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Abstract. The low car occupancy and the great demand for automo-
bile transportation lead to traffic congestion in many urban areas. In
large-scale networks with high shareability (opportunity for sharing the
trips), a successful taxi-sharing program that increases vehicle occupancy
may significantly save the roadway system’s driving costs and alleviate
traffic congestion. Pricing plays an essential role in this system, as the
taxi provider always seeks to maximize his benefits, and the passenger
prefers a cheaper fare if he is going to share his taxi. So pricing can
impact the performance of a shared-mobility system and, consequently,
the network traffic. In this research, we define a pricing scheme based on
the shareability concept to consider the impact of trip fare on the traf-
fic situation. To model the passengers’ and taxi providers’ behavior, we
use an agent-based approach to model the taxi-sharing service. We use
real-world data from the city of Lyon in France to assess the behavior of
the proposed taxi-sharing system under different pricing conditions. We
implement two scenarios with different maximum fares acceptable by the
passengers to see the impact of pricing on congestion.

Keywords: Multi-agent System, Taxi-Sharing, Pricing Scheme, Simu-
lation

1 Introduction

The significant travel demand for personal car transportation and low occupancy
lead to traffic congestion, an increasingly important issue in many urban areas
with rapid population and economic growth [1]. In [2], the authors show that
in large-scale networks where the opportunity for sharing passengers’ trips is
high, a successful ride-sharing program that increases vehicle occupancy may
significantly save the roadway system’s driving costs and alleviate traffic conges-
tion. Taxi-sharing is a type of ride-sharing where the driver is just a professional
taxi driver. Recently, ride-sharing is expanding from traditional private car ride-
sharing to taxi-sharing [3], and soon, to autonomous vehicle taxi-sharing [4] and
big taxi providers around the world are becoming reputed for providing shared
services.

In a taxi-sharing system, the passenger, the ride provider, and the dispatcher
are the main parts. The passenger seeks a ride to pick her/him up at the origin



point and drop her/him off at the desired destination within a time interval. The
ride provider has a fleet of taxis ready to serve the passengers’ requests. The dis-
patcher receives the requests and the fleet information and tries to find the best
matches on short notice. In such a system, provider and passenger criteria deter-
mine service efficiency and impact the service capability to reduce congestion.
The impact of taxi-sharing and Uber-like services on traffic congestion has been
studied in many pieces of research in different urban networks and contradictory
conclusions have been claimed. The authors, in [5], define the concept of share-
ability and show that the ability of shared services to reduce congestion highly
depends on this concept. Shareability is the potential for sharing trips, and it is
different for different networks with different service demand conditions. They
consider both passengers’ and providers’ objectives and constraints to model
the service and cluster the ride requests based on the concept of shareability.
However, they do not consider pricing a necessary criterion for both passengers
and providers. In the current research, we define a pricing scheme based on the
shareability concept defined in [5] to consider the impact of trip fare on the
traffic situation.

The passengers expect to pay less when they share their ride, as their travel
time would increase. So if the taxi-sharing fare is higher than a specific price,
they will not be willing to use the service and may reject the offer. This behavior
can have major impacts on the shareability in the system. In [6], passengers
can communicate with multiple vehicles and choose the offer according to their
individual preferences, such as the earliest starting time, lowest trip time, and
lowest cost. So if the offered fare exceeds the lowest cost, they may reject it.
In [7], the authors propose monetary constraints to model a more realistic taxi
ride-sharing system. These constraints provide incentives for both passengers
and taxi drivers. Passengers will not pay more compared to no ride-sharing and
get compensated if their travel time is lengthened, and taxis will make money
for all the rerouting distance due to ride-sharing. In this paper, we consider the
maximum trip fare for the passengers. If the price of the shared taxi is higher
than this maximum fare, the passenger may reject the offer. This maximum fare
can depend on different parameters, such as the price of public transportation
and traditional taxi services, the passenger’s profile, and priorities.

Defining a pricing scheme that ensures both passengers’ and providers’ bene-
fits is essential to consider these monetary constraints in modeling a taxi-sharing
service. Various pricing schemes have been proposed for the taxi-sharing sys-
tems [8–10]. In a recent survey on taxi-sharing in [11], the authors classify
the proposed pricing schemes in the literature into four categories: number of
passengers-based, travel distance-based, trip urgency-based, and hybrid pricing
schemes, which integrates the three previous categories. However, an important
factor in this classification is missing. The time taken to cover the same distance
can be different based on the traffic situation in the network. [12] consider a
travel time-based road-pricing policy where all the major network links carry
a toll based on travel time on the link for all road users during the morning
and evening peak periods and assess the impact of this pricing on the mode



share. [13] presents a dynamic pricing strategy with a time-varying commission
rate. [14] propose to impose a surcharge on taxi customers who take taxis during
peak hours and/or travel towards congested areas. In our method, we propose a
new pricing scheme to consider the travel distance and the number of passengers,
considering the traffic situation in the taxi dispatching computations.

