
HAL Id: hal-04485601
https://hal.science/hal-04485601v1

Submitted on 4 Apr 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The recovery of ridge functions on the hypercube suffers
from the curse of dimensionality

Benjamin Doerr, Sebastian Mayer

To cite this version:
Benjamin Doerr, Sebastian Mayer. The recovery of ridge functions on the hypercube suffers from
the curse of dimensionality. Journal of Complexity, 2021, 63, pp.101521. �10.1016/j.jco.2020.101521�.
�hal-04485601�

https://hal.science/hal-04485601v1
https://hal.archives-ouvertes.fr

ar
X

iv
:1

90
3.

10
22

3v
1

 [
m

at
h.

N
A

]
 2

5
M

ar
 2

01
9

The recovery of ridge functions on the hypercube

suffers from the curse of dimensionality

Benjamin Doerr∗ Sebastian Mayer†

March 26, 2019

Abstract

A multivariate ridge function is a function of the form f(x) = g(aTx), where g
is univariate and a ∈ R

d. We show that the recovery of an unknown ridge function
defined on the hypercube [−1, 1]d with Lipschitz-regular profile g suffers from the
curse of dimensionality when the recovery error is measured in the L∞-norm,
even if we allow randomized algorithms. If a limited number of components of
a is substantially larger than the others, then the curse of dimensionality is not
present and the problem is weakly tractable provided the profile g is sufficiently
regular.

1 Introduction

In the uniform recovery problem (or L∞-recovery problem), the aim is to compute an

approximation f̂ of an unknown function f : D ⊆ R
d → R such that the approximation

error ‖f − f̂‖∞ is small. The only available information about f is a sequence of sam-
ples f(x1), . . . , f(xn) and that f belongs to some class of functions Fd, which describes
the a priori model assumptions. The sampling points x1, . . . , xn may be freely chosen. A
measure for the difficulty of the recovery problem is the so-called information complex-
ity n(ε, Fd). It is the smallest number n such that there is an algorithm which evaluates

at most n samples and achieves an error ‖f − f̂‖∞ ≤ ε, irrespective of which f ∈ Fd

is presented as input to the algorithm. The general question is what properties of the
function class Fd make the recovery problem efficiently solvable.

For functions depending only on a few variables, regularity has proved to be sufficient
for the existence of efficient algorithms. This is nicely demonstrated by the classic notion
of generalized Lipschitz regularity. For r > 0 and m = ⌈r − 1⌉, consider the following

∗Laboratoire d’Informatique (LIX), École Polytechnique, CS35003, 91120 Palaiseau, France email:
doerr@lix.polytechnique.fr

†Corresponding author, Fraunhofer Center for Machine Learning and Fraunhofer-Institute for Algo-
rithms and Scientific Computing SCAI, Schloss Birlinghoven, 53754 Sankt Augustin, Germany, email:
sebastian.mayer@scai.fraunhofer.de

1

http://arxiv.org/abs/1903.10223v1

class of univariate functions BLip(r) defined on [−1, 1]. Every g ∈ BLip(r) is m-times
continuously differentiable, we have max{‖g‖∞, ‖g(1)‖∞, . . . , ‖g(m)‖∞} ≤ 1, and the m-
th derivative is Hölder continuous with exponent β = r−m. Then, it is well-known that
the worst-case approximation error of the optimal algorithm decays polynomially in the
number of samples,

cr n
−r ≤ err(n,BLip(r)) ≤ Cr n

−r, (1)

with positive constants cr, Cr depending only on r. The optimal algorithm is given by
a spline. Since err(n,BLip(r)) is inverse to the information complexity n(ε, BLip(r)), this
implies n(ε, BLip(r)) ≃ ε−1/r.

Using the same notion of regularity for d-variate functions, the picture changes dra-
matically for large d. Let B

Lip(r)
d be the counterpart1 of BLip(r) for d-variate functions

defined on the cube [−1, 1]d. It is a classical result from approximation theory [3] that

cr,d n
−r/d ≤ err(n,B

Lip(r)
d) ≤ Cr,d n

−r/d,

where cr,d, Cr,d denote positive constants depending on r and d. This shows that the
asymptotic decay of the error is extremely slow in large dimensions and that for small
error thresholds ε, we certainly have n(ε, B

Lip(r)
d) ≃d (1/ε)d/r. That indeed any algorithm

needs exponentially many samples to guarantee a non-trivial error has been shown only
recently by Novak and Woźniakowski [29], who proved that

n(ε, B
Lip(r)
d) ≥ 2⌊d/2⌋

for all ε ∈ (0, 1) and d ∈ N. Hence, this recovery problem is intractable and suffers from
the curse of dimensionality in the strict sense of Information-based Complexity (IBC).

The considerations made so far clearly demonstrate that if we want the uniform
recovery problem to be efficiently solvable in high dimensions, then we need a priori
assumptions stronger than just regularity. In this paper, we study the assumption that
the unknown function is a ridge function

f(x) = g(aTx), with g ∈ BLip(r) and ‖a‖1 ≤ 1. (2)

It is common to call the univariate function g the ridge functions’s profile and to call
the d-dimensional vector a the ridge vector. Like a linear function, a ridge function is
constant along hyperplanes and so we hope that this prior knowledge greatly reduces
the complexity of the recovery problem. This idea is not new. In statistics, models
based on ridge functions have been used since the early 1980s to avoid the typical issues
occurring in nonparametric regression problems over high-dimensional domains. We give
a more detailed overview of research on ridge functions in Section 6. In the context of
the uniform recovery problem, ridge functions have first been studied by Cohen et al. [7].
Additionally to (2), they assumed that

ai ≥ 0, i = 1, . . . , d, (3)

1See, e.g., the monograph [9] for a formal definition.

2

and that, for some 0 < p ≤ 1 and S ∈ {1, . . . , d− 1},

‖a‖p ≤ 1 and ‖a‖1 ≥ min{1, 4S1−1/p}. (4)

Assumption (3) is equivalent to knowing the signs of the ridge vector’s components in
advance. If 0 < p < 1, assumption (4) implies that roughly S components of the ridge
vector have to be substantially larger than the others2. We call this approximate sparsity
and note that it is a stronger condition than compressibility, which only asks for ‖a‖p ≤ 1,
see [13, p. 42]. Given a ridge function f such that (2), (3), and (4) are fulfilled, Cohen
et al. [7] employ spline approximation and compressive sensing techniques [13] to obtain

an approximation f̂ with error bound

‖f − f̂‖∞ . n−r +

(
log(ed/n)

n

)1/p−1

, n < d,

0 , n ≥ d.
(5)

So under the given conditions, the recovery of a multivariate ridge function is polyno-
mially tractable and almost as easy as the univariate problem, see (1).

Assumption (3) is rather restrictive as it does not allow to model situations where
some of the variables x1, . . . , xd may have inhibitory effects but it is not clear which
ones. Hence, we investigate in this paper consequences for the complexity if we drop
assumption (3) and allow ridge vectors with negative entries, that is, we study the
recovery of ridge functions from the class

R
r,(p,S)
d =

{
f : [−1, 1]d → R : f(x) = g(aTx), g ∈ BLip(r), a fulfills (4)

}
, (6)

where r > 0, 0 < p ≤ 1, and S ∈ {1, . . . , d − 1}. Moreover, we allow algorithms to use
randomness, e.g., to use random sampling points. The quantity of interest, for which
we wish to prove lower and upper bounds, is then the nth minimal worst-case error in
the randomized setting,

errran(n,R
r,(p,S)
d) = inf

Sn

sup
f∈R

r,(p,S)
d

(
E[‖f − Sn(f)‖2∞]

)1/2
,

where the infimum is taken over all admissible randomized algorithms using at most n
function evaluations. See Section 2 for a formal definition of the randomized setting.
Note that

errran(n,R
r,(p,S)
d) ≤ err(n,R

r,(p,S)
d).

In turns out that dropping assumption (3) leads to a drastic change in the complexity.
For p = 1, i.e., if ridge vectors are not approximately sparse, we show that

errran(n,R
r,(1,S)
d) & 1

2Strictly speaking, the paper [7] assumes that ‖a‖ = 1 and ‖a‖p ≤ M for some positive constant M .
This is equivalent to assuming (4). The latter formulation is more convenient for our considerations.

3

as long as 1 ≤ n . ed/8, with an equivalence constant in the estimate that depends only

on r. We conclude that the recovery of an unknown ridge function from the class R
r,(1,S)
d

suffers from the curse of dimensionality, even if we allow sampling points to be chosen
adaptively and at random.

When 0 < p < 1, the answer that we can give is not final. We show the upper bound

err(n,R
r,(p,S)
d) ≤ Cr,p,S

1 , 1 ≤ n ≤ d,(
1

log(n)

)r(1/p−1)

, d ≤ n ≤ 2dd1/p−1,

2rd n−r , n ≥ 2dd1/p−1

for r > 1, 0 < p < 1, and S ∈ {1, . . . , d−1}, see Theorem 20. The algorithm establishing
the upper bound is an extension of the algorithm used in [7], which we have augmented by
a search for the most important signs of the ridge vector to compensate for the dropped
assumption (3). Although the extended algorithm reaches asymptotically an error decay
of n−r, it is important to note that we can establish this rate only for exponentially many
sampling points n > 2dd1/p−1. In the preasymptotic range, we can only guarantee an
error decay that is logarithmic in the number of samples. This implies that the recovery
of an unknown ridge function with approximately sparse ridge vector is at least weakly
tractable, provided

r >
1

1/p− 1
.

Unfortunately, it is unclear whether the constructed algorithm is optimal. We are only
able to prove a lower bound for a different function class, namely

Rr,p
d =

{
f : [−1, 1]d → R : f(x) = g(aTx), g ∈ BLip(r), ‖a‖p = 1

}
, (7)

where r > 0, and 0 < p ≤ 1. For this class, we obtain the lower bound

errran(n,Rr,p
d) &

(
1

log(2n)

)1/p−1

,

for r > 0 and 0 < p ≤ 1, provided n . exp(d/8), see Theorem 11. Note that only for
p = 1, we have

Rr,1
d = R

r,(1,S)
d

for all r > 0 and S ∈ {1, . . . , d−1}. Otherwise, the function classes are different so that

it remains an open problem to prove lower bounds for errran(n,R
r,(p,S)
d) when 0 < p < 1.

Outline. The paper is organized as follows. We begin with a thorough definition
of the complexity-theoretical setup in Section 2, where we give a definition what we
consider to be a deterministic and a randomized algorithm. Then, in Section 3, we prove
lower bounds for the worst-case error for both deterministic and randomized algorithms.
Section 4 is dedicated to the description of our algorithm, followed by a detailed error
analysis in Section 5, which leads to upper bounds on the worst-case error. Finally, we
discuss related work in Section 6, in particular, relations to the regression problem in
semiparametric statistics.

4

Acknowledgement. This work was partially developed in the Fraunhofer Cluster of
Excellence “Cognitive Internet Technologies”.

