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Abstract

With elementary means, we prove a stronger run time guarantee
for the univariate marginal distribution algorithm (UMDA) optimiz-
ing the LeadingOnes benchmark function in the desirable regime
with low genetic drift. If the population size is at least quasilinear,
then, with high probability, the UMDA samples the optimum within
a number of iterations that is linear in the problem size divided by
the logarithm of the UMDA’s selection rate. This improves over the
previous guarantee, obtained by Dang and Lehre (2015) via the deep
level-based population method, both in terms of the run time and by
demonstrating further run time gains from small selection rates. With
similar arguments as in our upper-bound analysis, we also obtain the
first lower bound for this problem. Under similar assumptions, we
prove that a bound that matches our upper bound up to constant
factors holds with high probability.

1 Introduction

Estimation-of-distribution algorithms (EDAs) are randomized search-
heuristics that create a probabilistic model of the search space and refine
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it iteratively. In each iteration, the current model of an EDA is used to
create some samples which, in turn, are used to adjust the model such that
better solutions are more likely to be created in the following iteration. Thus,
the model evolves over time into one that creates very good solutions. EDAs
have been applied to real-world problems with great success [PHL15].

Within the last few years, the theoretical analysis of EDAs has gained
increasing interest, as summarized by Krejca and Witt [KW20]. One
of the first papers in this period was by Dang and Lehre [DL15], who
proved run time guarantees for the univariate marginal distribution algorithm

(UMDA, [MP96]) when optimizing the two classical benchmark functions
OneMax and LeadingOnes. While their run time bound for OneMax

has been improved since then independently by Lehre and Nguyen [LN17]
and Witt [Wit17], the run time bound of O(n2 + nλ log λ), where n is the
problem dimension and λ is the offspring population size of the UMDA, is
the best known result so far on LeadingOnes.1

In this work, we improve with Theorem 5 the second term of this bound
from O(nλ log λ) to O

(

n λ
log(λ/µ)

)

when µ = Ω(n log n), where µ ≤ λ is the
size of the subpopulation selected for the model update. In the regime of µ =
Ω(n log n), the UMDA shows the generally desirable behavior of low genetic
drift, that is, the sampling frequencies stay in the middle range of, say, (1

4
, 3

4
)

until a sufficiently strong fitness signal moves them into the right direction.
While EDAs are not necessarily inefficient in the presence of stronger genetic
drift, their optimization behavior then often becomes similar to a slowed-
down version of the (1+1) evolutionary algorithm. Genetic drift, however,
can also lead to a performance loss, since it may take long to move a frequency
from the wrong boundary value back into the middle range. This has been
rigorously shown by Lengler et al. [LSW18].

Equally interesting to the improved run time guarantee is our elementary
proof method. While it was truly surprising that Dang and Lehre [DL15]
could use the level-based population method to analyze an EDA (which does
not have a population that is transferred from one iteration to the next),
this method is a highly advanced tool and one that can be difficult to use.
In contrast to this, our proof only uses elementary arguments common in
the analysis of evolutionary algorithms. We are thus optimistic that our
arguments can more easily be applied to other EDAs as well.

We further demonstrate the usability of our proof method by proving
a matching lower bound (see Theorem 6), which improves the previously
best known lower bounds by Lehre and Nguyen [LN19] for the regime of µ =

1In an extension of [DL15], Dang et al. [DLN19] show the same run time bound but
slightly improve the required population sizes.
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Ω(n log n). For the regime of µ = Ω(log n)∩o(n log n), the bound Ω
(

nλ
log(λ−µ)

)

by Lehre and Nguyen remains the best known lower bound. Additionally,
Lehre and Nguyen prove a lower bound of eΩ(µ) for µ = Ω(log n) and λ . eµ,
which remains untouched by our result.

We note that both of our bounds do not require the fraction µ/λ to be
constant, which is a common requirement of many other analyses of the
UMDA [DLN19, LN17, Wit17, KW18] (although this is not always explicitly
stated in the result). In particular, our bounds show that the gain from
reducing the selection rate µ/λ (which often requires a costly increase of λ)
is very small, namely, only logarithmic in 1

µ/λ
.

Another advantage of our approach is that it gives run time guarantees
that hold with high probability, whereas the level-based method, relying on
drift arguments, can only give bounds on expected run times. Consequently,
the result of Dang and Lehre [DL15] also concerns the expectation only. We
believe that a result that holds with high probability is often more relevant,
as has also been argued by Doerr [Doe19].