We use an agent-based approach to model passenger and taxi provider behav-
ior. The agent-based approach offers a way to capture both supply and demand
at a microscopic level, considering individual accessibility, available choices, and
personal tastes and needs [15]. Therefore, this approach can make the possibility
to evaluate our taxi-sharing system from the passengers’ (transport cost, satis-
faction, and service quality) and the providers’ (operational cost, incomes, and
fleet configuration) point of view [16, 17]. In addition, it can easily assess the
impacts on the transportation network criteria such as energy consumption and
emissions, shifts between transport modes, network demand satisfaction level,
and network congestion [18]. This paper uses an agent-based approach to model
the taxi-sharing system, considering passengers, taxis, and dispatchers as agents.

Our previous study proposed a solution for the dynamic traffic conditions for
a real-time ride-sharing service [19]. We use the same approach in this paper to
consider large-scale network traffic. We define two models to deal with dynamic
traffic conditions: the plant model and the prediction model. The current mean
speed in the network will be used over the next 10 minutes to predict travel
times for the dispatcher’s calculations. Then, taxis and personal vehicle travel
are simulated. The traffic situation is updated every 10 seconds using a trip-
based MFD model as the plant model to represent the traffic dynamics. The
remainder of the paper is organized as follows. First, section 2 proposes a multi-
agent model for the taxi-sharing model. Then section 3 presents a pricing scheme
for this system. Section 4 explains how we solve the dispatching problem. Section
5 presents the numerical experiment, and finally, section 6 concludes the paper.

2 Multi-agent system for the shared taxi service

The multi-agent system designed for the taxi-sharing service is shown in figure 1.
The main components of this model are the passenger agents, the taxi agents,
and the dispatching system. Each component is described as follows.

The passenger sends her/his request for a trip, defining the number of de-
manded seats, the time window (earliest pick-up time and latest drop-off time)

Passenger agent: The passenger sends his request for a trip via an applica-
tion. This request contains the origin location, the destination point, the desired
time window (earliest pick-up time and latest arrival time), and the number of
demanded seats. Then he receives the dispatcher’s choices, with different prices
and waiting/travel times.

The passenger agent can choose one of the possible options, considering his
behavioral rules and constraints. These constraints include the maximum fare he
is willing to pay and the maximum number of sharing. The number of sharing



is a concept presented by [20], and it shows the maximum number of other
passengers on board simultaneously with the current passenger.

Fig. 1. Multi-agent system for taxi-sharing

Taxi agent: The taxi provider has a fleet of taxis, and the dispatcher has ac-
cess to the fleet information, including the number of available taxis, the allowed
stop locations, and the capacity of taxis at any time. The taxis are connected
to the provider. They can have two situations, whether moving in the network
to serve the onboard passengers or waiting in the allowed stop locations to be
assigned to the new passengers. The dispatcher has access to the current location
and the number of onboard passengers for each taxi at any time.

Dispatcher: As mentioned before, the dispatcher has access to the taxi fleet
information. When it receives the new trip request, it calculates the best offer for
the passenger and sends the choice(s) to the passenger. The passenger will choose
one of the options (if more than one) and return his response to the dispatcher.
Then the dispatcher updates the schedule of the selected taxi and sends the new
schedule to the taxi. This component solves an optimization problem in real-
time to find the best offers for the passengers. The performance of this solution
method is explained in section 4.

3 Taxi pricing scheme

The taxi price calculation is shown in equation 1 where PFixed is the fixed
price that each passenger should pay at the beginning, Pdistance is the price per
distance, and Dt is the total travel distance for taxi t.

Price = PFixed + Pdistance ×Dt (1)

When every two passengers share a taxi trip, we can have two different situations
for the ride [5]. In the first situation, which we call ”shareable-FIFO”, the taxi has
to pick up the first passenger and then the second passenger, dropping them off at
the destination point considering their pick-up sequence. In the second situation,
which we call ”shareable-FILO”, the taxi drops off the second passenger before
the first passenger.

