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Abstract. In the present work, the grain scattering-induced attenuation coefficient is obtained
for longitudinal bulk waves in untextured cubic polycrystalline materials with elongated grains
using proposed 2D and 3D theoretical models. These models are obtained based on previously
developed 2D and 3D models for equiaxed grains. Comparison of the 2D and 3D models allows
an analysis of the dimensionality of grain scattering-induced attenuation, which involves more
complex mechanisms with elongated grains. In the higher stochastic scattering regime, both 3D
and 2D longitudinal attenuations are found to be dependent on the grain size parallel to the
wave propagation. In the Rayleigh scattering regime the 3D attenuation is volume dependent
and in contrast, the 2D longitudinal attenuation is found to be cross-section dependent and is
therefore helpful for identifying the 3D grain shape/rotation.

1. Introduction
Ultrasonic wave scattering is an interesting phenomenon in which the wave propagation is locally
disturbed by heterogeneities. Indeed, in polycrystalline materials, the inhomogeneities can be
summarized in the relative crystallographic misorientation from grain to grain and the possible
presence of multiple phases. In particular, knowledge about the influence of these inhomogeneities
(grain size and shape, degree of anisotropy, etc.) on ultrasonic attenuation and the correlation
between them is essential, as microstructural information can be used to characterize material
properties of importance to design non-destructive testing methods [1, 2].

Although ultrasonic attenuation has already been studied mainly in 3D and is known as a
dimension-dependent physical phenomenon, it is still interesting to investigate the attenuation in
the 2D dimension since it helps to understand better the particularities of 3D behavior. Until now,
several 3D theoretical models have been developed, with earlier models devoting attention to the
case of randomly oriented, cubic crystals and equiaxed grains with the introduction of a two-point
correlation (TPC) spatial isotropic function. Stanke and Kino [3] introduced a unified theory
that accounts for an order of multiple scattering, based on Karal and Keller’s [4] approximation.
Weaver [5], on the contrary, based his work on Dyson’s equation which accounts for multiple



scattering by the First-Order-Smoothing Approximation of the “self-energy” operator. These
two models also have led to extensions considering more general grain shapes. For instance,
Ahmed et al [6] followed the work of Stanke and Kino [3] by introducing a transverse isotropic
TPC function and obtaining results by numerical integration for cubic randomly oriented crystals.
Yang et al [7], implemented a general anisotropic function in Weaver’s [5] equations and obtained
a closed-form expression. Also, Calvet and Margerin [8] proposed a spectral approach based on
the work of Weaver [5] and Yang et al [7], obtaining results up to the geometric frequency
regime. Amplitude attenuation estimated from numerical simulations has been also carried
out. In the 3D dimension Huang et al [9] focused on the case of microstructures with equiaxed
grains and elongated grains [10]. Van Pamel et al [11] also carried out numerical simulations in
microstructures with equiaxed grains, they did a comparison between 1D, 2D and 3D ultrasonic
scattering and were able to find the power law dependency kD+1 in the Rayleigh scattering
regime and k2 in the stochastic regime.

Few works have dealt with 2D ultrasonic scattering, which remains an interesting problem
insofar as it makes it possible to compare 2D and 3D models, to analyze the dimensionality
of grain scattering phenomena, and to better understand their underlying mechanisms. In this
work, Bai and Tie’s model [12, 13] for bulk waves is recalled and then extended to the general
case of elongated grains of ellipsoidal shape for the 2D and 3D cases. Our theoretical model is
used to study the ultrasonic attenuation in 2D with an approach to better understand and give
insights on the usefulness and possibility of inversely estimating the grain’s shape/rotation.

2. General theoretical ultrasonic attenuation framework
2.1. Bulk waves ultrasonic attenuation considering elongated grains
This work follows the theoretical studies according to the unified theory of Stanke and Kino [3].
The objective here is to recall the equations used as a framework and to extend the model of Bai
and Tie [12, 13] to the case of elongated grains.

