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A tumor growth model based on a parametric system of partial differential equations is
considered. The system corresponds to a phenomenological description of a multi-species
population evolution. A velocity field taking into account the volume increase due to
cellular division is introduced and the mechanical closure is provided by a Darcy-type
law. The complexity of the biological phenomenon is taken into account through a set
of parameters included in the model that need to be calibrated. To this end, a system
identification method based on a low-dimensional representation of the solution space
is introduced. We solve several idealized identification cases corresponding to typical
situations where the information is scarce in time and in terms of observable fields.
Finally, applications to actual clinical data are presented.
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1. Introduction

Mathematical modeling of tumor growth can be a useful tool to improve the under-
standing of cancer treatment in terms, for example, of prognosis, drug effect model-
ing,25,29 and clinical protocols definition.24,26 In the literature, different approaches
have been proposed, ranging from individual models, such as cellular automata,1

agent-based models,20 continuous models describing the motion of the tumor
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boundary,19 models based on reaction-diffusion equations,16,27 and models that
treat the tumor within a mixture theory framework.2,8,10 All these approaches are
phenomenological in the sense that they are not obtained from first principles,
trying rather to mimic experimental observations.

Classically the mathematical models used for clinical applications are based on
sets of Ordinary Differential Equations (ODEs). These models do not consider the
spatial aspect of the tumoral growth, yet they have proved to be of great inter-
est in realistic applications.12,28 Typically, they are parametrized using statistical
methods and may provide a prognosis on the tumoral volume but neither the shape
nor the location of the tumor can be inferred. We have chosen to add this spatial
aspect to our modeling approach and to consider models based on Partial Differ-
ential Equations (PDEs). For this matter, we could have used complex models as
in Refs. 5 and 17. These models are well adapted to study qualitatively the inter-
play between the various biological phenomena involved in tumoral growth. Yet
their complexity and a huge number of free parameters make their use in clinical
application difficult. Here, a simpler spatial model is considered. This choice is a
trade-off between simplicity and accuracy of the phenomenological description but
we believe that it is an improvement over ODE models as the present approach may
yield much more information than scalar quantities (e.g. the localization, shape or
even composition of the tumor). Contrary to an ODE description, our model takes
the spatial dimension into account and its simplicity makes the parameter identifi-
cation possible using a limited set of data.

In the following we will refer to continuous-type models based on mixture theory.
In general they rely on a system of nonlinear coupled parametric partial differential
equations, in which a set of parameters accounts for the complexity of the different
tissues attacked by the tumor as well as for the variability from one individual to
another. The tumor growth is investigated at a macroscopic scale and therefore all
the microscopic and mesoscopic scale phenomena that we do not model directly are
lumped in such parameters.

In order to apply such models in practical situations, these parameters need
to be identified, i.e. a realistic value has to be estimated. One way to determine
their values is by means of inverse problems, exploiting data coming from medical
imagery, as achieved for example in Refs. 13 and 16. The main difficulty is that the
amount of data for system identification is scarce. Although medical scans allow a
quite accurate localization of the tumor in space, little information can be inferred
about its cellular nature or nutrient distribution. In addition, usually only two scans
are available before treatment making estimation of time evolution a challenging
problem. On the other hand, retrieving the evolution of the tumor shape provides
indirect information thanks to the fact that the models are spatially distributed.

The aim of this work is to set up an efficient identification procedure to estimate
the parameters of a two-dimensional tumor growth model, with the final objective of
obtaining a prognostic model. There is a wide literature of methods to solve inverse
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problems concerning diffusion and propagation phenomena. In particular, two main
classes of methods were developed: deterministic and stochastic approaches. In the
latter a random process is considered and the parameters as well as the variable
fields of a given model are inferred once their statistical properties are given,21 and
for tumor growth modeling.23 Here we opt for a deterministic approach based on
an a priori sampling of the solution space.

In the cases we will deal with, one of the most challenging problems will not be
only to identify the parameters, but also to find fields that are not observable. That
in general makes our problems greatly under-determined, but it has a great interest
from a medical point of view since it allows one to have information about quantities
that will determine the tumor evolution. For example it is clinically meaningful to
reconstruct the distribution of the oxygen field in the tissues, or the distribution
of proliferating cell density. As a matter of fact, in realistic situations the source
of relevant data is medical imagery, so the observations that can be retrieved are
indirect, continuous in space but discrete in time.

