
HAL Id: hal-04485595
https://hal.science/hal-04485595

Submitted on 4 Apr 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Runtime analysis for self-adaptive mutation rates
Benjamin Doerr, Carsten Witt, Jing Yang

To cite this version:
Benjamin Doerr, Carsten Witt, Jing Yang. Runtime analysis for self-adaptive mutation rates. Algo-
rithmica, 2020, 83 (4), pp.1475-1482. �10.1145/3205455.3205569�. �hal-04485595�

https://hal.science/hal-04485595
https://hal.archives-ouvertes.fr

Runtime Analysis for Self-adaptive Mutation Rates∗

Benjamin Doerr
École Polytechnique

CNRS
Laboratoire d’Informatique (LIX)

Palaiseau, France

Carsten Witt
DTU Compute

Technical University of Denmark
Kgs. Lyngby, Denmark

Jing Yang
École Polytechnique

CNRS
Laboratoire d’Informatique (LIX)

Palaiseau, France

December 3, 2018

Abstract

We propose and analyze a self-adaptive version of the (1, λ) evolutionary algo-
rithm in which the current mutation rate is part of the individual and thus also
subject to mutation. A rigorous runtime analysis on the OneMax benchmark func-
tion reveals that a simple local mutation scheme for the rate leads to an expected
optimization time (number of fitness evaluations) of O(nλ/ log λ + n logn) when λ
is at least C lnn for some constant C > 0. For all values of λ ≥ C lnn, this perfor-
mance is asymptotically best possible among all λ-parallel mutation-based unbiased
black-box algorithms.

Our result shows that self-adaptation in evolutionary computation can find com-
plex optimal parameter settings on the fly. At the same time, it proves that a rel-
atively complicated self-adjusting scheme for the mutation rate proposed by Doerr,
Gießen, Witt, and Yang (GECCO 2017) can be replaced by our simple endogenous
scheme.

On the technical side, the paper contributes new tools for the analysis of two-
dimensional drift processes arising in the analysis of dynamic parameter choices in
EAs, including bounds on occupation probabilities in processes with non-constant
drift.

∗Extended version of a paper appearing at the Genetic and Evolutionary Computation Conference
2018 [DWY18]. This version contains all proofs, whereas most of them for reasons of space did not fit
into the conference version. In this version, the main result is valid for all λ ≥ C ln(n), C a sufficiently
large constant, whereas the conference version needed λ ≥ (lnn)1+ε for an arbitrary ε > 0.

1

ar
X

iv
:1

81
1.

12
82

4v
1

 [
cs

.N
E

]
 3

0
N

ov
 2

01
8

1 Introduction

Evolutionary algorithms are a class of heuristic algorithms that can be applied to solve
optimization problems if no problem-specific algorithm is available. For example, this
may be the case if the structure of the underlying problem is poorly understood or one is
faced with a so-called black-box scenario, in which the quality of a solution can only be
determined by calling an implementation of the objective function. This implementation
may be implicitly given by, e. g., the outcome of a simulation without revealing structural
relationships between search point and function value.

An approach to understand the working principles of evolutionary algorithms is to
analyze the underlying stochastic process and its first hitting time of the set of optimal
or approximate solutions. The runtime analysis community in evolutionary computation
(see, e. g., [AD11, Jan13, NW10] for an introduction to the subject) follows this approach
by partly using methods known from the analysis of classical randomized algorithms
and, more recently and increasingly often, using and adapting tools from the theory of
stochastic processes to obtain bounds on the hitting time of optimal solutions for different
classes of evolutionary algorithms and problems. Such bounds will typically depend on
problem size, problem type, evolutionary algorithm and choice of the parameters that
these heuristic algorithms come with.

One of the core difficulties when using evolutionary algorithms is in fact finding
suitable values for its parameters. It is well known and supported by ample experimental
and some theoretical evidence that already small changes of the parameters can have a
crucial influence on the efficiency of the algorithm.

One elegant way to overcome this difficulty, and in addition the difficulty that the op-
timal parameter values may change during a run of the algorithm, is to let the algorithm
optimize the parameters on the fly. Formally speaking, this is an even more compli-
cated task, because instead of a single good parameter value now a suitable functional
dependence of the parameter on the search history needs to be provided. Fortunately,
a number of natural heuristics like the 1/5-th rule have proven to be effective in certain
cases. In a sense, these are all exogenous parameter control mechanisms which are added
to the evolutionary system.

An even more elegant way is to incorporate the parameter control mechanism into the
evolutionary process, that is, to attach the parameter value to the individual, to modify it
via (extended) variation operators, and to use the fitness-based selection mechanisms of
the algorithm to ensure that good parameter values become dominant in the population.
This self-adaptation of the parameter values has two main advantages: (i) It is generic,
that is, the adaptation mechanism is provided by the algorithm, only the representation
of the parameter in the individual and the extension of the variation operators has to
be provided by the user. (ii) It allows to re-use existing algorithms and much of the
existing code.

Despite these advantages, self-adaptation is not used a lot in discrete evolutionary
optimization. From the theory side, some advice exists how to set up such a self-adaptive

2

system, but a real proof for its usefulness is still missing. This is the point we aim to
make some progress on.

1.1 Our Results

The main result of this work is that we propose a version of the (1, λ) evolutionary algo-
rithm (EA) with a natural self-adaptive choice of the mutation rate. For λ ≥ C lnn, C
a sufficiently large constant, we prove that it optimizes the classic OneMax benchmark
problem in a runtime that is asymptotically optimal among all λ-parallel black-box op-
timization algorithms and that is better than the known runtimes of the (1,λ) EA and
the (1+λ) EA for all static choices of the mutation rate. Compared to the (also asymp-
totically optimal) (1+λ) EA with fitness-dependent mutation rate of Badkobeh, Lehre,
and Sudholt [BLS14] and the (1+λ) EA with self-adjusting (exogenous) mutation rate
of Doerr, Gießen, Witt, and Yang [DGWY17] the good news of our result is that this
optimal runtime could be obtained in a generic manner. Note that both the fitness-
dependent mutation rate of [BLS14] and the self-adjusting rate of [DGWY17] with its
mix of random and greedy rate adjustments would have been hard to find without a
deeper understanding of the mathematics of these algorithms.

Not surprisingly, the proof of our main result has some similarity to the analysis of
the self-adjusting (1+λ) EA of [DGWY17]. In particular, we also estimate the expected
progress in one iteration and use variable drift analysis. Also, we need a careful proba-
bilistic analysis of the progress obtained from different mutation rates to estimate which
rate is encoded in the new parent individual (unfortunately, we cannot reuse the analysis
of [DGWY17] since it is not always strong enough for our purposes). The reason, and
this is also the main technical challenge in this work, is that the (1,λ) EA can lose fitness
in one iteration. This happens almost surely when the mutation rate is too high. For this
reason, we need to argue more carefully that such events do not happen regularly. To
do so, among several new arguments, we also need a stronger version of the occupation
probability result [KLW15, Theorem 7] since (i) we need sharper probability estimates
for the case that movements away from the target are highly unlikely and (ii) for our
process, the changes per time step cannot be bounded by a small constant. We expect
our new results (Lemma 6 and 7) to find other applications in the theory of evolutionary
algorithms in the future. Note that for the (1+λ) EA, an excursion into unfavorable rate
regions is less a problem as long as one can show that the mutation rate returns into
the good region after a reasonable time. The fact that the (1,λ) EA can lose fitness also
makes it more difficult to cut the analysis into regimes defined by fitness levels since it
is now possible that the EA returns into a previous regime.

In this work, we also gained two insights which might be useful in the design of future
self-adaptive algorithms.

Need for non-elitism: Given the previous works, it would be natural to try a self-
adaptive version of the (1+λ) EA. However, this is risky. While the self-adjusting EA
of [DGWY17] copes well with the situation that the current mutation rate is far from
the ideal one and then provably quickly changes the rate to an efficient setting, a self-
adaptive algorithm cannot do so. Since the mutation rate is encoded in the individual, a

3

change of the rate can only occur if an offspring is accepted. For an elitist algorithm like
the (1+λ) EA, this is only possible when an offspring is generated that is good enough
to compete with the parent(s). Consequently, if the parent individual in a self-adaptive
(1+λ) EA has a high fitness, but a detrimental (that is, large) mutation rate, then the
algorithm is stuck with this individual for a long time. Already for the simple OneMax
function, such a situation can lead to an exponential runtime.

Needless to say, when using a comma strategy we have to choose λ sufficiently large to
avoid losing the current-best solution too quickly. This phenomenon has been observed
earlier, e.g., in [RS14] it is shown that λ ≥ (1 − o(1)) log(e−1)/e(n) is necessary for the
(1,λ) EA with mutation rate 1/n to have a polynomial runtime on any function with
unique optimum. We shall not specify a precise leading constant for our setting, but
also require that λ ≥ C ln(n) for a sufficiently large constant C.

Tie-breaking towards lower mutation rates: To prove our result, we need that the al-
gorithm in case of many offspring of equal fitness prefers those with the smaller mutation
rate. Given that the usual recommendation for the mutation rate is small, namely 1

n ,
and that it is well-known that large rates can be very detrimental, it is natural to prefer
smaller rates in case of ties (where, loosely speaking, the offspring population gives no
hint which rate is preferable).

This choice is similar to the classic tie-breaking rule of preferring offspring over
parents in case of equal fitness. Here, again, the fitness indicates no preference, but
the simple fact that one is maybe working already for quite some time with this parent
suggest to rather prefer the new individual.

1.2 Previous Works

This being a theoretical paper, for reasons of space we shall mostly review the relevant
theory literature, and also this with a certain brevity. For a broader account of previous
works, we refer to the survey [KHE15]. For a detailed description of the state of the art in
theory of dynamic parameter choices, we refer to the survey [DD18b]. We note that the
use of self-adaptation in genetic algorithms was proposed in the seminal paper [Bäc92]
by Bäck. Also, we completely disregard evolutionary optimization in continuous search
spaces due to the very different nature of optimization there (visible, e.g., from the
fact that dynamic parameter changes, including self-adaptive choices, are very common
and in fact necessary to allow the algorithms to approach the optimum with arbitrary
precision).

The theoretical analysis of dynamic parameter choices started slow. A first paper
[JW06] on this topic in 2006 demonstrated the theoretical superiority of dynamic pa-
rameter choices by giving an artificial example problem for which any static choice of
the mutation rate leads to an exponential runtime, whereas a suitable time-dependent
choice leads to a polynomial runtime. Four years later [BDN10], it was shown that
a fitness-dependent choice of the mutation rate can give a constant-factor speed-up
when optimizing the LeadingOnes benchmark function (see [Doe18a, Section 2.3] for
a simplified proof giving a more general result). The first super-constant speed-up on
a classic benchmark function obtained from a fitness-dependent parameter choice was

4

shown in [DDE13], soon to be followed by the paper [BLS14] which is highly relevant
for this work. In [BLS14], the (1+λ) EA with fitness-dependent mutation rate was ana-
lyzed. For a slightly complicated fitness-dependent mutation rate, an optimization time
of O(nλ/ log λ+ n logn) was obtained. Also, it was shown that no λ-parallel mutation-
based unbiased black-box algorithm can have an asymptotically better optimization
time.

Around that time, several successful self-adjusting (“on-the-fly”) parameter choices
were found and analyzed with mathematical means. In [LS11], a success-based multi-
plicative update of the population size λ in the (1+λ) EA is proposed and it is shown
that this can lead to a reduction of the parallel runtime. A multiplicative update in-
spired by the 1/5-th success rule from evolution strategies automatically finds param-
eter settings [DD15] leading to the same performance as the fitness-dependent choice
in [DDE13]. Similar multiplicative update rules have been used to control the mu-
tation strength for multi-valued decision variables [DDK18] and the time interval for
which a selected heuristic is used in [DLOW18]. A learning-based approach was used
in [DDY16a] to automatically adjust the mutation strength and obtain the performance
of the fitness-dependent choice of [DDY16b]. Again a different approach was proposed
in [DGWY17], where the mutation rate for the (1+λ) EA was determined on the fly by
creating half the offspring with a smaller and half the offspring with a larger mutation
rate than the value currently thought to be optimal. As new mutation rate, with prob-
ability 1

2 the rate which produced the best offspring was chosen, with probability 1
2 a

random of the two rates was chosen. The three different exogenous approaches used in
these works indicate that a generic approach towards self-adjusting parameter choices,
such as self-adaptation, would ease the design of such algorithms significantly.

Surprisingly, prior to this work only a single runtime analysis paper for self-adapting
parameter choices appeared. In [DL16b], Dang and Lehre show several positive and
negative results on the performance of a simple class of self-adapting evolutionary algo-
rithms having the choice between several mutation rates. Among them, they show that
such an algorithm having the choice between an appropriate and a destructively high mu-
tation rate can optimize the LeadingOnes benchmark function in the usual quadratic
time, whereas the analogous algorithm using a random of the two mutation rates (and
hence in half the cases the right rate) fails badly and needs an exponential time. As
a second remarkable result, they give an example setting where any constant mutation
rate leads to an exponential runtime, whereas the self-adapting algorithm succeeds in
polynomial time. As for almost all such examples, also this one is slightly artificial and
needs quite some assumptions, for example, that all λ individuals are initialized with
the 1-point local optimum. Nevertheless, this result makes clear that self-adaptation can
outperform static parameter choices. In the light of this result, the main value of our
results is showing that asymptotic runtime advantages from self-adaptation can also be
obtained in less constructed examples (of course, at the price that the runtime gap is
not exponential).

To complete the picture on previous work relevant to ours, we finally quickly de-
scribe what is known on the performance of most common mutation-based algorithms

5

for the OneMax benchmark function. For the simple (1+1) EA, the expected runtime
of Θ(n logn) was determined in [Müh92] (upper bound) and [DJW02] (lower bound, this
result was announced already 1998). For the (1+λ) EA with λ ≤ n1−ε, ε > 0 a constant,
an expected runtime (number of fitness evaluations) of

Θ
(
nλ log log λ

log λ + n logn
)

was shown in [JJW05, DK15]. For the (µ+1) EA with polynomially bounded µ, the
expected runtime is Θ(µn + n logn), see [Wit06]. Finally, the expected runtime of the
(µ+λ) EA was recently [ADFH18] determined as

Θ
(
n logn
λ

+ n

λ/µ
+ n log+ log+ λ/µ

log+ λ/µ

)
,

where log+ x := max{1, log x} for all x > 0.
The earliest runtime analysis of the (1,λ) EA with mutation rate 1/n on OneMax is

due to Jägersküpper and Storch [JS07], who prove a phase transition from exponential to
polynomial runtime in the regime λ = Θ(logn), leaving a gap of at least 21 between the
largest λ in the exponential regime and the smallest in the polynomial regime. This result
was improved by Rowe and Sudholt [RS14], who determined the phase transition point to
be the above-mentioned function log(e−1)/e(n), up to lower order terms. Jägersküpper
and Storch [JS07] also obtain a useful coupling result: if λ ≥ c lnn for a sufficiently
large constant c > 0, the stochastic behavior of the (1+λ) EA and (1,λ) EA with high
probability are identical for a certain polynomial (with degree depending on c) number
of steps, allowing the above-mentioned results about the (1+λ) EA to be transferred to
the (1,λ) EA.