2 Preliminaries

As usual, we denote by N the natural numbers 1, 2, 3, Throughout this paper,
let d ∈ N. For sequences (fn)n∈N, (gn)nn ∈ N, we write fn . gn whenever there is a
constant C > 0 such that fn ≤ Cgn for all n ∈ N. Note that the constant need not be
absolute. Where necessary, we indicate on what parameters the constant depends.

Let us recall some basic notions. For p > 0 and x ∈ R
d, the quasi-norm ‖x‖p is given

by

‖x‖p :=
(d∑

i=1

|xi|p
)1/p

.

For D ⊂ R
d, consider a function f : D → R. The uniform norm ‖f‖∞ is given by

‖f‖∞ := sup
x∈D

|f(x)|.

For any positive number 0 < β ≤ 1, the Hölder constant of order β is given by

|f |β := sup
x,y∈[−1,1]d

x 6=y

|f(x) − f(y)|
2 min{1, ‖x− y‖1}β

. (8)

We say that f is Hölder-continuous of order β if |f |β <∞. This definition immediately
implies the relation

|f |β ≤ |f |β′ if 0 < β < β ′ ≤ 1. (9)

Let C([−1, 1]d) be the space of continuous functions defined on [−1, 1]d, equipped with
the norm ‖ · ‖∞.

2.1 Deterministic algorithms

Understanding the worst-case complexity of the uniform recovery problem for a given
function class Fd means to understand how any possible algorithm performs in the worst-
case on the given class. This requires a rigorous definition of what we consider to be
a feasible algorithm. The field of Information-based Complexity (IBC) provides a well-
established framework that we follow in this work. Let us first consider the deterministic
setting, where algorithms are only allowed to acquire information about a function in
a deterministic, i.e. non-random, fashion. Note that since all ridge functions in the
classes (6) and (7) are continuous, it is sufficient to define the concept of algorithm
with respect to a general function class Fd ⊂ C([−1, 1]d). Moreover, we restrict our
considerations to algorithms that only use function evaluations as information operations

5

and not more general linear functionals. For a general definition of the deterministic
setting, discussions and references, we refer to [28].

A deterministic algorithm using at most n function evaluations is a mapping Sn that
maps a function f ∈ Fd to an approximant Sn(f) ∈ C([−1, 1]d). More specifically, the
approximant is given by

Sn(f) = φ(f(x1), . . . , f(xn)),

where fx1, . . . , xn ∈ [−1, 1]d are sampling points and φ : Rn → C([−1, 1]d). The first
sampling point x1 is completely independent of the input f , while the choice of the
remaining points can be adaptive, that is, xi may functionally depend on the function
values f(x1), . . . , f(xi−1). Formally, this means that there are functions

ψi : R
i−1 → [−1, 1]d, i = 2, . . . , n

that recursively define the sampling points via

xi = ψi(f(x1), . . . , f(xi−1)).

We do not make any computational assumptions, e.g., that the functions φ and ψi de-
scribing the algorithm are efficiently computable in some specific model of computation.
Beside the a priori information that f is in the class Fd, the algorithm Sn has no other
information than the function values f(x1), . . . , f(xn).

It remains to define precisely how we quantify the complexity of the recovery problem
given a function class Fd. Let us first introduce the nth minimal worst-case error

err(n, Fd) := inf
Sn

sup
f∈Fd

‖f − Sn(f)‖∞,

where the infimum is taken over all deterministic algorithms that use at most n function
values. Then, we define the information complexity as the inverse of the minimal worst-
case error,

n(ε, Fd) := min{n ∈ N : err(n, Fd) ≤ ε}, ε > 0.

Remark 1. The information complexity neglects any computational cost. This is jus-
tified as in function recovery problems, the information cost are usually dominating. In
particular, for the algorithm studied in Section 4, the computational cost are propor-
tional to the number of used function samples.

2.2 Randomized algorithms

In this paper, we also wish to study algorithms that use randomness in the choice of
the sampling points x1, . . . , xn and the mapping φ. While there is a clear agreement
in IBC what to consider a deterministic algorithm, the situation is less settled when it
comes to randomized algorithms. The crux are measurability assumptions. We follow
the common approach in IBC and assume just as much measurability as required in our
proofs. As a result, our definition of randomized algorithm will be less general than
in [28], but closely resemble [21].

We first give a precise definition of what we consider to be a sequence of adaptively
chosen random sampling points.

6

Definition 2. Let n ∈ N. A sequence of n adaptively chosen sampling points is a se-
quence of random variablesX1, . . . , Xn defined over a common probability space (Ω,A,P)
that take values in [−1, 1]d and fulfill the following. For every i = 2, . . . , n, there is a
mapping

Li : Ω × R
i−1 → [−1, 1]d

such that, for all ω ∈ Ω,

(x1, . . . , xi−1) 7→ Li(ω, x1, . . . , xi−1)

is Borel measurable and

Xi(ω) = Li(ω, f(X1(ω)), . . . , f(Xi−1(ω))).

Definition 3. A randomized algorithm using at most n information operations is given
by a probability space (Ω,A,P) and a mapping

Sn : Ω × F → C([−1, 1]d)

such that
Sn(ω, f) = φ(ω, f(X1(ω)), . . . , f(Xn(ω))),

where

• φ : Ω × R
n → C([−1, 1]) is measurable in the first argument w.r.t. A and Borel

measurable in the last n arguments,

• X1, . . . , Xn is a sequence of adaptively chosen random sampling points according
to Definition 2.

It remains to define the nth minimal worst-case error in the randomized setting as

errran(n, Fd) := inf
Sn

sup
f∈Fd

(
E[‖f − Sn(f)‖2∞]

)1/2
,

where the infimum is taken over all admissible randomized algorithms using at most n
function evaluations. The information complexity in the randomized setting is given by

nran(ε, Fd) = inf{n ∈ N : errran(n, Fd) ≤ ε}, ε > 0.

2.3 Complexity classes

In IBC research, various complexity classes for continuous problems have been intro-
duced. Let us introduce those that we encounter in this work. A problem is said to
suffer from the curse of dimensionality in the deterministic setting if there are C > 0
and γ > 1 such that

n(ε, Fd) ≥ Cγd

7

holds for all ε > 0 and infinitely many d ∈ N. Furthermore, a problem is said to be
weakly tractable if

lim
ε−1+d→∞

log n(ε, F)

ε−1 + d
= 0.

Finally, a problem is polynomially tractable if there are C, p, q > 0 sucht that for all ε > 0
and all d ∈ N, we have

n(ε, Fd) ≤ C(1/ε)pdq.

The same notions of tractability can be introduced in the randomized setting by replac-
ing n(ε, Fd) by nran(ε, F) in the above definitions. For further levels of tractability, we
refer to [15, 28, 30, 31, 38, 39].

2.4 Approximation of univariate Lipschitz functions

Let r > 0 and a < b. By m = TrU we denote the largest integer strictly less than r. The
Lipschitz space Lipr([a, b]) is given by all univariate functions g : [a, b] → R such that
the Lipschitz norm

‖g‖Lip(r) = max
{
‖g‖∞ , ‖g(1)‖∞, . . . , ‖g(s)‖∞, |g(s)|β

}

is finite, where g(i) is the ith derivative and

|g(m)|β = sup
u,v∈[−1,1]

|g(s)(u) − g(s)(v)|
2 min{1,|u− v|}β , β = r −m ∈ (0, 1] (10)

theHölder constant. By BLip(r) we denote the closed unit ball of Lipr([−1, 1]).
We recapitulate some basic facts of univariate spline approximation, see [9, Chap.

12] for further background. For r0, n ∈ N and h = 1/n, let Ph be the space of piece-
wise polynomials of degree r0 − 1 over equidistant intervals, determined by the points
ih, i ∈ {±1, . . . ,±n}, such that on each of these interval the piecewise polynomials
have continuous derivatives of order r0 − 2. A quasi-interpolant Qh with step-size h is
a linear operator mapping from the continuous functions on [−1, 1] to Ph such that the
application of Qh uses only the function values at the points

ih, i ∈ {±1, . . . ,±n}.

The resulting spline has the following approximation properties.

Lemma 4. For 0 < r ≤ r0 and g ∈ BLip(r) it holds that

‖g −Qhg‖L∞

≤ crh
r (11)

with a constant cr depending only on r, and

‖Qhg‖L∞

≤ cr max
i∈{±1,...,±ng}

∣∣g(ih)
∣∣ , (12)

with again a constant cr depending only on r.

8

We also need extrapolation in our error analysis. That is, we need error estimates for
points outside the interval that has been sampled. Although Lemma 4 does not directly
apply then, the reader familiar with spline approximation knows that Qhg can also be
used for extrapolation and that properties similar to (11) and (12) hold true. However,
we could not find an explicit statement suitable for our needs in the literature. Hence,
let us collect what we need later on in Section 5 in terms of Taylor polynomials.

Given reals a < b, let g ∈ Lipr([a, b]) and consider the Taylor polynomial

Tm,t0g(t) = g(t0) +
m∑

i=1

g(i)(t0)

i!
(t− t0)

i,

where m = TrU. Let β = r −m. For any t0, t1 ∈ [a, b], the standard error estimate for
Taylor polynomials gives

|g(t1) − Tm,t0g(t1)| ≤
2

m!
|g(m)|β(t1 − t0)

r, (13)

which is the required counterpart of (11).
As a counterpart to (12), we need that if the approximations of the derivatives g(i)

are small in absolute value for all i = 1, . . . , m, then the polynomial |Tm,t0g(·) − g(t0)|
has to be small in a neighborhood of t0. To prove this, we have to consider divided
differences. For m ∈ N, the mth difference with stepsize h ∈ R in the point t ∈ R of a
univariate function g : R → R is defined as

∆m
h (g, t) :=

m∑

j=0

(
m

j

)
(−1)m−jg(t+ jh).

The mth divided difference is given by Dm
h (g, t) := h−m∆m

h (g, t). For our purposes, it is
convenient to work with the representation

Dm
h (g, t) = h−m+1

m−1∑

j=0

(
m− 1

j

)
(−1)m−1−jD1

h(g, t+ jh), (14)

which easily follows from the definition of ∆m
h (g, t). If g is m times continuously differ-

entiable, then an iterative application of the mean value theorem of calculus gives

Dm
h (g, t) = g(m)(t + ξ), for some ξ ∈ [t, t +mh]. (15)

Lemma 5 (Counterpart of (12) for extrapolation). Let g ∈ BLipr([a,b]) for r > 1 and m =
TrU. If, for some t0 ∈ [a, b] and h > 0, we have

∣∣∣Di
−h(g, t0)

∣∣∣ ≤ 2i−1hr−i+1 for i = 1, . . . , m,

then
g(i)(t0) ≤ Cih

r−i for i = 1, . . . , m,

with constants Ci ≤ 2mm!. Consequently, for any t1 ∈ [a, b],

|Tm,t0g(t1) − g(t0)| ≤ 2mm! max{h, |t1 − t0|}r.
Proof. See Appendix A.