One possible approach to formulate the inverse problem is by optimal control
theory, as was done for instance in Ref. 13. A direct system and an adjoint one have
to be solved forward and backward in time, respectively. In general this method is
very robust but has a high computational cost: in the case of the simplified model
used in the present work it would result in ten coupled nonlinear partial differential
equations. With more complicated models in three-space dimensions, this could
hardly be feasible.

A different and computationally affordable approach is described in the follow-
ing. It consists in directly using the residuals of the model (detailed in Sec. 2)
within a Newton method to solve the inverse problem. This identification proce-
dure is based on proper orthogonal decomposition (POD18) and it is introduced
in Sec. 3. Similarly to what we would like to do in real applications where we try
to identify complex natural processes with models that are intrinsically much sim-
pler than reality, in Sec. 4 we show that solution fields obtained by a Stokes-type
model can actually be identified using a simpler model based on this method. Sev-
eral applications to biological data are finally provided in Sec. 5. They concern the
evolution of lung metastases of a thyroid tumor.

2. Direct Problem: The Darcy-Type 2D Model

In this section we briefly introduce a simplified 2D Darcy-type model describing
a two-species saturated flow in a porous isotropic medium. This is a parametric
model that is simple and able to take the main physical features of tumor growth
into account. In the literature, several complex models have been proposed,5,6,8,25,31

describing age-structured populations as multi-species saturated flow including the
modeling of the cell cycle. Compared to those models, the mathematical description
proposed in the following is simpler and as a consequence it disregards certain
biological mechanisms. However, here our objective is twofold: to give a reasonable

1250003-3



March 29, 2012 9:46 WSPC/103-M3AS 1250003

T. Colin et al.

description of the phenomenon and to define an affordable identification problem.
Hence the model proposed is a compromise between these diverging objectives.

We consider the dynamics of two different cellular species, that we will denote by
P and Q. The density P represents the proliferating cells (dividing cells, responsible
for tumor growth) and Q is the density of necrotic cells that die because of lack of
oxygen in the tissue. We make a passive motion assumption, so that the velocity
field is equal for every cellular phenotype phase (see Ref. 25 for details). Under this
hypothesis, the mass balance equations for P and Q are

∂P

∂t
+ ∇ · (vP ) = (2γ − 1)P, (2.1)

∂Q

∂t
+ ∇ · (vQ) = (1 − γ)P, (2.2)

where the velocity v models the tissue movement due to the increase of the tumor
volume and γ is the hypoxia threshold, a scalar function of the oxygen concentration
that is more precisely defined later in Eq. (2.9). If enough oxygen is available then
γ = 1 and Eq. (2.1) describes the proliferation of tumor cells and the quantity of
necrotic cells is constant, thanks to Eq. (2.2). If there is a lack of oxygen, then
γ < 1 and some proliferating cells die and enter the necrotic phase, thanks to
Eq. (2.2). The function γ is a purely phenomenological description of a complex
biological process, and hence it has to be identified since it cannot be deduced from
experiments.

The density of healthy cells is denoted by S and, since their metabolism is not
as fast as the metabolism of proliferating cells, the equation for S reduces to a
homogeneous transport equation, as explained in Ref. 25:

∂S

∂t
+ ∇ · (vS) = 0. (2.3)

We use a hypothesis of saturated flow,2,6 that is, P + Q + S = 1 at every point
of the space domain and for every time. Summing up Eqs. (2.1)–(2.3) lead to an
equation for the divergence of the velocity field, namely:

∇ · v = γP. (2.4)

We observe that, from a physical point of view, this is equivalent to state that the
mitosis acts as volume source for the flow.

From a mechanical point of view it is not sufficient to fix the divergence of the
velocity field; in order to close our system we have to assign at least a law for the
curl of the velocity. Several kinds of closures have been proposed in the literature,
see Refs. 31 and 2. We chose to use a Darcy-type law, that describes quasi-steady
flows in porous media, with a variable permeability:

v = −k(P, Q)∇Π. (2.5)
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The scalar function Π plays the role of a pressure (or of a potential), and k is a
permeability field, that is a function of P and Q. The most simple, phenomenological
law is a linear mapping of the sum (P + Q), so that we have:

k = k1 + (k2 − k1)(P + Q), (2.6)

where k1 represents the constant permeability of the healthy tissue and k2 is the
permeability of the tumor tissue.