1.3 Techniques

One of the technical difficulties in our analysis is that our self-adaptive (1,λ) EA can
easily lose fitness when the rate parameter is set to an unsuitable value. For this rea-
son, we cannot use the general approach of the analysis of the self-adjusting (1+λ) EA
in [DGWY17], which separated the analysis of the rate and the fitness by, in very simple
words, first waiting until the rate is in the desired range and then waiting for a fitness
improvement (of course, taking care of the fact that the rate could leave the desired
range). To analyze the joint process of fitness and rate with its intricate interactions, we
in particular use drift analysis with a two-dimensional distance function, that is, we map
(e.g., in Lemma 22) the joint space of fitness and rate suitably into the non-negative
integers in a way that the expected value of this mapping decreases in each iteration.
This allows to use well-known drift theorems.

The use of two-dimensional potential functions is not new in the analysis of evolu-
tionary algorithms. However, so far only very few analyses exist that use this technique
with dynamic parameter values and among these results, we feel that ours, in particular,
Lemma 22, are relatively easy to use. Again in very simple words, the distance function

6

g defined in the proof of Lemma 22 is the fitness distance plus a pessimistic estimate
for the fitness loss that could be caused from the current rate if this is maladjusted).
We thus hope that this work eases future analyses of dynamic parameter choices by
suggesting ways to measure suitably the progress in the joint space of solution quality
and parameter value.

To allow the reader to compare our two-dimensional drift approach with existing
works using similar arguments, we briefly review the main works that use two- or
more-dimensional potential functions. Ignoring that the artificial fitness functions used
in [DJW02, DJW12, DG13, Wit13] could also be interpreted as n-dimensional poten-
tial functions, the possibly first explicit use of a two-dimensional potential function in
the runtime analysis of randomized search heuristics can be found in [Weg05, proof of
Theorem 4], a work analyzing how simulated annealing and the Metropolis algorithm
compute minimum spanning trees in a line of connected triangles. In such optimization
processes, a solution candidate (which is a subset of the edge set of the graph) can have
two undesirable properties. (i) The solution contains a complete triangle, so one of these
three edges has to be removed on the way to the optimal solution. (ii) The solution
contains two edges of a triangle, but not the two with smallest weight. This case, called
bad triangle, is the less desirable one as here one edge of the solution has to be replaced
by the missing edge and hence the status of two edges has to be changed. It turns
out that a simple potential function can take care of these two issues, namely twice the
number of bad triangles plus the number of complete triangles.

When analyzing non-trivial parent populations, then often it does not suffice to
measure the quality of the current state via the maximum fitness in the population, but
also the number of individuals having this best fitness has to be taken into account.
This was first done in the analysis of the (µ+1) EA in [Wit06]. Since in a run of
this algorithm the population never worsens (in a strong sense), the progress could be
analyzed conveniently via arguments similar to the fitness level method. Consequently,
it was not necessary to define an explicit potential function. In a similar fashion, the
(N + N) EA [CHS+09] and the (µ+λ) EA [ADFH18] were analyzed by regarding the
maximum fitness and the number of individuals having this fitness.

In [LY12], a vaguely similar approach was taken for non-elitist population-based
algorithms. However, the fact that these algorithm may lose the current-best solution
required a number of non-trivial modifications, most notably, (i) that the potential is
based on the maximum fitness such that at least a proportion of γ of the individuals have
at least this fitness (for a suitable constant 0 < γ < 1) instead of the maximum fitness
among all individuals, and (ii) that the arguments resembling the fitness level method
had to be replaced by a true drift argument. This approach was extended in [DL16a]
to give a general “level-based” runtime analysis result. A simplified version of this level
theorem was recently given in [CDEL18].

What comes closest to our work with respect to the use of two-dimensional potential
functions is [DDK18], where a self-adjusting bit-wise mutation strength for functions
defined not over bit strings, but over {0, . . . , r − 1}n for some r > 2 is discussed. The
potential function defined in (6) in [DDK18, Section 7] is too complicated to be described

7

here in detail, but it also follows the pattern used in this work, namely that the potential
(to be minimized) is the sum of the fitness distance and a penalty for mutation strengths
deviating from their currently ideal value. This potential function, however, does not
admit an easy interpretation of the type “fitness distance plus expected damage from
improper mutation strength” as in our work. Consequently, the proof that indeed the
desired progress is obtained with respect to this potential function is a lengthy (more
than 4 pages) case distinction. Apparently unaware of the conference version [DDK16],
a similar approach, also with a slightly complicated potential function, was developed
in [AAG18] to analyze the (1+1) ES with 1/5 success rule.

A very general approach was recently published in [Row18]. When a process
X0, X1, . . . admits several distance functions d1, . . . , dm such that, for all i ∈ [1..m],
the i-th distance satisfies E[di(Xt+1) | Xt] ≤ A(d1(Xt), . . . , dm(Xt))> for a given matrix
A, then under some natural conditions the first time until all distances are zero can
be bounded in terms of a suitable eigenvalue of A. The assumptions on the distance
functions and the matrix A are non-trivial, but [Row18] provides a broad selection of
applications of this method. For our problem, we would expect that this method can be
employed as well, however, this would also need an insight similar to the main insight of
our approach, namely that the expected new fitness can be estimated in a linear fashion
from the current fitness and the distance of the current rate from the ideal value.

1.4 Organization of This Work

This paper is structured as follows. In Section 2, we define the self-adaptive (1,λ) EA
proposed in this work. In Section 3 we provide the technical tools needed on our analysis,
among them two new results on occupation probabilities. Section 4 presents the main
theorem. Its proof considers two main regions of different fitness, which are dealt with
in separate subsections. We finish with some conclusions.

2 The (1,λ) EA With Self-Adapting Mutation Rate

We now define precisely the (1,λ) EA with self-adaptive mutation rate proposed in this
work. This algorithm, formulated for the minimization of pseudo-boolean functions
f : {0, 1}n → R, is stated in pseudocode in Algorithm 1.

To encode the mutation rate into the individual, we extend the individual represen-
tation by adding the rate parameter. Hence the extended individuals are pairs (x, r)
consisting of a search point x ∈ {0, 1}n and the rate parameter r, which shall indicate
that r/n is the mutation rate this individual was created with.

The extended mutation operator first changes the rate to either r/F or Fr with equal
probability (F > 1). It then performs standard bit mutation with the new rate.

In the selection step, we choose from the offspring population an individual with best
fitness. If there are several such individuals, we prefer individuals having the smaller
rate r/F , breaking still existing ties randomly. In this winning individual, we replace
the rate by F if it was smaller than F to ensure that in the next iterations, the lower

8

of the two rates is at least 1. We replace the rate by rmax = F blogF (n/(2F))c, that is, the
largest power of F not exceeding n/(2F), if it was larger than this number. This ensures
that in the next iteration, the larger of the two rates is not larger than n/2 and that the
rate remains a power of F despite the cap.

We formulate the algorithm to start with any initial mutation rate rinit such that
F ≤ rinit ≤ n/(2F) and rinit is a power of F . For the result we shall show in this work,
the initial rate is not important, but without this prior knowledge we would strongly
recommend to start with the smallest possible rate rinit = F . Due to the multiplicative
rate adaptation, the rate can quickly grow if this is profitable. On the other hand, a too
large initial rate might lead to an erratic initial behavior of the algorithm.

For the adaptation parameter, we shall use F = 32 in our runtime analysis. Having
such a large adaptation parameter eases the already technical analysis, because now
the two competing rates r/F and Fr are different enough to lead to a significantly
different performance. For a practical application, we suspect that a smaller value of F
is preferable as it leads to a more stable optimization process. The choice of the offspring
population size depends mostly on the degree of parallelism one wants to obtain. Clearly,
λ should be at least logarithmic in n to prevent a too quick loss of the current-best
solution. For our theoretical analysis, we require λ ≥ C lnn for a sufficiently large
constant C.

Algorithm 1 The (1,λ) EA with self-adapting mutation rate, adaptation parameter
F > 1, and initial mutation rate rinit/n such that rinit ∈ [F, n/(2F)] and rinit = F i for
some i ∈ N.

Select x0 uniformly at random from {0, 1}n.
Set r0 ← rinit.
for t← 1, 2, . . . do

for i← 1, . . . , λ do
Choose rt,i ∈ {rt−1/F, Frt−1} uniformly at random.
Create xt,i by flipping each bit in x independently with probability rt,i/n.

Choose i ∈ [1..λ] such that f(xt,i) = minj∈[1..λ] f(xt,j); in case of a tie, prefer an i
with rt,i = rt−1/F ; break remaining ties randomly.

(xt, rt)← (xt,i, rt,i).
Replace rt with min{max{F, rt}, F blogF (n/(2F))c}.

The main result of this work is a mathematical runtime analysis of the performance of
the algorithm proposed above on the classic benchmark function OneMax : {0, 1}n →
R defined by OneMax(x) = ∑n

i=1 xi for all x = (x1, . . . , xn) ∈ {0, 1}n. Since such
runtime analyses are by now a well-established way of understanding the performance
of evolutionary algorithms, we only briefly give the most important details and refer the
reader to the textbook [Jan13].

The aim of runtime analysis is predicting how long an evolutionary algorithm takes
to find the optimum or a solution of sufficient quality. As implementation-independent
performance measure usually the number of fitness evaluations performed in a run of

9

the algorithm is taken. More precisely, the optimization time of an algorithm on some
problem is the number of fitness evaluations performed until for the first time an optimal
solution is evaluated. Obviously, for a (1,λ) EA, the optimization time is essentially λ
times the number of iterations performed until an optimum is generated.

As in classic algorithms analysis, our main goal is an asymptotic understanding
of how the optimization time depends on the problems size n. Hence all asymptotic
notation in the paper will be with respect to n tending to infinity.

3 Technical Tools

In this section, we listed several tools which are used in our work. Most of them are
standard tools in the runtime analysis of evolutionary algorithms, however, we also prove
two new results on occupation probabilities at the end of this section.

3.1 Elementary Estimates

We shall frequently use the following estimates.

Lemma 1. (a) For all x ∈ R, 1 + x ≤ ex.

(b) For all x ∈ [0, 2
3], e−x−x2 ≤ 1− x. Moreover, for all x ∈ [0, 1

2], e−3x/2 ≤ 1− x.

(c) Weierstrass product inequality: For all p1, . . . , pn ∈ [0, 1],

1−
n∑
i=1

pi ≤
n∏
i=1

(1− pi).

All these estimates can be proven via elementary means. We note that the second
estimate was proven in [DGWY17, Lemma 8(c) of the arxiv version]. The third is
usually proven via induction, a possibly more elegant proof via the union bound was
given in [Doe18c].

3.2 Probabilistic Tools

In our analysis, we use several standard probabilistic tools including Chernoff bounds.
All these can be found in many textbook or the book chapter [Doe18c]. We mention the
following variance-based Chernoff bound due to Bernstein [Ber24], which is less common
in this field (but can be found as well in [Doe18c]).

Theorem 2. Let X1, . . . , Xn be independent random variables. Let b be such that
E(Xi) − b ≤ Xi ≤ E(Xi) + b for all i = 1, . . . , n. Let X = ∑n

i=1Xi. Let
σ2 = ∑n

i=1 Var(Xi) = Var(X). Then for all λ ≥ 0,

Pr(X ≥ E(X) + λ) ≤ exp
(
− λ2

2(σ2 + 1
3bλ)

)
,

Pr(X ≤ E(X)− λ) ≤ exp
(
− λ2

2(σ2 + 1
3bλ)

)
.

10

We shall follow the common approach of estimating the expected progress and trans-
lating this via so-called drift theorems into an estimate for the expected optimization
time. We use the variable drift theorem independently found in [Joh10, MRC09] in
slightly generalized form.

Theorem 3 (Variable Drift, Upper Bound). Given a stochastic process, let (Xt)t≥0 be
a sequence of random variables obtained from mapping the random state at time t to a
finite set S ⊆ {0} ∪ [xmin, xmax], where xmin > 0. Let T be the random variable that
denotes the earliest point in time t ≥ 0 such that Xt = 0. If there exists a monotone
increasing function h(x) : [xmin, xmax]→ R+ such that for all x ∈ S with Pr(Xt = x) > 0
we have

E(Xt −Xt+1 | Xt = x) ≥ h(x)
then for all x′ ∈ S with Pr(X0 = x′) > 0

E(T | X0 = x′) ≤ xmin
h(xmin) +

∫ x′

xmin

1
h(x) dx.

Finally, we mention an elementary fact which we shall use as well. See [DD18a,
Lemma 1] for a proof.

Lemma 4. Let X ∼ Bin(n, p) and k ∈ [0..n]. Then E(X | X ≥ k) ≤ E(X) + k.

3.3 Occupation Probabilities

To analyze the combined process of fitness and rate in the parent individual, we need a
tool that translates a local statement, that is, how the process changes from one time
step to the next, into a global statement on the occupation probabilities of the process.
Since in our application the local process has a strong drift to the target, Theorem 7
from [KLW15] is too weak. Also, we cannot assume that the process in each step moves at
most some constant distance. For that reason, we need the following stronger statement.

Theorem 5 (Theorem 2.3 in [Haj82]). Suppose that (Fk)k≥0 is an increasing family of
sub-σ-fields of F and (Yk)k≥0 is adapted to (Fk). If

E

(
eη(Yk+1−Yk);Yk > a | Fk

)
≤ ρ and E

(
eη(Yk+1−1);Yk ≤ a | Fk

)
≤ D,

then
Pr
(
Yk ≥ b | F0

)
≤ ρkeη(Y0−b) + 1− ρk

1− ρ De
η(a−b).

We apply this theorem in the following lemma that fit into the case in this paper.

Lemma 6. Consider a stochastic process Xt, t ≥ 0, on R such that for some p ≤ 1/25
the transition probabilities for all t ≥ 0 satisfy Pr(Xt+1 ≥ Xt + a | Xt > 1) ≤ pa+1 for
all a ≥ −1/2 as well as Pr(Xt+1 ≥ a+ 1 | Xt ≤ 1) ≤ pa+1 for all a ≥ 0. If X0 ≤ 1 then
for all t ≥ 1 and k > 1 it holds that

Pr(Xt ≥ 1 + k) ≤ 11 (ep)k .

