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ABSTRACT: Ultralarge chemical spaces describing several billion
compounds are revolutionizing hit identification in early drug
discovery. Because of their size, such chemical spaces cannot be
fully enumerated and require ad-hoc computational tools to
navigate them and pick potentially interesting hits. We here
propose a structure-based approach to ultralarge chemical space
screening in which commercial chemical reagents are first docked
to the target of interest and then directly connected according to
organic chemistry and topological rules, to enumerate drug-like
compounds under three-dimensional constraints of the target.
When applied to bespoke chemical spaces of different sizes and
chemical complexity targeting two receptors of pharmaceutical
interest (estrogen β receptor, dopamine D3 receptor), the computational method was able to quickly enumerate hits that were either
known ligands (or very close analogs) of targeted receptors as well as chemically novel candidates that could be experimentally
confirmed by in vitro binding assays. The proposed approach is generic, can be applied to any docking algorithm, and requires few
computational resources to prioritize easily synthesizable hits from billion-sized chemical spaces.

■ INTRODUCTION
Identifying the first hit compounds able to target a macro-
molecule of interest is often achieved by screening
experimentally or computationally a library of drug-like
compounds,1 thereby enabling a hit to lead follow-up using
classical medicinal chemistry strategies.2 Until recently, the
commercially available chemical space describing drug-like
compounds amenable to screening has been restricted to 10−
15 million compounds with a yearly growth of ca. half a million
compounds.3 On-demand compound libraries4,5 have com-
pletely changed this situation by proposing billions of
compounds not yet available but easily synthesizable in a few
steps and reproducible parallel synthesis. Early approaches to
virtually screen subsets of ultralarge chemical spaces led to
spectacular successes,6−9 notably unexpected high hit rates,
very high potencies, and fine selectivity.10,11 Today, ca. 70
billion compounds are accessible on-demand with fast delivery
(6−8 weeks) and high-purity grade (>95%).12 Due to their
huge size, compounds describing these ultralarge chemical
spaces cannot be fully enumerated and require dedicated
computational tools for registration, storage, and navigation.13

Usually, large chemical spaces are described in a combinatorial
manner from the building blocks and organic chemistry
reactions required to synthesize them.4 If ligand-based
approaches are now available to efficiently query these large
chemical spaces,14−16 structure-based approaches including
macromolecular target information (e.g., topology of a binding
site) still need to be developed to exhaustively mine

multibillion chemical spaces. Several computational methods
have indeed been described for such a task,17−23 albeit with
moderate to severe restrictions. One the one hand, exhaustive
docking of 1.4 billion compounds18 has been successfully
described with the help of costly dedicated platforms,18,24 but
will soon reach its limits with next-to-come trillion-sized
chemical spaces25 since full atomistic docking just scales
linearly with the number of compounds to be screened. A
workaround consists of the proper selection of seed fragments/
scaffolds to screen a representative subset of the entire space.
The seed fragment may originate from the early docking of
fragment-based representative synthons,23 X-ray diffraction
screening data,22 or medicinal chemistry knowledge.20 Once a
seed fragment has been identified, scaffold-focused two-
dimensional (2D) libraries, exploring the corresponding
chemical space via a set of organic chemistry reactions,26 can
be enumerated, converted in three-dimensional (3D) atomic
coordinates and physically docked to propose novel hits. This
approach has been applied with success to a few
targets20,22,27,23 but still requires hardware settings enabling
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docking a significant subset (a few million) of the entire
chemical space. Last, fast machine learning approaches may be
first trained on a set of representative ligand-annotated docking
poses to simply predict docking scores17,19,21,28,29 and next be
applied to predict docking scores for the remaining space. Even
if only a small fraction of the full space (1−5%) has to be
docked at the atomic level, this strategy cannot be further
applied to trillion-sized chemical spaces since it would require
gathering the first billion of docking scores on a single target.
Moreover, this approach has led to very mitigated results with
respect to hit rate and hit potencies30 and deserves further
experimental validations.
Herein, we present a simple and fast computational

approach (SpaceDock) avoiding the above-cited drawbacks.
It first requires docking commercially available chemical
reagents to the target of interest in order to couple them
according to standard organic chemistry reactions to propose
multibillion compound libraries in one or two synthetic steps.
When applied to two targets of pharmaceutical interest, the
method was able to quickly retrieve hits that are chemically
identical (or very close) to existing ligands but also to propose
chemically novel and potent ligands.

■ RESULTS
Since the SpaceDock method heavily relies on the possibility
to accurately dock chemical reagents, we first investigated the
best docking protocols for the latter task by setting up a
dedicated benchmarking study. We then describe how
chemical reagents are annotated by reactive groups and

organic chemistry reactions to define a chemical space of 5.5
billion synthesizable compounds. Last, we present two
concrete applications of the SpaceDock workflow to two
receptors of pharmaceutical interest.