Considering an ensemble of possible inhomogeneous media made of the same single
polycrystalline material and occupying Ω ⊂ Rdim, dim = 2, 3. The polycrystalline material is
defined by a position-dependent elastic tensor C(x) and a constant density ρ. The elastodynamic
wave equation is known to be:

L (u(x, ω)) = ρω2u(x, ω) +∇x (C(x) : ε(u(x, ω))) = 0. (1)

We can then search for the solution by decomposing the wave equation operator into an
operator defined in a homogeneous reference medium and an operator defined in a heterogeneous
perturbation medium, defined as the deviation of the original heterogeneous medium from the
reference medium δC(x) = C(x) − C0. The elastic tensor C0 is an equivalent homogeneous
tensor chosen as the Voigt average [4], so ⟨δC(x)⟩ = 0. Furthermore, we consider the
assumptions of a single-phase material and randomly oriented crystallographic axes, which
means on average the medium C0 is isotropic. Also, assuming that the elastic tensor varies
independently from grain to grain, the following simplification for the elastic autocorrelation
function can be made ⟨δC(x) ⊗ δC(x′)⟩ = ⟨δCg ⊗ δCg⟩W (r). Where δCg is the elastic
tensor variation which is constant in each grain. The average is considered to be the average
overall crystallographic orientations, and the two-point correlation (TPC) spatial function W (r)
is the function responsible for the characteristic grain geometry description by estimating the
probability of two random points x and x′ are in the same grain, with r = x− x′.

The idea is then to find the solution by assuming that the average propagating wave ⟨u(x)⟩ has
the form of a plane wave ⟨u(x)⟩ = Ueikk̂·x. With k̂ the unit wavevector and U the polarization
vector. After considering the abovementioned simplifications in the second-order Karal and



Keller’s approximation [4] we obtain a non-linear eigenvalue problem in the perturbed acoustic
tensor Γ(kk̂):

Γ(kk̂) ·U = ρωk−2U , (2)

with:

Γ(kk̂) ·U = Γ0(k̂) ·U + δΓ(kk̂) ·U , (3a)

δΓ(kk̂) ·U =
((

⟨δCg ⊗ δCg⟩ : P (kk̂)
)
: (k̂ ⊗s U)

)
· k̂, (3b)

Γ0(k̂) ·U =
(
C0 : (k̂ ⊗s U)

)
· k̂. (3c)

One approach to solving the non-linear eigenvalue problem (2) for k is to assume that the
propagating modes, in the case of weakly scattering media, can be assumed to be approximated
by those pure modes of the reference homogeneous media U0

β (i.e. U0
β ||k̂ for β = L, the case of

a longitudinal mode or U0
β ⊥ k̂ for β = T , the case of a transverse mode). Then, after applying

the scalar product with U0
β to both sides of (2), the following expression (4) for the propagation

constant kβ can be obtained from the perturbed acoustic tensor:

k2β − k20β = k2β
⟨δCjβjklδCmnjβj⟩

C0
jβjjβj

Pklmn(kβk̂), Pklmn(kβk̂) =

∫
Rdim

Gkm(r)Dln(r) dr, (4)

where Gkm is the dyadic Green function in the 2D or 3D reference isotropic homogeneous medium,
and its expression can be found in equations (16, 17) in [13] and Dln(r) =

∂2

∂rn∂rl

(
W (r)eikβ k̂·r

)
is a second-order derivative tensor of the TPC spatial function. Using the Born approximation,
with k2β − k20β ≈ 2k0β(kβ − k0β) and kβ ≈ k0β . The following expression is obtained for the
wavenumber, valid in the 2D and 3D dimensions:

kβ = k0β +
k0β

2Cjβjjβj

⟨δCjβjklδCmnjβj⟩Pklmn(k0βk̂). (5)

The expression (5) is only valid in the Rayleigh and stochastic scattering regime due to the
Born approximation. As can be seen, we consider the complex wavenumber in the heterogeneous
medium as the sum of the wavenumber in the reference homogeneous medium plus a perturbation
of that due to the grain’s crystallographic and/or morphological heterogeneity. From this
deviation, we can obtain the attenuation from the imaginary part αβ = Im(kβ), and the phase
velocity from the real part V β = Re(kβ). In this work, we fix the wave propagation direction to
be parallel to e3, therefore we have that k̂ = e3. Also, we focus on the attenuation coefficient in
2D and 3D which can be both obtained from the following expressions:

αβγ,2D = Im

(
k0β⟨δCjβjklδCmnjβj⟩

2C0
jβjjβj

∫ ∞

r=0

∫ 2π

θ=0
Gγ

km(r, θ)Dβ
ln(r, θ)rdθdr

)
β, γ = L, T, (6a)

αβγ,3D = Im

(
k0β⟨δCjβjklδCmnjβj⟩

2C0
jβjjβj

∫ ∞

r=0

∫ π

θ=0

∫ 2π

φ=0
Gγ

km(r, θ, φ)Dβ
ln(r, θ, φ)r

2 sin θdφdθdr

)
.