11

Proof. We aim at applying Theorem 5. There are two cases depending on Xt: for Xt ≤ 1,
using the monotonicity of eλ(Xt+1−1) with respect to Xt+1 − 1, we obtain

D(p, λ) := E(eλ(Xt+1−1) | Xt ≤ 1) ≤ E(eλmax{dXt+1−1e,0} | Xt ≤ 1)

= e0 Pr(Xt+1 ≤ 1 | Xt ≤ 1) +
∞∑
a=1

eλa Pr(a < Xt+1 ≤ a+ 1 | Xt ≤ 1)

≤ e0 +
∞∑
a=1

eλa Pr(Xt > a | Xt ≤ 1),

using the assumption that Pr(Xt+1 ≥ a+ 1 | Xt ≤ 1) ≤ pa+1 for all a ≥ 0 then

D(p, λ) ≤ 1 +
∞∑
a=1

eλapa = 1 + eλp

1− eλp ;

and for Xt > 1, using the monotonicity of eλ(Xt+1−Xt) respect to Xt+1 −Xt, we have

ρ(p, λ) := E(eλ(Xt+1−Xt) | Xt > 1) ≤ E(eλmax{d2(Xt+1−Xt)e/2,−1/2} | Xt > 1)

= e−λ/2 Pr
(
Xt+1 −Xt ≤ −

1
2 | Xt > 1

)
+
∞∑
a=0

eλa/2 Pr
(
a− 1

2 < Xt+1 −Xt ≤
a

2 | Xt > 1
)

≤ e−λ/2 +
∞∑
a=0

eλa/2 Pr
(
Xt+1 −Xt >

a− 1
2 | Xt > 1

)
,

using the assumption that Pr(Xt+1 ≥ Xt + a | Xt > 1) ≤ pa+1 for all a ≥ −1/2 then

ρ(p, λ) := e−λ/2 +
∞∑
a=0

eλa/2p(a+1)/2 = p1/2

(eλp)1/2 + p1/2

1− (eλp)1/2 .

Using λ := ln(1/(ep)) such that eλp = 1/e, we have

ρ := ρ(p, λ) ≤ e1/2p1/2 + p1/2

1− e−1/2 ≤
e1/2

5 + 1/5
1− e−1/2 < 0.84,

D := D(p, λ) ≤ 1 + (1/e)/(1− 1/e) < 1.6.

Theorem 2.3, inequality (2.8) in [Haj82] yields with a := 1 and b := 1 + k that

Pr(Xt ≥ 1 + k | X0) ≤ ρte−λ(1+k−X0) + 1
1− ρDe

−λk

≤ (ep)k + 1.6
1− 0.84(ep)k = 11(ep)k.

12

For the simpler case of a random process that runs on the positive integers and
that has a strong drift to the left, we have the following estimate for the occupation
probabilities.

Lemma 7. Consider a random process defined on the positive integers 1, 2, Assume
that from each state i different from 1, only the two neighboring states i − 1 and i + 1
can be reached (and there is no self-loop on state i). From state 1, only state 2 can be
reached and the process can stay on state 1. Let pi be an upper bound for the transition
probability from state i to state i + 1 (valid in each iteration regardless of the past).
Assume that

pi−1 ≥
pi

1− pi
holds for all i ≥ 2. Assume that the process starts in state 1. Then at all times, the
probability to be in state i is at most

qi :=
i−1∏
j=1

pj
1− pj

,

where as usual we read the empty product as q1 = 1.

Proof. The claimed bound on the occupation probabilities is clearly true at the start
of the process. Assume that it is true at some time. By this assumption and the
assumptions on the process, the probability to be in state i ≥ 2 after one step is at most

qi−1pi + qi+1 = qi−1

(
pi + pi−1

1− pi−1

pi
1− pi

)
≤ qi−1

(
pi

1− pi
+ pi−1

1− pi−1

pi
1− pi

)
= qi−1

(
pi(1− pi−1)

(1− pi−1)(1− pi)
+ pi−1

1− pi−1

pi
1− pi

)
≤ qi−1

pi
(1− pi−1)(1− pi)

≤ qi−1
pi−1

1− pi−1
= qi.

Trivially, the probability to be in state 1 after one step is at most q1 = 1. Hence, by
induction over time, we see that qi is an upper bound for the probability to be in state
i at all times.

4 Main Result and Proof

We can now state precisely our main result and prove it.

Theorem 8. Let λ ≥ C lnn for a sufficiently large constant C > 0 and λ = nO(1). Let
F = 32. Then the expected number of generations the self-adapting (1,λ) EA takes to
optimize OneMax is

O

(
n

log λ + n logn
λ

)
.

This corresponds to an expected number of fitness evaluations of O(nλ/ log λ+ n logn).

13

The proof of this theorem is based on a careful, technically demanding drift analysis
of both the current OneMax-value kt (which is also the fitness distance, recall that our
goal is the minimization of the objective function) and the current rate rt of the parent.
In very rough terms, a similar division of the run as in [DGWY18] into regions of large
OneMax-value, the far region (Section 4.1), and of small OneMax-value, the near
region (Section 4.2) is made. The middle region considered in [DGWY18] is subsumed
under the far region here.

In the remainder of our analysis, we assume that n is sufficiently large, that λ ≥ C lnn
with a sufficiently large constant C, and that λ = nO(1).

4.1 The Far Region

In this section, we analyze the optimization behavior of our self-adaptive (1,λ) EA in the
regime where the fitness distance k is at least n/λ. Due to our assumption λ ≥ C lnn, it
is very likely to have at least one copy of the parent among λ offspring when r = O(lnλ).
Thus the (1,λ) EA works almost the same as the (1 + λ) EA when r is small, but can
lose fitness in general. The following lemma is crucial in order to analyze the drift of the
rate depending on k, which follows a similar scheme as with the (1 + λ) EA proposed
in [DGWY18].

Roughly speaking, the rate leading to optimal fitness progress is n for k ≥ n/2 +
ω(
√
n ln(λ)), n/2 for k = n/2 ± o(

√
n log(λ)), and then the optimal rate quickly drops

to r = Θ(log λ) when k ≤ n/2− εn.
To ease the representation, we first define two fitness dependent bounds L(k) and

R(k).

Definition 9. Let n/ lnλ < k < n/2 and F = 32. We define L(k) := (F ln(en/k))−1

and U(k) := n(2n− k)/(22(n− 2k)2).

According to the definition, both L(k) and R(k) monotonically increase when k
increases.

Lemma 10. Let F = 32. Consider an iteration of the self-adaptive (1,λ) EA with
current fitness distance k and current rate r.

Then:

(a) If n/ lnλ < k and F ≤ r ≤ L(k) lnλ, the probability that all best offspring have
been created with rate Fr is at least 1−O(ln3(λ)/λ1/(4 ln lnλ)).

(b) If k < n/2 and n/(2F) ≥ r ≥ U(k) lnλ, then the probability that all best offspring
have been created with rate r/F is at least 1− λ1−(23/22)r/(U(k) lnλ).

of Lemma 10 part (a). Let q(k, i, r) and Q(k, i, r) be the probability that standard bit
mutation with mutation rate p = r/n creates from a parent with fitness distance k an
offspring with fitness distance exactly k − i and at most k − i, respectively. Then

q(k, i, r) =
k−i∑
j=0

(
k

i+ j

)(
n− k
j

)
pi+2j(1− p)n−i−2j (1)

14

and Q(k, i, r) = ∑k
j=i q(k, j, r). We aim at finding i such that Q(k, i, Fr) ≥ ln(λ)/λ while

Q(k, i, r/F) = O(ln3(λ)/λ1+1/4(ln lnλ)). Then we use these to bound the probability that
at least one offspring using rate Fr obtains a progress of i or more while at the same
time all offspring using rate r/F obtains less than i progress. Let i∗ be the largest i such
that Q(k, i, Fr) ≥ ln(λ)/λ. Using the fact that ln(1− x) ≥ −x− x2 for all 0 < x < 2/3,
we notice that (1 − Fp)n−i ≥ (1 − Fp)n ≥ e−Fr−(Fr)2/n. By the assumption that
r ≤ L(k) lnλ ≤ lnλ, we obtain (Fr)2/n = O(ln2 λ/n) = o(1). Thus (1− Fp)n−i = (1−
o(1))e−Fr. We also notice that

(k
i

)
= (k/i)((k−1)/(i−1)) · · · (k−i+1) > (k/i)i−1(k−i) =

(k/i)i((k − i)i/k) > 2(k/i)i for 2 < i < k − 2. Thus for i > 2 we can bound Q(k, i, Fr)
by

Q(k, i, Fr) ≥ q(k, i, Fr) ≥
(
k

i

)
(Fp)i(1− Fp)n−i ≥

(
k

i
· Fr
n

)i
e−Fr. (2)

Let i = max{(F − 1)r, lnλ/(8 ln lnλ)}. We prove i∗ ≥ i by distinguishing between two
cases according to which argument maximizes i.

If i = lnλ/(8 ln lnλ), then r ≤ i/(F − 1) and Fr ≤ 2i. Referring to inequality (2)
and using the fact that k/n ≥ 1/ lnλ, i < lnλ, and ln ln(λ) > 1, we obtain

ln(Q(k, i, Fr)) ≥ i ln
(
k

in

)
− Fr ≥ −i ln(ln2 λ)− 2i

= −2i ln lnλ− 2i > −4i ln lnλ = − lnλ
2 ≥ ln

(lnλ
λ

)
and thus Q(k, i, Fr) ≥ ln(λ)/λ.

If i = (F − 1)r, then r ≥ lnλ/(8(F − 1) ln lnλ) since F is a constant. Using
r ≤ L(k) lnλ, we obtain lnλ ≥ ln(en/k)Fr which is equivalent to (k/en)Fr ≥ 1/λ.
Furthermore, (k/n)i > (k/n)Fr since i = (F − 1)r < Fr. Thus

Q(k, i, Fr) ≥
(
k

i
· Fr
n

)i
e−Fr ≥

(
F

F − 1

)(F−1)r (k

en

)Fr
≥ 2r

(
k

en

)Fr
≥ lnλ

λ
.

Since Q(k, i, r) is decreasing in i, we obtain i∗ ≥ max{(F − 1)r, lnλ/(8 ln lnλ)}. Using
a Chernoff bound and recalling that the expected number of flipped bits is bounded by
FL(k) lnλ ≤ lnλ/ ln(2e), we notice that i∗ ≤ lnλ. This upper bound will be used to
estimate Q(k, i∗, F r)/Q(k, i∗ + 1, F r) in the following part of the proof.

We now prove that Q(k, i∗, r/F) = o(1/λ). By comparing each component in
q(k, i, r/F) and q(k, i, Fr), and applying Lemma 1 (b) to estimate (1 − Fr/n)n and
(1− r/(Fn))n with r = O(lnλ) = o(n1/2) for large enough n, we obtain

q(k, i, Fr)
q(k, i, r/F) ≥ F

2i (1− Fr/n)n
(1− r/(Fn))n

≥ (1− o(1)
)
F 2ie−(F−1/F)r > F 2ie−Fr.

Therefore Q(k, i∗, F r)/Q(k, i∗, r/F) ≥ F 2i∗e−Fr = exp(2i∗ lnF − Fr) ≥ exp(2i∗ lnF −
Fi∗/(F − 1)) > exp(3i∗) > λ1/(4 ln lnλ), where in the first inequality, we use the

15

fact that i∗ ≥ (F − 1)r. To prove Q(k, i∗, r/F) = O(ln3(λ)/λ1+1/4(ln lnλ)), we
first show Q(k, i∗, F r)/Q(k, i∗ + 1, F r) = O(ln2 λ). Then we use this to bound
Q(k, i∗, F r) = O(ln3(λ)/λ) according to the definition of i∗. Finally we obtain
Q(k, i∗, r/F) ≤ Q(k, i∗, F r)/λ1/(4 ln lnλ) = O(ln3(λ)/λ1+1/4(ln lnλ)). It remains to bound
Q(k, i∗, F r)/Q(k, i∗ + 1, F r). We show that the majority of q(k, i, r) are from the
first 3r terms in the summation of equation (1). Let q(k, i, r)j denote the j-th item(k
i+j
)(n−k

j

)
pi+2j(1− p)n−i−2j in equation (1). Then

q(k, i, r)j+1
q(k, i, r)j

= k − i− j
i+ j + 1 ·

n− k − j
j + 1 · p2 · (1− p)−2 ≤ r2

(i+ j + 1)(j + 1) .

If j > 3r, then r2/((i+ j + 1)(j + 1)) < 1/9, and thus

q(k, i, r) ≤
 3r∑
j=0

q(k, i, r)j

+ q(k, i, r)3r

 k−i∑
j=3r+1

(1/9)j−3r

≤

 3r∑
j=0

q(k, i, r)j

+ q(k, i, r)3r ·
1/9

1− 1/9

=

3r−1∑
j=0

q(k, i, r)j

+ 9
8 · q(k, i, r)3r ≤

9
8

3r∑
j=0

q(k, i, r)j .

We notice that

q(k, i+ 1, r)j
q(k, i, r)j

=
(k
i+j+1

)(n−k
j

)
pi+2j+1(1− p)n−i−2j−1(k

i+j
)(n−k

j

)
pi+2j(1− p)n−i−2j

= (k − i− j)p
(i+ j + 1)(1− p) ,

using the fact that ∑3r
j=0 q(k, i, r)j ≤ q(k, i, r) ≤ (9/8)∑3r

j=0 q(k, i, r)j for all (k, i, r), we
compute

q(k, i∗ + 1, F r)
q(k, i∗, F r) ≥

∑3Fr
j=0 q(k, i∗ + 1, F r)j

(9/8)∑3Fr
j=0 q(k, i∗, F r)j

≥ 8
9 ·

k − i∗ − 3Fr
i∗ + 3Fr + 1 ·

p

1− p.

Since i∗ ≥ (F − 1)r, i∗ ≤ lnλ, and k ≥ n/ lnλ = ω(lnλ), we obtain

q(k, i∗ + 1, F r)
q(k, i∗, F r) = Ω

(
kp

i∗

)
= Ω

(
kr

i∗n

)
= Ω

(1
ln2 λ

)
.

Consequently we have q(k, i∗, F r)/Q(k, i∗ + 1, F r) ≤ q(k, i∗, F r)/q(k, i∗ + 1, F r) =
O(ln2 λ) and

Q(k, i∗, F r)
Q(k, i∗ + 1, F r) = 1 + q(k, i∗, F r)

Q(k, i∗ + 1, F r) = O(ln2 λ).

So finally Q(k, i∗, F r) = O(ln3(λ)/λ) due to the definition of i∗, and

Q(k, i∗, r/F) ≤ Q(k, i∗, F r)
F 2i∗e−Fr

= O

(
ln3 λ

λ · λ1/(4 ln lnλ)

)
.