After defining the mechanics of the system, we have to specify the nutrient
evolution that in this case reduces to a reaction-diffusion equation for the oxygen
concentration. We make the assumption of a quasi-steady state:

−∇ · (D(P, Q)∇C) = −αPC − λC, (2.7)

where α is the oxygen consumption rate for the proliferating cells, λ is the oxygen
consumption coefficient of healthy tissue and D(P, Q) is the diffusivity. Again, the
diffusivity can be written as a linear mapping of P + Q:

D = Dmax − K(P + Q). (2.8)

This phenomenological law reflects the fact that the diffusion of oxygen is different
in the healthy or tumor tissues. The hypoxia function γ simply states that, when
the concentration of oxygen is under a certain threshold the cells become necrotic.
The definition of γ is a regularization of the unit step:

γ =
1 + tanh(R(C − Chyp))

2
, (2.9)

where R is a coefficient and Chyp is the hypoxia threshold.
According to the physics of the system, reflecting different clinical cases, Dirich-

let boundary conditions or Neumann boundary conditions can be imposed for both
the oxygen and the pressure fields. For example, in order to mimic the presence
of a blood vessel, we impose that the oxygen concentration is constant on a given
subdomain. Imposing Neumann conditions on the pressure field is equivalent, from
a physical point of view, to imposing that there is no mass leaving our domain. In
order to have a well-posed problem the equation for the divergence of the velocity
is modified. In particular, the divergence must be a zero average scalar quantity, so
that we can write:

∇ · v = γ(C)P −
∫
Ω γP dΩ∫

Ω 1 − P − Q dΩ
(1 − P − Q). (2.10)

From a mechanical point of view this is equivalent to imposing that the growth
of the tumor causes a compression of the healthy tissue. Therefore the healthy
tissue equation can no longer be considered, in this case, a homogeneous transport
equation.

This model can be seen as a radical simplification of that of Ref. 5. For example,
the cell cycle described therein is modeled by the coefficient γ(C) and the result of
the angiogenesis process is summarized in Eq. (2.5). This could be perceived as an
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Fig. 1. Schematic computational setup. Boundary conditions are imposed at the square borders
for pressure and oxygen.

oversimplification of the model. But, as noticed in the Introduction, our model is
still much more complex than those based on ODEs since it involves spatial scales.
In view of system identification, this is a trade-off between accuracy and complexity.

A sketch of the computational setup for some of the test cases presented here-
after is given in Fig. 1. The various equations appearing in the mathematical model
were discretized on a Cartesian mesh using a finite volume approach. Advection
equations are solved numerically with a WENO scheme.9,14 To improve numeri-
cal accuracy, solutions of the diffusion equations are computed with a Ghost-Fluid
method.11

3. Regularization by Means of Semi-Empirical Eigenfunctions

In clinical practice we do not have access to both P and Q. Rather, what is known
to a certain extent is the total tumor cell density field Y = P +Q. This decrease of
information makes the inverse problem greatly underdetermined. The main idea is
then to include additional information using a classical regularization approach. In
the literature, regularization techniques in inverse problems were proposed within
a stochastic framework,15,21,32 by making assumptions on the statistics of what is
observed.

Here we define a regularization in such a way that we do not change the deter-
ministic structure of the problem: the solution is sought in a given low-dimensional
functional space.

3.1. Regularization based on empirical eigenfunctions

In the sequel, the observed quantity Y is known at two time instants. The unknowns
are the concentration of oxygen C, the velocity field v, the proliferating cells density
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P and all the parameters (k2, Dmax, K, α, λ, R, Chyp) at a given observation time.
The objective is now to write the model as a function of Y whenever possible.

Summing up Eqs. (2.1) and (2.2) we get:

Ẏ + ∇ · (Y v) = γ(C)P. (3.1)

For the velocity field and for the oxygen concentration field, we have:

∇ · v = γ(C)P −
∫
Ω γP dΩ∫

Ω 1 − Y dΩ
(1 − Y ), (3.2)

where the expression relative to Neumann boundary condition for the pressure field
was retained; in the case of Dirichlet boundary conditions the second term of the
right-hand side of this equation simply vanishes.