(6b)



The expressions (6a) and (6b) are valid for the general case of arbitrary crystal symmetry and
grain shape. The integrals can be solved numerically using any available numerical integration
library. The work of Bai et al [13] work already dealt with the case of microstructures with
equiaxed grains and cubic crystal symmetry by considering an isotropic TPC spatial function of
the form W (r) = e−rd/2. In the present work, we still consider cubic crystal symmetry but we
now deal with the case of microstructures with elongated grains.

In the 3D case, it can be assumed that the elongated grains have an ellipsoidal geometric
shape. The assumed grain shape can be represented by the anisotropic TPC function (7), which
is the extended form of the equiaxed TPC function. This function has already been used by [6],
[7] and [8].

W (r) = e−
√
rTAr,A =

3∑
i=1

1

a2i
gi ⊗ gi. (7)

In equation (7), A is a second-order symmetric tensor composed by the inverse of a21, a22, a23,
which are the ellipsoidal radii in the local orthonormal coordinate system of the ellipsoid
(g1, g2, g3). In this particular work, we have that a1 ≤ a2 ≤ a3. In the definition of A, the
rotation of the grain is implicit, with its basis depending on the angles τ and φτ . These angles
define the orientation of the axis g3 as shown in Figure 1. In contrast with the development of
Yang et al [7], here we fix the wave propagation direction, but we rotate the grain’s principal
axis g3. Both approaches are similar and interchangeable since the importance relies only on the
angle between k̂ and g3.

Figure 1. Illustration of an ellipsoidal grain, where a1, a2, a3 are the ellipsoidal radii and τ, φτ

are the orientation angles of the ellipsoid principal axis g3, and θ, φ are the angles of the vector
r.

The function (7) leads to:

Dβ(r) =

[
−A

r
+

(
1

r(r̂TAr̂)
+

1√
r̂TAr̂

)
(Ar̂)⊗ (Ar̂)− 2ik0βk̂ ⊗s (Ar̂)−

√
r̂TAr̂k20βk̂ ⊗ k̂

]

× e
r

(
ik0β k̂·r̂−

√
r̂TAr̂

)
√

r̂TAr̂
,

(8)



where r = ∥r∥. We can define R = a3/a1 and R1 = a2/a1 as the two aspect ratios of the
ellipsoid. The grain can take any possible configuration in each axis of elongation g3 and g2 by
tunning the ratios R and R1 (cigar or pancake shape).

In the 2D case, one can start with an elongated 3D ellipsoidal grain and analyze a 2D cutting
plane section defined by a unit vector n̂. A 2D plane with the same orientation vector n̂ in a 3D
microstructure might cut the grains into multiple cross-sections. Here, we simplify by assuming
that the 2D plane always cuts the grains at their center. The intersection of an ellipsoid and a
cutting plane will always result in an ellipse or at least a sphere.

One can define a plane t1, t2 perpendicular to the defined normal unit vector n̂. As we decided
to fix k̂ = e3, we can set the axis t2 = k̂, and find t1 = k̂× n̂. It can be found that A2D can be
written in terms of A3D, t1, t2 as:

A2D =
2∑

i,j=1

(tjA
3Dti)ti ⊗ tj . (9)

Here, A2D as in the 3D case, is a second-order symmetric tensor. It describes an ellipse in
the orthonormal pair t1, t2. Since we decided to fix t2 = k̂ = e3, the possible choices for n̂ are
reduced to the options lying in the global coordinate system plane e1, e2. By rotating n̂ several
ellipsoidal cross-sections are possible to obtain, allowing a direct 2D and 3D comparison and
analysis of the ultrasonic attenuation dimensionality.