2 Preliminaries

We are concerned with the run time analysis of algorithms optimizing pseudo-
Boolean functions, that is, functions f : {0, 1}n → R, where n ∈ N denotes
the dimension of the problem. Given a pseudo-Boolean function f and a bit
string x, we refer to f as a fitness function, to x as an individual, and to f(x)
as the fitness of x.

For an n ∈ N, we define [n] = [1, n] ∩ N. From now on, if not stated
otherwise, the variable n always denotes a natural number. For a vector x
of length n, we denote its component at position i ∈ [n] via xi.

We consider the optimization of the pseudo-Boolean function
LeadingOnes : {0, 1}n → {0}∪ [n], which states for a bit string of length n
the longest prefix of leading 1s within that bit string. More formally, for all
x ∈ {0, 1}n,

LeadingOnes(x) =
n

∑

i=1

i
∏

j=1

xi .

Note that the all-1s bit string is the unique global optimum of Leading-

Ones.
Our algorithm of interest is the UMDA (Algorithm 1) with parameters

µ, λ ∈ N, µ ≤ λ. It maintains a vector p of probabilities (the frequency

vector) of length n, whose components we call frequencies, and it updates
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this vector iteratively in the following way: first, λ individuals are created
independently from another such that, for each individual x ∈ {0, 1}n and
each position i ∈ [n], it holds that xi is 1 with probability pi and 0 otherwise.
Then, from these λ individuals, a subset of µ individuals with the highest
fitness is chosen (breaking ties uniformly at random), and, for each position
i ∈ [n], the frequency pi is set to the relative number of 1s at position i among
the µ best individuals. Last, if a frequency pi is below 1

n
, it is increased to 1

n
,

and if it is above 1− 1
n
, it is decreased to 1− 1

n
. This circumvents frequencies

from being stuck at the extremal values 0 or 1. We denote the frequency
vector of iteration t ∈ N by p(t). Note that we start with iteration t = 0.

Algorithm 1: The UMDA [MP96] with parameters µ and λ, µ ≤ λ,
maximizing a fitness function f : {0, 1}n → R with n ≥ 2

1 t← 0;
2 p(t) ← (1

2
)i∈[n];

3 repeat ⊲ iteration t
4 for i ∈ [λ] do x(i) ← individual sampled via p(t);
5 let y(1), . . . , y(µ) denote the µ best individuals out of x(1), . . . , x(λ)

(breaking ties uniformly at random);

6 for i ∈ [n] do p
(t+1)
i ← 1

µ

∑µ
j=1 y

(i)
j ;

7 restrict p(t+1) to the interval [ 1
n
, 1− 1

n
];

8 until termination criterion met;

In the context of optimizing LeadingOnes, we say that a position i ∈ [n]
of p(t) is critical in iteration t ∈ N if and only if all of the frequencies at
indices less than i are 1− 1

n
and p

(t)
i is less than 1− 1

n
. Intuitively, a critical

frequency is the next one that needs to be set to 1− 1
n

in order to optimize
LeadingOnes efficiently.

When analyzing the run time of the UMDA optimizing a fitness func-
tion f , we are interested in the number T of fitness function evaluations
until an optimum of f is sampled for the first time. Since the UMDA is a
randomized algorithm, T is a random variable, and we are interested in a
bound on T that holds with high probability. Note that the run time T of
the UMDA is at most λ times the number I of iterations until an optimum
is sampled for the first time. Likewise, T is at least (I − 1)λ + 1.

In order to prove statements on random variables that hold with high
probability, we use the following commonly known Chernoff bounds.

Theorem 1 (Chernoff bound [Doe20, Theorem 1.10.5]). Let k ∈ N, δ ∈ [0, 1],
and let X be the sum of k independent random variables, each taking values
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in [0, 1]. Then

Pr
[

X ≤ (1− δ)E[X]
]

≤ e−
δ2E[X]

2 .

Theorem 2 (Chernoff bound [Doe20, Theorem 1.10.1]). Let k ∈ N, δ ∈ [0, 1],
and let X be the sum of k independent random variables, each taking values

in [0, 1]. Then

Pr
[

X ≥ (1 + δ)E[X]
]

≤ e−
δ2E[X]

3 .

