
gadget, either the subgraph induced by {Ai, f−1

1 (x1
i ), f−1

1 (x2
i )} or the subgraph induced

by {Bi, f−1
2 (x1

i ), f−1
2 (x2

i )} (and one private neighbor of each of the three vertices, where
the private neighbor of Ai and Bi is xN

i ) is a net. This situation is depicted in Figure 10.



V. Ardévol Martínez, R. Rizzi, F. Sikora, S. Vialette 15

In both cases, the resulting graph S would not be a unit 1-interval graph, contradicting
the hypothesis.

◁

▶ Claim 16. Let (S, f) be an arbitrary split in SU (GΨ). Then, for every 2-clause, at least
one of the representatives of the literal vertices incident to the clause gadget in S must be an
isolated vertex.

Proof. Towards a contradiction, we assume that there exists a 2-clause gadget in S such that
none of the representatives of the literal vertices adjacent to the clause gadget are isolated.
Let Cα = xr

i ∨ xs
j , with i, j ∈ {1, . . . , n}, be a 2-clause, where the indices r, s ∈ {2, N}

indicate which occurrence of the variable appears in the clause. Again, there are two options:
W.l.o.g., the clause gadget in S comprises edges {(f−1

1 (xr
i ), f−1

1 (xs
j)), (f−1

1 (xs
j), Lα

i,j),
(Lα

i,j , f−1
1 (xr

i ))}. Then, without loss of generality, we will have a net induced by
{xr

i , xs
j , Lα

i,j , Ai, Aj , pα
i,j} (since Lα

i,j is black and f−1(Lα
i,j) consists of a single element,

this unique representative will be incident to the clause gadget and adjacent to pα
i,j at

the same time). The readers can convince themselves looking at figure Figure 3.
W.l.o.g., the clause gadget in S contains edges {(f−1

1 (xr
i ), f−1

1 (xs
j)), (Lα

i,j , f−1
2 (xr

i ))}.
Suppose first that xr

i is x2
i . As in the case of 3-clauses, either the subgraph induced by

{Ai, f−1
1 (x1

i ), f−1
1 (x2

i )} or by {Bi, f−1
2 (x1

i ), f−1
2 (x2

i )} (and one private neighbor of each
of the three vertices, where the private neighbor of Ai and Bi is xN

i ) is a net. On the
other hand, if xr

i is xN
i , since this literal only occurs in 2-clauses and the vertex Lα

i,j for
2-clauses is black, then it cannot be the case that f−1

1 (xN
i ) is adjacent to xs

j , and f−1
2 (xN

i )
is adjacent to Lα

i,j . Indeed, if this happened, Lα
i,j would be the center of an induced K1,3

with leaves pα
i,j , f−1

2 (xN
i ), and a representative of xs

j (which is not adjacent to f−1
2 (xN

i )
by assumption). This would contradict the fact that S is a unit 1-interval graph. The
illustration of the K1,3 created can be seen in Figure 3 removing the edge (x1

i , x2
i ), and

replacing x1
i with xN

i .
In both cases, the resulting graph S would not be a unit 1-interval graph, contradicting the
hypothesis. ◁

The previous claims imply that there is an isolated literal vertex incident to every 3-clause
and to every 2-clause. Since literal vertices that have an isolated representative correspond
to true literals in the assignment fixed before, it follows that there is a true literal per clause,
and thus, all clauses are satisfied. This finishes the proof of the converse direction.

◀

As the problem is clearly in NP, the polynomial-time construction together with Lemmas
12 and 14 conclude the proof of Theorem 2. The bound on the degree follows because the
constructed graph G has maximum degree 6 (the positive literal vertices have degree 4 in
the variable gadget and are incident to 2 external edges).