16

A simple union bound shows that with probability 1−O(ln3(λ)/λ1/(4 ln lnλ)), no offspring
of rate r/F manages to obtain a progress of i∗ or more. However, the probability that an
offspring has rate Fr and obtains at least i∗ progress is ln(λ)/(2λ). Thus the probability
that no offspring generated with rate Fr achieves a progress of at least i∗ is at most
(1− ln(λ)/(2λ))λ ≤ λ−1/2 = o(ln3(λ)/λ1/(4 ln lnλ)). This proves the first statement of the
lemma.

of Lemma 10 part (b). For r̃ ∈ {r/F, Fr} let the random variable X(k, r̃) denote the
number of flipped bits in k ones and Y (k, r̃) denote the number of flipped bits in
n − k zeros when applying standard bit mutation with probability p = r̃/n. Let
Z(k, r̃) := Y (k, r̃) − X(k, r̃) denote the improvement in fitness. Let Z∗(k, r̃) de-
note the minimal Z(k, r̃) among all offspring which apply rate r̃. E(Z(k, r̃)) =
(n−k)r̃/n−kr̃/n = (n−2k)r̃/n. Our aim is to find a β such that Pr (Z(k, r/F) ≤ β) =
Θ(1) while Pr (Z(k, Fr) ≤ β) = o(1/λ), and use this to obtain a high value for
Pr (Z∗(k, r/F) < Z∗(k, Fr)).

Let β := E(Z(k, r/F)). We notice that Pr(X(k, r/F) > E(X(k, r/F)) −
1) ≥ 1/2 since the median of binomial distribution X(k, r/F) is bE(X(k, r/F)c or
dE(X(k, r/F)e. Applying Lemma 8 in [Doe18b] to Pr(Y (k, r/F) < E(Y (k, r/F)) − 1)
with E(Y (k, r/F)) = Ω(lnλ) = ω(1) by assumption r ≥ U(k) lnλ and E(Y (k, r/F)) <
(n− k)/2, we obtain for n sufficiently large that

Pr
(
Y (k, r/F) < E(Y (k, r/F))− 1

)
≥ 1

2 −
√

n− k
2πb(n− k)pc(n− k − b(n− k)pc) >

2
5 . (3)

Thus Pr(Z(k, r/F) ≤ β) > (1/2)(2/5) = 1/5. We use Bernstein’s inequality (version
Lemma 14) to bound Pr (Z(k, Fr) ≤ β) and obtain

Pr
(
Z(k, Fr) ≤ E(Z(k, Fr))−∆

)
≤ exp

(
− ∆2

2(Var(Z(k, Fr)) + ∆/3)

)
for all ∆ > 0.

With ∆ = E(Z(k, Fr))− β = (n− 2k)(Fr/n− r/(Fn)) = (n− 2k)(F 2 − 1)r/(Fn) and
Var(Z(k, Fr)) = Fr(1− Fr/n) < Fr, we compute

Pr
(
Z(k, Fr) ≤ β

)
≤ exp

(
−1

2 ·
(F 2 − 1)2(n− 2k)2r2

F 2n2(Fr + (n− 2k)(F 2 − 1)r/(3Fn))

)

= exp
(
−1

2 ·
(F 2 − 1)2(n− 2k)2r

F 3n2 + Fn(n− 2k)(F 2 − 1)/3

)

≤ exp
(
−3

2 ·
(F 2 − 1)2(n− 2k)2r

3F 3n2 + F 3n(n− 2k)

)

= exp
(
−3

4 ·
(F 2 − 1)2(n− 2k)2r

F 3n(2n− k)

)
.

17

Given F = 32 and r ≥ U(k) lnλ then

Pr
(
Z(k, Fr) ≤ β

)
< exp

(
−23.9(n− 2k)2r

n(2n− k)

)
< λ

− 23.9r
22U(k) lnλ .

With a simple union bound, we obtain Pr(Z∗(k, Fr) ≤ β) < λPr(Z(k, Fr) ≤ β) <
λ1−23.9r/(22U(k) lnλ). The probability that an offspring has rate r/F and obtains β is at
least (1/2)(1/5) = 1/10. Thus the probability that no offspring generated with r/F has
a Z-value of at least β is at most (1− 1/10)λ = exp(−Θ(λ)). Therefore Pr(Z∗(k, Fr) <
Z∗(k, r/F)) < λ1−23.9r/(22U(k) lnλ)(1−exp(−Θ(λ))) = o(λ1−23r/(22U(k) lnλ)), which means
with probability at least 1−λ1−(23r/(22U(k) lnλ) all best offspring have been created with
rate r/F .

Lemma 10 will be crucial in order to bound the expected progress on fitness in the
far region. We notice that lnλ = o(

√
n) in the lemma we may allow r > lnλ when k is

large and r = Θ(n) when k = n/2−Θ(
√
n lnλ). It is easy to show a positive progress on

fitness for r < lnλ since there will be sufficiently many offspring that do not flip zeroes.
When r ≥ lnλ we expect all offspring to flip zeros, but we can still show a positive
drift when k > 7n/20, as stated in the following lemma. The idea is that the standard
variation of the number of flipping ones is

√
kr/n(1− r/n) = Θ(

√
r). This makes a

deviation compensating bad flips among the remaining n− 2k zeros likely enough.

Lemma 11. Let 7n/20 ≤ k < n/2, F = 32 and α = 10−4. Assume r ≤
min{n2 lnλ/(12(n − 2k)2), n/(2F)}. Assume that from a parent with fitness distance
k we generate an offspring using standard bit mutation with mutation rate p = r/n.
Then the probability that this offspring has a fitness distance of at most k − s with
s := α(min{lnλ, r}+ (n− 2k)r/n), is at least λ−0.98.

Proof. We first look at the case when r < 1/(2α). In this case s ≤ α(r+ (n− 2k)r/n) ≤
α(2r) < 1. Then the probability that this offspring has a fitness distance of k−1 > k−s
is at least (

k

1

)(
r

n

)1 (
1− r

n

)n−1
= Θ(e−r) = ω(λ−0.98).

Therefore it remains to consider r ≥ 1/(2α).
Let random variables X and Y denote the number of flips in k one-bits and (n− k)

zero-bits, respectively, in an offspring using rate p = r/n. Then X − Y is the decrease
of fitness distance. X and Y follow binomial distributions Bin(k, p) and Bin(n − k, p),
respectively. Let

B(x) := Pr(X = x) =
(
k

x

)
px(1− p)k−x for all x ∈ {0, 1, . . . , k},

F (x) := Pr(X ≥ x) =
k∑

i=dxe
B(i) for all x ∈ [0, k].

18

Since r ≥ 1/(2α) ≥ 5000 and n ≤ 20k/7, then p = r/n ≥ 5000 ·7/(20k) = 1750/k. Using
this and the fact that p ≤ 1/(2F), we apply Lemma 8 in [Doe18b] and obtain

Pr(X > E(X)) > 1
2 −

√
k

2πbkpc(k − bkpc) >
1
2 −

√
1

2kp >
2
5

Similarly Pr(Y ≤ E(Y)) = 2/5. Since E(X − Y) = kp − (n − k)p = −(n − 2k)p, we
bound

Pr
(
X − Y ≥ s

)
≥ Pr

(
X ≥ E(X) + (n− 2k)p+ s

)
Pr
(
Y ≤ E(Y)

)
≥ 2

5F
(
kp+ (n− 2k)p+ s

)
.

Let δ := d(n − 2k)p + se, u := kp and ũ := due. We notice that u = rk/n ≥
(1/(2α))(7/20) = 1750. Furthermore, we have δ < ũ− 2 < u since

δ = d(n− 2k)p+ se < (1 + α)(n− 2k)p+ αmin{lnλ, r}+ 1

≤ (1 + α)n− 2k
n

r + αr + 1 ≤
(

(1 + α) 3
10 + α

)
r + 1

= 3 + 13α
10 · n

k
· u+ 1 < 3 + 13α

10 (3u) + 1 < 0.91u+ 1

= u− 0.09u+ 1 ≤ u− (0.09 · 1750− 1) = u− 156.5.

We aim at proving F (u+δ) = ω(λ−0.98) to obtain this lemma. If F (u+δ) = Θ(1) then the
conclusion holds. It remains to consider F (u+δ) = o(1) while F (u)−F (u+δ) ≥ 2/5−o(1)
as stated in equation (3). For any x ∈ Z≥u we have

B(x+ 1)
B(x) = k − x

x+ 1 ·
p

1− p ≤
u− up

u− up+ 1− p < 1.

Since ũ = due then B(ũ) > B(ũ + 1) > · · · > B(k), and thus F (u + δ) ≥ δB(ũ + 2δ)
as well as F (u) − F (u + δ) ≤ δB(ũ). Using the fact that p/(1 − p) = u/(k − u) and
ũ− 1 < u, we see that

B(ũ+ 2δ)
B(ũ) = (k − ũ) · · · (k − (ũ+ 2δ) + 1)

(ũ+ 1) · · · (ũ+ 2δ) · p2δ

(1− p)2δ

≥ (k − (ũ− 1)− 2δ)2δ

(ũ+ 1) · · · (ũ+ 2δ) ·
u2δ

(k − u)2δ ≥
(

1− 2δ
k − u

)2δ u2δ

(ũ+ 1) · · · (ũ+ 2δ) .

We compute the following factorials using Robbins’s Stirling’s approximation in [Rob55]

(ũ+ 2δ)! ≤
√

2π(ũ+ 2δ)
(
ũ+ 2δ
e

)ũ+2δ
exp

(1
12(ũ+ 2δ)

)
,

ũ! ≥
√

2πũ
(
ũ

e

)ũ
exp

(1
12ũ+ 1

)
.

19

Notice that 12ũ+ 1 < 12(ũ+ 2δ), we obtain

1
(ũ+ 1) · · · (ũ+ 2δ) = ũ!

(ũ+ 2δ)! ≥
√

ũ

ũ+ 2δ
ũũe2δ

(ũ+ 2δ)ũ+2δ ≥
√

ũ

ũ+ 2δ
uũe2δ

(ũ+ 2δ)ũ+2δ .

Therefore

B(ũ+ 2δ)
B(ũ) ≥

(
1− 2δ

k − u

)2δ
√

ũ

ũ+ 2δ
uũ+2δe2δ

(ũ+ 2δ)ũ+2δ

=
√

ũ

ũ+ 2δ exp
(

2δ ln
(

1− 2δ
k − u

)
+ (ũ+ 2δ) ln

(
u

ũ+ 2δ

)
+ 2δ

)

≥
√

ũ

ũ+ 2δ exp
(

2δ ln
(

1− 2δ
k − u

)
+ (ũ+ 2δ) ln

(
1− 2δ + 1

ũ+ 2δ

)
+ 2δ

)
.

We notice that 2δ/(k − u) ≤ 2δ/(2Fu− u) = 2δ/(63u) < 2/63 < 1/2 and (2δ + 1)/(ũ+
2δ) < (2δ + 1)/(3δ + 2) < 2/3. Referring to Lemma 1, we compute

2δ ln
(

1− 2δ
k − u

)
≥ −3

2 ·
4δ2

k − u = − 6δ2

u/p− u ≥ −
6δ2

2Fu− u ≥ −
δ2

10u,

(ũ+ 2δ) ln
(

1− 2δ + 1
ũ+ 2δ

)
≥ −(2δ + 1)− (2δ + 1)2

ũ+ 2δ ≥ −2δ − 4δ2

u
− 3,

B(ũ+ 2δ)
B(ũ) ≥

√
ũ

ũ+ 2δ exp
(
−41δ2

10u − 3
)
≥
√

1
3e
−3 exp

(
−41δ2

10u

)
. (4)

where the last inequality used that ũ/(ũ+ 2δ) ≥ 1/3 since δ ≤ ũ. Using n/k ≤ 20/7 and
r ≤ n2 lnλ/(12(n− 2k)2), we obtain

41δ2

10u = 41n
10k ·

d(1 + α)((n− 2k)/n)r + αmin{lnλ, r}e2
r

≤ 41n
10k ·

((1 + α)((n− 2k)/n)r + αmin{lnλ, r}+ 1)2

r

≤ 41n
10k ·

(
((1 + α)((n− 2k)/n)r + αmin{lnλ, r})2

r
+ 2(1 + α)n− 2k

n
+ 2α+ 1

r

)

≤ 82
7 ·

(
(1 + α)2

(
n− 2k
n

)2
r + 2(1 + α)n− 2k

n
α lnλ+ α2 lnλ+ 1

)

≤ 82
7 ·

(
(1 + α)2 lnλ

12 + 3(1 + α)α
5 lnλ+ α2 lnλ+ 1

)
< 0.978 lnλ+ 82

7 .

Plugging the last estimate into inequality (4), we obtain B(ũ + 2δ)/B(ũ) = ω(λ−0.98).
Thus F (u + δ)/(F (u) − F (u + δ)) = ω(λ−0.98) and F (u + δ) = ω(λ−0.98) which proves
the statement in this lemma.

20

For k < 7n/20, we need a more careful analysis, where we will estimate the expected
progress on fitness averaged over the random rates the algorithm may have at a time.
Hence, we assume a fixed current fitness but a random current rate and compute the
average drift of fitness with respect to the distribution on the rates. This approach
is similar to the one by Jägersküpper [Jäg11], who computes the average drift of the
Hamming distance to the optimum when the (1+1) EA is optimizing a linear function,
where the average is taken with respect to a distribution on all search points with a
certain Hamming distance.

Of course, we want to exploit that a rate yielding near-optimal fitness progress is
used most of the time such that too high (or too low) rates do not have a significant
impact. To this end, Lemma 6 about occupation probabilities will be crucial.

We now define two fitness dependent bounds rl(k) and ru(k). We show in Lemma 13
that for any rate, if r/F or Fr is within the bounds, then the algorithm has logarithmic
drift on fitness.

Definition 12. Let n/ lnλ < k < n/2 and F = 32. We define

ru(k) :=
{
n2 ln(λ)/(12(n− 2k)2) if 7n/20 ≤ k < n/2,
10U(k) ln(λ)/9 if n/ lnλ < k < 7n/20.

rl(k) :=
{
L(k) ln(λ)/2 if n/ lnλ ≤ k < n/2,
F if n/λ < k < n/ lnλ.

where L(k) and U(k) are defined as in Definition 9.

We notice that Lemma 10 can be applied to all r > ru or r < rl because for all
7n/20 ≤ k < n/2, we have ru/(U(k) lnλ) = 22n/(12(2n−k)) ≥ 22/(12(2−0.35)) = 10/9.
For k < n/ lnλ, we set rl to the minimal possible value of r. Finally note that ru is
non-decreasing in k due to the monotonicity of n2/(n− 2k)2 and U(k).

Lemma 13. Let n/λ < k < n/2 with F = 32. Let ∆(k, r) denote the fitness gain of the
best offspring using rate in {r/F, Fr}.

(a) The negative drift of fitness for too high rates r ≥ Fru is bounded by

E(∆(k, r)) ≥ −(1 + o(1)
)n− 2k

n

r

F
.

(b) When k ≥ 7n/20 the positive drift of fitness for good rate r ≤ Fru is bounded by

E(∆(k, r)) ≥ (1− o(1)
) · 10−4

(
n− 2k
n

· r
F

+ min
{

lnλ, r
F

})
.

(c) When n/λ < k < 7n/20 the positive drift of fitness for good rate r ≤ Fru is
bounded by

E(∆(k, r)) ≥ (1− o(1)
)

min
{
r

F
,

lnλ
F ln(en/k)

}
.