The next two theorems, recently proven in [DZ19], give upper bounds on
the negative effect of genetic drift on the UMDA. The first result considers
the optimization of fitness functions f that weakly prefer a 1 at a position
i ∈ [n], that is, for all bit strings x, x′ ∈ {0, 1}n with xi = 1, x′

i = 0, and
xj = x′

j for all other positions j ∈ [n] \ {i}, it holds that f(x) ≥ f(x′). In
other words, having a 1 at position i always yields a fitness at least as good
as when having a 0 at i. Note that LeadingOnes weakly prefers a 1 in
all bit positions. The theorem states that the frequency at such a position i
does not drop far below its initial value 1

2
for a long time.

Theorem 3 ([DZ19, Theorem 7]). Consider the UMDA with parameters µ
and λ optimizing a function f that weakly prefers a 1 at position i ∈ [n].
Then, for all d > 0 and all iterations t ∈ N, we have

Pr
[

∀t′ ∈ [0..t] : p
(t′)
i > 1

2
− d

]

≥ 1− 2e− d2µ
2t .

The next theorem considers the case that there is no preference for a
bit value at position i ∈ [n], that is, for all bit strings x, x′ ∈ {0, 1}n with
xi = 1, x′

i = 0, and xj = x′
j for all other positions j ∈ [n] \ {i}, it holds that

f(x) = f(x′). Given this assumption, we call position i neutral.

Theorem 4 ([DZ19, Corollary 2]). Consider the UMDA with parameters µ
and λ optimizing a function f such that position i ∈ [n] is neutral. Then, for

all d > 0 and all iterations t ∈ N, we have

Pr
[

∀t′ ∈ [0..t] : p
(t′)
i ∈ (1

2
− d, 1

2
+ d)

]

≥ 1− 2e− d2µ
2t .

3 Upper Bound

In the following, we present our simple and intuitive run time analysis for
the upper bound of the UMDA optimizing LeadingOnes, which gives the
following theorem.
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Theorem 5. Let δ ∈ (0, 1) be a constant, and let ζ = 1−δ
4e

. Consider the

UMDA optimizing LeadingOnes with µ ≥ 128n ln n and λ ≥ µ
ζ
. Further,

let d = ⌊log4(ζ
λ
µ
)⌋. Then the UMDA samples the optimum after at most

λ(⌈ n
d+1
⌉ + ⌈ n

n−1
e ln n⌉) fitness function evaluations with a probability of at

least 1− 5n−1.

As discussed in the introduction, we only want to consider the regime
with low genetic drift. Hence, we first argue that no frequency drops below 1

4

before the optimum is sampled (Lemma 1). Then we show that, in this case,
in each iteration, roughly log λ

µ
additional frequencies are set to 1− 1

n
. More

specifically, if i ∈ [n] is critical, then all frequencies at positions roughly up to
i+log λ

µ
are set to 1− 1

n
(Lemma 2). Thus, a total of roughly n

log(λ/µ)
iterations

suffice to move all frequencies to 1− 1
n
. From such a state, the optimum is

sampled with high probability after a logarithmic number of iterations.
We start by proving that the following parameter setting ensures that no

frequency drops below the value 1
4

within 2n iterations with high probability.

Lemma 1. Consider the UMDA with λ ≥ µ ≥ 128n ln n. Assume that it

optimizes a function that weakly prefers a 1 at all positions. Then, with a

probability of at least 1−2n−1, each frequency will stay at a value of at least 1
4

for the first 2n iterations.

Proof. Consider an iteration t ≤ 2n as well as a position i ∈ [n]. By
Theorem 3 with d = 1

4
, we see that the probability that pi drops below 1

4

within the first t ≤ 2n iterations is at most 2e−µ/(32·t) ≤ 2e−µ/(32·2n) ≤ 2n−2,
where we used our bound on µ. Applying a union bound over all n frequencies
gives the claim.

We now prove that a critical frequency, all its preceding frequencies, as
well as roughly log λ

µ
following frequencies are set to 1 − 1

n
within a single

iteration. That is, we increase roughly 1 + log λ
µ

new frequencies to their
maximum value.