Setting up the Conditions for Accurate Docking of
Chemical Reagents. To evaluate the feasibility of the
SpaceDock approach, we first needed to set up an archive of
reference 3D structures for protein-bound chemical reagents.
Since experimental data for such a data set are missing, we
fragmented in 3D space drug-like ligands from known
protein−ligand X-ray structures (sc-PDB data set)31 using a
set of 12 common organic chemistry reactions, then added the
3D atomic coordinates of the missing reactive moieties (e.g.,
boronic acid, halide; Figure S1), and last created on-the-fly
“surrogate X-ray poses” for the corresponding reagents
expected to yield the parent ligands with the above-described
reactions. The final archive of 5,845 reagents was selected after
appropriate filtering (Table S1) and exhibited 13 chemical
functions with a prevalence of reactive groups (e.g., amines,
aryl halides, boronic acids) reflecting the frequent usage of
simple organic chemistry reactions in drug discovery.32 With a
set of reference reagents in hand, we next verified whether
state-of-the-art docking algorithms were able to reproduce the
surrogate X-ray poses. Five algorithms relying on different
principles (FlexX:33 incremental construction, GOLD:34

genetic algorithm, PLANTS:35 ant colony optimization,
RDPSOVina:36 random drift particle swarm optimization,
Surflex:37 surface-based molecular similarity) were used for
that purpose. Since the SpaceDock strategy just needs a single

Figure 1. Accuracy of state-of-the-art docking tools to dock 5,845 sc-PDB reagents in their cognate targets. (A) Root-mean square deviation
(rmsd) of the best pose (lowest rmsd, heavy atoms only) to the surrogate X-ray structure, (B) similarity of protein-reagent interaction fingerprints
between the best pose (highest interaction fingerprint similarity) and surrogate X-ray structures, measured by a Tanimoto coefficient. Fingerprints
could not be measured for RDPSOVina poses in pdbqt format, (C) cumulative rmsd of the best pose (GOLD-PLP docking) for each of the 13
chemical functions. Numbers in brackets indicate the absolute number of each chemical function, (D) cumulative rmsd of the best pose (GOLD-
PLP docking), according to protein class. Numbers in brackets indicate the absolute number of samples from each protein family.
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pair of complementary reagents to be properly docked to
reconstitute a full ligand, the docking performance was
measured by computing the root-mean square deviation
(rmsd) of the pose found to be the closest (best pose) to
that of the surrogate X-ray structure (Figure 1). All docking
tools exhibit an excellent docking performance, with 70−80%
of chemical reagents being docked within 2 Å rmsd accuracy
(Figure 1A). Up to 70% of very high-quality poses (rmsd < 1
Å) could be generated by the apparently best docking/scoring
scheme (GOLD docking, PLP scoring; Figure 1A). The
observed docking accuracy is therefore independent of the
chosen docking algorithm and remains in agreement with
docking benchmarks on low molecular weight fragments.38,39

Since the rmsd is a global measure that does not take into
account whether key protein-reagent interactions are verified
or not, we additionally computed the similarity of protein-
reagent interaction fingerprints (IFPs)40 between docked and

surrogate X-ray poses. Again, an excellent performance could
be noticed using this orthogonal quality descriptor, with 75−
85% of chemical reagents for which the IFP similarity to the X-
ray pose is deemed acceptable (Tc-IFP > 0.60;40 Figure 1B).
To ascertain that all chemical functions are equally suitable for
docking, the same analysis was repeated for each of the 13
chemical groups (Figure 1C) present in our library, focusing
on the best docking strategy (GOLD docking and PLP
scoring). Reassuringly, the docking performance appears to be
relatively independent of the chemical function of the reagent
(Figure 1C) as well as of the target protein family (Figure 1D).

Defining a Readily Accessible Ultralarge Chemical
Space from Simple Organic Chemistry Reactions.
Starting from the pioneering work of Hartenfeller et al.,26 we
selected 36 robust, stereo- and regioselective organic chemistry
reactions to define a chemical space of 5.5 billion compounds
readily accessible in one or two synthesis steps (Table S2,

Figure 2. Annotation of chemical reagents by reaction type, reactant role, and reactive atoms.

Figure 3. Space docking of benzoxazole and sulfonamide chemical spaces to human estrogen receptor beta (ERβ). (A) X-ray structure of human
ERβ (tan ribbons, PDB entry 1QKM) in complex with the agonist genistein (blue sticks). The genistein binding site is delimited by ERβ residues
displayed as tan sticks with main receptor−ligand hydrogen bonds indicated by cyan broken lines. The known benzoxazole agonist (WAY-338) is
taken as the ground truth ligand to recover. (B) SpaceDock flowchart affording 64 potential ERβ agonists according to a series of filters (Table 1).
The custom filter (H-bond either Glu305 or Arg346, and to His475) is target-specific. (C) Structures and rank (#) of 4 representative
benzoxazoles. The proposed binding poses are overlaid to the X-ray pose of the ground truth ligand (WAY-338, cyan), the protein being masked
for the sake of clarity.
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Figure S2). Contrary to previous similar approaches,26,41,42

chemical reagents were here carefully chosen from specific
SMARTS strings in a list of 145,705 commercial chemical
reagents contributing to Enamine’s REAL space43 of 36 billion
compounds. Moreover, possible side reactions affecting
synthesis yields were minored by selecting reagents that are
monofunctional for a particular chemical function (e.g.,
monocarboxylic acid) and lacking additional chemical
functions (e.g., nucleophilic groups for an electrophilic
reactant) that would decrease the reaction yield (Table S2).
Altogether, 134,331 commercial reactants could be unambig-
uously annotated by reaction type, reactant role, and reactive
atoms, yielding a total of 713,155 atomic tags (Figure 2).
Conversion in 3D atomic coordinates provided a total of
176,824 ready-to-dock unique reagents, ionized at pH 7.4,
including stereoisomers for reactants bearing up to two
undefined chiral centers.