21

Proof. The probability of using rate r/F is 1/2. Thus with probability at least 1 −
(1/2)λ = 1 − o(1/n3), at least one offspring uses rate r/F . For this offspring, the
expected loss is (n− 2k)r/(Fn). If the complementary event (hereinafter called failure)
of probability o(1/n3) happens, we estimate ∆(k, r) pessimistically by −n. This proves
the first statement.

To prove the second item, we take i = 10−4((n − 2k)r/(Fn) + min{lnλ, r/F}).
According to Lemma 11, the probability that an offspring uses rate r/F and achieves
progress of i or more is at least λ−0.98/2. Thus for λ offspring, we obtain Pr(∆(k, r) ≥
i) ≥ 1− (1−λ−0.98/2)λ = 1−O(exp(−λ0.02/2)) = 1− o(1). If the failure event happens,
we estimate ∆(k, r) pessimistically by −(n − 2k)r/(Fn) = O(i). Thus the statement
holds.

For the third item, we take i := min{r, ln(λ)/ ln(en/k)}/F . Notice that for k < 7n/20
we have ru(k) < ru(7n/20) = (25/27) lnλ < 0.93 lnλ. Applying Lemma 1(b) with
r/F ≤ ru(k) = o(

√
n) we obtain (1 − r/(Fn))n ≥ (1 − o(1))e−r/F . Therefore the

probability that one offspring using rate r/F < 0.93 lnλ makes a progress of at least i
is lower bounded by (assuming n large enough)(

k

i

)(
r

Fn

)i (
1− r

Fn

)n
≥
(
k

i
· r
Fn

)i (
(1− o(1))e−

r
F

)

>

(
k

en

)i
e−0.94 lnλ ≥ λ−1/F−0.94 > λ−0.98.

Thus for λ offspring, we obtain Pr(∆(k, r) ≥ i) ≥ 1− (1− λ−0.98/2)λ = 1− o(1/ ln(λ)).
If the failure event happens we estimate ∆(k, r) pessimistically by −(n − 2k)r/(Fn) =
O(lnλ). The contribution of failure events is o(1) which is also o(i). Therefore the third
statement holds.

As discussed, our aim is to show that rt/F or Frt stays in the right range frequently
enough such that the overall average drift is still logarithmic. We notice that small rates
rt < rl intuitively do not have a negative effect, therefore we focus on the probability
that rt < Fru. Since ru monotonically decreases when k decreases, we need to analyze
whether r still stays in the right range if there are large jumps in fitness distance k.
Intuitively, the speed at which the mutation rate is decreased is much higher than than
the decrease of fitness distance. To make this rigorous, we first look at the probability
of large jumps, as detailed in the following lemma.

Lemma 14. Assume r ≤ n/2 and let Z(k, r) denote the fitness-distance increase when
applying standard bit mutation with probability p = r/n to an individual with k ones.
Then

Pr (Z(k, r) ≤ (n− 2k)r/n−∆) ≤ exp
(

−∆2

2(1− p)(r + ∆/3)

)
,

Pr (Z(k, r) ≥ (n− 2k)r/n+ ∆) ≤ exp
(

−∆2

2(1− p)(r + ∆/3)

)
.

22

Proof. Without loss of generality, we assume that the individual has k leading ones and
n − k trailing zeros. Let random variables Z1, . . . , Zn be the contribution to fitness
distance increase in each position after standard bit mutation. Then

Pr(Zi = −1) = p and Pr(Zi = 0) = 1− p for all 1 ≤ i ≤ k;
Pr(Zi = 1) = p and Pr(Zi = 0) = 1− p for all k < i ≤ n.

The random variables Z1, . . . , Zn are independent and Z(k, r) = ∑n
i=1 Zi. Similarly as

in the proof of Lemma 10 (b), we have E(Z(k, r)) = −kp + (n − 2k)p = (n − 2k)p and
Var(Z(k, r)) = ∑n

i=1 Var(Zi) = np(1 − p) = (1 − p)r. To apply Bernstein’s inequality
(Theorem 2), we construct Z̃i such that Z̃i = Zi + p for all 1 ≤ i ≤ k and Z̃i = Zi − p
for all k < i ≤ n. Therefore E(Z̃i) = 0 and Var(Z̃i) = Var(Zi).

Pr(Z̃i = −1 + p) = p and Pr(Z̃i = p) = 1− p for all 1 ≤ i ≤ k;
Pr(Z̃i = 1− p) = p and Pr(Z̃i = −p) = 1− p for all k < i ≤ n.

By assuming r ≤ n/2, we have p ≤ 1/2 and thus p − 1 ≤ Z̃i ≤ 1 − p for all 1 ≤ i ≤ n.
Using the fact that ∑n

i=1 Z̃i = Z(k, r) − E(Z(k, r)), Theorem 2 yields with b := 1 − p
and σ2 := (1− p)pn = (1− p)r that

Pr
(

n∑
i=1

Z(k, r)− E(Z(k, r)) ≥ ∆
)
≤ exp

(
−∆2

2(1− p)(r + ∆/3)

)
.

Similarly the lower tail bound holds.

We now use Lemma 14 to show that once rt ≥ Fru(kt), there will be a strong drift
for rt/ru(kt) to decrease down to 1.
Lemma 15. Let kt < n/2 and F = 32. Let τ := logF (3/

√
10) and Xt :=

logF (rt/ru(kt))− τ with ru(kt) defined in Definition 12, we have

Pr (Xt+1 −Xt ≥ a | Xt > 1) ≤ λ−Ω(a+1) for all a ≥ −1/2,
Pr (Xt+1 − 1 ≥ a | Xt ≤ 1) ≤ λ−Ω(a+1) for all a > 0.

Proof. Using the fact that rt+1 ∈ {Frt, rt/F}, we see that

Xt+1 −Xt ∈
{

1 + logF
(
ru(kt)
ru(kt+1)

)
,−1 + logF

(
ru(kt)
ru(kt+1)

)}
.

According to the monotonicity that ru(k) increases with respect to k, we notice that
kt ≥ kt+1 is a necessary condition for Xt+1 − Xt ≥ 1. We also notice that Xt ≥ τ
is equivalent to rt/ru(kt) ≥ 3/

√
10, which is sufficient to apply Lemma 10(b) since

ru(k) ≥ (10/9)U(k) lnλ as defined in Definition 12.
We first consider the case kt+1 ≥ kt (equivalent to ru(kt+1) ≥ ru(kt)). In this case

Xt+1 − Xt ≤ 1 thus Pr(Xt+1 ≥ 1 ∩ kt+1 ≥ kt | Xt < 0) = 0 and Pr(Xt+1 − 1 ≥
1 ∩ kt+1 ≥ kt | Xt ≤ 1) = 0. It remains to consider

Pr(Xt+1 −Xt ≥ a ∩ kt+1 ≥ kt | Xt > 1) with − 1/2 ≤ a ≤ 1, and
Pr(Xt+1 − 1 ≥ a ∩ kt+1 ≥ kt | 0 ≤ Xt ≤ 1) with 0 < a < 1.

23

If rt+1 = rt/F then Xt+1 −Xt ≤ −1. Clearly Xt+1 −Xt ≥ a ≥ −1/2 is impossible. It
also makes Xt+1 ≥ 1 with 0 ≤ Xt ≤ 1 impossible. Thus, the two probabilities above are
bounded by Pr(rt+1 = Frt ∩ kt+1 ≥ kt | Xt ≥ τ) ≤ Pr(rt+1 = Frt | Xt ≥ τ) = λ−Ω(1)

according to Lemma 10(b).
It remains to consider kt+1 < kt (equivalent to ru(kt+1) < ru(kt)). We make a case

distinction based on the value of (n− 2kt)2.
Case 1: (n − 2kt)2 < 2Fn lnλ. In this case, ru(kt) = n2 lnλ/(12(n − 2kt)2) ≥

n/(24F) which means that Xt < 1 for all rates r ≤ n/(2F). Thus Pr(Xt+1 − Xt <
a ∩ kt+1 < kt | Xt > 1) = 0. When computing Pr(Xt+1 − 1 ≥ a ∩ kt+1 < kt | Xt ≤ 1),
we notice that Xt+1 ≥ 1 + a implies logF ((n/2F)/ru(kt+1)) ≥ 1 + a+ τ . Furthermore,

n/2F
ru(kt+1) = 12(n− kt+1)2

(2F)n lnλ ≥ F 1+a+τ = 3F 1+a
√

10
if and only if (n−kt+1)2 ≥ 16F 1+an lnλ√

10
.

Therefore a necessary condition for Xt+1 ≥ 1 + a while Xt ≤ 1 and (n− kt)2 ≤ 2Fn lnλ
is kt − kt+1 ≥ ((4F (1+a)/2/101/4 −

√
2F)/2)

√
n lnλ > (6F a/2 − 4)

√
n lnλ. We notice

that E(kt+1 − kt) > 0, applying Lemma 14 and using a union bound we obtain for
∆ := (6F a/2 − 4)

√
n lnλ > 2

√
n lnλ that

Pr (kt − kt+1 > ∆ | Xt ≤ 1) = Pr (kt+1 − kt < −∆ | Xt ≤ 1)
< Pr (kt+1 − kt < E(kt+1 − kt)−∆ | Xt ≤ 1)

< λ exp
(

−∆2

2(n/2 + ∆/3)

)
< λ exp

(
−∆2

n+ ∆

)
= λ−Ω(1+a).

Therefore Pr(Xt+1 − 1 ≥ a ∩ kt+1 < kt | Xt ≤ 1) = λ−Ω(1+a).
Case 2: (n− 2kt)2 ≥ 2Fn lnλ. Let

σ2
t := ru(kt)/ru(kt+1) = (n− 2kt+1)2/(n− 2kt)2,

then Xt+1 −Xt ∈ {1 + logF (σ2
t),−1 + logF (σ2

t)}. We rewrite for Xt > 1 and a ≥ −1/2

Pr (Xt+1 −Xt ≥ a ∩ kt+1 < kt | Xt)

≤Pr
(
rt+1 = rt/F ∩ σ2

t ≥ F a+1 | Xt

)
+ Pr

(
rt+1 = Frt ∩ σ2

t ≥ F a−1 | Xt

)
≤Pr

(
σ2
t ≥ F a+1 | Xt

)
+ Pr

(
σ2
t ≥ F a−1 | Xt

)
1a>2 + Pr (rt+1 = Frt | Xt)1a≤2, (5)

as well as for Xt ≤ 1 and a > 0

Pr (Xt+1 − 1 ≥ a ∩ kt+1 < kt | Xt) = Pr (Xt+1 −Xt ≥ 1 + a−Xt ∩ kt+1 < kt | Xt)

≤Pr
(
rt+1 = rt/F ∩ σ2

t ≥ F a+2−Xt | Xt

)
+ Pr

(
rt+1 = Frt ∩ σ2

t ≥ F a−Xt | Xt

)
≤Pr

(
σ2
t ≥ F a+1 | Xt

)
+ Pr

(
rt+1 = Frt ∩ σ2

t ≥ F a−Xt | Xt

)
, (6)

24

where the second item in the above inequality (6) is furthermore bounded in (7) by
making a distinction between Xt ≥ τ ∧ a ≤ 2 and the remaining cases.

Pr
(
rt+1 = Frt ∩ σ2

t ≥ F a−Xt | Xt

)
≤Pr

(
σ2
t ≥ F a−Xt | Xt

)
1Xt<τ∨a>2 + Pr (rt+1 = Frt | Xt)1Xt≥τ∧a≤2. (7)

Applying Lemma 10(b) we see that both Pr (rt+1 = Frt | Xt)1a≤2 from (5) and
Pr (rt+1 = Frt | Xt)1Xt≥τ∧a≤2 from (7) are of order λ−Ω(1). This Ω(1) exponent is
sufficient to prove the lemma for a ≤ 2. We also notice that the event σ2

t ≥ F a−τ

subsumes all the other remaining events in inequalities (5), (6), and (7). Therefore it
remains to validate Pr

(
σ2
t ≥ F a−τ | Xt

) ≤ λ−Ω(a+1) for a ≥ 0. To ease representation,
let s := F (a−τ)/2 − 1 ≥ F−τ/2 − 1 = (10/9)1/4 − 1 > 1/40. Since s = Ω(1 + a), proving
Pr(σt ≥ 1 + s | Xt) = O

(
λ−Ω(s)

)
is sufficient to conclude the analysis of this case and

therefore the lemma. We rewrite

Pr (σt ≥ 1 + s | Xt) = Pr
(
n− 2kt+1
n− 2kt

≥ 1 + s | Xt

)
= Pr (kt − kt+1 ≥ s(n− 2kt)/2 | Xt) .

Let ∆ := (s/2 + p)(n − 2kt) for 0 < p ≤ 1/2. Applying Lemma 14 and using a union
bound we obtain

Pr (σt ≥ 1 + s | Xt) < λ exp
(

max
0<p≤1/2

{
−∆2

2(1− p)(pn+ ∆/3)

})

<λ exp
(

max
0<p≤1/2

{
−∆

2(1 + 1/3)1pn≤∆ + −∆2

2(1− p)(pn)(1 + 1/3)1pn>∆

})

<λ exp
(
− min

0<p≤1/2

{
∆
3 1pn≤∆ + ∆2

3(1− p)(pn)1pn>∆

})

We notice that ∆ ≥ (s/2)
√

2Fn ln(λ) = 4s
√
n ln(λ) and (s/2+p)2/((1−p)p) attains the

minimal value s(2 + s) > 2s when p = s/(2(s+ 1)). Using the fact that (n− 2kt)2/n ≥
2F ln(λ) and s > 1/40,

Pr (σt ≥ 1 + s | Xt) < λ exp
(
−min

{
s
√
n lnλ1pn≤∆ + (2s)2F lnλ

3 1pn>∆

})
< λ exp

(
−min

{
s
√
n ln(λ)1pn≤∆ + 42s ln(λ)1pn>∆

})
= λ−Ω(s).

We finally use Lemma 15 and Lemma 6 to obtain a logarithmic drift on average.
After this major effort, it is a matter of a relatively straightforward drift analysis of
fitness distance to obtain the following bound on the time to leave the far region.

25

Theorem 16. The (1,λ) EA with self-adapting mutation rate reaches a OneMax-value
of k ≤ n/λ within an expected number of O(n/ log λ) iterations, regardless of the initial
mutation rate. Furthermore, with probability at least 1 − o(1), it holds kt′ ≤ 2n/λ and
rt′ ≤ (7/9) lnλ for some t′ = O(n/ log λ).