9

3 Lower bounds

The subject of this section is to prove strong worst-case error bounds from below for the
classes of ridge functions Rr,p

d in the deterministic and randomized setting. We establish
the lower bounds by constructing suitable “fooling” ridge functions, which force any
sampling algorithm to produce a large error. The general idea thereby is as follows.
Suppose we find a ridge vector a such that for all n sampling points x1, . . . , xn ∈ [−1, 1]d

the inner products fulfill aTxi < λ/2. Then the algorithm cannot distinguish any profile
in BLip(r) which is supported only on [λ/2, 1] from the the profile that is constantly zero.
A good fooling profile in this respect is the truncated power

gr,λ(t) = max{0, t− λ/2}r. (16)

3.1 A lower bound in the deterministic setting

Instead of an explicit construction of fooling ridge vectors, we will derive their existence
employing a standard method known in discrete mathematics as Erdős’s probabilistic
method [11]. We define a suitable finite subset of the possible ridge vectors and show that
a random one of them satisfies our needs with positive probability. This, in particular,
implies the existence of such a ridge vector. To control probabilities, we need a standard
concentration inequality, which is known as Hoeffding’s inequality. For a proof, see,
e.g., [13].

Lemma 6. Let Z1, . . . , Zm be a sequence of independent random variables with expecta-
tion E[Xi] = 0 and |Xi| ≤ Bi almost surely for i ∈ {1, . . . , m}. Then, for all t > 0,

P

m∑

i=1

Xi ≥ t

 ≤ exp

(
− t2

2
∑m

i=1Bi

)
.

Using Hoeffding’s inequality, we can prove the following lemma, which is the core ingre-
dient of the probabilistic construction.

Lemma 7. Let 0 < p ≤ 1, s ∈ {1, . . . , d}, and n ∈ N such that n < es/8. Consider
points z1, . . . , zn ∈ [−1, 1]d. Then there exists an a ∈ R

d with ‖a‖p = 1 such that

aTzi < ‖a‖1/2 = s1−1/p/2 for i = 1, . . . , n.

Proof. Let (ai)i=1,...,s be a sequence of i.i.d. random variables such that

P(ai = 1/s1/p) = P(ai = −1/s1/p) = 1/2.

By a we denote the d-dimensional random vector given by

a = (a1, . . . , as, 0, . . . , 0).

10

Note that ‖a‖p = 1 with probability one. For fixed zi, we have

a
Tzi =

s∑

j=1

Zj,

where Zj = ajz
i
j . The random variables Z1, . . . , Zs are independent, each taking values

in [−1/s1/p, 1/s1/p]. Since E[Zj] = 0 for all j ∈ [s], we obtain by Lemma 6 that

P(aTzi ≥ s1−1/p/2) ≤ e−s/8.

Taking a union bound, we obtain

P

n⋂

i=1

{aTzi < s1−1/p/2}

 ≥ 1 − n e−s/8.

The right hand side of the previous inequality is strictly positive if n < es/8. Thus, for
any n < es/8 there exists a realization a of a such that

aTzi < s1−1/p/2

for all 1 ≤ i ≤ n. By construction of a we have ‖a‖p = 1.

Given points x1, . . . , xn ∈ [−1, 1]d, Lemma 7 guarantees the existence of an s-
sparse a ∈ Sd−1

p such that all inner products aTx1, . . . , a
Txn are small. To derive a

lower bound for the worst-case recovery error from this finding, we have to take into
account that the sampling points are not fixed beforehand as in Lemma 7, but may be
chosen adaptively by the algorithm given the current input. This is possible and leads
to the following lower bound.

Theorem 8. Let r > 0 and 0 < p ≤ 1. Consider the class of ridge functions Rr,p
d defined

in (7). For any n ∈ N with n < ed/8 we have

err(n,Rr,p
d), L∞) ≥ cr

(
1

8 log(2n)

)r(1/p−1)

,

where cr = 2−r Γ(r+1−s)
Γ(r+1)

and s = VrW. Here, Γ denotes the gamma function given by

Γ(z) =

∫ ∞

0

xz−1e−xdx

for z > 0. Note that we have cr = 2−r/r! for r ∈ N.

Proof. Let Sn be an arbitrary deterministic, adaptive algorithm having a budget of n
sampling points. Further, we denote by z1, . . . , zn ∈ [−1, 1]d those sampling points which

11

are successively used by Sn if the input is the zero function. Choose s ∈ {1, . . . , d} to
be the smallest s such that

es/8/2 ≤ n < es/8

and let a∗ ∈ R
d be given by Lemma 7 depending on the points z1, . . . , zn. Set λ = ‖a∗‖1

and put g∗(t) = gλ(t)/‖gλ‖Lip(r), where gλ is defined in (16). The normalization assures
that for the ridge function f ∗(x) = g∗(a∗Tx) we have ±f ∗ ∈ Rr,p

d .
Let x1, . . . , xn ∈ [−1, 1]d be the sampling points successively chosen by Sn if the input

is the ridge function f ∗. Since Sn is deterministic, we necessarily have x1 = z1. We also
have f ∗(x1) = 0 by construction. It follows inductively that xi = zi and f ∗(xi) = 0 for
all i = 1, . . . , n. Consequently, we have Sn(f ∗) = Sn(−f ∗) = Sn(0) and

sup
h∈Rr,p

d

∥∥h− Sn(h)
∥∥
∞

≥ max
{∥∥f ∗ − Sn(f ∗)

∥∥
∞
,
∥∥f ∗ + Sn(−f ∗)

∥∥
∞

}

≥‖f ∗‖∞ =‖gλ‖−1
Lip(r) sup

t∈[−‖a∗‖1,‖a
∗‖1]

∣∣gλ(t)
∣∣

=
2−r

‖gλ‖Lip(r)
‖a∗‖r1.

Standard calculations show that cr := 2−r Γ(r+1−s)
Γ(r+1)

≤ 2−r/‖gλ‖Lip(r) with cr independent

of λ. Moreover, ‖a∗‖1 = s1−1/p ≥ (8 log(2n))1−1/p. Since Sn was arbitrary the desired
lower bound follows.

The lower bound allows us to draw an immediate conclusion on the tractability of the
uniform recovery problem.

Corollary 9. Let S ∈ {1, . . . , d} and r > 0. The L∞-recovery of ridge functions from

the class Rr,1
d or the class R

r,(1,S)
d using deterministic sampling algorithms suffers from

the curse of dimensionality.

Proof. Since
Rr,1

d = R
r,(1,S)
d ,

the result is an immediate consequence of Theorem 8 and the definition of the curse of
dimensionality.

3.2 A lower bound for randomized algorithms

The probabilistic constructed described in the previous section can be generalized to
work in the randomized setting, as well. We begin with the counterpart to Lemma 7.

Lemma 10. Let 0 < p ≤ 1 and 0 < δ < 1. For n ∈ N such that n < (1 − δ)ed/8,
let Z1, . . . , Zn be random vectors defined on a common probability space (Ω,A,P) that
take values in [−1, 1]d. Then, for any s ∈ {1, . . . , d} that fulfills n < (1 − δ)es/8, there
exists an s-sparse vector a ∈ R

d such that

‖a‖p = 1, ‖a‖1 = s1−1/p,

12

and

P
(n⋂

i=1

{aTZ i < ‖a‖1/2}
)
> δ.

Proof. Let λ = s1−1/p, Ω′ = {−s−1/p, s−1/p}s × {0}d−s and let P
′ denote the uniform

distribution on Ω′. The projections

ai : Ω′ ∋ a 7→ ai, i = 1, . . . , s,

form a sequence of i.i.d. random variables with

P
′(ai = −s−1/p) = P

′(ai = s−1/p) = 1/2.

For the d-dimensional random vector a = (a1, . . . , as, 0, . . . , 0) (which is the identity
on Ω′), Hoeffding’s inequality yields, for all ω ∈ Ω, that

P
′(aTZ i(ω) ≥ λ/2) ≤ e−s/8.

By Fubini’s theorem, the same estimate holds true with respect to the product proba-
bility measure P̃ = P⊗ P

′. Namely, for the event

Ω̃i := {(ω, a) ∈ Ω × Ω′ | aTXi(ω) ≥ λ/2},

we have

P̃(Ω̃i) =

∫

Ω

P
′(aTZ i(ω) ≥ λ/2)P(dω) ≤ e−s/8.

With the convention Ω̃0 = Ω × Ω′, we can derive from the above estimate that

P̃
(n⋂

i=1

Ω̃c
i

)
= 1 −

n∑

i=1

P̃
(
Ω̃i ∩

i−1⋂

j=0

Ω̃c
j

)

≥ 1 −
n∑

i=1

P̃
(
Ω̃i

)
≥ 1 − ne−s/8 > δ,

where the last estimate is due to the choice of s. Applying Fubini’s theorem once again
and noting that λ = ‖a‖1 for all a ∈ Ω′, we obtain

max
a∈Ω′

P
(n⋂

i=1

{aTZ i < ‖a‖1/2}
)
≥ |Ω′|−1

∑

a∈Ω′

P
(n⋂

i=1

{aTZ i < ‖a‖1/2}
)

= P̃
(n⋂

i=1

Ω̃c
i

)
.

Hence, we have

max
a∈Ω′

P
(n⋂

i=1

{aTZ i < ‖a‖1/2}
)
> δ,

which guarantees the existence of some a ∈ Ω′ which has the desired properties.

13

We come to the main result of this section, a counterpart to Theorem 8 for the
randomized setting. Up to this point, we have only considered finite probability spaces
such that measurability was not an issue. This is different now that we are considering
algorithms that employ random functions.

Theorem 11. Let r > 0, 0 < p ≤ 1, and 0 < δ ≤ 1. For any n ∈ N with n+ 1 < ed/8/2
we have

errran(n,Rr,p
d ([−1, 1]d), L∞) ≥ c′r

(
1

8 log(4(n+ 1))

)r(1/p−1)

,

with a constant c′r depending only on the smoothness parameter r.

Proof. Let δ = 1/2. For s ∈ {1, . . . , d} being the smallest integer such that

0.5(1 − δ)es/8 ≤ n + 1 < (1 − δ)es/8,

let
Ω′ := {−1/s1/p, 1/s1/p}s × {0}d−s.

Further, we define a ridge function

fa(x) = gλ(aTx)/‖gλ‖Lip(r)
for each a ∈ Ω′, where λ = ‖a‖1 = s1−1/p and gλ as defined in (16). Note that ‖fa‖∞ = ε0
for all a ∈ Ω′, where ε0 = 2−r‖a‖r1/‖gλ‖Lip(r).