Retrospective Chemical Space Docking of 97 Million
Compounds for Human Estrogen Receptor Beta
Agonists. For a first proof-of-concept, we selected as a target
the activated form of the human estrogen receptor beta (ERβ)
for the following two reasons: (i) the ligand-binding cavity is
nicely druggable with a good hydrophobicity/hydrophilicity
balance, (ii) the receptor has been cocrystallized with many
high-affinity low molecular-weight agonists, notably com-
pounds sharing a 2-aryl-benzoxazole scaffold44 whose one-
step synthesis from 2-aminophenols and benzaldehydes is one
of the 36 reactions that we have encoded. To avoid a possible
chemotype bias, we selected an X-ray receptor structure
cocrystallized with genistein (PDB 1QKM), a nonbenzoxazole
high-affinity agonist used from here on as the “reference
ligand” (Figure 3A) and asked whether we could recover a
“ground truth” benzoxazole agonist (WAY-338, Figure 3A) or
any close analog, by first docking the necessary reactants (2-
aminophenols, benzaldehydes) and then enabling the benzox-
azole ring formation within the protein binding site. To this
end, 145 commercial 2-aminophenols and 3,874 benzalde-
hydes were generated in 3D and docked into the 1QKM
structure, in order to explore a combinatorial space of 561,730
possible benzoxazoles. Since the later space is small, we
additionally considered a much larger space of 97 million
sulfonamide decoys synthesizable from 1,275 sulfonyl chlorides
and 76,758 amines, thereby strongly minoring the benzoxazole

space (0.57%) in the full chemical space to scan. After docking
all reagents necessary to mine both chemical spaces according
to the previously found best protocol (GOLD docking, PLP
scoring), a series of filters of increasing complexity (Table 1)
was iteratively passed to a decreasing number of possible
solutions, first starting with pairs of potentially reacting reagent
poses, then with successfully enumerated ligand poses, and last
with quality checked redocking poses.
The SpaceDock flowchart is displayed Figure 3. In a first

step, pure chemical and topological filters (Figures S3 and S4)
are passed to all docking poses of possible reactant pairs to
quickly remove impossible reactions (filter #1). To stay on a
safe side, we only considered pairs of bound reactants
exhibiting a total interaction fingerprint (IFP) similarity40 to
the genistein X-ray pose above an acceptable threshold40 (IFP
≥ 0.60 considering all nonbonded interactions, IFP ≥ 0.50
considering polar interactions only; filter #2). The 821,702
remaining pairs of reactants were then converted, in the
protein 3D space, into the corresponding benzoxazoles and
sulfonamides, respectively, and the fully enumerated ligands
were quickly minimized in the protein binding site. Only
539,906 poses deviated by less than 1.0 Å rmsd from the
nonrefined poses after energy refinement (filter #3). The
remaining minimized poses were filtered again according to
IFP similarity to the genistein X-ray pose (IFP ≥ 0.60
considering all nonbonded interactions, IFP ≥ 0.60 consider-
ing polar interactions only; filter #4). Compounds with more
than 2 stereocenters and 8 rotatable bonds were removed at
this stage, leaving 49,569 poses for further processing. To
ensure that the selected SpaceDock poses might be recovered
by classical docking, all remaining hits were redocked to the
ERβ structure, as previously done for the reagents. Only
121,470 poses close to the corresponding energy-minimized
SpaceDock poses (rmsd ≤ 2.0 Å; IFP ≥ 0.60 considering all
nonbonded interactions, IFP ≥ 0.60 considering polar
interactions only) were retained (filter #5). A quality check
of remaining poses (filter #6) was next applied to remove
unlikely solutions (≥1 strained torsion, local strain energy >4
kcal/mol, global strain energy >8 kcal/mol, no unsatisfied ionic
bond, >2 unsatisfied H-bond donors, >4 unsatisfied h-bond
acceptors).49,20 The number of plausible solutions (7,712)
being still important, a custom filter was finally applied to keep
only poses anchored at both sides of the binding pocket (H-

Table 1. Incremental Series of Filters Applied to Prioritize SpaceDock Hits

filter type criteria applies to software used

1 Geometry Distances, angles, clashes Pair of reactant poses this work
2 Interaction Interaction fingerprint similarity to reference Pair of reactant poses IChem45

3 Energy, geometry Rmsd of refined pose to nonrefined pose Fully enumerated
ligand

Szybki46

Surflex-Dock37

4 Interaction,
structure

Interaction fingerprint similarity (IFP) to reference Fully enumerated
ligand

IChem45

Number of stereocenters, number of rotatable bonds Filter46

Drug-likeness
5 Redocking Rmsd to energy-minimized SpaceDock pose Docking poses GOLD34

IFP similarity to energy-minimized SpaceDock pose Surflex-Dock37

IChem45

6 Quality check Number of strained torsions, local and global strain energy Docking poses Torsion_analyzer47
Freeform46

Number of unsatisfied H-bond donors and acceptors, number of unsatisfied
ionic bonds

this work

7 Final selection Duplicates removal Docking poses This work
Absolute binding free energy (HYDEscore) Hydescorer48
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bond either Glu305 or Arg346, and to His475), as seen for all
potent ERβ agonists (recall genistein X-ray pose, Figure 3A).
The final hit list comprises 102 poses from 64 unique ligands
(filter #7), including 54 benzoxazoles and 10 sulfonamides
(Figure 3B, Table S3) ranked by decreasing full IFP similarity
to the reference ligand, then by decreasing polar IFP similarity,
and last by increasing absolute binding free energy predicted
by the HYDE scoring function.48