3.2 Hardness of Unit 2-Interval Recognition
We show next that Colored Unit 2-Interval Recognition is polynomial-time reducible
to Unit 2-Interval Recognition, which yields the main result of the paper:

▶ Theorem 17. Unit 2-Interval Recognition is NP-complete, even for graphs of degree
at most 7.
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Proof. We reduce from Colored Unit 2-Interval Recognition, which is NP-hard by
Theorem 2. Given any instance (G, γ) of Colored Unit 2-Interval Recognition, where
G = (V, E) is a graph and γ : V → {white, black} is a vertex-coloring map, we construct
an equivalent instance G′ = (V ′, E′) of Unit 2-Interval Recognition. Define n = |V |
and Vc = {u | u ∈ V ∧ γ(u) = c} for c ∈ {white, black} (so that n = |Vwhite| + |Vblack|).

We obtain G′ = (V ′, E′) from G by replacing every vertex v ∈ Vblack by the gadget Bv

depicted in Figure 11, which we also call black vertex gadget. Formally, for every v ∈ Vblack,
we add the vertices Vv = {ai

v, bi
v | 0 ⩽ i ⩽ 3} and the edges Ev = {(v, a0

v), (a0
v, ai

v), (v, b0
v),

(b0
v, bi

v), (a0
v, b0

v) | 1 ⩽ i ⩽ 3}. The gadget Bv is exactly the graph induced by the union of Vv

and vertex v. Note that the vertex v of Bv is public, that is, it is adjacent to vertices of Bv

and to vertices outside of Bv, while the rest of the vertices of Bv are private, i.e., they are
only adjacent to vertices of Bv.

We have thus constructed a graph G′ with vertex set V ′ = V ∪ {Vv | v ∈ Vblack} and
edge set E′ = E ∪ {Ev | v ∈ Vblack}. Note that G′ contains G as an induced subgraph, as
G′[V ] = G. Combining this with the replacement of every vertex in Vblack by a gadget with
9 vertices and 9 edges, it follows that |V ′| = |Vwhite| + 9 |Vblack| and |E′| = |E| + 9 |Vblack|.

v

a0
v b0

v

a1
v b1

va2
v b2

va3
v b3

v

Figure 11 Gadget Bv used to replace every black vertex v of G in the construction of G′. Vertex
v is a public vertex, as it is adjacent to vertices of the gadget (a0

v and b0
v) and vertices outside the

gadget (namely, its neighbors in the original graph G), whereas the rest of the vertices are private,
as their only neighbors are vertices from the gadget (the ones shown in the figure).

The purpose of the black vertex gadget Bv used to replace every v ∈ Vblack in the
construction of G′ is to restrict the unit 2-interval representations of G′. Indeed, we will
see that it forces one of the intervals associated to v to be used exclusively to represent the
gadget, while the other interval is used exclusively to represent the rest of the neighborhood
of v (which is exactly its neighborhood in the original graph G). Figure 12 shows a unit
2-interval representation R = {(I1(x), I2(x)) | x ∈ Vv ∪ {v}} of Bv such that I1(v) does not
have any points in common with the rest of the intervals of R (i.e., only I2(v) is used to
represent the gadget). Furthermore, in the given representation, I2(v) cannot intersect any
interval associated to a vertex outside of the gadget, as there is no point of I2(v) that does
not intersect either I1(a0

v) or I1(b0
v), and both a0

v and b0
v are private vertices for v. The next

claim proves that any unit 2-interval representation of Bv is as in Figure 12, up to symmetry.

I1(a1
v)

I1(a0
v)

I2(v)

I1(b0
v)

I1(b1
v)

I1(a2
v)

I2(a0
v)

I1(a3
v) I1(b2

v)

I2(b0
v)

I1(b3
v)

Figure 12 A unit 2-interval representation of Bv (Figure 11), i.e., DBv for an arbitrary v ∈ Vblack.
Note that only one interval of v is used (I2(v)), while the other one remains free to display the rest
of the neighborhood of v (and is not represented here).
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▶ Claim 18. Let {(I1(x), I2(x)) | x ∈ Vv∪{v}} be a unit 2-interval representation of Bv. Then,
there exist some indices i, j, k ∈ {1, 2} such that the representation of Ii(v), Ij(a0

v), Ik(b0
v) is

contiguous (i.e., the union of the three intervals is an interval) and Ii(v) is properly contained
in the union Ij(a0

v) ∪ Ik(b0
v).