Let (Ω,A,P) be the probability space and let Sn be a randomized sampling algorithm
according to Definition 3. That is, the algorithm is given by

Sn(f) = φ(f(X1), . . . , f(Xn)),

where X1, . . . , Xn are adaptively chosen, [−1, 1]d-valued random variables according to
Definition 2 and φ is a Borel measurable random function taking values in the space of
all mappings R

n → C([−1, 1]d). We show in the following that there is at least one fa
such that

‖fa − Sn(fa)‖L∞
≥ ε0/2

with probability at least δ. We first consider the situation that the algorithm has ob-
served only the function value 0, i.e., the event

Ωn,a :=

n⋂

i=1

{ω ∈ Ω | fa(Xi(ω)) = 0}

has occurred. By φ0 we denote the random function used by Sn if

f(X1) = · · · = f(Xn) = 0,

i.e., φ0(ω) = φ(ω)(0, . . . , 0), ω ∈ Ω. Assuming w.l.o.g. that Ω′ is ordered, we define
the d-dimensional random vector A0 by

A0(ω) =

{
min{a ∈ Ω′ | ‖fa − φ0(ω)‖L∞

≤ ε0/2}, if the minimum exists,

0, otherwise.

14

For any a ∈ Ω′, consider the event Ωa := {ω ∈ Ω : aTV (ω) < λ/2}, where V :=
sgnA0. Conditionally on Ωa we have ‖fa − φ0‖ ≥ ε0/2. Namely, for those ω ∈ Ωa such
that A0(ω) = 0, there is nothing to prove. Otherwise, on Ωa \ {A0 = 0}, we have

‖fa − fA0‖L∞
≥ |fa(V) − fA0(V)| = |fA0(V)| = ε0,

and thus,
‖fa − φ0‖L∞

≥ ‖fa − fA0‖L∞
− ‖fA0 − φ0‖L∞

≥ ε0/2.

The considerations made so far show that

P(‖fa − Sn(fa)‖L∞
≥ ε0/2) ≥ P({‖fa − Sn(fa)‖L∞

≥ ε0/2} ∩ Ωn,a ∩ Ωa)

= P(Ωn,a ∩ Ωa)

for any a ∈ Ω′. Hence, what remains is to show that P(Ωn,a ∩ Ωa) > δ for some a ∈ Ω′.
To this end, consider the sequence of random sampling points Z1, . . . , Zn which the
algorithm Sn uses in case that the input function is identical to zero. Obviously, we
have X1(ω) = Z1(ω). Furthermore, if f(X1(ω)) = · · · = f(Xj−1(ω)) = 0 for some j ≥ 2,
then, it follows by induction that Xj(ω) = Zj(ω). Consequently, for any a ∈ Ω′,

Ωn,a =

n⋂

i=1

{fa(Z i) = 0} =

n⋂

i=1

{a · Z i < λ/2},

where the last equality obviously follows from the definition of fa. Since the random
variables Z1, . . . , Zn and V are completely independent of a and take values in [−1, 1]d,
we may apply Lemma 10 with Zn+1 = V to obtain P(Ωn,a∗ ∩ Ωa∗) > δ for some a∗ ∈ Ω′.

Now estimate

E[‖fa∗ − Sn(fa∗)‖2L∞
]1/2 ≥

√
P(‖fa − Sn(fa)‖L∞

≥ ε0/2)ε0/2 ≥ 2−3/2ε0.

and since Sn is arbitrary we conclude that

errran(n,Rr,p
d) ≥ 2−3/2ε0

≥ c′rs
r(1−1/p)

= c′r

(
1

8 log(4(n+ 1))

)r(1/p−1)

,

where c′r = 2−3/2cr and cr is the constant given in Theorem 8.

4 An algorithm for ridge functions on the cube

For r > 1, 0 < p ≤ 1, and S ∈ {1, . . . , d−1}, consider the class of ridge functions R
r,(p,S)
d

defined in (6). If p = 1, we know by Corollary 9 that the recovery of an unknown ridge
function suffers from the curse of dimensionality. On the other side, if we additionally

15

know in advance the signs of the unknown ridge vector, then the problem is polynomially
tractable, which follows from (5). So the question that remains is how hard is it to recover
an unknown ridge function if the ridge vector is approximately sparse in the sense of (4)
but we do not know its signs in advance.

In this section, we design an algorithm that tries to exploit this a priori knowledge by
finding the signs of the largest components of the unknown ridge vector. This algorithm
extends the adaptive algorithm developed in [7, Section 3]. The error analysis will be
done in Section 5, where we also discuss consequences for the tractability of the recovery
problem.

4.1 Recap: recovery given the signs of the ridge vector

To better understand our idea how to compensate for dropping assumption (3) it is
instructive to recapitulate the basic ingredients of the adaptive algorithm described
in [7, Section 3]. Let f be a ridge function given by f(x) = g(aTx) with unknown
profile g ∈ BLip(r) and unknown ridge vector a such that ‖a‖ ≤ 1 and the signs

sgn(a) = (sgn(a1), . . . , sgn(ad))

are given to us in advance. First note that g and a are not uniquely determined since

f(x) = g(aTx) = gsgn(a)(ā
Tx),

where ā = a/‖a‖1 and

gsgn(a) : [−1, 1] → R, t 7→ f(t sgn(a)) = g(t‖a‖1).

Since maxx∈[−1,1]d |a ·x| = a ·sgn(a) = ‖a‖1, only g restricted to [−‖a‖1, ‖a‖1] contributes
to f and thus gsgn(a) comprises all relevant information about g. As we know the sign
vector sgn(a), we can access gsgn(a)(t) via f(t sgn(a)) for any t ∈ [−1, 1]. Hence, we can
use univariate splines to first approximate gsgn(a).

To approximate the ridge direction ā, we first search the interval [−1, 1] for a point t∗

such that |g′sgn(a)(t∗)| is sufficiently large. Then, we consider the vector x∗ = t∗ sgn(a)
and use first-order differences to approximate

∇f(x∗) = g′(‖a‖1t∗) a = g′sgn(a)(t
∗) ā

and exploit ∇f(x∗)/‖∇f(x∗)‖1 = ā. If there is no t∗ such that g′sgn(a)(ā
Tx∗) is sufficiently

large, then gsgn(a) must be approximately constant and we can approximate f by a
constant function.

4.2 The algorithm

Not knowing sgn(a) in advance, it is still possible to select some v ∈ {−1, 1}d and search
the univariate function

gv : [−1, 1] → R, t 7→ f(tv) = g(t aTv), (17)

16

for a point t∗ such that g′v(t
∗) is sufficiently large, i.e., g′v(t

∗) > n−r
g . If such a point

is found, then one can proceed very similar as in [7]. The crucial difference comes to
light when we do not find t∗. The function gv is the rescaled restriction of the profile g
to the interval [−|a · v|, |a · v|]. If v 6= sgn(a), then |a · v| < ‖a‖1 and there is a
relevant part of g which we cannot observe. Consequently, not finding t∗ does not imply
that gsgn(a) is constant within the approximation accuracy. If we manage to control the
difference |‖a‖1 − a · v|, however, then the regularity of g guarantees that gsgn(a) cannot
be too different from gv.

The key to find a v such that |a · v| is close to ‖a‖1 is the approximate sparsity of a.
We argue that it suffices that v agrees with sgn(a) on the s most relevant components
of a. To make this latter point precise, let

Is,a ⊆ {1, . . . , d}

be the set of indices of the s in absolute value largest components of a (breaking ties
arbitrarily). In Lemma 16, we prove that for every vertex v from the set

HITs,a :=
{
v ∈ {−1, 1}d : vi = sgn(ai) for i ∈ Is,a

}
. (18)

the difference is at most
|‖a‖1 − a · v| ≤ 2s1−1/p.

How can we find a vector that is in the set HITs,a? We sketch in the following how
to construct a vertex set V such that while iterating over V, we are guaranteed to find
an element from HITs,a, see Section 5 for details. It is relatively easy to establish an
absolute guarantee using basic combinatorics. However, if we content ourself with finding
a suitable vertex with high probability, then a vertex set V of much smaller cardinality
will suffice. Assume that we simply draw v uniformly at random from {−1, 1}d. The
event

{v ∈ HITs,a}
then says that we have guessed the s most important signs of a correctly. Since a ran-
dom v is in HITs,a with probability 2−s, we can ensure that the event {v ∈ HITs,a} occurs
at least once with probability 1−(1−2−s)nv by taking a large enough number nv of i.i.d.
samples. It remains to choose s appropriately with regard to the desired approximation
error. By a union bound argument, this construction can be derandomized. With high
probability, we construct a set of vertices Vdet ⊆ {−1, 1}d with

|Vdet| ≤ 2ss log2(2d/s)

such that for all a ∈ R
d with ‖a‖p ≤ 1 there is v ∈ Vdet ∩ HITs,a.

The considerations made so far lead to the following procedure to recover an unknown
ridge function f from the class R

r,(p,S)
d , which has three parameters:

• a vertex set V ⊂ {−1, 1}d that determines in which orthants we search for a large
derivative of the ridge functions’s profile;

17

• the number of sampling points ng ∈ N spent for every approximation of the profile;

• the number of refinement steps nb ∈ N used to narrow down the interval where
the profile has a large derivative.

Step 1: Until a stopping criterion is met, do the following for every v ∈ V. Compute
the samples f(jhv) where h = 1/ng and j ∈ {0,±1, . . . ,±ng}. Let

Lv = max
−ng≤j<ng

∣∣f((j + 1)hv) − f(jhv)
∣∣

h
. (19)

If

Lv > n−r
g , (20)

then go to Step 2. If ultimately

max
v∈V

Lv ≤ n−r
g , (21)

then let

fmax := max
v∈V ;j=0,±1,...,±ng

f(xv,j), (22)

fmin := min
v∈V ;j=0,±1,...,±ng

f(xv,j). (23)

and return f̂ = 1/2(fmin + fmax).

Step 2: Let [t0, t1] be the interval for which the maximum Lv in Step 1 is attained.
Using bisection as in [7], refine this interval to an interval [tmid− δ, tmid + δ] with interval
length 2δ = h/2nb such that

2
|f((tmid + δ)v) − f((tmid − δ)v)|

δ
> n−r

g .

Step 3: Let z0 = (tmid − δ)v, z1 = (tmid + δ)v, x0 = tmidv, and

xi = tmidv + δei, i = 1, . . . , d,

where e1, . . . , ed are the canonical unit vectors. Compute the vector ã with components

ãi = 2
f(xi) − f(x0)

f(z1) − f(z0)
. (24)

Set â = ã/‖ã‖. This is our approximation of the ridge direction ā.

18

Step 4: Let h = n−1
g . Evaluate f at the points jh sgn(â), where j ∈ {0,±1, . . . ,±ng},

which yields the samples gsgn(â)(jh). Use these to compute the quasi-interpolant

ĝ = Qhgsgn(â),

which is our approximation of the profile.

Step 5: Return the final approximation f̂ which is given by f̂(x) = ĝ(âTx).

We clarify the choice of the parameters in Section 5. Note that Step 1 is the crucial
part where our algorithm differs essentially from the original algorithm studied in [7].
Step 2 corresponds to QSTEP2 in [7], Steps 3 and 4 basically combine QSTEP3 and
RSTEP2 in [7].