Despite being in the minority in the initial space (0.57%), it
is reassuring that the ground truth chemotype was considerably
enriched (84%) in the final hit list. Inspecting the structures
and binding poses of the hits, we observed that SpaceDock was
indeed able to recover, among the top-ranked hits, the ground
truth l igand (rank #9) , a known ERβ agonis t
ChEMBL18767350 (IC50 = 50 nM, rank #25) and 52 other
2-arylbenzoxazoles, with almost perfect binding modes (rmsd
= 1.15 Å for the ground-truth ligand, Figure 3C). About half of
the hits (30 out 64; all from the benzoxazole space) were
considered chemically similar (according to a Tanimoto
coefficient measured on circular ECFP4 fingeprints) to existing
ERβ ligands (Figure S5), evidencing that SpaceDock can
propose both known ligands (or very close analogs thereof)
and new chemical entities. However, only a lower number of

compounds (17, out of which 10 share the sulfonamide space)
strictly intersected the Enamine REAL space (Figure S5). This
observation does not preclude for their synthesizability but just
illustrates that these hits, despite the commercial availability of
their starting building blocks, cannot be obtained within the
scope of 167 parallel synthesis protocols defining REAL space.
From this preliminary proof-of-concept, it appears that the

herein presented method is able to perform a complex organic
chemistry reaction (ring cyclization) from suitably posed and
chemically compatible chemical reagents, under the 3D
constraints of the target’s structure, to generate and prioritize
fully enumerated ligands for meaningful reasons. We therefore
decided to apply SpaceDock to the prospective screening of a
much larger chemical space.

Prospective Chemical Space Docking of 670 Million
Compounds for Human Dopamine D3 Receptor
Antagonists. We next applied the method to a much larger
chemical space of 670 million carboxamides targeting the
human dopamine D3 receptor (DRD3). Since the only
available high-resolution DRD3 receptor structure (PDB
3PBL) has been obtained in complex with the antagonist
eticlopride (Figure 4A),51 the latter orthomethoxybenzamide
(OMB) ligand was used as both reference and ground-truth

Figure 4. Space docking of an amide in chemical space to the human dopamine D3 receptor (DRD3). (A) X-ray structure of human DRD3 (tan
ribbons, PDB entry 3PBL) in complex with the antagonist eticlopride (blue sticks). The eticlopride binding site is delimited by DRD3 residues
displayed as tan sticks with the main receptor−ligand ionic bond indicated by cyan broken lines. Eticlopride is taken as both the reference and the
ground truth ligand to recover. (B) SpaceDock flowchart affording 315 potential DRD3 antagonists according to a series of filters (Table 1). The
custom filter (IFP similarity to an eticlopride X-ray pose) is target-specific. (C) Structures and rank of 4 representative orthomethoxybenzamides.
The proposed binding poses are overlaid to the X-ray pose of the ground truth ligand (eticlopride, cyan), the protein being masked for the sake of
clarity. (D) Structure and binding poses of other hits aligned to the X-ray pose of eticlopride.
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ligand to recover. Commercially available carboxylic acids and
primary/secondary amines (Table S2) were first filtered to
remove reagents that, upon amide bond formation, would lead
to nondrug-like ligands (Table S4), thereby keeping 19,887
acids and 33,726 amines (in 3D coordinates) to explore a
chemical space of 670 million carboxamides (Figure 4B). The
resulting 53,613 chemical reagents were then docked to the
eticlopride-free DRD3 structure using GOLD docking and
PLP scoring, as previously described. Since 20 poses were
saved for each reactant, a total of 268 bil l ion
(19,887*20*33,726*20) possible reactions were passed to
the SpaceDock flowchart (Figure 4B), removing first
impossible amide bond formation according to geometrical
criteria (Figure S6) while keeping only amine poses exhibiting
the crucial ionic bond to the key Asp110 residue51 (filter #1,
Figure 4B), then retaining a pair of reactant poses for which
the IFP similarity to the reference ligand is higher than 0.60 for
all interactions and 0.50 for polar interactions only (filter
#2).40 A total of 24,674,693 reactions were conducted in silico
to generate the corresponding carboxamides inside the
receptor pocket, which were later energy-minimized. Keeping
only minimized poses that did not deviate much from the
initial pose (rmsd < 1.0 Å) afforded 15,120,198 plausible
solutions (filter #3, Figure 4B). At this stage, hits bearing a cis-
amide bond or more than 2 chiral centers or more than 9
rotatable bonds were removed to keep only drug-like
compounds. The resulting number of hits being still very
high, we pruned the hit list by keeping only minimized poses
with a high full IFP similarity to the reference ligand (IFP