3. Results and discussion on the relationship attenuation-grain shape in 2D and 3D
3.1. Comparison between 3D and 2D theoretical attenuation similarities and differences
We start by comparing the 3D and 2D theoretically estimated ultrasonic attenuation in Titanium
(Beta phase) for which the material constants are presented in Table 1. The main idea is
to analyze the influence of the grain’s orientation and the dimensionality in the attenuation.
For this purpose, we consider a grain with average radii a1 = 0.1 mm, a2 = 2a1, a3 = 5a1.
Additionally, we consider three different grain rotations (a), (b) and (c) as presented in Table 2.
Moreover, we consider three choices (I, II, III as shown in Table 2) of the unit normal vector n̂,
representing three different 2D slices for each 3D case.

Table 1. Elastic constants (GPa) and material properties of the Titanium (Beta phase) and
the reference medium.

C1111 C1122 C1212 ϵL ϵT ρ (kg/m3)

Titanium (Beta phase) 134.0 110.0 36.0 2.74× 10−2 1.19× 10−1 4428
Reference medium (Voigt average) 153.0 100.0 26.5 0 0 4428

Table 2. Ellipse cross-section area (mm2) and grain radius a|| (mm) resulting from each selected
normal plane for the three considered grain orientations.

(I) n̂ = e1 (II) n̂ = e2 (III) n̂ = 1√
2
(e1 + e2) a||

(a) g1 = e1, g2 = e2, g3 = e3 π/10 π/20 π/15.81 0.5
(b) g1 = e3, g2 = e1, g3 = e2 π/20 π/50 π/38.08 0.1
(c) g1 = e1, (g2, e2) = 1/

√
2, (g3, e3) = 1/

√
2 π/10 π/38.08 π/27.84 0.35



Figure 2 presents the 3D and 2D comparison of the obtained theoretical results. The obtained
master curve of the attenuation coefficient αL in 3D is comparable to that of previous works
[6], [7] and [8]. In the Rayleigh scattering regime, the 3D longitudinal normalized attenuation
depends on the grain average volume and has a power behavior of α3D

L d ∝ (fd)4, where d is the
grain diameter in any axis of elongation. In contrast, the 2D normalized attenuation shows a
clear cross-section dependency α2D

L d ∝ (fd)3 which can be seen explicitly. Looking at each 2D
normalized curve one can see that the curve with higher values of attenuation belongs to the
planes with a higher cross-section area (I)>(III)>(II) for all three rotations (a), (b) and (c).

(a) (b)

(c)
Figure 2. Normalized 3D and 2D attenuation curves with d3 = 2a3 for a grain with three
rotations corresponding to those presented in Table 2 (a), (b) and (c) respectively.

At the stochastic scattering regime, the longitudinal normalized attenuation in 3D and 2D



are dependent on d|| = 2a|| the grain size parallel to the wave propagation direction k̂. For each
case (a), (b) and (c), for each 2D normalized curve, despite the chosen plane (I), (II) or (III), the
grain size parallel to k̂ remains equal (see Table 2); therefore convergence to the same attenuation
values from the Rayleigh to the stochastic regime in the 3D and 2D dimensions is obtained. This
last behavior shows that the attenuation in the stochastic frequency regime is mostly a 1D
phenomenon of longitudinal to longitudinal wave scattering and therefore easily predicted by the
2D and 3D theoretical models. Figure 3a shows the comparison of the longitudinal normalized
attenuation for the 3D case. It helps to visualize, that for a larger value of a|| ((a)>(b)>(c) see
Table 2 and Figure 3a), higher values of attenuation are reached.

(a) (b)
Figure 3. Comparison of the longitudinal normalized attenuation for (a) the 3D grain with the
three different chosen rotations and (b) the 2D grain resulting from the normal plane (I) for the
grain rotations (a) and (b) (see Table 2).

In the Rayleigh-to-stochastic transition regime, the 3D attenuation takes higher values than
the 2D attenuation in each case (Figure 2), the same behavior as in the case of the equiaxed
grains described by Bai et al [13]. Figure 3b compares the longitudinal normalized attenuation
for the normal plane (I) for the rotations (a) and (c). It is interesting to notice that the cases
(a.I) and (c.I) (see Table 2) have the same cross-section area due to the axes alignment chosen
and therefore both curves (a.I) and (c.I) take the same attenuation values in the lower frequency
domain. Nevertheless, it can be appreciated that at the stochastic scattering regime, curve (a.I)
takes considerably higher attenuation values than curve (c.I). This demonstrates the dependency
on the grain’s rotation in the higher frequency domain.