Proof. We first argue that within an expected number of O(
√
n) generations we will have

kt < n/2. Consider the case that kt ≥ n/2 and let the independent random variables X
and Y denote the number of flips in kt one-bits and (n−kt) zero-bits, respectively, in an
offspring using rate p = r/n. Referring to [Doe18c] for p ∈ [2/n, 1/2] we obtain, using
similar arguments in the proof Lemma 10(b) that Pr(X ≥ E(X)+1) = Θ(1) and Pr(Y ≤
E(Y)) = Θ(1). Then Pr(X − Y ≥ E(X) − E(Y) + 1) = Θ(1). Since E(X) ≥ E(Y),
the probability that an offspring choose rates r̃ ∈ {rt/F, Frt} with 2 ≤ r̃ ≤ n/2 and
have X − Y ≥ 1 is at least 1/2 ·Θ(1) = Θ(1). Since the best of λ = Ω(lnn) offspring is
selected, the probability that kt+1 ≤ kt−1 holds is at least 1−exp(−Θ(λ)) = 1−o(1/n2).
By an additive drift theorem, it takes O(max{k0−n/2, 0}) = O(

√
n) iterations from the

initial random search point to reach a parent with fitness distance less than n/2.
Without loss of generality, we can now assume k0 < n/2. Consider the number of

one-bits flips X and zero-bits flips Y in a parent with fitness distance kt < n/2 and
rate 2 ≤ r < n/2. As argued above Pr(X − Y ≥ E(X) − E(Y) + 1) = Θ(1). Since
kt− (E(X)−E(Y)) = kt− (kt− (n−kt))r/n = kt(1− r/n) + (n−kt)(r/n) < n/2 for all
r < n/2, the probability that an offspring has fitness distance at most n/2− 1 is Θ(1).
Thus for λ = Ω(lnn) offspring, we have Pr(kt+1 < n/2) ≥ 1−exp(−Θ(λ)) = 1−o(1/n2).
Since that we aim at proving a hitting time of O(n/ lnλ) and only consider phases of
this length, we may furthermore assume kt < n/2 for all t ≥ 0, which only introduces
an o(1) error term by a union bound.

Define random variables Xt := logF (rt/ru(kt)) − τ with τ = logF (3/
√

10) < 0. We
notice that when (n − 2kt)2 ≤ 2Fn lnλ we have Xt < 1. If rt ≥ Fru(kt), according to
Lemma 10(b), with probability 1− o(1) we have rt−1 = rt/F . Therefore within O(lnn)
iterations we will obtain Xt ≤ 1.

The idea of the remaining proof is to compute an average drift for any fixed distance
using the distribution of mutation rates, and then to apply the variable drift theorem to
obtain a runtime bound. Applying Lemma 15 and Lemma 6 to the Xt, we see that

Pr(rt ≥ F 1+a+τru(kt)) ≤ λ−Ω(a) for all a > 0.

Let r(i), i ∈ Z, denote the rate between (F iru(k), F i+1ru(k)] corresponding to fitness
distance k. Thus, for all i ≥ 1, we obtain

Pr
(
r(i)
)
≤ Pr

(
rt > F iru(kt)

)
≤ Pr

(
rt ≥ F 1+(i−1−τ)+τru(kt)

)
≤ λ−Ω(i−1−τ).

According to Lemma 13, E(∆(k, r(i))) ≥ −(1 + o(1))(n − 2k)r(i)/n) for i ≥ 1 and
E(∆(k, r(0))) ≥ Ω((n − 2k)r(0)/n). The contribution of the negative drift is a lower
order term compared to the contribution of the positive drift. Let ∆(k) denote the

26

average drift at distance k. We obtain

∆(k) =
∑
i∈Z

E(∆(k, r(i))) Pr(r(i)) ≥ (1− o(1))
∑
i≤0

E(∆(k, r(i))) Pr(r(i)).

We notice that ∑i≤0 Pr(r(i)) = 1 − o(1) and E(∆(k, r(i))) > 0 for all i ≤ 0. According
to Lemma 10(a), with at least constant probability rt = Ω(rl(kt)). Since for any rate
r = Ω(rl(k)) and r ≤ Fru the drift is E(∆(k, r)) ≥ Θ(ln(λ)/ ln(n/kt)) according to
Lemma 13, the average drift satisfies

∆(k) ≥ Θ(ln(λ)/ ln(n/k)).

Using the variable drift theorem (Theorem 3) and the fact that

∫ n/2

n/λ

ln(n/k)
ln(λ) dk =

(
k ln(n)− k ln(k) + k

)∣∣n/2
n/λ

lnλ = Θ(n)
lnλ ,

the expected time to reduce the fitness distance to at most n/λ conditioning on the
assumption that kt < n/2 for some t = O(

√
n) and kt′ < n/2 for all t ≤ t′ = O(n/ log λ) is

then Θ(n/ log λ). Thus the runtime bound of O(n/ log λ) holds with probability Ω(1) due
to Markov’s inequality. Using a restart argument we then obtain the claimed expected
runtime since the expected number of repetition of a phase of length O(n/ log λ) is O(1).

To prove the second statement of the theorem, we notice that the corresponding
upper bound on the rate for kt = o(n) is ru(kt) ≤ (10/9)(U(kt)) lnλ = ((10/9)(2/22) +
o(1)) lnλ < (1/9) lnλ and the occupation probability satisfies Pr(rt ≤ (7/9)F lnλ | kt =
o(n)) ≥ 1 − λ−Ω(1) = 1 − o(1). Therefore with probability 1 − o(1), the first iteration
such that kt ≤ 2n/λ has rate rt ≤ (7/9) lnλ. We then argue for this iteration that
with high probability it satisfies rt+1 = rt/F and kt+1 ≤ 2n/λ. The probability of
being no worse than parent using mutation probability p ≤ (7/9) ln(λ)/n is at least
(1− p)n ≥ (1− o(1))λ−7/9 > λ−8/9. Therefore,

Pr(kt+1 ≤ kt | rt ≤ (7/9)F lnλ) ≥ 1−
(
1− λ−8/9/2

)λ
= 1− o(1).

Furthermore Pr(rt+1 = Frt | kt = o(n), rt ≥ (7/9) lnλ) ≤ λ1−(23/22)7 = o(1). Then we
obtain an iteration with kt ≤ 2n/λ and rt ≤ (7/9) lnλ with probability 1− o(1).

4.2 The Near Region

We now analyze the regime in which the fitness distance satisfies k = kt = O(n/λ), the
so-called near region. In this region, the probability that a fixed offspring created with
rate r is better than its parent is Θ(1

λ
r
er), see Lemma 17. Consequently, the probability

to make progress is only Θ(rer). This implies that the optimal rate r is constant (and
by taking care of the constants, we shall see that the optimal rate value for the parent
is r = F , the minimal possible value).

27

The superiority of small rate values is sufficiently strong to show that the rate drifts
towards these values (Lemmas 19 and 20), however, for small values of λ we cannot show
that in this regime, which takes at least an expected number of Ω(n/λ) iterations, it
never happens that the rate increases to a value which lets all offspring be worse than
the parent (this happens from r ≥ Cλ for a suitable constant C on). Consequently, we
cannot exclude the possibility that the algorithms loses fitness occasionally.

To analyze the progress of the algorithm (proof of Lemma 22), we devise a potential
function based on the current fitness and rate and show that the expected progress
with respect to this potential is high enough. This allows to use the multiplicative drift
theorem to argue that within a desired time, we reach the optimum.

More a technical issue is that, naturally, we also have to argue that the process does
not leave the near region except with small probability. This is done in Lemma 21.

We start with determining the probability of making progress in one mutation and
similar events.

Lemma 17. Let 0 < k ≤ 3n/λ, and r = o(λ1/4). Let x ∈ {0, 1}n with fitness distance
f(x) = k. Let y ∈ {0, 1} be obtained from x by flipping each bit independently with
probability r/n. Consider the probabilities

p−(r) := Pr(f(y) < f(x)),
p0(r) := Pr(f(y) = f(x)),
p′(r) := Pr(∀i ∈ [1..n] : xi = 0 =⇒ yi = 0),

that is, the probabilities that the offspring is better than the parent, that is is equally good,
and that none of the 0-bits of the parent were flipped in the generation of the offspring.

Then

(1− o(1))krn e
−r < p−(r) < (1 + o(1))krn e

−r,

(1− o(1))e−r < p0(r) < (1 + o(1))e−r,
(1− o(1))e−r < p′(r) < (1 + o(1))e−r.

Proof. We regard the number X of flips in the k one-bits (“good flips” which reduce the
fitness distance) and the number Y of flips in the (n− k) zero-bits of the parent (“bad
flips” which increase the fitness distance). Then p−(r) is at least

p−(r) ≥ Pr(X = 1, Y = 0) = kr

n

(
1− r

n

)n−1
≥ (1− o(1))kr

n
e−r,

where the last estimate uses Lemma 1 (b).

28

Since r = o(λ1/4), we have kr/n = o(1), kr2/n = o(1), and (kr2/n)1.5 = o(kr/n).
This allows to bound p−(r) from above by

p−(r) < Pr(X ∈ {1, 2}, Y = 0) +
2k−1∑
i=3

Pr(X + Y = i,X > Y)

<
kr

n

(
1− r

n

)n−1
+ k2r2

2n2

(
1− r

n

)n−2

+
2k−1∑
i=3

(i− 1)
(
r

n

)i (
1− r

n

)n−i(k

di/2e

)(
n− k
bi/2c

)

<
kr

n

(
1− r

n

)n−2 (
1− r

n
+ kr

2n

)
+

2k−1∑
i=3

(
r

n

)i (
1− r

n

)n−i
(kn)i/2

< (1 + o(1))kr
n

(
1− r

n

)n
+

2k−1∑
i=3

(
kr2

n

)i/2 (
1− r

n

)n−i
< (1 + o(1))kr

n
e−r.

Similarly for p0(r) we have

p0(r) > Pr(X = Y = 0) =
(

1− r

n

)n
≥ (1− o(1))e−r.

Using again the fact that kr2/n = o(1), we have

p0(r) = Pr(X = Y = 0) +
k∑
i=1

Pr(X = Y = i)

=
(

1− r

n

)n
+

k∑
i=1

(
k

i

)(
n− k
i

)(
r

n

)2i (
1− r

n

)n−2i

< e−r +
k∑
i=1

(
kr2

n

)i
e−r < (1 + o(1))e−r.

Finally, for p′(r) we compute p′(r) = Pr(Y = 0) = (1− r
n)n−k = (1± o(1))e−r.

Lemma 18. Consider one iteration of the self-adaptive (1,λ) EA starting with an indi-
vidual of fitness distance k and rate r = o(λ−1/4). Then the probability that there is an
offspring which uses rate r/F and which inherits all 0-bits from the parent (and thus is
at least as good as the parent), is at least 1− exp(−1

2λ(1− o(1))e−r/F).

Proof. We compute

1− (1− 1
2p
′(rF))λ ≥ 1− (1− 1

2(1− o(1))e−r/F)λ ≥ 1− exp(−1
2λ(1− o(1))e−r/F).

29

The following lemma is the counterpart of Lemma 10 (b), where now the optimal
rate is the smallest possible value F . Again, we regard the event that all best offspring
are created with the higher rate, since—due to our tie-breaking rule—only this leads to
an increase of the rate. Different from Lemma 10 (b), now the probability of making a
rate-increasing step is no o(1) in general. If kt = Θ(n/λ) and rt = O(1), we still have a
small constant probability of increasing the rate.
Lemma 19. Let 0 < k ≤ 3n/λ and F = 32. The probability that all best offspring have
been created with rate Fr is at most (1 + o(1))λkFrn e−Fr when r < lnλ and it is at most
exp(−9r) for all r.

Proof. Let first r < lnλ. According to Lemma 17,

p−(Fr) ≤ (1 + o(1))Fkr
n

e−Fr and p0(r/F) ≥ (1− o(1))e−r/F .

Therefore with probability at least 1− λp−(Fr) = 1− (1 + o(1))λFkrn e−Fr, no offspring
of rate Fr is better than its parent. Furthermore, by Lemma 18, with probability at
most exp(−(1 − o(1))1

2λ exp(−r/F)) ≤ exp(−(1 − o(1))1
2λ

1−1/F) there is no offspring
using rate r/F and being equally good as its parent. Hence, the probability that a best
offspring has been created with rate r/F is more than

1− (1 + o(1))λFkr
n

e−Fr − exp(−(1− o(1))1
2λ

1−1/F) > 1− (1 + o(1))λFkr
n

e−Fr.

Note that for r < lnλ, the second bound follows from the first. If r ≥ lnλ, then the
second bound follows from applying Lemma 10 to U(k) = 1/11 + o(1).

We shall use the lemma above twice, first to bound the probability to have a certain
rate (which will be needed to estimate the negative fitness drift) and second to estimate
that a suitable two-dimensional drift is of the right order. We start with the occupation
probability argument for the rate values.
Lemma 20. Consider a run of the self-adaptive (1,λ) EA started with some search point
of fitness distance k0 ≤ 2n/λ and rate r0 = F . While the current search point of the
algorithm has a fitness distance of at most 3n/λ, the probability that the current rate is
F i is at most exp(−8F i−1) for all i ∈ N≥2.

Proof. If the current search point has fitness distance at most 3n/λ and the current rate
is r, then by Lemma 19 the rate in the next iteration is Fr with probability at most
exp(−9r); note that this estimate is not affected by a possible cap of the rate at rmax.

Consequently, the random process describing the rates is such that from rate F i, i ∈
[1.. logF (rmax)], we go to rate F i+1 with probability at most pi = exp(−9F i). Otherwise,
we go to rate F i−1 if i ≥ 2 and stay at rate F if i = 1. By Lemma 7, note that we
obviously have pi/(1 − pi) ≤ pi−1, in each iteration (such that the fitness distance has
never gone above 3n/λ) and for each i ≥ 2 the probability qi that the current rate is F i
is at most

qi ≤
i−1∏
j=1

pj
1− pj

≤ pi−1
1− pi−1

≤ exp(−8F i−1).

30

We use these occupation probabilities to estimate the drift away from the optimum
(“negative drift”). From this we derive the statement that with high probability, the
fitness distance does not increase to above 3n/λ in nλ iterations.

Lemma 21. In the situation of Lemma 20, the probability that the process within the
first nλ iterations reaches a search point (as parent individual) with fitness distance more
than 3n/λ, is o(1).

Proof. Consider a run of the self-adjusting (1,λ) EA starting in the situation of
Lemma 20. Denote by Xt the fitness distance at time t. We start by bounding the
negative drift E(max{0, Xt −Xt−1}) of the X process while it is at most 3n/λ. If the
current rate is r, then by Lemma 18 with probability at least 1−exp(−1

2λ(1−o(1))e−r/F)
there is an individual that used rate r/F and that did not flip any zero-bit into a one-bit.
Let us call this event “A” and note that, naturally, under this event the drift cannot be
negative as the individual without flipped zeroes has at an least as good fitness as the
parent.