We take the curl of the Darcy law:

k(Y )∇ ∧ v = ∇k(Y ) ∧ v, (3.3)

and add the equation for the oxygen concentration field:

∇ · (D(Y )∇C) = αPC + λC. (3.4)

The definition of the hypoxia function, γ, is unchanged.
The basis of the solution functional space is constructed using POD. This

approach was already used in population dynamics to set up reduced-order model34

and it is widely used in fluid mechanics to obtain reduced-order models for optimiza-
tion and control.4,33 This basis, given the space dimension, maximizes the energy
representation of a previously computed solution set. In other words, the solution of
the inverse problem is sought in the space spanned by a basis that gives an optimal
representation of a sufficiently large number of solution samples. For each of the
following tests, we have built a parametric space in which all the parameters vary
in such a way that a large set of different solutions are included in the database.

In particular, the parameter space is sampled varying the permeability constants
ratio χ = k2/k1, the diffusivity ratio η = K/Dmax, and the oxygen consumptions
α and λ. The details on the database construction are provided below. For each
solution we saved enough time snapshots to accurately resolve all the relevant fre-
quencies. In principle the database should be such that all the possible different
biological behaviors are represented.

The Sirovich method30 is used to build the low-dimensional space. Each POD
mode for a given variable is written as a linear combination of snapshots of that
variable. The maximum energy norm problem results in an eigenvalue problem
for the time auto-correlation matrix. We describe the method for P , pointing out
that for all the other variables, i.e. v, C and γP , it is exactly the same. The time
auto-correlation matrices are defined in the following manner:

A(P )
ij = 〈Pk(th), Pm(tn)〉 h, n = 1, . . . , N ; k, m = 1, . . . , M, (3.5)
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where N is the number of snapshots for each simulation, M is the total number of
simulations: as a consequence i = (k−1)N +h and j = (m−1)N +n and 〈·, ·〉 is the
discrete L2 scalar product on the space domain. The eigenvalues and eigenvectors
of the above matrix are computed: let bi denote the ith eigenvector and λi the
corresponding eigenvalue. It can be shown, see Ref. 30, that the ith eigenmode of
the space auto-correlation matrix

A(P )
hn =

∑

k

Pk(xh)Pk(xn) h, n = number of grid points; k = 1, . . . , M (3.6)

can be written as linear combination of snapshots:

φi =
∑

j bi
jPj

λ1/2
i

, (3.7)

where we have called Pj = Pm(tn), j = (m− 1)N + n, and bi
j is the jth component

of the ith eigenvector. The set of eigenfunctions φi is orthonormal.
The dimension of the empirical functional space, i.e. the number of POD modes

we use to reconstruct the solution, is chosen such that if additional POD modes
are included, the reconstruction of a given field does not vary up to a certain error
value that, in this work, was fixed at 10−4 in L2 norm.

The repeated index summation convention is used from now on. We write the
variables P, C,v, γP as eigenmode expansions:

P = a(P )
i φ(P )

i , i = 1, . . . , NP , (3.8)

C = a(C)
i φ(C)

i , i = 1, . . . , NC , (3.9)

v = a(v)
i φ(v)

i , i = 1, . . . , Nv, (3.10)

γP = a(γP )
i φ(γP )

i , i = 1, . . . , NγP , (3.11)

where a(·)
i = a(·)

i (t) are scalar functions of time, φ(·)
i = φ(·)

i (x) are functions of
spatial coordinates. Substituting these expressions in the system Eqs. (3.1) and
(3.4) we obtain:

Ẏ + a(v)
i ∇ · (Y φ(v)

i ) = a(γP )
i φ(γP )

i , (3.12)

a(v)
i ∇ · φ(v)

i = a(γP )
i φ(γP )

i −
∫
Ω a(γP )

i φ(γP )
i dΩ∫

Ω 1 − Y dΩ
(1 − Y ), (3.13)

a(v)
i k(Y )∇ ∧ φi

(v) = av
i ∇k(Y ) ∧ φ(v)

i , (3.14)

a(C)
i ∇ · (D(Y )∇φ(C)

i ) = αa(P )
j a(C)

i φ(P )
j φ(C)

i + λa(C)
i φ(C)

i . (3.15)