similarity > 0.60) while exhibiting a perfect IFP similarity to
eticlopride (IFP = 1) with respect to polar interactions (H-
bond and ionic bond to Asp110). This filter (filter #4, Figure
4B) yielded 518,306 SpaceDock poses (corresponding to
500,041 unique compounds) that had to be confirmed by full
atomistic docking (GOLD docking, PLP scoring, 20 poses
saved) of the corresponding ligands and comparison with the
minimized SpaceDock poses. Only docking poses verifying the
following three criteria (rmsd ≤ 2.0 Å and IFP_full ≥ 0.60 and
IFP_polar = 1) were retained, leaving 712,120 good docking
poses (filter #5, Figure 4B) for sanity check (no strained
torsion, local strain energy ≤4 kcal/mol, global strain energy
≤8 kcal/mol, no unsatisfied ionic bond, ≤ 2 unsatisfied H-
bond donors, ≤ 4 unsatisfied H-bond acceptors, filter #6,
Figure 4B). The number of remaining poses being still
important (97,096), a custom filter (not implemented by
default, Table 1) was added to remove poses for compounds
with no aromatic ring (always present in known DRD3
antagonists),52 exhibiting a predicted absolute binding free
energy (HYDEscore) lower than 30 kJ/mol and further
restricting the deviation to the original SpaceDock poses (rmsd
≤ 1.0 Å and IFP_full ≥ 0.75). A reasonable number of 757
docking poses from 315 unique ligands (filter #7, Figure 4B)
defined the final hit list. Compounds were ranked by
decreasing full IFP similarity to the reference ligand, then by
decreasing polar IFP similarity, and last by increasing the
HYDE binding free energy (Table S5).
As for the first attempt on ERβ ligands, we first checked

whether the ground-truth ligand and its corresponding OMB

Figure 5. Structure and binding to human DRD3 of 15 SpaceDock hits from amide space. Hits are labeled according to their SpaceDock rank,
Enamine’s catalog identifiers, and purchased as racemates, unless specified. Binding affinities to human DRD3 are expressed as the percentage of
inhibition of [3H]-methylspiperone binding to human recombinant DRD3 expressed in CHO cells (Eurofins Discovery assay #48) at a single
concentration of a 10 μM competitor (mean of two independent experiments). The inhibition constant (Ki) was determined from dose−response
curves for six strong binders (in green). Compound #123 could not be synthesized (n.s.).
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scaffold were present in the list. Indeed, 15 OMBs including
eticlopride (rank 30) were part of the list with binding poses
very similar to that observed for the reference ligand (rmsd of
eticlopride = 0.73 Å, Figure 4C). Interestingly, 300 additional

hits not sharing the OBM scaffold were prioritized with poses
and protein−ligand interaction patterns quite close to those
seen for eticlopride (Figure 4D). Most ligands were scaffold
hops for which the orthomethoxybenzamide has been replaced

Table 2. Chemical Similarity between SpaceDock Hits and Their Closest ChEMBL Ligandsa

aInhibition constants for human DRD3 (Ki)
50 and ligand efficiency (LE)53 are given for comparison. Similarity is expressed by the Tanimoto

coefficient computed on ECFP4 circular fingerprints.
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by a bicyclic heteroaryl-amide, connected by 2−3 carbon
atoms to a basic amine. By comparison to the ERβ hit list, the
DRD3 hits deviate more from known ChEMBL ligands (24%
considered as chemically similar) but are more easily
obtainable in REAL space (53% being directly purchasable
and an additional 38% being very close to REAL space
compounds; Figure S7). Sixteen chemically diverse and
representative hits were directly purchased at Enamine, out
of which 15 could be synthesized in 6 weeks (5 mg quantity,
>90% purity) and further tested for binding to human DRD3
(Figure 5).
Out of the tested 15 compounds, ten exhibited detectable

binding (>20% inhibition) to the DRD3 receptor at the single
concentration of 10 μM (Figure 5). The six strongest binders
(#1, #25, #66, #107, #142, and #161) were selected for dose-
curve responses for inhibition constants (Ki) determination
(Figure 5, Figure S8). Three of them (#1, #66, #142) exhibited
Ki values in the 300−400 nM range, the three others at 1.4−
1.6 μM. The remarkable hit rates (66% at 10 μM, 20% at 500
nM) are in line with previous observations from docking
ultralarge libraries10,11 and suggests that SpaceDock competes
rather well with much more demanding full atomistic docking
when screening large chemical spaces.
Interestingly, novel heteroamatic-carboxamide scaffolds were

disclosed for 4 of the strong binders (#66, #107, #142, and
#161) that could not be found in any of 6,714 dopamine
DRD2/DRD3 ligands from ChEMBL (Table 2). SpaceDock
proposals should still be considered as primary hits. As such,
their potency is lower than that of the closest dopamine D2/
D3 antagonists from ChEMBL, albeit with a higher ligand
efficiency.

■ CONCLUSION
We herein describe a novel computational method (Space-
Dock) to exhaustively browse ultralarge chemical spaces under
specific constraints of a target protein and known binders.
When applied to two nicely druggable targets (estrogen
receptor β, dopamine D3 receptor) and chemical spaces of up
to 670 million compounds, it enabled the fast recovery of
known ligands/scaffolds (in both cases) and the identification
of novel and potent new chemical entities (dopamine D3
receptor).
SpaceDock departs from existing methods20,22,23 by two

major differences: (i) fully unmodified chemical reagents and
not synthons (scaffolds with chemistry-informed exit vectors)
are used as primary sources of hits, (ii) most promising ligands
are directly obtained within the protein binding site, by 3D in
silico synthesis according to geometrical and chemical cross-
compatibility of previously posed reagents pairs.
Indeed, direct docking of chemical reagents has, to the best

of our knowledge, never been reported. Interestingly, our
preliminary benchmark demonstrates that docking chemical
reagents is as accurate as docking low-molecular weight
fragments39 with ca. 75% of chemicals properly posed with
respect to their corresponding substructures in full PDB
ligands. Noteworthy, the docking accuracy is independent of
the docking tool used, of the reactive moiety of the reactants
and of the target protein family; therefore, opening the method
to any druggable target and set of commercial building blocks.
To enable an easy synthetic access to most SpaceDock hits, the
method relies on chemical reagents contributing to Enamine’s
REAL space and generate hits in the binding site 3D space
using a set of 36 robust two-component organic chemistry