We now analyze the case that A does not hold. Consider an individual conditional on
that it uses rate r/F and at least one zero-bit was flipped into a one-bit. The number of
such bad bits follows a distribution (X | X ≥ 1) with X ∼ Bin(n−Xt−1, r/Fn) and has
expectation at most 1+r/F by Lemma 4. For an individual using rate rF , the expected
number of bad flips is (n− k) rFn ≤ rF . Consequently, noting that 1 + r/F ≤ rF when
r ≥ F and F ≥

√
2, the expected number of bad flips in all individuals (conditional on

not A) is at most λrF and this is an upper bound on the negative drift.
In summary, in an iteration starting with rate r, the negative drift is at most

λrF exp(−1
2λ(1− o(1))e−r/F). (8)

With Lemma 20, we can estimate the probability to have a certain rate. Hence the
expected negative drift is

E(max{0, Xt −Xt−1}) ≤
logF rmax∑

i=1
Pr(r = F i)λF iF exp(−1

2λ(1− o(1))e−F i/F)

≤
∞∑
i=2

exp(−8F i−1)λF i+1 exp(−1
2λ(1− o(1))e−F i−1)

+ λF 2 exp(−1
2λ(1− o(1))e−1).

Note that1 for i ≥ dlogF (lnλ) + 1 − 1
5e = i∗, we have λ ≤ exp(2F i−1) and thus

exp(−8F i−1)λF i+1 = exp(−(1 − o(1))8F i−1)λ ≤ exp(−(1 − o(1))6F i−1). Naturally,
1In this part of the proof, we use the fact that F = 32. This does not mean that for other not too

small values of F we would not obtain similar results, but it increases the readability to work with this
concrete value.

31

exp(−1
2λ(1− o(1))e−F i−1) ≤ 1. Hence

∞∑
i=i∗

exp(−8F i−1)λF i+1 exp(−1
2λ(1− o(1))e−F i−1) ≤

∞∑
i=i∗

exp(−(1− o(1))6F i−1)

≤ exp(−(1− o(1))6F i∗−1) ≤ λ−3(1−o(1)).

For i < logF (lnλ)+1− 1
5 , we have exp(−1

2λ(1−o(1))e−F i−1) ≤ exp(−1
2(1−o(1))λ1/2)

and exp(−8F i−1)λF i+1 = O(λ). Hence

i∗−1∑
i=1

exp(−8F i−1)λF i+1 exp(−1
2λ(1− o(1))e−F i−1)

≤ O(log log λ)O(λ) exp(−1
2(1− o(1))λ1/2) = o(λ−3).

Consequently, E(max{0, Xt −Xt−1}) ≤ λ−3(1−o(1)).
Define inductively Y0 = 0 and Yt = Yt−1 + max{0, Xt − Xt−1}, if max{Xs | s ∈

[0..t − 1]} ≤ 3n/λ and Yt = Yt−1 otherwise. In other words, the Y process collects all
the moves of the X process that go away from the optimum until the X process goes
above 3n/λ.

By our above computation, we have E(Yt) ≤ tλ−3(1−o(1)). Consequently, by Markov’s
inequality, we have

Pr(Yt ≥ tλ−2) ≤ λ−1+o(1)

for all t ∈ N. In particular, for t = nλ, we have Pr(Yt ≥ n/λ) ≤ λ−1+o(1). Note that
Yt ≤ n/λ implies Xs ≤ 3n/λ for all s ≤ t.

Lemma 22. In the situation of Lemma 20, with probability at least 3
4 there is a T ∗ =

O(n ln(n/λ+ 2)/λ) such that kT ∗ = 0.

Proof. Since we are proving an asymptotic statement, we can assume that n is as large
as we find convenient. Consider a run of the self-adjusting (1,λ) EA from our starting
position. Let T be the first time that the fitness distance is larger than 3n/λ, if such a
time exists, and T = ∞ otherwise. Let kt denote the fitness distance at time t and rt
the rate used in iteration t, if t ≤ T , and (kt, rt) := (0, F) otherwise. We show that the
process (kt, rt) reaches (0, F) in time T ∗ with probability at least 1− 1/e2.

We use a two-dimensional drift argument. Let γ = 2F and define g : N× N→ R by
g(k, r) = k+γ(r−F) for all k and r. We show that if for some t we have (k, r) = (kt, rt),
then (k′, r′) := (kt+1, rr+1) satisfies

E(g(k′, r′)) ≤ g(k, r)(1− λ
10n) (9)

when assuming n to be sufficiently large.
There is nothing to show in the artificial case when k > 3n/λ as we have, by def-

inition, g(k′, r′) = 0 in this case. Among the interesting cases, we consider first that

32

r = F . We obtain an improvement in fitness in particular if there is an offspring that
uses rate r/F = 1, flips exactly one of the k missing bits, and flips no other bit. Hence
the probability to make a positive fitness progress is at least

1− (1− 1
2(1− 1

n)n−1 k
n)λ ≥ 1− (1− k

2en)λ ≥ 1− exp(− kλ
2en) ≥ kλ

3en ,

where we used (1− 1
n)n−1 ≥ 1

e , kλ
2en ≤ 3

2e <
3
2 · 12 and Lemma 1 (b). The expected negative

progress is at most λF 2 exp(−(1 + o(1)) 1
2eλ) as shown in (8). This negative drift can be

assumed to be O(n−2) by taking the implicit constant in the assumption λ = Ω(logn)
large enough. Consequently, E(k′) ≤ k − 1

3e
λk
n +O(n−2).

Regarding r′, we note that by Lemma 19 we have Pr(r′ = F 2) ≤ (1 +
o(1))λkn F 2 exp(−F 2) and r′ = F otherwise. Hence E(r′) = F + (1 + o(1))(F −
1)F 3 λk

n exp(−F 2). Consequently,

E(g(k, r)− g(k′, r′)) ≥ 1
3e
λk
n −O(n−2)− γ(1 + o(1))(F − 1)F 3 λk

n exp(−F 2)
= λk

n (1
3e − γ(F − 1)F 3 exp(−F 2)− o(1))

≥ λk
n

1
10 = g(k, r) λ

10n .

Let now be r > F . Note that the minimum fitness loss among the offspring is at most
the minimum number of bits flipped, which in expectation is at most the number of bits
flipped in the first offspring, which is exactly Fr. Consequently, we have E(k′) ≤ k+Fr.
For r′, we note that by Lemma 19, we have r′ = Fr with probability at most exp(−9r)
and we have r′ = r

F otherwise. Consequently, E(r′) ≤ Fr exp(−9r) + r
F . This yields

E(g(k, r)− g(k′, r′)) ≥ −Fr + γ(r − Fr exp(−9r)− r
F)

≥ r(−F + γ − F exp(−9F 2)− 1
F)

≥ r(−F + γ − 2
F) ≥ 31r = r + 30r ≥ F 2 + 30r

≥ 322 + 30r ≥ λ
10n(k + γr) ≥ g(k, r) λ

10n ,

where we used that λ ≤ 2n; note that λ > 2n gives k0 = 0.
We have thus shown (9) for all (k, r). Since we start the process with a g-potential

of at most g(2n/λ, F) = 2n
λ , the multiplicative drift theorem with tail bounds [DG13,

Theorem 5] gives that after t = d10n
λ (2 + ln(2n

λ))e iterations, we have Pr(g(kt, rt) > 0) ≤
1
e2 . Consequently, with probability 1− 1

e2 , the potential is zero at time t, which implies
kt = 0 or kt > 3n

λ . By Lemma 21, note that λ = Ω(logn) implies t = O(n) = o(nλ),
the probability that kt > 3n

λ is o(1), hence with probability at least 3
4 , we have indeed

kt = 0.

Theorem 23. Assume k0 ≤ 2n
λ and r0 ≤ 7

9 lnλ. Then there is a t = O(n ln(n/λ+ 2)/λ)
such that with probability at least 1

2 , we have kt = 0.

Proof. We first show that with good probability we quickly reach the initial situation
of Lemma 22. The probability of observing R∗ − 1 := logF (r0) − 1 ≤ logF (7

9 lnλ) − 1

33

rate-decreasing steps in a row by Lemma 19 is at least

R∗∏
i=2

(
1− exp(−9F i)

)
≥ 1−

R∗∑
i=2

exp(−9F i) ≥ 1− 0.001

by the Weierstrass product inequality (Lemma 1 (c)).
The probability of not flipping any zero-bits in at least one offspring, resulting in not

increasing fitness distance, is for rate r ≤ 7
9 lnλ at least 1− exp(−1

2λ(1− o(1))e−r/F) by
Lemma 18. By a union bound over R∗ − 1 iterations, the probability of decreasing the
initial rate to F in O(log log λ) iterations without losing fitness is at least 1 − 0.001 −
(R∗ − 1) exp(−1

2λ(1− o(1))e−r/F) ≥ 5/6 for sufficiently large n.
We can now apply Lemma 22 and obtain that with probability at least 3

4 we have
found the optimum within t = O(n ln(n/λ+ 2)/λ) iterations. This show the claim.

4.3 Proof of Theorem 8

From the separate analyses of the two regimes above, we can now easily derive our main
result.

Proof. Starting with arbitrary initialization, Theorem 16 along with a Markov bound
yield that with probability Ω(1) after t = O(n/ log λ) iterations a search point is reached
such that kt ≤ 2n/λ and rt < 0.6(lnλ). Assuming this to happen, the assumptions of
Theorem 23 are satisfied. Hence, after another O((n logn)/λ) iterations the optimum
is found with probability at least 1/2. Altogether, with probability Ω(1) the optimum
is found from an arbitrary initial OneMax-value and rate within T ∗ = O(n/ log λ +
(n logn)/λ) iterations. The claimed expected time now follows by a standard restart
argument, more precisely by observing that after expected O(1) repetitions of a phase
of length T ∗ the optimum is found.

5 Experiments

To gain some insight that cannot be derived from our asymptotic analysis, we performed
a few numerical experiments. To this end we implemented the (1,λ) EA in C++11 using
the default random engine to generate pseudo-random numbers. The runtime is still
measured via the number of generations until optimum is found.

We first see in Figure 1 how fitness distance and mutation strength evolve in one
run for n = 100, λ = 12 and F = 1.2. We used this small value of n to increase the
readability of the figure, we used larger values for n in the remainder. Given the small
value of n, we used a small mutation update factor of 1.2 instead of the value F = 32
used in our theoretical analysis. This run uses Algorithm 1 with rinit = F . We see that
the algorithm prefers large mutation strengths at the beginning and small mutation
strengths near the end of the optimization process. We also see that fitness distance can

34

increase occasionally, in particular, when the rate is higher (in the plot, this happened
in iteration 52 and iteration 88).

In Figure 2, we display the average runtime over 100 runs of different versions of the
(1,λ) EA on OneMax for n = 105 and λ = 100, 200, . . . , 1000. For our self-adaptive
(1,λ) EA (Algorithm 1), we used the update strengths F ∈ {1.2, 2, 32}. We did exper-
iments also for F = 1.05, but the results were clearly inferior, so to not overload this
figure we do not visualize them. We always set the initial mutation strength to rinit = F .
We further regard the classic (1,λ) EA using a static mutation rate of 1

n and the (1,λ) EA
with fitness-dependent mutation rate p = max{ lnλ

n ln(en/d) ,
1
n} as presented in [BLS14].

The results clearly show that the update factor of F = 32 used in our mathematical
analysis gives sub-optimal results for these values of λ and n. Recalling the working
principle of the self-adaptive (1,λ) EA, this is not overly surprising. Even using the min-
imal possible rate r = F , the algorithm creates half of the offspring using an incredible
large mutation probability of F 2/n = 1024/n. It is quite clear that this cannot be overly
effective, but this can also be seen from the figure. The runtime of the self-adaptive
(1,λ) EA with F = 32 is very close to the runtime of the static (1,λ) EA for half the
λ-value, suggesting that half the offspring created by the self-adaptive (1,λ) EA, most
likely the ones created with a mutation rate of F 2/n, had no impact on the process.

The results in Figure 2 also show that the fitness-dependent mutation strength
of [BLS14] leads to a very good performance. In principle, of course, it is clear that
the best fitness-dependent rate gives better results than any self-regulating rate since
the latter needs to use also sub-optimal rates to find out what is the best rate. That the
rate suggested in [BLS14], a paper mostly concerned with asymptotic runtimes, shows
such good results, is remarkable.

To ease the comparison of the algorithms having a similar performance, we plot in
Figure 3 these runtimes relative to the one of the classic (1,λ) EA. This shows that in
most cases, the EAs using a dynamic mutation rate outperform the classic (1,λ) EA. We
also notice that the self-adaptive EA appears to outperform the one using the fitness-
dependent rate for sufficiently large values of λ, e.g., for λ ≥ 200 when F = 1.2.

To understand how our tie-breaking rule influences the performance, we also ran the
self-adapting (1,λ) EA without the bias towards smaller rates when breaking ties. In
Figure 4, we again plot the average runtimes over 100 runs relative to the results of static
(1,λ) EA. We use the three update factors 1.2, 2, and 32 and the two tie-breaking rule
of preferring the smaller rate in case of ties (as in our theoretical analysis) and random
tie-breaking, that is, choosing uniformly at random an offspring with maximal fitness
and taking its rate as the new rate of the algorithm. While for the two larger factors
F = 2 and F = 32, no significant differences are visible, we see that for F = 1.2 random
tie-breaking surpasses biased tie-breaking significantly when λ become larger than 200.

To understand how the tie-breaking rule influences the mutation strength chosen by
the algorithm, we plot in Figure 5 the mutation strength used at each fitness distance
with a setting of n = 10000, λ = 500, and F = 1.2. We regarded one exemplary runs of
our algorithm with each tie breaking rule. In each of these two experiments, we deter-
mined the set of all pairs (dt, rt) such that in iteration t, the fitness distance of the parent

35

Average runtime Biased ties breaking Random ties breaking
rinit = rmin 2137 2011
rinit = rmax 2080 1974

Table 1: Comparison of the average runtime of 100 runs for different initial mutation
rates (n = 10000, λ = 500, and F = 1.2)

0 10 20 30 40 50 60 70 80 90 100 110 120

0

10

20

30

40

50

1

2

3

4

5

6

7

Iteration

Fi
tn

es
s

di
st

an
ce

M
ut

at
io

n
st

re
ng

th
(lo

g F
(r

))

Figure 1: Development of fitness distance and mutation strength in one run of self-
adapting (1,λ) EA on OneMax (n = 100, F = 1.2, λ = 12)

individual was dt and its rate was rt. We then plotted these sets, where to increase the
readability we connected the points to polygonal curve. This visualization clearly shows
that random tie breaking lets the algorithm pick larger rates more frequently. Together
with the better runtimes, it appears that biased tie-breaking has a small negative effect
on the choice of the mutation strength.

Finally, we regard the question of how to set the initial rate rinit. From the general
experience that larger mutation rates are more profitable at the start of the search
process, one could guess that it is a good idea to start with the largest possible rate
rmax = F blogF (n/(2F))c instead of the smallest possible rate rmin = F . For the settings
used in Figure 5, that is, n = 10000, λ = 500, and F = 1.2, we obtain (as average of
100 runs) the runtimes given in Table 1. So indeed an initialization with a larger rate
gives some improvement. Since it might be a particularity of the OneMax test function
that huge rates are initially beneficial, we would not give out a general recommendation
to start with the rate rmax, but only state that we observed moderate performance
differences from using different initial rates, making the initial rate not the most critical
parameter of the algorithm, but still one that can be worth optimizing.