We propose a pricing scheme based on these sharing situations.



Fig. 2. The number of onboard passengers for different trip-sharing situations

1- Shareable-FIFO: The total travel distance for the taxi is Dt = d1+d2+d3,
where d1 is the distance from the first origin to the second origin, d2 is the
distance from the second origin to the first destination and d3 is the distance
from the first destination to the second destination. For the first passenger, the
travel distance is d1+d2, and for the second passenger, it is d2+d3. In this case,
the fare for each passenger can be computed as follows:

fare1 = PFixed/2 + Pdistance × (d1 + d2/2) (2)

fare2 = PFixed/2 + Pdistance × (d2/2 + d3) (3)

2- Shareable-FILO: if we show the distance of each link by d1, d2 and d3, the total
travel distance is d1+d2+d3 for the taxi, d1+d2+d3 for the first passenger and d2
for the second passenger. So for the second passenger, the travel distance is the
same as without sharing. However, he/she is on board with another passenger.
So to ensure equity, this passenger has to pay half of the fixed price, and the
fare for each passenger is computed as below:

fare1 = PFixed/2 + Pdistance × (d1 + d3) (4)

fare2 = PFixed/2 + Pdistance × (d2) (5)

It is important to mention that the shareable-FILO situation happens when the
two origins or destinations are very close, and the system can serve the first
passenger within her/his time window. A taxi trip, which starts from a stop
location and ends at a stop location, can contain different combinations of these
two situations. From equations 2 to 5, we can conclude that for any combination
of the sharing situation, the trip fare for passenger k can be computed as:

farek = PFixed/Nt+Pdistance×(xk
orgkdesk×dorgkdesk+

∑
ij∈L,i,j ̸=orgk,desk

xk
ij × dij

N ij
o

) (6)

Where Nt is the total number of passengers for taxi t, dij is the distance for the
link between each two taxi stops i and j (to pick up or drop-off the passengers),
xk
ij is a binary variable which is equal to 1 if the passenger k is on board from



point i to point j, L is the set of links, orgk and desk are the origin and destina-
tion points for passenger k, and N ij

o is the number of onboard passengers when
the taxi is taking link ij.

4 Dispatching algorithm

Using the pricing scheme presented in the previous section, we can compute the
trip fare for each passenger. Each passenger agent can accept or reject an offer,
considering her/his threshold for the shared taxi fare. Once the dispatcher re-
ceives the requests, it starts to find the best offer for the passengers that respects
all their constraints, including the time window constraint, the maximum wait-
ing time, the maximum number of sharing, and the maximum trip fare. Also,
it has to ensure the taxi capacity constraint. The best schedule is the one that
maximizes the revenue for the taxi provider and maximizes the number of as-
signed passengers. The dispatcher in our model uses the algorithm in Algorithm
1 to find the best offers. It has two main parts, to compute the new routes for
taxis that are waiting at the stop locations and also for the moving taxis that are
already serving passengers. For each group of received requests, it starts creat-
ing branches of in-sequence pick-up and drop-off points. For each point that will
be added to the route, the dispatcher has to ensure that all the constraints are
respected. Then when it finds the feasible branches, it puts them in a set called
Offers. In the end, the dispatcher sends the optimal offer(s) to the passenger,
and if the passenger accepts it, the dispatcher updates the taxi schedule and
sends it to the taxi.

5 Experiments

The dispatcher uses estimates for the predicted travel time obtained from the
”prediction model” [21]. When the rides are executed, a gap usually exists be-
tween the estimation and the real traffic condition. The ”plant model” represents
the real traffic condition. Distinguishing the prediction and the plant models can
provide a realistic assessment of the system’s functioning. We use real data from
the Lyon network in our simulations. The prediction model is based on the last
observed travel times. In contrast, the considered plant model is a trip-based
Macroscopic Fundamental Diagram (MFD) model able to reproduce the evolu-
tion over time of mean traffic conditions for a full road network using the MFD
as a global behavioral curve. The macroscopic fundamental diagram (MFD)
overviews the network states [22, 23]. The origins/destination set contains 11,314
points. The network is loaded with travelers of all ODs with a given departure
time representing the morning peak hour from 6 AM to 10 AM. The number of
trips during this period is 484,690.