3.2. 3D grain shape from 2D ultrasonic attenuation
Figure 4 presents the polar plot of the longitudinal normalized attenuation in the 2D dimension
versus the angle of rotation of the normal unit vector n̂ measured from the axis e1 as it rotates
in the anti-clockwise direction for the 3D grain considered previously with axes orientation (a)
as in Table 2. It presents three different normalized frequencies corresponding to the Rayleigh
scattering regime 4a, the transition regime 4b and the stochastic regime 4c. In the Rayleigh
scattering regime we can see more clearly the cross-section dependency as n̂ moves from 0◦ the



maximum cross-section for the ellipse with axes (g2, g3) to 90◦ the minimum cross-section for
the ellipse with axes (g1, g3). As the frequency increases it is clear this dependency vanishes as
the normalized frequency approaches the limit of the stochastic scattering regime.

(a) (b) (c)
Figure 4. Polar plot of the normalized longitudinal attenuation in the 2D dimension versus
the angle of the normal unit vector n̂ measured from the axis e1 for a 3D grain with
a3 = 5a1, a2 = 2a1, for the normalized frequencies k0Ld3 of (a) 0.295, (b) 2.45 and (c) 155.09.

We want to point out that it is interesting that in the Rayleigh scattering regime (Figure 4a),
the attenuation gives an implicit idea of the grain cross-section shape. For instance, knowing that
in the lower frequency domain, the minimum values of attenuation correspond to the maximum
cross-section area, it can be interpreted from the polar plot, the elongated axis in the plane
parallel to n̂. In the case of Figure 4a (plane e1 − e2), the elongated axis g2 is parallel to e2
(90◦ in the polar plot).

To better illustrate this, Figure 5a plots the inverse of the 2D attenuation normalized by d3
for three different planes of rotation for n̂, case (i) n̂ belongs to the plane P12 formed by e1, e2,
case (ii) plane P23 formed by e2, e3 and case (iii) plane P13 formed by e1, e3. Last, case (iv) for
a 3D grain with the same radii as considered before but with g2 rotated by 45◦ with respect to
the axis e1. The abovementioned planes of rotation are chosen with the intention of “scanning”
a 3D grain from its three planes. First, we can see in case (iv) (plot 5a) that by looking at the
inverse of the attenuation, we can indicate the grain’s elongated axis 135◦ and the short axis
45◦ in the plane of n̂. Then, it follows that by “scanning” one single 3D grain from its three
different planes, one can have an idea of the full 3D grain shape by the 2D attenuation in the
Rayleigh scattering regime. Now we can come back to the 3D grain aligned with the global axes.
We can start by studying the case (i), at 0◦ n̂ = e1 the cross-section is composed by the two
remaining axes e2, e3, then at 90◦ n̂ = e2, the cross-section is composed by e1, e3. Since the
wave propagation direction k̂ = e3, then the only difference between the maximum and minimum
attenuation relies on the gain’s radius in the perpendicular axis e1 or e2. Therefore, from the
polar plot (case (i) Figure 5a) we can infer that the grain’s radii a90 > a0 in the plane of n̂. We
can continue with the same analysis for the other two planes of inspection. In case (ii) we choose
n̂ ∈ P23 and rotate it in the anti-clockwise sense from the axis e2. We again can see the same
behavior, at 0◦ the resulting ellipse is composed by the axes e1, e3 and at 90◦ by the axes e1, e2,
therefore a90 > a0 (see Figure 5a). The same analysis applies to case (iii) from which we can
deduce a90 > a0. In the latter, we also see the coincidence at 0◦ with case (i) and at 90◦ with
case (ii). Finally, considering all three cases (i-iii) together one can arrive to the conclusion that
a0ii > a0iii > a0i and that a90iii = a90ii > a90i . Then by correlation of the angles of rotation and
the planes of n̂, one can see that a90iii = a90ii = a3, a0ii = a90i = a2 and a0ii = a0i = a1, thus