36

100 200 300 400 500 600 700 800 900 1,000

2

3

4

5

6

7

8

Populations size λ

Av
er

ag
e

ru
nt

im
e

ov
er

10
0

ru
ns

(·1
04)

Static (1,λ) EA using p = 1/n

(1,λ) EA using p = max{1/n, ln(λ)/(ln(en/d(x)))/n}
Self-adaptive (1,λ) EA using F = 32
Self-adaptive (1,λ) EA using F = 2
Self-adaptive (1,λ) EA using F = 1.2

Figure 2: Average runtime over 100 runs of five variants of the (1,λ) EA on OneMax
for n = 105.

100 200 300 400 500 600 700 800 900 1,000

0.8

0.9

1

1.1

1.2

Populations size λ

R
el

at
iv

e
av

er
ag

e
ru

nt
im

e
ov

er
10

0
ru

ns

Static (1,λ) EA using p = 1/n

(1,λ) EA using p = max{1/n, ln(λ)/(ln(en/d(x)))/n}
Self-adaptive (1,λ) EA using F = 2
Self-adaptive (1,λ) EA using F = 1.2

Figure 3: Average runtime of three dynamic (1,λ) EAs relative to the average runtime
of the static (1,λ) EA on OneMax (n = 105)

37

100 200 300 400 500 600 700 800 900 1,000

0.8

1

1.2

1.4

1.6

Populations size λ

R
el

at
iv

e
av

er
ag

e
ru

nt
im

e
ov

er
10

0
ru

ns

Self-adp (1,λ) EA using F = 32
Self-adp (1,λ) EA using F = 32 (breaking ties randomly)
Self-adp (1,λ) EA using F = 2
Self-adp (1,λ) EA using F = 2 (breaking ties randomly)
Self-adp (1,λ) EA using F = 1.2
Self-adp (1,λ) EA using F = 1.2 (breaking ties randomly)

Figure 4: Relative average runtime of self-adapting (1,λ) EAs with different tie breaking
rules on OneMax (n = 105)

0 1,000 2,000 3,000 4,000 5,000

0

5

10

15

20

25

30

Fitness distance

M
ut

at
io

n
st

re
ng

th
(lo

g F
(r

))

biased ties breaking
random ties breaking
fitness-dependent rate

Figure 5: Mutation strengths used at a certain fitness distance level in two example
runs of the self-adapting (1,λ) EA on OneMax (n = 10000, λ = 500, F = 1.2). For
comparison, also the fitness-dependent rate proposed in [BLS14] is plotted. Recall that a
mutation strength of r in the self-adapting runs means that in average half the offspring
use the rate r/F and half use the rate rF .

38

Conclusions

In this work, we have designed and analyzed a self-adaptive (1,λ) EA using a sim-
ple scheme for mutating the mutation rate. We have proven that for λ = Ω(logn) it
achieves an expected runtime (number of fitness evaluations) of O(nλ/ log λ+n logn) on
OneMax, which is best-possible for λ-parallel mutation-based unbiased black-box algo-
rithms. Hence, we have identified a simple and natural example where self-adaptation of
strategy parameters in discrete EAs can lead to provably optimal runtimes that beat all
known static parameter settings. Moreover, a relatively complicated and partly unintu-
itive self-adjusting scheme for the mutation rate proposed in [DGWY18] can be replaced
by our simple endogenous scheme.

The analysis of this (1,λ) EA has revealed a non-trivial stochastic process in the cross
product of fitness distances and mutation rates. We have advanced the techniques for
the analysis of such two-dimensional processes, both via two new lemmas on occupation
probabilities and by proposing suitable potential functions allowing to use classic drift
theorems.

Altogether, we are optimistic that our research helps pave the ground for further
uses and analyses of self-adaptive EAs.

Acknowledgments The authors thank Christian Gießen for useful discussions on this
topic. This work was supported by a public grant as part of the Investissement d’avenir
project, reference ANR-11-LABX-0056-LMH, LabEx LMH, in a joint call with Gaspard
Monge Program for optimization, operations research and their interactions with data
sciences. This publication is based upon work from COST Action CA15140, supported
by COST.

References

[AAG18] Youhei Akimoto, Anne Auger, and Tobias Glasmachers. Drift theory in
continuous search spaces: expected hitting time of the (1 + 1)-ES with 1/5
success rule. In Proc. of GECCO ’18, pages 801–808. ACM, 2018.

[AD11] Anne Auger and Benjamin Doerr, editors. Theory of Randomized Search
Heuristics. World Scientific Publishing, 2011.

[ADFH18] Denis Antipov, Benjamin Doerr, Jiefeng Fang, and Tangi Hetet. Runtime
analysis for the (µ + λ) EA optimizing OneMax. In Proc. of GECCO ’18,
pages 1459–1466. ACM, 2018.

[Bäc92] Thomas Bäck. Self-adaptation in genetic algorithms. In Proc. of ECAL ’92,
pages 263–271. MIT Press, 1992.

[BDN10] Süntje Böttcher, Benjamin Doerr, and Frank Neumann. Optimal fixed and
adaptive mutation rates for the LeadingOnes problem. In Proc. of PPSN ’10,
pages 1–10. Springer, 2010.

39

[Ber24] Sergey N. Bernstein. On a modification of Chebyshev’s inequality and of
the error formula of Laplace. Ann. Sci. Inst. Sav. Ukraine, Sect. Math. 1,
4:38–49, 1924.

[BLS14] Golnaz Badkobeh, Per Kristian Lehre, and Dirk Sudholt. Unbiased black-
box complexity of parallel search. In Proc. of PPSN ’14, pages 892–901.
Springer, 2014.

[CDEL18] Dogan Corus, Duc-Cuong Dang, Anton V. Eremeev, and Per Kristian Lehre.
Level-based analysis of genetic algorithms and other search processes. IEEE
Transactions on Evolutionary Computation, 2018. To appear.

[CHS+09] Tianshi Chen, Jun He, Guangzhong Sun, Guoliang Chen, and Xin Yao. A
new approach for analyzing average time complexity of population-based
evolutionary algorithms on unimodal problems. IEEE Transactions on Sys-
tems, Man, and Cybernetics, Part B, 39:1092–1106, 2009.

[DD15] Benjamin Doerr and Carola Doerr. Optimal parameter choices through
self-adjustment: applying the 1/5-th rule in discrete settings. In Proc. of
GECCO ’15, pages 1335–1342. ACM, 2015.

[DD18a] Benjamin Doerr and Carola Doerr. Optimal static and self-adjusting pa-
rameter choices for the (1+(λ, λ)) genetic algorithm. Algorithmica, 80:1658–
1709, 2018.

[DD18b] Benjamin Doerr and Carola Doerr. Theory of parameter control for dis-
crete black-box optimization: Provable performance gains through dynamic
parameter choices. CoRR, abs/1804.05650, 2018.

[DDE13] Benjamin Doerr, Carola Doerr, and Franziska Ebel. Lessons from the black-
box: fast crossover-based genetic algorithms. In Proc. of GECCO ’13, pages
781–788. ACM, 2013.

[DDK16] Benjamin Doerr, Carola Doerr, and Timo Kötzing. Provably optimal
self-adjusting step sizes for multi-valued decision variables. In Proc. of
PPSN ’16, pages 782–791. Springer, 2016.

[DDK18] Benjamin Doerr, Carola Doerr, and Timo Kötzing. Static and self-
adjusting mutation strengths for multi-valued decision variables. Algorith-
mica, 80:1732–1768, 2018.

[DDY16a] Benjamin Doerr, Carola Doerr, and Jing Yang. k-bit mutation with self-
adjusting k outperforms standard bit mutation. In Proc. of PPSN ’16, pages
824–834. Springer, 2016.

[DDY16b] Benjamin Doerr, Carola Doerr, and Jing Yang. Optimal parameter choices
via precise black-box analysis. In Proc. of GECCO ’16, pages 1123–1130.
ACM, 2016.

40

[DG13] Benjamin Doerr and Leslie A. Goldberg. Adaptive drift analysis. Algorith-
mica, 65:224–250, 2013.

[DGWY17] Benjamin Doerr, Christian Gießen, Carsten Witt, and Jing Yang. The
(1+λ) evolutionary algorithm with self-adjusting mutation rate. In Proc. of
GECCO ’17, pages 777–784. ACM, 2017. Full version available at http:
//arxiv.org/abs/1704.02191.

[DGWY18] Benjamin Doerr, Christian Gießen, Carsten Witt, and Jing Yang. The
(1+λ) evolutionary algorithm with self-adjusting mutation rate. Algorith-
mica, 2018. To appear; available online at
https://doi.org/10.1007/s00453-018-0502-x.

[DJW02] Stefan Droste, Thomas Jansen, and Ingo Wegener. On the analysis of the
(1+1) evolutionary algorithm. Theoretical Computer Science, 276:51–81,
2002.

[DJW12] Benjamin Doerr, Daniel Johannsen, and Carola Winzen. Multiplicative drift
analysis. Algorithmica, 64:673–697, 2012.

[DK15] Benjamin Doerr and Marvin Künnemann. Optimizing linear functions with
the (1+λ) evolutionary algorithm – different asymptotic runtimes for differ-
ent instances. Theoretical Computer Science, 561:3–23, 2015.

[DL16a] Duc-Cuong Dang and Per Kristian Lehre. Runtime analysis of non-elitist
populations: From classical optimisation to partial information. Algorith-
mica, 75:428–461, 2016.

[DL16b] Duc-Cuong Dang and Per Kristian Lehre. Self-adaptation of mutation rates
in non-elitist populations. In Proc. of PPSN ’16, pages 803–813. Springer,
2016.

[DLOW18] Benjamin Doerr, Andrei Lissovoi, Pietro S. Oliveto, and John Alasdair War-
wicker. On the runtime analysis of selection hyper-heuristics with adaptive
learning periods. In Proc. of GECCO ’18, pages 1015–1022. ACM, 2018.

[Doe18a] Benjamin Doerr. Better runtime guarantees via stochastic domination.
CoRR, abs/1801.04487, 2018.

[Doe18b] Benjamin Doerr. An elementary analysis of the probability that a binomial
random variable exceeds its expectation. Statistics and Probability Letters,
139:67–74, 2018.

[Doe18c] Benjamin Doerr. Probabilistic tools for the analysis of randomized opti-
mization heuristics. CoRR, abs/1801.06733, 2018.

[DWY18] Benjamin Doerr, Carsten Witt, and Jing Yang. Runtime analysis for self-
adaptive mutation rates. In Proc. of GECCO ’18, pages 1475–1482. ACM,
2018.

41

http://arxiv.org/abs/1704.02191
http://arxiv.org/abs/1704.02191
https://doi.org/10.1007/s00453-018-0502-x

[Haj82] Bruce Hajek. Hitting-time and occupation-time bounds implied by drift
analysis with applications. Advances in Applied Probability, 13:502–525,
1982.

[Jäg11] Jens Jägersküpper. Combining Markov-chain analysis and drift analysis –
the (1+1) evolutionary algorithm on linear functions reloaded. Algorithmica,
59:409–424, 2011.

[Jan13] Thomas Jansen. Analyzing Evolutionary Algorithms – The Computer Sci-
ence Perspective. Springer, 2013.

[JJW05] Thomas Jansen, Kenneth A. De Jong, and Ingo Wegener. On the choice
of the offspring population size in evolutionary algorithms. Evolutionary
Computation, 13:413–440, 2005.

[Joh10] Daniel Johannsen. Random combinatorial structures and randomized search
heuristics. PhD thesis, Saarland University, 2010.

[JS07] Jens Jägersküpper and Tobias Storch. When the plus strategy outperforms
the comma strategy – and when not. In Proc. of FOCI ’07), pages 25–32.
IEEE, 2007.

[JW06] Thomas Jansen and Ingo Wegener. On the analysis of a dynamic evolution-
ary algorithm. Journal of Discrete Algorithms, 4:181–199, 2006.

[KHE15] Giorgos Karafotias, Mark Hoogendoorn, and A.E. Eiben. Parameter control
in evolutionary algorithms: trends and challenges. IEEE Transactions on
Evolutionary Computation, 19:167–187, 2015.

[KLW15] Timo Kötzing, Andrei Lissovoi, and Carsten Witt. (1+1) EA on generalized
dynamic OneMax. In Proc. of FOGA ’15, pages 40–51. ACM, 2015.

[LS11] Jörg Lässig and Dirk Sudholt. Adaptive population models for offspring
populations and parallel evolutionary algorithms. In Proc. of FOGA ’11,
pages 181–192. ACM, 2011.

[LY12] Per Kristian Lehre and Xin Yao. On the impact of mutation-selection bal-
ance on the runtime of evolutionary algorithms. IEEE Transactions on
Evolutionary Computation, 16:225–241, 2012.

[MRC09] Boris Mitavskiy, Jonathan E. Rowe, and Chris Cannings. Theoretical anal-
ysis of local search strategies to optimize network communication subject
to preserving the total number of links. International Journal of Intelligent
Computing and Cybernetics, 2:243–284, 2009.

[Müh92] Heinz Mühlenbein. How genetic algorithms really work: Mutation and hill-
climbing. In Proc. of PPSN ’92, pages 15–26. Elsevier, 1992.

42

[NW10] Frank Neumann and Carsten Witt. Bioinspired Computation in Combi-
natorial Optimization – Algorithms and Their Computational Complexity.
Springer, 2010.

[Rob55] Herbert Robbins. A remark on Stirling’s formula. The American Mathe-
matical Monthly, 62:26–29, 1955.

[Row18] Jonathan E. Rowe. Linear multi-objective drift analysis. Theoretical Com-
puter Science, 736:25–40, 2018.

[RS14] Jonathan E. Rowe and Dirk Sudholt. The choice of the offspring population
size in the (1, λ) evolutionary algorithm. Theoretical Computer Science,
545:20–38, 2014.

[Weg05] Ingo Wegener. Simulated annealing beats Metropolis in combinatorial op-
timization. In Proc. of ICALP ’05, pages 589–601. Springer, 2005.

[Wit06] Carsten Witt. Runtime analysis of the (µ + 1) EA on simple pseudo-Boolean
functions. Evolutionary Computation, 14:65–86, 2006.

[Wit13] Carsten Witt. Tight bounds on the optimization time of a randomized
search heuristic on linear functions. Combinatorics, Probability & Comput-
ing, 22:294–318, 2013.

43

	1 Introduction
	1.1 Our Results
	1.2 Previous Works
	1.3 Techniques
	1.4 Organization of This Work

	2 The (1,) EA With Self-Adapting Mutation Rate
	3 Technical Tools
	3.1 Elementary Estimates
	3.2 Probabilistic Tools
	3.3 Occupation Probabilities

	4 Main Result and Proof
	4.1 The Far Region
	4.2 The Near Region
	4.3 Proof of Theorem 8

	5 Experiments