Algorithm 1: Dispatching algorithm

input: New requests, travel distances (di,j), travel times (tti,j) set of
taxis (T ), set of origin points (P ), set of destination points(A), time
windows (EPi, LDi), number of seats demanded (sk) for passenger k,
number of sharing (nshare

i ), taxi capacity (Cap), weights of objective
function (α, β)
output: Taxi schedules
for origin p ∈ P do

for c-schedule, the schedule of taxi t ∈ eT do
if Detour is possible from any of the remaining origins on
c-schedule then

Build the re-schedule by adding the p after origin;
if p is feasible for time window, capacity, and number of
sharing constraints on c-schedule then

if des the destination of p is feasible for time window on
c-schedule then

Create new schedule n-schedule by adding p and des
to c-schedule;
Put n-schedule to the Offers set;

Find the optimized route optimal-schedule∈ Offers;

while Not all the points in A are assigned do
Closest waiting taxis t ∈ T ;
Create initial routes set S from remaining origins in origin set P ;
while S is not empty do

Find the optimized route s ∈ S (in terms of objective function);
Find the set of points SP that can be added to s;
for sp ∈ SP do

if sp is feasible for time constraints on s then
Compute new vehicle capacity ;
if sp is feasible for capacity and number of sharing on s
then

Create new route ns by adding the point sp to the
route s;
Add route ns to the routes set S;

if All sp ∈ SP are non-feasible in route s then
if number of route origins = number of route destinations
then

Put route s in the offer set Offers;
else

Remove route s from routes set S;

Find the optimized route optimal-route ∈ Offers that maximizes
the taxi price;
Compute farek for the optimal solutions in Offer Send the pick-up
and drop-off time of the optimal solution(s) with farek for each
solution to passenger k if Passenger k accepts the offer then

Assign the optimal-route for this offer to the taxi t;
Remove pick-up points on optimal-route from P ;

if t is a waiting taxi then
Remove t from waiting taxi sets T and add it to the en-route
vehicles set eT ;



Among these trips, the origin and destination points of 205,308 trips are
inside the studied network. We assume that the demand for taxis is 40% of
these trips. The taxi provider has 1000 taxis. To estimate the prices and taxi
operators in Lyon, we use the information in [24]. If the passenger accepts the
taxi provider’s offer, the trip will be made by a taxi-sharing service. Otherwise,
we consider that the passenger uses a personal car (or a traditional taxi with
the same functionality) to make the trip.

5.1 Results

We assess two scenarios. First, we set the maximum fare maxk
fare for each pas-

senger agent equal to the taxi fare without sharing. So if the offered fare is more
than this, the agent may reject the offer. In the second scenario, we assume that
the passengers expect a cheaper fare equal to 75% of the fare in the first scenario
and see the impact of the maximum fare on the taxi-sharing system in terms of
changing traffic conditions.

Fig. 3. Traffic situation comparison

The traffic situation for these two scenarios is shown in figure 3 compared
to two other situations. ”No service scenario” shows the situation when all the
demand in the network is made by private vehicles. The traditional taxi service
situation is when no passenger shares his ride. In this case, the taxi travel distance
will increase, and the network will face more traffic. Our proposed taxi-sharing
system can significantly reduce traffic congestion. However, this reduction highly
depends on the passengers’ preferences. This reduction would be less when the
passengers have more strict limitations on the maximum taxi fare.



Table 1. Simulation results for two pricing scenarios

Simulation
Rejected
offers (%)

Total travel
distance (km)

Average passenger
waiting time (second)

Scenario 1 0.78 434004.8 76.46
Scenario 2 4.30 563385.9 49.36

Table 1 shows the simulation results for the taxi trips. As shown, when the
passengers desire to pay a price that is less than 75% of the taxi price for a shared
ride, the rejection rate is 3.52% more than when they accept to increase their
desired maximum fare to be less than the taxi price. However, in both situations,
the rejection rate is low as the pricing scheme and taxi-sharing system presented
in this research can find the best fares to respect both passengers’ and providers’
expectations.

6 Conclusion

In this research, we defined a pricing scheme based on the shareability con-
cept [5] to consider the impact of trip fare on the traffic situation. To model the
passengers’ and taxi providers’ behavior, we used an agent-based approach to
model the taxi-sharing service. We used real data from the city of Lyon in France
to assess the behavior of the proposed taxi-sharing system under two scenarios
with different maximum fares acceptable by the passengers to see the impact
of pricing on congestion. The results show that a reasonable pricing scheme for
the taxi-sharing system that can ensure both passengers and taxi providers can
help reduce congestion in the network. In this research, we assessed the impact
of pricing on network traffic. However, the trip fare is the same during different
hours of the day. In future research, we will consider the impact of traffic on
time-dependent pricing.
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