Lemma 2. Let δ ∈ (0, 1) be a constant, and let ζ = 1−δ
4e

. Consider the UMDA

optimizing LeadingOnes with µ ≥ 41−δ
δ2 ln n and λ ≥ µ

ζ
. Furthermore,

consider an iteration t ∈ N such that position i ∈ [n] is critical and that,

for all positions j ≥ i, we have p
(t)
j ≥

1
4
. Let d = ⌊log4(ζ

λ
µ
)⌋. Then, with a

probability of at least 1− n−2, for all positions j ∈ [min{n, i + d}], we have

p
(t+1)
j = 1− 1

n
.

Proof. Note that d ≥ 0 due to our assumption on λ. We look at the pop-
ulation of λ individuals that is sampled in iteration t and determine the
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number X of individuals that have at least i′ := min{n, i + d} leading 1s.
Since the frequencies at all positions less than i are at 1 − 1

n
, the prob-

ability that all of these frequencies sample a 1 for a single individual is
(1− 1

n
)i−1 ≥ (1− 1

n
)n−1 ≥ 1

e
. Further, since the probability to sample a 1 at

positions at least i is at least 1
4
, we have E[X] ≥ λ

e
· 4−(1+d) ≥ µ

4eζ
≥ µ

1−δ
.

We now apply Theorem 1 in order to show that it is unlikely that fewer
than µ individuals from iteration t have fewer than i′ leading 1s. Using our
bounds on µ and our estimate on E[X] from above, we compute

Pr[X < µ] ≤ Pr
[

X ≤ (1− δ)E[X]
]

≤ e−
δ2E[X]

2

≤ e− δ2

2(1−δ)
µ ≤ n−2.

Thus, with a probability of at least 1 − n−2, at least µ individuals have at
least i′ leading 1s.

Since the UMDA is optimizing LeadingOnes, in this case, all of the
selected top µ individuals have at least i′ leading 1s, which results in all
frequencies at positions in [i′] being set to 1 − 1

n
, that is, for all j ∈ [i′], we

have p
(t+1)
j = 1− 1

n
.

We now prove our main result.

Proof of Theorem 5. We prove that the UMDA samples the optimum after
⌈ n

d+1
⌉+ ⌈ n

n−1
e ln n⌉ iterations with a probability of at least 1−5n−1. Since it

performs λ fitness function evaluations each iteration, the theorem follows.
Since LeadingOnes weakly prefers 1 at all positions, by Lemma 1 and

µ ≥ 128n⌈ln n⌉, no frequency drops below 1
4

within 2n iterations with a
probability of at least 1− 2n−1.

Consider an iteration t ≤ n such that position i ∈ [n] is critical. Note
that µ ≥ 4⌈1−δ

δ2 ln n⌉ for sufficiently large n. By Lemma 2, with a probability
of at least 1− n−2, for each frequency at position in j ∈ [min{n, i + d}], we
have p

(t+1)
j = 1 − 1

n
. That is, d + 1 additional frequencies are set to 1 − 1

n
.

Applying a union bound for the first 2n iterations of the UMDA shows that
all frequencies are at 1− 1

n
after the first ⌈ n

d+1
⌉ iterations and stay there for

at least n additional iterations with a probability of at least 1− 2n−1.
Consequently, after the first n iterations, the optimum is sampled in each

iteration with a probability of (1− 1
n
)n ≥ (1 − 1

n
)1

e
. Thus, after ⌈ n

n−1
e ln n⌉

additional iterations, the optimum is sampled with a probability of at least

1−
(

1− n−1
n

1
e

)⌈ n
n−1

e ln n⌉
≥ 1− n−1.

Overall, by applying a union bound over all failure probabilities, the
UMDA needs at most ⌈ n

d+1
⌉+ ⌈ n

n−1
e ln n⌉ iterations to sample the optimum

for the first time with a probability of at least 1− 5n−1.
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We note that we stated explicit constants in the result above as we felt
that this eases reading, but we did not try to optimize them. For example,
a selection rate of at most some constant less than 1

2e
can give the same

run time guarantee when raising λ by a sufficiently large constant factor. A
selection rate of at most some constant less than 1

e
can also be tolerated.

Now it takes a constant number of iterations to move a critical frequency to
1− 1

n
, so the run time guarantee increases by a constant factor.

4 Lower Bound

Our main insight, which gave our sharper upper bound with a proof simpler
than in previous works, was that the UMDA, when optimizing Leading-

Ones in the regime of low genetic drift, makes a steady progress in each
iteration: It sets the frequencies to the maximum value 1 − 1

n
in a left-to-

right fashion, keeping the other frequencies close to the middle value of 1
2
.