Remark 12. As in [7], we could in principle refine the scheme by techniques from com-
pressed sensing to further exploit the approximate sparsity of the ridge vector. However,
our subsequent analysis shows that for a ridge function f ∈ Rr,(p,S)([−1, 1]), the over-
whelming fraction of function samples is spent for Step 1 so that sparse recovery methods
have no effects in this setting in terms of tractability.

5 Error analysis

The analysis of the algorithm described in Section 4.2 is rather lengthy and technical.
Basically, we have to distinguish two scenarios:

(A) Step 1 finds an interval of large deviation, i.e, Eq. (20) is fulfilled;

(B) Step 1 does not find such an interval, i.e., Eq. (21) holds true.

This case distinction is analogous to the proof of [7, Thm. 3.2]. In particular, if Sce-
nario (A) occurs, then the error analysis differs from [7] only at some minor technical
details. The crucial difference comes to light when Scenario (B) occurs. Then, the error
analysis is much more involved than in the proof of [7, Thm. 3.2] since we are not guar-
anteed to have sampled the complete relevant part of the profile. As we have already
sketched in the previous section, choosing the vertex set V appropriately is crucial in
Scenario (B).

5.1 Error analysis for Scenario (A)

Since the error analysis is analogous to [7, Thm. 3.2], we present only the results in
this section. The interested reader will find the proofs in Section A in the appendix.
We begin with analyzing the recovery of the ridge direction ā = a/‖a‖1 in Step 3. Note
that in Scenario (A) the distinction between approximate sparsity and compressibility
is irrelevant.

19

Lemma 13 (Error analysis for Step 3). For r > 1 and 0 < p ≤ 1, let f be a rige
function given by f(x) = g(aTx) with g ∈ BLip(r) and ‖a‖p ≤ 1. Set ρ = min{r − 1, 1}.
Given ng ∈ N and ε > 0, choose

nb := ⌈ρ−1 log2(4n
r−ρ
g (3 + ε)ε−1)⌉ (25)

for the bisection performed in Step 2. Let v ∈ {−1, 1}d such that (20) holds true. Then,
for the approximation â computed by Step 3, we have

‖ sgn(aTv)â− a/‖a‖1‖1 ≤ ε/3.

Next, we combine the previous lemma with an error analysis for Step 4, which recovers
the profile gsgn(â). This leads to the following recovery guarantee for any ridge function
with profile in BLip(r) and ridge vector a such that ‖a‖p ≤ 1 for given 0 < p ≤ 1. This
completes the analysis of Scenario (A).

Theorem 14. For r > 1 and 0 < p ≤ 1, let f be as in Lemma 13. Given ε > 0, choose

ng := ⌈(10 cr/ε)
1/r⌉, (26)

and nb as in (25). Let v ∈ {−1, 1}d such that (20) holds true. Let f̂ be the ridge function

given by f̂(x) = ĝ(âTx), where â is computed in Step 3 and ĝ is computed in Step 4.
Then, we have

‖f − f̂‖∞ ≤ ε.

5.2 Error analysis for Scenario (B)

In this section, we show that Scenario (B) implies that the unknown ridge function f
can be approximated sufficiently well by a constant function, provided the set V has
certain properties. We start with a simple observation.

Lemma 15. Let ng ∈ N, v ∈ {−1, 1}d, and f ∈ R
r,(p,S)
d . For the given ridge function f ,

consider the function gv as defined in (17). Put

f v
max := max

i∈{0,±1,...,±ng}
gv(ih), f v

min := min
i∈{0,±1,...,±ng}

gv(ih),

and f v := (f v
min + f v

max)/2. If Lv ≤ n−r
g , where Lv is defined by (19), then there is a

constant cr > 0 such that
‖gv − f v‖∞ ≤ 2crn

−r
g ,

Proof. The proof is analogous to [7, Proof of Thm. 3.2]). First note that

|gv(ti) − f v| ≤ L ≤ hr

for all i ∈ {0,±1, . . . ,±ng}, where h = n−1
g . Moreover, by properties (11) and (12) from

Lemma 4 we obtain

‖gv − f v‖∞ ≤ ‖gv − f v +Qh(gv − f v)‖∞ + ‖Qh(gv − f v)‖∞

≤ cr

(
‖g‖Lip(r)hr + max

i∈{0,±1,...,±ng}
|gv(ti) − f v|

)
≤ 2crh

r.

20

Lemma 15 implies that for every v ∈ V, the profile segment given by gv is approximately
constant. We have to clarify now when this implies that gsgn(a) is approximately constant,
as well. A first step is to control the difference ‖a‖1 − |aTv|.

Lemma 16. Let 0 < p < 1 and a ∈ R
d with ‖a‖p ≤ 1. For s ∈ {1, . . . , d− 1}, consider

the set HITs,a defined in (18). For all v ∈ HITs,a, we have

0 ≤ ‖a‖1 − |aTv| ≤ 2s1−1/p.

If v ∈ HITd,a, then obviously ‖a‖1 = |a · v|.

Proof. Let π : {1, . . . , d} → {1, . . . , d} denote a permutation which determines the non-
increasing rearrangement, say a∗, of a. This means we have

a∗ = (aπ(1), . . . , aπ(d)) and aπ(1) ≥ · · · ≥ aπ(d).

Put ṽ = sgn(aTv)v. By definition of the set HITr,a, see (18), and the fact that σs(a) =∑d
i=s+1|a∗i |, we have

|aTv| = aT ṽ =
s∑

i=1

|a∗i | +
d∑

i=s+1

a∗i ṽπ(i) =‖a‖1 − σs(a) +
d∑

i=s+1

a∗i ṽπ(i).

Hence

0 ≤ ‖a‖1 − |a · v| =

s∑

i=1

a∗i (sgn(a∗i) − ṽπ(i)) ≤ 2σs(a),

where
σs(a) := inf{‖a− z‖1 : z ∈ R

d is s-sparse}
is the error of the best s-term approximation. The claim now follows from the well-known
estimate σs(a) ≤ s1−1/p which holds for all a with ‖a‖p ≤ 1, see [13, Prop. 2.3].

In the course of the proof of the following theorem, it will become clear that, in order
to control the error ‖gsgn(a) − gv‖∞, we have to bound the quotient

|‖a‖1 − aTv|
|aTv|

from above. Hence, we need a lower bound on |aTv|. This is the reason why we have
to require that the unknown ridge vector a is not only compressible, but approximately
sparse. Consequently, we have to assume that the unknown ridge function f is from the
class R

r,(p,S)
d , where r > 1, 0 < p < 1 and S ∈ N with S < d. Then, we obtain the

following result, which is the centerpiece of the analysis of Scenario (B).

21

Theorem 17. For r > 1, 0 < p < 1, and S < d, let f ∈ R
r,(p,S)
d with f(x) = g(aTx).

Given ng ∈ N and V ⊆ {−1, 1}d, assume that (21) is true and let s be the largest
integer s ∈ {S, . . . , d} such that

V ∩ HITs,a 6= ∅.

Define

f̂(x) =
fmin + fmax

2
, x ∈ [−1, 1]d,

where fmax and fmin are given by (22) and (23). Let cr be the constant appearing in
Lemma 4 and c̃r = (2 + 4cr + 2TrUTrU!). If s < d, then

‖f − f̂‖∞ ≤ c̃r max{(s/S)1−1/p, n−1
g }r,

whereas if s = d, then
‖f − f̂‖∞ ≤ 4crn

−r
g .

Proof. Let v ∈ V be one of the vectors for which the scalar product with a is maximized,
i.e.,

v := arg max
v′∈V

|aTv′|.

W.l.o.g. we may assume sgn(aTv) = 1 (since otherwise we can simply replace v by −v
in the following arguments).

Let
f v
max := max

i∈{0,±1,...,±ng}
gv(ti), f v

min := min
i∈{0,±1,...,±ng}

gv(ti),

and f v := (f v
min + f v

max)/2. By Lemma 15, we have that gv is approximately constant,

‖gv − f v‖∞ ≤ 2crh
r. (27)

Next we show that the constant f v is close to the constant f̂ . According to the
choice of v, observe that there are indices i1, i2 ∈ {−ng + 1, . . . , ng} and ξ1 ∈ [ti1−1, ti1],
ξ2 ∈ [ti2−1, ti2] such that

gv(ξ1) = fmin, gv(ξ2) = fmax.

Hence, by (27),

‖f̂ − f v‖∞ ≤ 1/2|gv(ξ1) − f v| + 1/2|gv(ξ2) − f v| ≤ 2crh
r.

If s = d, then v ∈ HITd,a and gsgn(a) = gv such that the statement follows.
Otherwise, if S < s < d, then we have to control

‖gsgn(a) − f̂‖ = ‖gv(‖a‖1/|aTv|·) − f̂‖,

with gv now considered as a function on [−1/|aTv|, 1/|aTv|]. For

|t|‖a‖1/|aTv| ≤ 1,

22

we are in the interval which we have sampled, and thus as before,

|gsgn(a)(t) − f̂ | ≤ 4crh
r.

The crucial case is |t|‖a‖1/|aTv| > 1. Now we have to extrapolate. Henceforth as-
sume t > 0 and put t1 = t‖a‖1/|aTv| (the arguments for t < 0 are completely analogous).
For m = TrU, let Tm,1gv be the order-m Taylor expansion of gv in the point 1. By the
triangle inequality, we have

|gv(t1) − f̂ | ≤ |gv(t1) − Tm,1gv(t1)| + |Tm,1gv(t1) − gv(1)| + |gv(1) − f̂ |.

By (13), we have
|gv(t1) − Tk,1gv(t1)| ≤ 2|t1 − 1|r.

Furthermore, since (21) holds true, we can compute from the representation formula (14)
that the divided difference

|Di
−h(gv, 1)| ≤ 2i−1hr−i+1

for all i = 1, . . . , s. Thus, by Lemma 5,

|Tk,1gv(t1) − gv(1)| ≤ 2kk! max{h, |t1 − 1|}r.

It remains to estimate |t1 − 1| ≤ |aTv|−1|‖a‖1 − aTv|. Since

V ∩ HITs,a 6= ∅

by assumption and by definition of v, there is v′ ∈ HITs,a such that Lemma 16 gives

|‖a‖1 − aTv| ≤ |‖a‖1 − aTv′| ≤ 2s1−1/p.

Consequently, |aTv| ≥ ‖a‖1 − 2s1−1/p ≥ 2S1−1/p and

|Tk,tgv(t1) − gv(t)| ≤ 2kk! max{h, (s/S)1−1/p}r.

We conclude

|gsgn(a)(t) − f̂ | ≤ (2 + 4cr + 2kk!) max{h, (s/S)1−1/p}r.

5.3 Choice of parameters and vertex set

We now clarify how to choose the parameters V, ng, and nb of the algorithm described
in Section 4.2 such that, for given 0 < ε < 1, an approximation error of at most ε can
be guaranteed. We first consider the case in which we randomly draw vertices.