reactions. Given the 70% average docking accuracy of
reactants, we therefore expect the likelihood of properly
coupling two chemically compatible reactants into a fully
enumerated and suitably posed ligand at ca. 50%. Of course,
the chemical moieties engaged in the organic chemistry
reaction are considered during the initial docking step. In case
a function is wrongly posed and/or strongly interacting with
the target, it might not be available for further linking if
topological and chemical compatibility with the second posed
reactant is no more verified. Docking the starting chemical
reagents is clearly the most time-consuming step of the entire
flowchart (ca. 15 s/reagent), meaning that SpaceDock scales
with the number of reactants and not the number of products
defining the chemical space to be screened. To optimize the
speed of the further processing, a series of filters of increasing
complexity is applied, step by step, to a decreasing number of
plausible solutions. Just checking the relative position of
compatible reactants to be paired by fast distance/angle
measures permits removal of 99.8% of possible solutions.
Although not mandatory, we applied IFP similarity to a
reference pose to remove topologically valid ligands that do
not fulfill expected interactions with key residues. This filter
permits reducing the number of full ligand poses to the third
most time-consuming but necessary energy-minimization step
(ca. 1 s/recombined pose) and remove local strains around the
newly created bonds. We assume that a SpaceDock proposal is
all the more interesting if it does not vary (in terms of rmsd
and IFP similarity) upon energy minimization within the
protein binding site and if it can be recovered by full atomistic
docking of the corresponding ligand. Although not necessary,
we recommend this redocking step to ensure that SpaceDock
and any state-of-the-art docking tool (we here used GOLD,
but other tools may be used as well) agree on the final poses to
be sent to the very important quality check. A particular
importance is given to local and global strain energies (≤4 and
8 kcal/mol, respectively), as well as to the number of
unsatisfied ionic bonds (none) and of unsatisfied hydrogen-
bond donors/acceptors (≤2 and 4, respectively). In the DRD3
test case, omitting this step drastically enriched the final hit list
in false positives, which could not be confirmed experimentally
(data not shown). The herein proposed chemical space
docking approach could yield, at least for the present case of
a G protein-coupled receptor, to experimentally validated hits
with a high hit rate and nanomolar potencies that agree with
tendencies already noticed upon full atomistic docking of
ultralarge library virtual screens.10,11

SpaceDock remains a relatively light computational
procedure, since browsing a chemical space of 100 million
compounds can be achieved within 2 days on a 16-core Intel(R)
Xeon(R) Silver 4210 processor. Mining the entire 5.5 billion
chemical space has been made possible for the fourth
international CACHE challenge54 with still limited resources
(1 week on 400 cores). Preliminary attempts to scan even
larger chemical spaces (e.g., by adding three-component
reactions) suggest that the method can be easily applied up
to a trillion compounds.

■ METHODS
Setting up a Library of Chemical Reagents from

Fragmented Protein-Bound Ligands. 37,922 ligands from
the sc-PDB database of druggable protein−ligand 3D
structures55,31 were fragmented using a set of 12 RECAP56-
inspired retrosynthetic rules to yield 97,024 chemical reagents
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(Figure S1) with standard topologies (bond length, angle
bending, torsion angles) retrieved from the TRIPOS force-
field.57 The resulting building blocks were then filtered using
the following rules: (i) IChem v.5.2.845 detection of at least
four noncovalent interactions (one of which being a ionic bond
or an hydrogen-bond) with the original sc-PDB target protein,
(ii) a total number of heavy atoms between 3 and 23, (iii) a
total number of rotatable bonds inferior or equal to 6, (iv) a
heteroatom to carbon ratio between 0.05 and 4.5, (v) no more
than two fused cycles, (vi) a number of aromatic rings inferior
to 3. The final library comprised 5,845 reagents (mol2 file
format) derived from 4,656 unique sc-PDB ligands. Although
the building blocks have not been explicitly crystallized with
their target, the corresponding poses will be further annotated
as the “surrogate X-ray” pose.

Docking sc-PDB Building Reagents to Their Cognate
Targets. The above-described reagents were docked to the sc-
PDB target originally bound to the ligand they were derived of,
after randomizing their initial orientation and dihedral angles
with the Surflex37 ran_archive routine, using 5 state-of-the-art
docking tools (FlexX v.5.2.0,33 GOLD v.2022,34 PLANTS
v1.2,35 RDPSOVina v.2.0,36 Surflex v.4.5.4.337) with almost
standard parameters (Tables S6−S8). Since the boron atom is
not parametrized in some docking tools, it was replaced by
either a dummy atom (FlexX, GOLD, PLANTS, and Surflex)
or a carbon (RDPSOvina) while keeping the trigonal planar
geometry of the boronic acid unchanged. Up to 20 poses were
preferentially saved in mol2 file format whenever possible
(GOLD, PLANTS, Surflex), in sd file format (FlexX), or in
pdbqt file format (RDPSOVina). For each docking pose, the
root-mean-square deviation (rmsd) of heavy atoms to the
corresponding surrogate X-ray pose was computed thanks to
the Surflex rms routine when comparing mol2 files, or the
ADFRsuite-1.058 obrms routine when comparing files of
different formats (mol2 vs pdbqt, mol2 vs sd). In addition,
we measured the similarity of protein−ligand interactions
between docked and X-ray poses with the IFP module of the
IChem v.5.2.8 package.45