a3 > a2 > a1.
In addition to the obvious influence of the elongated and short radii in the normalized

polar plot of attenuation, we can also see a proportionality of the ratio of attenuation in the
shortest/elongated axes and the aspect ratio of the grain R, for a value of a1 and fixing R1 = 1.
This is an expected relation due to the already determined cross-section dependency. To show
this proportionality we decided to compute the ratio of the attenuation at 90◦ in the cases n̂ ∈ P12

and n̂ ∈ P23 for grain with increasing R and constant R1 = 1 for three different values of a1
(0.1 mm, k0Ld1 = 0.0590, 0.05 mm, k0Ld1 = 0.0295 and 0.01 mm, k0Ld1 = 0.0059 in Figure 5b).
This setting finally results in a comparison of the attenuation when the wave propagates in the
elongated axis a3 and short axis a1 = a2. Figure 5b presents a plot of the ratio of the attenuation
in the shortest and elongated direction versus the ratio R/R1 for a constant value of R1 = 1.
This plot shows, first of all, an explicit proportional relationship with slop equal to 1 between the
ratio of attenuation and the ratio of elongated/short radii as the average equivalent grain size
approaches the limit of the Rayleigh scattering regime. But also, in the plot we decided to show
the normalized frequency with d1 to have an idea of the order of the grain equivalent size and
show that as the normalized frequency approaches the limit of the Rayleigh scattering regime
(a1 decreases), this proportionality tends to a 1 : 1 behavior. As for the three curves presented,
we have that for the attenuation in the elongated radii k̂ = e3, we should be looking at the
normalized frequency k0Ld3 but as we have that d3 varies, we skip it for clarity. Nevertheless, we
can see clearly in the case of k0Ld1 = 0.0590 (higher equivalent grain size) that as R increases,
and therefore d3 increases the grain size/wavelength ratio increases and moves upwards in the
normalized frequency regime, and therefore the proportionality 1 : 1 seen at lower equivalent
grain size (lower R) starts to decrease.

(a) (b)
Figure 5. (a) Polar plot of the longitudinal normalized attenuation for (i) n̂ ∈ P12, (ii) n̂ ∈ P23,
(iii) n̂ ∈ P13 and (iv) n̂ ∈ P12 for a grain rotated 45◦. (b) Ratio of the longitudinal attenuation
when k̂ propagates along the shortest and elongated axis versus the ratio R/R1 for R1 = 1 and
three different values of a1 [0.1, 0.05, 0.01] mm resulting in three different values of normalized
k0Ld1 [0.0590, 0.0295, 0.0059].

4. Conclusions and perspectives
A theoretical model for the ultrasonic attenuation in 3D and 2D untextured single-phase
microstructures with elongated grains and cubic crystal symmetry has been developed in the



Born approximation. The 2D model was developed with the idea of capturing different and
selected specific cross-sections of a single 3D grain. The attenuations of the longitudinal wave
predicted by the 2D and 3D models are compared for an anisotropic grain. A deeper analysis
in the 2D case was made to exhibit a relation between the 3D grain shape and the attenuation
of the longitudinal wave in the Rayleigh scattering regime. The longitudinal attenuation in the
2D case was found to be proportional to the cross-section (power law of f3), in contrast to the
3D case which shows a volume dependency and a frequency dependency of f4 in the Rayleigh
scattering regime. In the stochastic scattering regime, both in 3D and 2D cases, the attenuation
was found to be dependent on the grain size parallel to the wave propagation direction k̂ (power
law of f2). It was shown that in the Rayleigh scattering regime, the attenuation calculated from
2D cross-sections can be useful to locate the elongated and shortest axes of the 3D grain. It is
an interesting result since the 3D attenuation in the Rayleigh scattering regime is only volume
dependent which makes it difficult in the lower frequency domain to have an idea of the grain
shape. Moreover, it was also found that the ratio αshort

L /αelongated
L ∝ R/R1 and it follows a

linear relationship when the relation grain size/wavelength approaches the limit of the Rayleigh
scattering regime. These two results together can give an idea of the axes of elongation of the
grain of ellipsoidal shape and also the grain’s aspect ratio using low-frequency signals, when it
is intended to be used in inverse methods for microstructure characterization.
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