23

Theorem 18. Assume
f ∈ R

r,(p,S)
d , f(x) = g(aTx),

where r > 1, 0 < p ≤ 1, and S ∈ N with S < d. Let Cr = max{cr, c̃r} where cr is the
constant from Lemma 4 and c̃r is defined in Theorem 17.

Given 0 < ε < 1 and a failure probability 0 < δ < 1, choose

s := min{S⌈(Cr/ε)
1/(r(1/p−1))⌉, d},

nv := 2s⌈log(1/δ)⌉,
ng := ⌈(Cr/ε)

1/r⌉,
nb as in Lemma 13.

If nv < 2d, let V = {v1, . . . , vnv} be nv vertices drawn independently and uniformly
at random. If nv = 2d, then let V = {−1, 1}d. Given these parameter choices, the

approximation f̂ computed by the algorithm described in Section 4.2 fulfills

P(‖f − f̂‖∞ ≤ ε) ≥
{

1 nv ≥ 2d

1 − δ nv < 2d.

Proof. Case nv ≥ 2d: We have V = {−1, 1}d and

V ∩ HITd,a = {sgn(a),− sgn(a)}.

If (21) is true, then Theorem 17 yields

‖f − f̂‖∞ ≤ 4crn
−r
g ≤ ε

by the choice of ng. Otherwise, if (21) is not true, then Theorem 14 gives

‖f − f̂‖∞ ≤ 4crn
−r
g ≤ ε

by the choice of ng.
Case nv < 2d: Consider the set of random vertices V. If (21) is not true, then

Theorem 14 gives
‖f − f̂‖∞ ≤ 4crn

−r
g ≤ ε

by the choice of ng. The fact that V was chosen at random is irrelevant in this case.
Assume, (21) is true. By the definition of HITs,a, see (18), it is clear that P(v ∈

HITs,a) = 2−s+1 for any v ∈ V. Consequently, the probability that V ∩ HITr = ∅ is at
most (1 − 2−s+1)nv . Since

−2/x ≤ log(1 − 1/x) ≤ −1/x,

we have (1−2−s+1)nv ≤ δ by our choice of nv. Hence, with probability at least 1−δ, V ∩
HITr,a 6= ∅. Then, by Theorem 17 and our choice of parameters,

‖f − f̂‖ ≤ c̃r max{(s/S)1−1/p, n−1
g }r ≤ ε

24

If we are willing to spend a few more samples, a randomly constructed set of vertices V
will be good for all possible ridge vectors simultaneously. It requires just a simple
union bound argument to prove this. In this way, we use randomness to construct a
deterministic version of the algorithm, which uses for all possible inputs f the same set
of vertices V. Since V has been randomly constructed, we only have control over the
error of this deterministic algorithm with a certain probability.

Theorem 19. Assume

f ∈ Rr,(p,S)([−1, 1]d), f(x) = g(aTx),

where r > 1, 0 < p ≤ 1, and S ∈ N with S < d. Given 0 < ε < 1 and a desired failure
probability 0 < δ < 1, choose s, ng, and nb as in Theorem 18. Further, choose

nv := 2s⌈s log(d/s)) + log(1/δ)⌉

and let V be as in Theorem 18. Let f̂ be the approximation computed by the procedure
introduced in Section 4.2 given the inputs f,V, ng, and nb. Then, we have

P

(
sup

f∈Rr,p,S([−1,1]d)

‖f − f̂‖∞ ≤ ε

)
≥
{

1 nv ≥ 2d

1 − δ nv < 2d.

Proof. The proof is identical to that of Theorem 18, except for one point. Before, we
had to control

sup
f∈Rr,p,S ([−1,1]d),

f(x)=g(aT x)

P(V ∩ HITr,a 6= ∅) = max
I⊆{1,...,d},|I|=s

u∈{−1,1}s

P(∃v ∈ V : vI = u ∨ (−v)I = u).

Now, we use a union bound argument to see that

P

(
(∀I ⊆ {1, . . . , d}, |I| = s) (u ∈ {−1, 1}s) (∃v ∈ V) : vI = u ∨ (−v)I = u

)

≥ 1 − 2s

(
d

s

)
(1 − 2−s+1)nv

Since log
(
d
s

)
≤ s log(d/s), our choice of nv yields

1 − 2s

(
d

s

)
(1 − 2−s+1)nv ≥ 1 − δ.

5.4 Upper bounds for the worst-case error

In this section, we translate the results from the previous section into upper bounds for
the worst-case recovery error. We begin with the deterministic setting.

25

Theorem 20. Let r > 1, 0 < p ≤ 1, and 0 < S < d. For constants cp,S, Cr,p,S > 0
independent of n and d, we have

err(n,R
r,(p,S)
d) ≤ Cr,p,S

1 , 1 ≤ n ≤ 4d,(
1

log(n)

)r(1/p−1)

, 4d ≤ n ≤ cp,S2dd1/p−1,

2rd n−r , n ≥ cp,S2dd1/p−1.

Proof. Fix δ = 1/2. Let nv, ng, nb be as in Theorem 19 and put

n′ = n′(ε) = nvng + ng + nb + d.

For every possible nv, there is a set V ⊆ {−1, 1}d of cardinality nv such that the proce-
dure introduced in Section 4.2 yields a mapping Sn′(f) which achieves a recovery error

‖f − Sn′(f)‖∞ ≤ ε

at worst-case information cost n′.
Case 4d ≤ n ≤ cp,S2dd1/p−1. Let 0 < ε0 < 1 be the smallest ε such that

S⌈(Cr/ε)
1

r(1/p−1) ⌉ < d.

Then,

n′ ≥ 2sng ≥
1

4
S1−1/p2dd1/p−1 = cp,S2dd1/p−1.

Consequently, if
4d ≤ n ≤ cp,S2dd1/p−1,

then there is ε ≥ ε0 such that n ≤ n′(ε) and s < d. Moreover, we may assume s ≥
log log d, since otherwise n′ ≤ 4d. Now, since

nv ≤ 2s+2s log(d/s) ≤ 23s+2 ≤ 2 · 16S(Cr/ε)
1

r(1/p−1)

ng ≤ 2(Cr/ε)
1/r ≤ 21+1/r(Cr/ε)

1
r(1/p−1)

,

we have

n′ − d ≤ 4nvng ≤ 16 · 2(4S+1/r)(Cr/ε)
1

r(1/p−1)
.

Using the assumption n ≥ 4d, we find a constant c > 1 such that

err(n,R
r,(p,S)
d) ≤ ε ≤ cCr(4S + 1/r)1/p−1

(
1

log(n)

)r(1/p−1)

.

Case n ≥ cp,S2dd1/p−1. Choose 0 < ε < ε0 such that n ≤ n′(ε). Now

n′ − d ≤ 4nvng ≤ 8 · 2d(Cr/ε)
1/r

26

and thus

err(n,R
r,(p,S)
d) ≤ ε ≤ Cr16r2dn−r. (28)

Case 1 ≤ n ≤ 4d. The trivial algorithm gives

err(n,R
r,(p,S)
d) ≤ sup

f∈Rr,(p,S)([−1,1]d)

‖f‖∞ = 1.

Corollary 21. Let 0 < p < 1, S ∈ {1, . . . , d− 1}, and

r >
1

1/p− 1
.

Then the L∞-recovery of an unknown ridge function from the class R
r,(p,S)
d is at least

weakly tractable.

Proof. Let Cr,p,S and cp,S be the constants defined in Theorem 20 and put

ε1 = Cr,p,S

(
1

log(4d)

)r(1/p−1)

.

Then, it follows from Theorem 20 that there are constants C0 and C1 that are indepen-
dent of ε and d such that

log n(ε, R
r,(p,S)
d) ≤ C0 + C1

{
log(d) , ε1 ≤ ε ≤ 1,

(1/ε)
1

r(1/p−1) , ε < ε1.

Put x = 1/ε+ d. Then, it follows that

log n(ε, R
r,(p,S)
d) ≤ C0 + C1 log(x)x

1
r(1/p−1)

and limx→∞ x−1 log n(ε, R
r,(p,S)
d) = 0. By definition of weak tractability, the desired

result follows.

For completeness, let us also consider the randomized version of the algorithm de-
scribed in Section 4.2. Although the randomized version is less costly than its deter-
ministic counterpart, the following result shows that we basically have the same upper
bounds as in the deterministic setting.

Theorem 22. Let r > 1, 0 < p ≤ 1, and 0 < S < d. For cp,S as in Theorem 20 and a
constant Cr,p,S > 0 independent of n and d, we have

errran(n,R
r,(p,S)
d) ≤ Cr,p,S

1 , 1 ≤ n ≤ 2d,(
1

log(n)

)r(1/p−1)

, 2d ≤ n ≤ cp,S2dd1/p−1,

2rd n−r , n ≥ cp,S2dd1/p−1.

27

Proof. Let nv, nb, nb, and V as in Theorem 18. With these choices, the procedure intro-
duce in Section 4.2 yields a mapping Sn′(f) with information cost

n′ = n′(ε) = nvng + ng + nb + d.

Case n > cp,S2dd1/p−1. We find 0 < ε ≤ 1 such that n ≤ n′ and s = d. Then Sn′ is
deterministic and the argumentation is identical to the proof of Theorem 19; by (28),
we obtain

errran(n,R
r,(p,S)
d) ≤ Cr,p,S2rdn−r.

Case 2d ≤ n ≤ cp,S2dd1/p−1. Choose 0 < ε ≤ 1 such that with the choice δ = ε2, we
have n ≤ n′ and s < d. By Theorem 18, we have

P(‖f − Sn′(f)‖∞ > ε) ≤ ε2,

which leads, in combination with ‖f − Ŝn′(f)‖∞ ≤ 2 a.s., to the estimate

errran(n,R
r,(p,S)
d) ≤

√
E‖f − Sn′(f)‖2∞

=

√∫

{‖f−Sn′ (f)‖∞>ε}

‖f − Sn′(f)‖2∞ +

∫

{‖f−Sn′ (f)‖∞≤ε}

‖f − Sn′(f)‖2∞

≤
√

5ε.

Now, since

nv ≤ 2s+2 log(1/ε) ≤ 22s+2 ≤ 2 · 8S(Cr/ε)
1

r(1/p−1)
,

ng ≤ 2(Cr/ε)
1/r ≤ 21+1/r(Cr/ε)

1
r(1/p−1)

,

we have

n′ − d ≤ 4nvng ≤ 16 · 2(3S+1/r)(Cr/ε)
1

r(1/p−1)
.

Using the assumption n ≥ 2d, we find a constant c > 1 such that

errran(n,R
r,(p,S)
d) ≤

√
5ε ≤

√
5cCr(3S + 1/r)1/p−1

(
1

log(n)

)r(1/p−1)

.