Preparation of Bespoke Chemical Spaces Encoded by
36 Robust Organic Chemistry Reactions. The global stock
of commercially available building blocks (250,355 com-
pounds, sd file format, date: 2022-12-28) was downloaded
from Enamine’s Web site59 and filtered by catalog
identification number to retain 145,707 reagents contributing
to the REAL space.43 Building blocks were then filtered to
remove unsuitable entries as previously described.41 For each
of 36 different one- or two-step organic chemistry reactions
(Table S2), the corresponding reactants were retrieved using
SMARTS strings41 queries in PipelinePilot v.22.1.0.293560

(Figure S9). In order to avoid side reactions, building blocks
need to be monofunctional for the reactive group of interest
and free of any possible poisoning chemical function for the
reaction of interest (Table S2). For each retained building
block and possible reaction, an annotation triplet is provided:
(i) reaction type, reactant role, and reactive atoms. The final
annotation table comprises 713,155 annotation triplets for
134,331 REAL building blocks. Selected building blocks were
finally ionized at their most likely ionization state at pH 7.4
using PipelinePilot and converted into 3D atomic coordinates
with Corina v.3.40,61 allowing the generation of up to 4
diastereoisomers by entry, in a single ready-to-dock mol2 file
format.

Docking of Chemical Reagents to Human Estrogen
Receptor Beta. The X-ray structure of the human estrogen
receptor beta in complex with the agonist genistein62 was
downloaded from the Protein Data Bank (PDB 1QKM).
Hydrogen atoms and simultaneous optimization of proto-
nation states of protein, water, and ligand atoms were
performed with Protoss v.4.0.63 All water molecules and
genistein were removed, keeping only the remaining protein
atoms of chain A, which were saved in mol2 file format. The
commercial building blocks selected for a possible benzoxazole
ring or sulfonamide bond formation (145 aminophenols and
3,874 benzaldehydes; 1,275 sulfonyl chlorides and 76,758
amines) were docked to the ERβ atomic coordinates with
GOLD using previously reported parameter settings (Table
S7). The cavity was detected from the X-ray atomic
coordinates of genistein. Up to 20 poses, scored by the PLP
scoring function, were retained for each building block.

Docking of Chemical Reagents to the Human
Dopamine D3 Receptor (DRD3). The X-ray structure of
the human dopamine D3 receptor in complex with the
antagonist eticlopride51 was downloaded from the Protein
Data Bank (PDB 3PBL). Hydrogen atoms and simultaneous
optimization of protonation states of protein, water, and ligand
atoms was performed with Protoss v.4.0.63 The inserted T4-
lysozyme sequence (Asn1002-Tyr1161), all water molecules,
and eticlopride were removed, keeping only remaining protein
atoms of chain A, which were saved in mol2 file format. The
commercial building blocks were initially filtered based on
their capacity to form a drug-like molecule through an amide
bond formation (Table S4) and their inclusion in the pool of
reagents utilized in the REAL Space. The reagents selected for
a possible amide bond formation (33,726 amines and 19,887
carboxylic acids) were docked to the DRD3 atomic
coordinates with GOLD using previously reported parameter
settings (Table S7). The cavity was detected from the X-ray
atomic coordinates of eticlopride. Up to 20 poses, scored by
the PLP scoring function, were retained for each building
block. To decrease the number of possible recombinations,
only docking poses of amines exhibiting an ionic bond to the
key residue Asp110, detected on the fly with IChem, were
further retained for amide bond formation.

Ligand Enumeration by Reagents Coupling. Given
two poses of chemically compatible reagents, a ligand is
generated within the protein binding site according to their
respective location and chemical compatibility. Reagent poses
are initially loaded using an in-house mol2 parser and
annotated for at least one reaction based on the tag table
shown in Figure 2. Atomic coordinates of reactive atoms and
their immediate neighbors are extracted and stored for
subsequent calculations. This process is repeated for each
reaction following a similar workflow. A subsequent set of
filters is applied to pairs of reagent poses, including the
distance between their center of mass to promptly eliminate
distant pairs, the distance between connectable atoms,
examination of certain angles of the future formed bond/ring
to ensure a suitable geometry, and consideration of clashes (≤4
between nonreacting atoms) to prevent overlapping sub-
stituents. If a pair satisfies all of the rules, a bond is created
between the connectable atoms. The hybridization of reacting
atoms is then updated to reflect the newly created bonds, and
exit atoms (to be removed after the reaction) are deleted. The
fully enumerated molecule is then saved into a single mol2 file.
An optional step is also available at this stage. If a reference
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ligand exists, the molecule is initially written to a temporary
mol2 file to assess its IFP similarity (default values are ≥0.60
for all nonbonded interactions and ≥0.50 for polar
interactions) to the reference pose using IChem v.5.2.8. If
the similarity threshold is reached, the molecule is transferred
to the final mol2 file. Detailed rules of these filters can be
found in Figures S3, S4, and S6. The fully enumerated
molecule, in the presence of the target protein, is last energy-
minimized in Szybki v2.4.0.0,46 using standard settings and the
MMFF94 force-field.64

Comparisons to Reference Ligands. Interaction finger-
print similarity search between any pose (before and after
energy refinement) and a reference X-ray ligand was done
using standard parameters of the IFP module implemented in
the IChem v.5.2.8 package.45 Likewise, root-mean square
deviations were computed with the rms routine of Surflex-
Dock v.4.5.4.3.37