Proof. In the following, we denote an interval associated to a vertex by the name of the
vertex if it refers to an arbitrary interval from the corresponding 2-interval (i.e., we will write
v to denote I1(v) or I2(v) when the choice of interval is irrelevant).

Since a0
v and b0

v are both centers of an induced K1,4, one of the intervals associated to a0
v,

say I1(a0
v), needs to intersect v, b0

v and one of the ai
v for some i ∈ {1, 2, 3}, say a1

v without
loss of generality (because of the symmetry). Furthermore, the intervals of v and b0

v that
intersect I1(a0

v) also need to intersect each other, as otherwise I1(a0
v) would intersect three

disjoint intervals, contradicting the fact that the representation is unit. On the other hand,
I2(a0

v) has to intersect the two remaining ai
v, that is, a2

v and a3
v. Similarly, one of the intervals

associated to b0
v, say I1(b0

v), needs to intersect v and a0
v (which also intersect each other), and

one of the bi
v for some i ∈ {1, 2, 3}, whereas I2(b0

v) intersects the two remaining bi
v. Again,

without loss of generality, we can assume that I(b0
v) intersects b1

v while I2(b0
v) intersects b2

v

and b3
v.

Thus, we have that I1(a0
v) intersects v and I1(b0

v) (which also intersect each other), and
a1

v; while I(b0
v) intersects v and I1(a0

v) (which also intersect each other), and b1
v. This implies

that the representation of a1
v, I1(a0

v), b1
v, I1(b0

v) has to be contiguous. Finally, since vertex
v is not adjacent to either a1

v nor b1
v, the only possibility to represent the edges (v, a0

v) and
(v, b0

v) is by placing an interval associated to v, say I2(v), properly contained in the union
I1(a0

v) ∪ I1(b0
v), as in Figure 12.

◁

The next two claims now prove the correctness of the reduction.

▶ Claim 19. If G is a colored unit 2-interval graph, then G′ is a unit 2-interval graph.

Proof. Suppose that G is a colored unit 2-interval graph. Then, by assumption, there exists
a collection of unit 2-intervals Dwhite = {(I1(v), I2(v)) | v ∈ Vwhite} and a collection of unit
intervals Iblack = {I1(v) | v ∈ Vblack} such that G ≃ Ω (Dwhite ∪ Iblack).

From D = (Dwhite ∪ Iblack), we show how to construct a unit 2-interval representation
D′ of G′. Recall that (Vwhite ∪ Vblack) = V ⊂ V ′. Similarly, we will construct D′ such that
D ⊂ D′. In fact, we will have that D′ = D ∪

(⋃
v∈Vblack

DBv

)
, where for every v ∈ Vblack,

DBv is the interval representation of the gadget Bv. More precisely, we construct D′ as
follows:

For every v ∈ Vwhite, we add to D′ the 2-interval (I1(v), I2(v)) from D.
For every v ∈ Vblack, we add to D′ the interval I1(v) from D together with DBv

, i.e., the
interval I2(v) plus the 2-intervals (I1(ak

v), I2(ak
v)) and (I1(bk

v), I2(bk
v)) for 0 ⩽ k ⩽ 3 as

defined in Figure 12.
By construction, D′ is a collection of unit 2-intervals. It is now a simple matter to verify
that G′ ≃ Ω(D′). ◁

▶ Claim 20. If G′ is a unit 2-interval graph, then G is a colored unit 2-interval graph.