Case 1 ≤ n ≤ 4d. the trivial algorithm gives

errran(n,R
r,(p,S)
d) ≤ sup

f∈Rr,p,S ([−1,1]d)

‖f‖∞ = 1.

Remark 23. In the case p = 1, all results hold still true if we replace the class R
r,(S,1)
d

by Rr,1
d since we only have to consider the case s = d in Theorem 17 then. We do not

now whether the obtained upper bounds are optimal when 0 < p < 1.

28

6 Related Work

There is a vast body of literature that is concerned with ridge functions. Since various
mathematical communities have contributed to the research on ridge functions, we find
it of value to close this work with a broader overview of related research. This overview
does by no means claim to be exhaustive.

6.1 Further work on uniform recovery

An alternative to the component-wise positivity of the ridge vector (3) that also guar-
antees polynomial tractability is to assume that

g′(0) > κ (29)

for some given κ > 0. This assumption works both for ridge functions defined on the
hypercube and for ridge functions defined on the Euclidean ball

Bd
2 = {x ∈ R

d : ‖x‖2 ≤ 1},

whereas (3) does not lead to a polynomially tractable problem for ridge functions defined
on the hypercube, see [26]. Assumption (29) has been studied in [12, 25, 26], where [25]
studies also the effect of noisy measurements. In [26], it has been shown that recovery
of ridge functions defined on the Euclidean ball in general suffers from the curse of
dimensionality. This finding is based on novel two-sided estimates that reduce the decay
behavior of the worst-case recovery error to the decay behavior of entropy numbers
of ℓdp-balls. whereas 0 < p < 2 implies weak tractability for sufficiently large α > 0.

There is an obvious generalization of the ridge function model, namely functions of
the form

f(x) = g(Ax), g : Rm → R, A ∈ R
m×d,

where m is supposed to be much smaller than the ambient dimension d. In [34], such
functions are called generalized ridge functions. Following the ideas of [4], the paper [12]
develops an efficient algorithm for the recovery of generalized ridge functions defined on
Euclidean balls, provided the function g fulfills certain integral conditions and the rows
of the matrix are compressible. In the case m = 1, the integral conditions are fulfilled,
e.g., if we assume (29). Instead of compressibility assumptions on the rows of A, the
work [41] assumes that the matrix A is a low-rank tensor and obtains an algorithms that
requires only polynomially many function samples.

A rank-1 tensor is a multivariate function of the form f(x1, . . . , xd) =
∏d

j=1 f(xj).
The recent works [2, 27] study efficient methods and tractability aspects. The proof
techniques show interesting resemblances to the techniques used in the context of ridge
functions.

29

6.2 Ridge functions in semi-parametric statistics

The phenomenon “curse of dimensionality” is also known in statistics. In the regression
problem, one has stochastically independent observations

(X(1), Y1), . . . , (X
(n), Yn),

which are assumed to be related by

Yi = f(X(i)) + ǫi, i = 1, . . . , n,

where the ǫi are noise terms. The goal is to derive from these observations a reconstruc-
tion f̂ of the unknown function f such that the least squares error ‖f − f̂‖2 is small.
In this context, curse of dimensionality refers to the fact that the random sampling
points X(1), . . . , X(n) are sparsely scattered when they take values in high-dimensional
metric spaces. This has the unpleasant consequence that standard nonparametric re-
gression techniques such as kernel estimation, nearest-neighbor, and spline smoothing
work poorly in high dimensions since they are based on local averaging.

It has been a prominent idea in statistics to allow only specific functional dependen-
cies in models to mitigate the burden of high-dimensionality. In this way, one seeks to
find a compromise between linear models, that scale rather well with the dimension, and
fully nonparametric models, which face the issues mentioned above in high-dimensional
settings. Projection pursuit regression (PPR) [14, 23] is one possible semiparametric
approach used since the early 1980s to face the problem of sparsely scattered data. The
key assumption is that the unknown regression surface f can be approximated well by
a sum of ridge functions, i.e.

f(x) ≈
m∑

j=1

gj(a
T

j x) (30)

with aj ∈ R
d and univariate functions gj. This can be interpreted as a non-linear

generalization of principal component analysis (PCA) [20]. A widely used simplification
of (30) are additive models [20, 37], where the aj are assumed to be coordinate directions.

For m = 1 in (30), a closely related semiparametric model is popular in econometrics
under the name single-index model [19, 24]; it assumes that f is a ridge function,

f(x) = g(aTx).

These simple ridge-based regression models have been successfully applied to high-
dimensional real-world data, for instance, to identify the variables that influence in-
come [8], the severity of side impact accidents [18], or air pollution [14]. As a particular
family of estimation methods, we mention average gradient estimation (ADE) [22, 36,
40], which also rests on the idea to exploit ∇f(x) = g(aTx)a. Concerning theoretical
error bounds, root-n-consistency for various estimation methods has been shown, as-
suming that g is two-times differentiable and ‖a‖2 = 1; see, e.g., [8, 17, 18, 22]. If a
method is root-n-consistent, then this implies

E‖f − f̂‖2 = O(n−1/2), (31)

30

where f is the unknown ridge function, f̂ the computed estimate and n the number
of samples used. There is also a work that proves asymptotically optimal minimax
bounds [16]. It seems that all the afore-mentioned results are only of asymptotic nature
and hide constants which potentially depend on the dimension d. We further note that
the decay rate in (31) mainly reflects the assumptions that have been made for the noise
of the samples.

6.3 One-bit compressed sensing

In 1-bit compressed sensing, the aim is to recover a compressible signal a ∈ R
d from 1-bit

measurements yi = sgn(aTxi), i = 1, . . . , n, given that Eyi = g(aTx) for some unknown,
univariate g : R → [−1, 1] such that

E[g(X)X] = λ > 0 (32)

for a standard normal random variable X , see [35] and the references there. Note that
the goal here is only to recover the vector a and not the non-linearity g. Further, note
the similarity between (32) and the integral condition discussed in [12]. In particular, it
is clear that (32) is fulfilled if g is a continuous function with g(0) > κ > 0.

6.4 Ridge functions as atoms for approximation

The afore-mentioned PPR provides an example for approximating an unknown function
by a sum of ridge functions. The recent monograph [34] gives a detailed overview of what
is known about approximation by sums of ridge functions. This includes, among other
aspects, uniqueness of representation, density properties (i.e., what functions can be
approximated by sums of ridge functions), degree of approximation, best approximation,
and greedy methods. We also recommend the older work [32] by the same author, which
is a well-written introduction to this topic.

Closely related to PPR in spirit and in terms of algorithmic approaches are neural
network models [1]. For instance, in single hidden-layer feedforward networks, the given
data is fitted to a function of the form

f(x) =
m∑

i=1

βiσ(aT

i x + bi).

In contrast to projection pursuit regression, the univariate σ, which is called activation
function, is chosen in advance. Approximation-theoretical properties of these models
and also the more general multilayer feedforward perceptrons (MLP) have been surveyed
in [33]. A new approximation-theoretical approach towards neural networks models—
and more generally, learning based on dictionaries—has been established by [5]. This
work introduces an analogon to the well-known Fourier and wavelet transforms based on
ridge functions, the so-called ridgelet transform. This transform provides representations
with frame properties that are particularly suited to represent functions with singularities
along hypersurfaces. Further statistical properties of ridgelets have been studied in [6].
The paper [10] constructs an orthonormal basis based on ridgelets.

31

A Further proofs

Proof of Lemma 5. There is ξm ∈ [1−sh, 1] such that Dm
−h(g, 1) = g(m)(ξm). Further,

for β = r − s, the derivative g(m) is Hölder-continuous with

|g(m)| ≤ |aTv|m|g(m)|β ≤ |aTv|m.

Hence, for all ξ ∈ [1 − sh, 1] we obtain

|g(m)(ξ)| ≤ |g(m)(ξm)| + |ξ − ξm|β

≤ min{|aTv|m, 2m−1hβ} + |aTv|m(mh)β = (2m−1 + sβ)hβ = Cmh
β.

Considering the derivative g(m−1), there is ξm−1 ∈ [1 − (m− 1)h, 1] such that

Dm−1
−h (g, 1) = g(m−1)(ξm−1).

By the mean value theorem, there is for all ξ ∈ [1 − (m− 1)h, 1] a

ξ′m ∈ [1 − (m− 1)h, 1]

such that

g(m−1)(ξ) = g(m−1)(ξm−1) + g(m)(ξ′m)(ξ − ξm−1).

By assumption and the previous considerations we conclude

|g(m−1)(ξ)| ≤ 2m−2hβ+1 + Cm(m− 1)hβ+1 = Cm−1h
β+1,

where Cm−1 = 2m−2 + 2m−1(m− 1) + sβ(s− 1).
Iteratively repeating this argument for the remaining derivatives, we obtain

|g(i)(ξ)| ≤ Cih
r−i, ξ ∈ [1 − ih, 1],

with Ci =
∑m

j=i 2j−1
∏j−1

l=i l +
∏s−1

l=i s
β. It is easy to see that Ci ≤ 2ks!.

Proof of Lemma 13. We can assume that aTv 6= 0, otherwise the profile seg-
ment gv given by (17) is constant on [−1, 1] and consequently, there is nothing to prove.
Let [tmid−δ, tmid +δ] be the refined interval computed in Step 2 using nb samples. Recall
that â = ã/‖ã‖1, where the ith coordinate of ã is given by (24) for i = 1, . . . , d. By the
fact that

sgn(‖a‖−1
1 /(vTa)) = sgn(1/(vTa))

and [25, Lemma 3.1], we have

‖ sgn(1/(vTa)) â− a/‖a‖1‖1 ≤ 2
‖ã− a/(aTv)‖1

‖ã‖1
. (33)

32

Let us prove an upper bound for the right-hand side in (33). Extending the definition
in (17), let

gv : [−|aTv|−1, |aTv|−1] → R, t 7→ g(taTv)

denote the stretched profile of which Step 3 observed function values. By the mean value
theorem, there is a real number ξ0 satisfying

|ξ0 − tmid| ≤ δ,

and real numbers ξi for i ∈ {1, . . . , d} satisfying |ξi − tmid| ≤ δ|ai|/|aTv| such that

g′v(ξ0) =
gv(tmid + δ) − gv(tmid − δ)

2δ
,

g′v(ξi) =
gv(tmid + δai

aT v
) − gv(tmid)

δ

T

aTv

ai
.

This implies

ãi =
ai
aTv

T g′v(ξi)

g′v(ξ0)
=

ai
aTv

(
1 +

g′v(ξi) − g′v(ξ0)

g′v(ξ0)

)
.

Hence
‖ã− a/(vTa)‖1

‖ã‖1
=

∑d
i=1 |g′v(ξi) − g′v(ξ0)||ai|∑d

i=1 |g′v(ξi)||ai|
.