The increase of the number of frequencies at the maximum value, with a
simple Chernoff bound argument, could be shown to be logarithmic in the
reciprocal 1

µ/λ
of the selection rate.

In this section, we show that the same proof approach (with small mod-
ifications) can also be employed to show lower bounds, and in this case, a
matching lower bound, which also is the first lower bound for this setting at
all.

Theorem 6. Let δ ∈ (0, 1) be a constant, and let ζ = 3
4
(1 + δ). Consider

the UMDA optimizing LeadingOnes with λ ≥ µ ≥ 64n ln n and λ ≥ µ
ζ
.

Further, let d = ⌈log4/3(ζ λ
µ
)⌉, and let ξ = ⌈log4/3(n2λ)⌉+1. Then the UMDA

samples the optimum after more than λ⌊n−ξ
d+1
⌋ fitness function evaluations

with a probability of at least 1− 4n−1.

To prove a lower bound via the general idea laid out above, we need to
show that frequencies that do not receive a fitness signal do not approach
1− 1

n
due to genetic drift. Here we have to be slightly more careful than in our

upper bound analysis, since now the fitness signal does move the frequencies
into the undesired (from the view-point of lower bound proofs) direction.
Consequently, we can employ the low-genetic drift argument only while we
are sure that we do not receive a fitness signal (Lemma 3).

Using a Chernoff-type concentration argument (which in principle works
similarly for upper and lower bounds), we show that at most roughly log λ

µ

frequencies above the critical position receive a fitness signal (and thus po-
tentially leave the middle range), see Lemma 4.
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Consequently, in the first O( n
log λ/µ

) iterations, we have many frequencies
that are far from the maximum value, and thus sampling the optimum is
unlikely (Lemma 5). This yields our lower bound.

To make these arguments precise, we define when a frequency of the
UMDA stops being neutral, that is, receives a fitness signal. To this end, we
say that a position i ∈ [n] is selection-relevant (with respect to Leading-

Ones) in iteration t ∈ N if and only if the offspring population of the UMDA
in iteration t has at least µ individuals with at least i − 1 leading 1s. Thus,
with respect to selection, the bit value at position i decides whether an indi-
vidual is selected for the update or not. We call the largest selection-relevant
position in an iteration the maximum selection-relevant position. Note that
all positions greater than the maximum selection-relevant position are neu-
tral during this iteration.

Since, by the definition of a selection-relevant position i, all frequencies at
positions less than i are set to 1− 1

n
, the critical position for the next iteration

is i, too. Thus, bounding the progress of the selection-relevant position also
bounds the overall progress of the UMDA on LeadingOnes.

We start by showing that each frequency stays in the interval (1
4
, 3

4
) until

its position becomes selection-relevant.

Lemma 3. Consider the UMDA with λ ≥ µ ≥ 64n ln n. Further, for each

position i ∈ [n], let t′
i ∈ N denote the first iteration such that position i is

selection-relevant, and let tsel
i = min{t′

i, n}. Then, with a probability of at

least 1− 2n−1, within the first n iterations, for each position i ∈ [n] and for

each iteration t ≤ tsel
i , it holds that p

(t)
i ∈ (1

4
, 3

4
).

Proof. Consider a position i ∈ [n]. Note that, for all iterations t ≤ tsel
i , the

frequency pi is neutral. By Theorem 4 with d = 1
4
, we see that the probability

that pi leaves the interval (1
4
, 3

4
) within the first tsel

i ≤ n iterations is at most
2e−µ/(32·tsel

i ) ≤ 2e−µ/(32·n) ≤ 2n−2, where we used our lower bound on µ.
Applying a union bound over all n frequencies yields that at least one

frequency leaves the interval (1
4
, 3

4
) within the first n iterations before being

selection-relevant with a probability of at most 2n−1, which concludes the
proof.

We now show that the maximum selection-relevant position is only
roughly log λ

µ
larger than the critical position during each iteration.

Lemma 4. Let δ ∈ (0, 1) be a constant, and let ζ = 3
4
(1 + δ). Consider the

UMDA optimizing LeadingOnes with µ ≥ 61+δ
δ2 ln n and λ ≥ µ ·max{1, 1

ζ
}.

Furthermore, consider an iteration t ∈ N such that position i ∈ [n] is critical

and that, for all positions j > i, we have p
(t)
j ≤

3
4
. Let d = ⌈log4/3(ζ λ

µ
)⌉.