Proof. Suppose that G′ is a unit 2-interval graph. Then, by assumption, there exists a
collection of unit 2-intervals D′ = {(I1(v), I2(v)) | v ∈ V ′} such that G′ ≃ Ω(D′). From D′,
we show how to construct a set D of |Vwhite| unit 2-intervals and |Vblack| unit intervals.
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Recall that V ⊂ V ′. Similarly, we will take D to be a subset of D′. Let v ∈ V ⊆ V ′ be a
vertex of G′. We distinguish two cases depending on the color of v in G:

γ(v) = white. We add to D the unit 2-interval (I1(v), I2(v)) of D′.
γ(v) = black. In D′, we have a pair of intervals (I1(v), I2(v)). By Claim 18, w.l.o.g,
I2(v) is used to display the gadget for black vertices, and cannot be used to represent
any other edges. This means that all the remaining neighbors of v, which are exactly its
neighbors in G, are displayed by I1(v). Thus, we add to D the unit interval I1(v) from
D′.

◁

As the problem is clearly in NP, combining the fact that the construction of G′ can be
carried out in polynomial time with Claims 19 and 20, we obtain that Unit 2-Interval
Recognition is NP-complete. The bound on the degree given in the statement of the
theorem follows by construction, from adding the black vertex gadgets (Figure 11) to the
graph constructed in the proof of Theorem 2 (Figure 2). Indeed, this results in a graph of
maximum degree 7, as Ci is adjacent to 5 vertices in the variable gadget and to 2 vertices
from the black vertex gadget.

◀

3.3 Consequences and generalizations
We now generalize the result for unit d-interval graphs, with d ⩾ 2, which is not directly
implied in graph recognition problems, and for some specific cases of unit d-intervals.

▶ Corollary 21. Recognizing unit d-interval graphs is NP-complete for every d ⩾ 2.

Proof. We reduce recognition of unit (d − 1)-interval graphs to recognition of unit d-interval
graphs, hence the result holds by Theorem 17.

The idea is similar to the proof of Theorem 17. Given a graph G = (V, E), we construct in
polynomial-time a graph G′ by adding to each vertex a gadget similar to the one in Figure 11.
Indeed, for every vertex v in G, we create a triangle with vertices v, a0

v and b0
v, but now a0

v

and b0
v are adjacent to 2d − 1 independent vertices instead of just 3 (which is the case in

Figure 11). Formally, for every v ∈ V , we add the vertices

Vv = {ai
v, bi

v | 0 ⩽ i ⩽ 2d − 1}

and the edges

Ev = {(v, a0
v), (a0

v, ai
v), (v, b0

v), (b0
v, bi

v), (a0
v, b0

v) | 1 ⩽ i ⩽ 2d − 1}

We now prove that G has a unit (d − 1)-interval representation if and only if it has a unit
d-interval representation. First, given a unit (d − 1)-interval representation, we can build a
unit d-interval representation as in Figure 12. However, in this case, instead of having two
intervals I1(v), I2(v) associated to every vertex v, we have d intervals, say I1(v), . . . , Id(v).
W.l.o.g., the intervals I1(v), . . . , Id−1(v) are the d − 1 intervals of the unit (d − 1)-interval
representation of G, while Id(v) plays the role of I2(v) in Figure 12. Similarly, I1(a0

v) plays
the role of I1(a0

v) in Figure 12, while every Ij(a0
v), with 1 < j ⩽ d is represented as I2(a0

v) in
Figure 12, each intersecting two different ai

v, with 1 < i ⩽ 2d − 1. The same holds for b0
v.

For the converse implication, if we have a unit d-interval representation of G′, then, using
the same argument as in the proof of Claim 18, we see that for every vertex v, we need to use
a complete interval of v to represent the gadget added in the construction of G′. Therefore,
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the remaining edges (which correspond exactly to the edges of G), need to be displayed
using only d − 1 intervals associated to v. This implies that G has a unit (d − 1)-interval
representation. ◀

▶ Corollary 22. Recognizing (x, . . . , x) d-interval graphs is NP-complete for every x ⩾ 11
and every d ⩾ 2.

Proof. The result follows because the graph constructed in the reduction is a (11, 11) 2-
interval graph, and every (11, 11) 2-interval graph is also a unit 2-interval graph (so the
same reduction can be applied). To see this, the reader can verify the (11, 11) 2-interval
representation of the largest contiguous block in Figure 13, and check that the black vertex
gadget used in the proof of Theorem 17 is also a (11, 11) 2-interval graph.