Now, since g′v is Hölder continuous on [−|aTv|−1, |aTv|−1] with exponent ρ, we obtain
by (8) that

|g′v(ξi) − g′v(ξ0)| ≤ 2|g′v|ρ min{1, |ξi − ξ0|}ρ

≤ 2‖g‖Lip(r)|aTv|
(
|ξi − tmid|ρ + |ξ0 − tmid|ρ

)

≤ 2δρ‖g‖Lip(r)
(
|ai|ρ|aTv|1−ρ + |aTv|

)
.

By |vTa| ≤ ‖v‖∞‖a‖1 and |ai| ≤ ‖a‖1, it follows that

|g′v(ξi) − g′v(ξ0)| ≤ 4‖g‖Lip(r)‖a‖1δβ ≤ 4δρ.

Using |g′v(ξi)| ≥ |g′v(ξ0)| − |g′v(ξi) − g′v(ξ0)| ≥ L− 4δρ, we obtain

‖ã− a/vTa‖1
‖ã‖1

≤ δρ

L/4 − δρ
.

The choice of nb guarantees that

δ = 2−nb |I0| = 2−nb/ng ≤
(

Lǫ

4(6 + ε)

)1/ρ

. (34)

which in turn yields
δρ

L/4 − δρ
≤ ε/3.

This proves the statement of this lemma.

33

Proof of Theorem 14. Let γ := sgn(vTa). Recall that

f(x) = g(aTx) = gsgn(a)(ā
Tx),

where ā = a/‖a‖1. Let Qh denote a quasi-interpolant as introduced in Section 2. For
any x ∈ [−1, 1]d, the approximation error can be decomposed into three components,

|f̂(x) − f(x)| = |(Qhgsgn(â))(â
Tx) − gsgn(a)(ā

Tx)|
≤ |(Qhgsgn(â))(â

Tx) − gsgn(â)(â
Tx)|

+ |gsgn(â)(âTx) − gsgn(a)(γâ
Tx)|

+ |gsgn(a)(γâTx) − gsgn(a)(ā
Tx)|.

The first part is because we can only approximate gsgn(â), the second component is due
to the uncertainty regarding the orthant (the signs of the ridge vector), and the third
one is due to the uncertainty regarding the ridge vector. By Lemma 4, the choice of ng

gives

|(Qhgsgn(â))(â
Tx) − gsgn(â)(â

Tx)| ≤ ‖Qhgsgn(â) − gsgn(â)‖∞ ≤ crn
−r
g ≤ ε/3.

To treat the second term we need some preliminary calculations. Namely, as in [25, Eq.
(3.10)] we have

∣∣āT (sgn(γâ) − sgn(ā))
∣∣ =
∣∣‖ā‖1 −‖â‖1 − (ā− γâ)T (sgn(γâ))

∣∣
≤‖ā− γâ‖1

∥∥sgn(γâ)
∥∥
∞

≤‖ā− γâ‖1 ,

since ‖â‖1 = ‖ā‖1 = 1. Then, for the second term we obtain

|gsgn(â)(âTx) − gsgn(a)(γâ
Tx)| = |g

(
(aT sgn(â)) (âTx)

)
− g

(
‖a‖1(γâTx)

)
|

≤ ‖g‖Lip(r) |(γâTx)| |aT (sgn(γâ) − sgn(a))|
≤ ‖a‖1

∥∥γâ− a/‖a‖1
∥∥
1

≤
∥∥γâ− a/‖a‖1

∥∥
1

and for the third term we have

|gsgn(γa)(âTx) − g(aTx)| = |g(γ‖a‖1âTx) − g(aTx)|
≤ ‖g‖Lip(r)‖a‖1

∥∥γâ− a/‖a‖1
∥∥
1

≤
∥∥γâ− a/‖a‖1

∥∥
1
.

By Lemma 13, we have
∥∥γâ− a/‖a‖1

∥∥
1
≤ ε/3, which proves the statement.

References

[1] Martin Anthony and Peter L. Bartlett. Neural network learning: theoretical foun-
dations. Cambridge University Press, Cambridge, 1999.

34

[2] Markus Bachmayr, Wolfgang Dahmen, Ronald DeVore, and Lars Grasedyck. Ap-
proximation of high-dimensional rank one tensors. Constr. Approx., 39(2):385–395,
2014.

[3] Nikolai Sergeevich Bakhvalov. On the approximate calculation of multiple integrals.
J. Complexity, 31(4):502–516, 2015. [English translation; the original appeared in
Vestnik MGU Ser. Mat. Meh. Astr. Fiz. Him., 4:3-18, 1959].

[4] Martin D. Buhmann and Allan Pinkus. Identifying linear combinations of ridge
functions. Adv. in Appl. Math., 22(1):103–118, 1999.

[5] Emmanuel J. Candès. Harmonic analysis of neural networks. Appl. Comput. Har-
mon. Anal., 6(2):197–218, 1999.

[6] Emmanuel J. Candès. Ridgelets: estimating with ridge functions. Ann. Statist.,
31(5):1561–1599, 2003.

[7] Albert Cohen, Ingrid Daubechies, Ronald DeVore, Gerard Kerkyacharian, and Do-
minique Picard. Capturing ridge functions in high dimensions from point queries.
Constr. Approx., 35(2):225–243, 2012.

[8] Xia Cui, Wolfgang Karl Härdle, and Lixing Zhu. The EFM approach for single-index
models. Ann. Statist., 39(3):1658–1688, 2011.

[9] Ronald A. DeVore and George G. Lorentz. Constructive approximation, volume
303 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles
of Mathematical Sciences]. Springer-Verlag, Berlin, 1993.

[10] David L. Donoho. Orthonormal ridgelets and linear singularities. SIAM J. Math.
Anal., 31(5):1062–1099, 2000.

[11] Paul Erdos and Joel Spencer. Probabilistic methods in combinatorics. AMC, 10:12,
1974.

[12] Massimo Fornasier, Karin Schnass, and Jan Vyb́ıral. Learning functions of few
arbitrary linear parameters in high dimensions. Found. Comput. Math., 12(2):229–
262, 2012.

[13] Simon Foucart and Holger Rauhut. A mathematical introduction to compressive
sensing. Applied and Numerical Harmonic Analysis. Birkhäuser/Springer, New
York, 2013.

[14] Jerome H. Friedman and Werner Stuetzle. Projection pursuit regression. J. Amer.
Statist. Assoc., 76(376):817–823, 1981.

[15] Michael Gnewuch and Henryk Woźniakowski. Quasi-polynomial tractability. Jour-
nal of Complexity, 27(3):312–330, 2011.

35

[16] G. K. Golubev. Asymptotically minimax estimation of a regression function in an
additive model. Problemy Peredachi Informatsii, 28(2):3–15, 1992.

[17] Peter Hall. On projection pursuit regression. Ann. Statist., 17(2):573–588, 1989.

[18] Wolfgang Härdle, Peter Hall, and Hidehiko Ichimura. Optimal smoothing in single-
index models. Ann. Statist., 21(1):157–178, 1993.

[19] Wolfgang Härdle, Marlene Müller, Stefan Sperlich, and Axel Werwatz. Nonpara-
metric and semiparametric models. Springer Series in Statistics. Springer-Verlag,
New York, 2004.

[20] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The elements of statistical
learning. Springer Series in Statistics. Springer, New York, second edition, 2009.
Data mining, inference, and prediction.

[21] S. Heinrich. Lower bounds for the complexity of Monte Carlo function approxima-
tion. J. Complexity, 8(3):277–300, 1992.

[22] Marian Hristache, Anatoli Juditsky, and Vladimir Spokoiny. Direct estimation of
the index coefficient in a single-index model. Ann. Statist., 29(3):595–623, 2001.

[23] Peter J. Huber. Projection pursuit. Ann. Statist., 13(2):435–525, 1985. With
discussion.

[24] Hidehiko Ichimura. Estimation of single-index models. Massachusetts Institute of
Technology, 1988.

[25] Anton Kolleck and Jan Vyb́ıral. On some aspects of approximation of ridge func-
tions. J. Approx. Theory, 194:35–61, 2015.

[26] Sebastian Mayer, Tino Ullrich, and Jan Vyb́ıral. Entropy and sampling numbers of
classes of ridge functions. Constr. Approx., 42(2):231–264, 2015.

[27] Erich Novak and Daniel Rudolf. Tractability of the approximation of high-
dimensional rank one tensors. Constr. Approx., 43(1):1–13, 2016.

[28] Erich Novak and Henryk Woźniakowski. Tractability of multivariate problems. Vol.
1: Linear information, volume 6 of EMS Tracts in Mathematics. European Math-
ematical Society (EMS), Zürich, 2008.

[29] Erich Novak and Henryk Woźniakowski. Approximation of infinitely differentiable
multivariate functions is intractable. J. Complexity, 25(4):398–404, 2009.

[30] Erich Novak and Henryk Woźniakowski. Tractability of multivariate problems. Vol-
ume II: Standard information for functionals, volume 12 of EMS Tracts in Mathe-
matics. European Mathematical Society (EMS), Zürich, 2010.

36

[31] Erich Novak and Henryk Woźniakowski. Tractability of multivariate problems. Vol-
ume III: Standard information for operators, volume 18 of EMS Tracts in Mathe-
matics. European Mathematical Society (EMS), Zürich, 2012.

[32] Allan Pinkus. Approximating by ridge functions. In Surface fitting and multires-
olution methods (Chamonix–Mont-Blanc, 1996), pages 279–292. Vanderbilt Univ.
Press, Nashville, TN, 1997.

[33] Allan Pinkus. Approximation theory of the MLP model in neural networks. In Acta
numerica, 1999, volume 8 of Acta Numer., pages 143–195. Cambridge Univ. Press,
Cambridge, 1999.

[34] Allan Pinkus. Ridge functions, volume 205 of Cambridge Tracts in Mathematics.
Cambridge University Press, Cambridge, 2015.

[35] Y. Plan and R. Vershynin. Robust 1-bit compressed sensing and sparse logistic
regression: A convex programming approach. IEEE Transactions on Information
Theory, 59(1):482–494, Jan 2013.

[36] James L. Powell, James H. Stock, and Thomas M. Stoker. Semiparametric estima-
tion of index coefficients. Econometrica, 57(6):1403–1430, 1989.

[37] Garvesh Raskutti, Martin J. Wainwright, and Bin Yu. Minimax-optimal rates for
sparse additive models over kernel classes via convex programming. J. Mach. Learn.
Res., 13:389–427, 2012.

[38] Pawe lSiedlecki. Uniform weak tractability. J. Complexity, 29(6):438–453, 2013.

[39] Pawe l Siedlecki and Markus Weimar. Notes on (s, t)-weak tractability: a refined
classification of problems with (sub)exponential information complexity. J. Approx.
Theory, 200:227–258, 2015.

[40] Thomas M. Stoker. Consistent estimation of scaled coefficients. Econometrica,
54(6):1461–1481, 1986.

[41] Hemant Tyagi and Volkan Cevher. Learning non-parametric basis independent
models from point queries via low-rank methods. Appl. Comput. Harmon. Anal.,
37(3):389–412, 2014.

37