Redocking of SpaceDock Poses. The coupling of two
reagent poses, followed by protein constraint refinement
(referred to as the “SpaceDock” pose), was redocked into
the target protein structure using GOLD. The scoring function
employed was PLP, with 20 generated poses, and the same
parameter file as described in Table S7. To eliminate structural
biases, input ligand structures were converted to SMILES
format using the OEChem Toolkit v.3.4.0.146 and further
transformed into 3D structures with Corina v.3.40.61 Up to
four diastereoisomers were generated in a single mol2 file. The
resulting full atomistic docking pose, exhibiting a rmsd
(computed with Surflex rms) below 2 Å, all nonbonded
interactions IFP similarity ≥0.60, and precisely the same polar
IFP as the corresponding SpaceDock pose, was considered as
confirmation and retained for subsequent investigations. If
multiple docking poses satisfy these rules for each SpaceDock
pose, then all of them are retained.

Quality Check of Redocked Poses. The number of
torsion strains in every redocking pose was estimated with
TorsionAnalyzer v.2.0.0.47 Any pose with at least one torsion
annotated as “strained” was discarded from further analysis.
Local strain (distortion of the specific conformation from the
nearest local minima) and global strain (energy required to
select the specific conformation from the full conformational
ensemble of the corresponding compound in water) energies
were then computed with a standard parameter of Freeform
v.2.4.0.0.46 Any pose with local and global strain energies
higher than 4 and 8 kcal/mol, respectively, were discarded.
Last, remaining poses were inspected, in their protein-bound

state, for counting the number of unsatisfied ionic bonds,
hydrogen-bond donors, and acceptors. First, protein−ligand
ionic and hydrogen bonds were registered with IChem. Any
charged atom or hydrogen-bond donor/acceptor atom of the
ligand (according to IChem definitions)40 not present in the
above list was annotated as an “unsatisfied” atom. Unsatisfied
heavy atoms being both donors and acceptors (e.g., hydroxyl
oxygen atom) were counted only once. Ligand atoms
participating in intramolecular hydrogen bonds were consid-
ered as satisfied. Altogether, ligand poses with more than 2
unsatisfied donors and 4 unsatisfied acceptors were removed
from the final hit list.

Similarity to ChEMBL and REAL Space Ligands.
Known ligands of the human estrogen receptor beta
(CHEMBL242) and human dopamine D2 (CHEMBL217)
and D3 (CHEMBL234) receptors were retrieved from the
ChEMBL database (release 33)50 as SMILES strings for ligand

entries fulfilling the following criteria: Ki < 1 μM, assay_type =
B. Pairwise chemical similarity between SpaceDock hits and
ChEMBL ligands was computed with PipelinePilot
v.22.1.0.293560 from ECFP4 circular fingerprints and scored
by the value of the Tanimoto coefficient.
Maximum common substructure (MCS) similarity of

SpaceDock hits (converted from mol2 to SMILES strings,
thanks to Open Babel v.3.1.0)65 to 36 billion REAL space
ligands (version REALSpace_36bn_2023-03.space12) was
computed with SpaceMACS v.0.9.2,15 to save the top 15
REAL space compounds ranked by decreasing MCS-Tanimoto
similarity value.

■ ASSOCIATED CONTENT
Data Availability Statement
List of reactants to build benzoxazole, sulfonamide, and amide
chemical spaces, docked poses of test reactants (ERβ, DRD3
test cases), annotation table of Enamine REAL reactants,
IChem configuration files for IFP filtering. All data and
SpaceDock processing scripts are available at https://github.
com/litfsindt/LIT-SpaceDock (accessed 01-23-2024). Code
availability: Filter v.4.2.1.1, Szbyki v2.5.1.1, OEChem Toolkit
v.3.4.0.1; Freeform v.2.5.1.1: OpenEye Scientific, Santa Fe,
N.M., USA, https://www.eyesopen.com/ (accessed 01-23-
2024) FlexX v.5.2.0, Hyde v.1.5.0, SpaceMACS v.0.9.2, REAL
space in fragment space format: BioSolveIT GmbH, Sankt
Augustin, Germany, www.biosolveit.de (accessed 01-23-2024)
GOLD v.2022: CCDC Software Ltd., Cambridge CB2 1EZ,
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Open Babel v.3.1.0, https://github.com/openbabel/openbabel
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Set of 12 organic chemistry rules to process specific
bonds in sc-PDB ligands and generate building blocks
with defined functional groups, cumulative size of the
accessible chemical space for 36 organic chemistry
reactions, chemical and topological rules to form a
benzoxazole ring, chemical and topological rules to form
a sulfonamide bond, overlap of Erβ SpaceDock hits to
ChEMBL and REAL space, chemical and topological
rules to form an amide bond, overlap of DRD3
SpaceDock hits to ChEMBL and REAL space, binding
of six SpaceDock hits to the human dopamine D3
receptor, workflow to select reaction-specific reactants
from SMARTS strings, rules to filter chemical reagents
from fragmented sc-PDB ligands, set of 36 organic
chemistry reactions to prepare a combinatorial space of
5.5 billion compounds, SpaceDock hits as potential
estrogen receptor beta agonists, rules to filter commer-
cial reagents for drug-likeness of amides to be
synthesized, SpaceDock hits as potential dopamine D3
receptor antagonists, parameter settings for PLANTS
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