9



Then, with a probability of at least 1− n−2, the maximum selection-relevant

position for iteration t is at most min{n, i + d + 1}.

Proof. Note that d ≥ 0 by our assumption on λ. Similar to the proof of
Lemma 2, we consider the offspring population of λ individuals sampled in
iteration t. Let X denote the number of individuals that have at least i′ :=
min{n, i + d + 1} leading 1s. By assumption, all frequencies at positions
greater than i are at most 3

4
. Thus, E[X] ≤ λ(3

4
)1+d = λ(4

3
)−(1+d) ≤ 3

4
µ
ζ
≤

µ
1+δ

.
We now apply Theorem 2 in order to show that it is unlikely that at

least µ individuals from iteration t have at least i′ leading 1s. Using our
bounds on µ and our estimate on E[X] from above, we compute

Pr[X ≥ µ] ≤ Pr
[

X ≥ (1 + δ)E[X]
]

≤ e−
δ2E[X]

3

≤ e− δ2µ
3(1+δ) ≤ n−2.

Thus, with a probability of at least 1−n−2, fewer than µ individuals have at
least i′ leading 1s. This means that the maximum selection-relevant position
in this iteration is in [i′].

Before we prove our lower bound, we show that the UMDA does not
sample the optimal solution of LeadingOnes with high probability while
the critical position is at least logarithmically far away from the end.

Lemma 5. Consider the UMDA optimizing LeadingOnes with λ ≥ µ.

Further, consider an iteration t ∈ N and a position i ∈ [n] such that, for

all positions j > i, we have p
(t)
j ≤

3
4
. Then, with a probability of at least

1− λ(3
4
)n−i, the UMDA does not sample the optimum in this iteration.

Proof. By our assumption on the frequencies and on i, the probability that
a single individual in the offspring population in iteration t is the all-1s
string (that is, the optimum of LeadingOnes) is at most (3

4
)n−i. Thus, the

probability that none of the λ offspring is optimal is, by Bernoulli’s inequality,

at least
(

1− (3
4
)n−i

)λ
≥ 1− λ(3

4
)n−i, as desired.

We now prove our lower bound.

Proof of Theorem 6. We prove that the UMDA needs, with a probability of
at least 1− 4n−1, more than ⌊n−ξ

d+1
⌋ iterations until it samples the optimum.

Since it performs λ fitness function evaluations each iteration, the theorem
then follows.
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In the following, we assume that all frequencies remain in the interval
(1

4
, 3

4
) for the first n iterations as long as they have never been selection-

relevant. By Lemma 3, this happens with a probability of at least 1− 2n−1.
We now prove by induction on the iteration index t ∈ N that, with a

probability of at least 1− (t + 1)n−2, for each position i > 1 + (t + 1)(d + 1),
we have that position i is not selection-relevant up to iteration t.

For the base case t = 0, note that position i = 1 is critical and that all
frequencies are 1

2
and thus at most 3

4
. By Lemma 4, with a probability of at

least 1−n−2, the maximum selection-relevant position is at most d+2. Thus,
all positions greater than d + 2 are not selection-relevant up to iteration 0.

For the inductive step, we assume that our inductive hypothesis holds
up to iteration t. Note that this means that, with a probability of at least
1− (t + 1)n−2, the maximum selection-relevant index is in [1 + (t + 1)(d + 1)]
and, thus, the critical position for iteration t + 1 is in [1 + (t + 1)(d + 1)].
By Lemma 3, all frequencies at positions greater than 1 + (t + 1)(d + 1)
are thus at most 3

4
.2 Then, in iteration t + 1, again by Lemma 4, with a

probability of at least 1 − n−2, the maximum-selection relevant index is at
most 1 + (t + 1)(d + 1) + d + 1 = 1 + (t + 2)(d + 1). Consequently, via a union
bound on the error probabilities of the inductive hypothesis and the current
iteration t+1, with a probability of at least 1−(t+2)n−2, no position greater
than 1 + (t+ 2)(d + 1) is selection-relevant up to iteration t+ 1, which proves
our claim.