To generalize for d > 2, it suffices to check that the gadgets added in the reduction of
Corollary 21 are (11, . . . , 11) d-interval. Finally, as any (x, . . . , x) d-interval graph can be
turned into a (x + 1, . . . , x + 1) d-interval graph (by partitioning the dn intervals into the
minimum number of maximal cliques and stretching the intersection of the intervals in each
clique by one unit, as described in [18]), the graph constructed in the main reduction is
an (x, . . . , x) d-interval graph for every x ⩾ 11. However, the graph constructed is not a
(x, . . . , x) d-interval graph for any x < 11 (this has been checked with the help of an ILP
solver). ◀

▶ Corollary 23. Recognizing depth r unit d-interval graphs is NP-complete for every r ⩾ 4
and every d ⩾ 2.

Proof. The result follows because the depth of the representation constructed in the hardness
proof of Theorem 2 is 4 (this can be verified by looking at Figure 9), and the depth of the
representation of the black vertex gadget added in the proof of Theorem 17 is 3 (as can be
seen in Figure 12). Furthermore, the gadgets added to prove the result for d > 2 have a
representation of depth at most 3. The corollary generalizes for any depth r > 4, as for any
r > 4, it is true that there exists a satisfying assignment if and only if the constructed graph
G′ has a unit 2-interval representation of depth at most r.

◀

The following corollary is based on the Exponential Time Hypothesis (ETH). More details
on this notion that we are only touching here can be found in [9, Chapter 14].

▶ Corollary 24. Unless the ETH fails, Unit d-interval recognition does not admit an
algorithm with running time 2o(|V |+|E|).

Proof. We have provided a polynomial-time reduction from 3-SAT to Unit 2-interval
recognition such that given an instance of 3-SAT of n variables and m clauses, it outputs
an equivalent instance of Unit 2-interval recognition whose size is bounded by O(n+m).
Indeed, given an instance of 3-SAT of n variables and m clauses, we first build in Lemma 1 an
equivalent instance of a special case of SAT with at most 3m variables and 7m clauses, and
then an instance of Colored unit 2-interval recognition with at most 18m vertices and
232m edges. Finally, to construct an equivalent instance of Unit 2-interval recognition,
we also add a linear number of vertices and edges (at most 9|V | and 9|E|, respectively).
Therefore, if Unit 2-interval recognition admitted an algorithm with running time
2o(|V |+|E|), composing the reduction with such an algorithm would yield an algorithm for
3-SAT running in time 2o(n+m), which would contradict the ETH. To generalize the result for
d > 2, notice that the number of vertices and edges that we add in the proof of Corollary 21
is also linear. ◀
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Figure 13 An (11, 11) 2-interval representation of a longest contiguous block of the graph
constructed in the main reduction.
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4 Concluding remarks

We have proven that recognizing unit d-interval graphs is NP-complete for any d ⩾ 2.
Furthermore, our reduction implies that recognizing (x, . . . , x) d-interval graphs for any
x ⩾ 11, and depth r unit d-interval graphs for any r ⩾ 4, is also hard. These results represent
a significant step towards settling the landscape of the complexity of the recognition of the
different subclasses of d-interval graphs.

However, some questions still remain open. Since we have shown that recognizing depth
4 unit d-interval graphs is NP-complete and it is known that the recognition of depth 2
unit d-interval graphs is polynomial-time solvable [18], it still remains to delineate the exact
boundary, i.e., study the case of depth 3 unit d-interval graphs. On the other hand, the
complexity of recognizing (x, . . . , x) d-interval graphs for x < 11 is also unknown. Finally,
we have obtained a lower bound for the running time of an algorithm for recognizing unit
2-intervals. Since the brute-force algorithm, running in O(2n2), is far from achieving it, it
would be interesting to reduce this gap.
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