We now assume that n − ξ ≥ 1, as Theorem 6 is trivial otherwise. Our
claim above then yields that, up to iteration t′ := ⌊n−ξ

d+1
⌋−1, with a probability

of at least 1 − n−ξ
d+1

n−2 ≥ 1 − n−1, each position greater than 1 + n − ξ was
never selection-relevant. This means that by Lemma 3, all such frequencies
are at most 3

4
. By Lemma 5 with i = 1 + n− ξ, with a probability of at least

1−λ(3
4
)n−i = 1−λ(3

4
)ξ−1 = 1−n−2, the UMDA does not sample the optimum

of LeadingOnes within a single iteration. Applying a union bound over the
first t′ + 1 ≤ n iterations, with a probability of at least 1− n−1, the UMDA
does not sample the optimum up to iteration t′ (which are t′ + 1 iterations).

Overall, by a union bound over all error probabilities, with a probability
of at least 1 − 4n−1, the UMDA does not sample the optimum within the
first t′ + 1 = ⌊n−ξ

d+1
⌋ iterations, which concludes the proof.

For the sake of completeness, we state the combined result of our upper
and lower bound.

2Note that such frequencies are at most 3

4
with a probability of 1, as we condition on

this event throughout the proof, as stated at the beginning of the proof.
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Corollary 1 (combining Theorems 5 and 6). Let C be a sufficiently large

constant. Consider the UMDA optimizing LeadingOnes with λ ≥ Cµ ≥
128n ln n and with λ being bounded from above by a polynomial in n. With

a probability of at least 1− 9n−1, it samples the optimum after Θ
(

λ n
log(λ/µ)

)

fitness function evaluations.

Proof. From the assumptions of Theorems 5 and 6, we take the stricter ones.
The additive term ⌈ n

n−1
e ln n⌉ in Theorem 5 vanishes in asymptotic notation,

and the term n−ξ in Theorem 6 is Ω(n), due to λ being bounded from above
by a polynomial in ξ. Taking the union bound over the failure probabilities
of both theorems concludes the proof.

5 Conclusion

We improved the best known upper bound for the run time of the UMDA
on LeadingOnes for the case of µ ∈ Ω(n log n) from O(nλ log λ) to
O

(

n λ
log(λ/µ)

)

. This result improves the previous best result both by removing
an unnecessary log λ factor and, not discussed in previous works, by gaining
a log(λ/µ) factor and thus showing an advantage of using a low selection
rate µ/λ. We obtained these results via a different proof method that avoids
the technically demanding level-based method. Our arguments can also be
employed for lower bounds. We did so and provided the first lower bound
for the run time of the UMDA on LeadingOnes. Combined, these results
provide a run time estimate for the UMDA on LeadingOnes that is tight
up to constant factors.

We note that the general proof idea can be extended also to the parameter
regime of µ ∈ o(n log n) for the UMDA. We conjecture that a more general
upper bound of the UMDA (with λ ∈ Ω(log n)) on LeadingOnes is

O



λ
(

n +
n

eµ/n

(

n

λ
+ log min{µ, n}

))



 .

Speaking in terms of iterations and thus ignoring the factor of λ, this expres-
sion can be explained as follows: the first term of n considers O(n) frequencies
that do not drop below constant values. Each of these frequencies is set to
1 − 1

n
within a constant number of iterations with high probability. Since

λ ∈ Ω(log n), frequencies at 1− 1
n

do not drop until the optimum is sampled
with high probability.

The second, more complicated term deals with frequencies that, pes-
simistically, reached the lower border 1

n
. There are O(n/eµ/n) of these fre-

quencies, by the same argument as used in the proof of Lemma 1. The other

12



factor is concerned with the time it takes a critical frequency to be increased
to 1 − 1

n
with high probability. Here, a case distinction needs to be made

with respect to whether µ ≥ n. The inverse of the maximum of µ and n
determines the step size in which a critical frequency can be increased. The
term log min{µ, n} stems from the multiplicative up-drift [DK19] of such a
frequency in order to reach a constant value. Afterward, it is set to 1 − 1

n

within a constant number of iterations (as the first O(n) frequencies). Last,
the term n/λ is only important if λ ∈ o(n) and denotes the waiting time
for a critical frequency to sample at least one 1 with λ tries (given that the
prefix consists of only 1s).

Last, we are positive that our proof technique is applicable to a greater
class of EDAs. In order to transfer the proof of the upper bound to other
univariate EDAs, only Lemmas 1 and 2 need to be adjusted to the specific
algorithm, which should work similarly for other EDAs too. For the lower
bound, Lemmas 3 to 5 need to be changed.
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