The hypoxia function γ, Eq. (2.9), is multiplied by P , in such a way that the
product γP is:

a(γP )
i φ(γP )

i = a(P )
j φ(P )

j

1 + tanh(R(a(C)
i φ(C)

i − Chyp))
2

. (3.16)

1250003-8



March 29, 2012 9:46 WSPC/103-M3AS 1250003

System Identification in Tumor Growth Modeling

We solve system (3.12)–(3.15) by minimization of the residuals under certain con-
straints that are introduced below. The first constraint is linked to the fact that
Eq. (3.15) is a homogeneous equation with respect to the coefficients a(C)

i . As a
direct consequence, one possible solution of the oxygen diffusion equation is the
trivial one. Indeed, if Chyp < 0 such a solution would also be a solution for the
whole system, Eqs. (3.12) and (3.16). In order to prevent the identification of a
system with unphysical solutions we can proceed in two different ways. We can dis-
cretize the boundary conditions for oxygen, getting one scalar constraint, exactly
as in the Petrov–Galerkin method. In the case of Dirichlet boundary conditions
C = C0 on ∂ΩC where ΩC is a blood vessel domain, we obtain one scalar equation
of the form:

∑

i

(∑
j bi

j

λ1/2
i

)
a(C)

i (t) = 1, ∀ t. (3.17)

Another option is to lift the solution and transform Eq. (3.15) into a nonhomoge-
neous equation, with source terms. Both these approaches yield similar results in
terms of inverse problem solution and hence in this work we simply lift the solution.

At a given time (say t0), the snapshot Y (t0) and a subsequent snapshot Y (t1)
are used to perform the computation of the time derivative. Let the residue of the
lth equation be Rl. We write F =

∑
l R2

l and

(a(·)
i (t0), πj) = argmin(F ), (3.18)

where a(·)
i are the expansion coefficients for the variables P, C,v, γP and πj are the

parameters to be identified.
The second constraint to be imposed in the minimization results from the obser-

vation that, since in the inverse problem we do not solve the equation for the variable
P , the latter does not automatically satisfy: 0 ≤ P ≤ 1 and therefore this is a con-
straint we have to impose. In order to impose this constraint, that is fundamental
for the point of view of the population dynamics, the residuals are penalized as
follows:

F̃ = F + c1(max{a(P )
i φ(P )

i }− 1) + c2(−min{a(P )
i φ(P )

i }), (3.19)

where c1, c2 are positive numbers, that we have set in such a way that penalization
does not affect the stability of the procedure. The inverse problem finally takes the
form of a nonlinear algebraic optimization problem, that is solved using a Newton
trust region method.

In order to decrease the computational cost of the procedure, a third constraint
is imposed to define a feasible set of solutions. In particular, let a(P )

i (t0) be the
ith POD coefficient relative to the variable P evaluated at the time t0. The maxi-
mum and the minimum values that the coefficient a(P )

i (t) reaches in the database
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simulations can be calculated on the basis of the auto-correlation matrix of the
variable. Indeed, the definition of the ith POD mode implies that:

φ(P )
i =

bi
jPj

λ1/2
i

⇒ a(P )
ik = 〈Pk, φ(P )

i 〉 =
1

λ1/2
i

〈Pk, bi
jPj〉, (3.20)

where a(P )
ik denotes the projection of the kth snapshot of P on the ith eigenvector.

From the definition of the eigenvector we finally obtain:

a(P )
ik =

1

λ1/2
i

〈Pk, Pj〉bi
j = λ1/2

i bi
k ⇒ max

k
{a(P )

ik } = λ1/2
i max

k
{bi

k}. (3.21)

We can conclude the same for the minimum of the coefficient. Thanks to this
relationship we can estimate the interval of excursion Idb

k of the projection
coefficients

Idb
k = [min{a(P )

ik }, max{a(P )
ik }]. (3.22)

We ask the solution to be not too different from the simulations of the direct
problem, since we assume that we built a database in which the biological behaviors
of the variables were represented. Thus we restrict the admissible values of the POD
coefficients to an interval Ik that is obtained from Idb

k by a stretching factor 1 + δ
where δ is a suitable positive number. In all the following simulations the value
δ = 0.1 was adopted. It should be noted that this choice still allows the procedure
to identify solutions that are very different with respect to the solution of the
database. This procedure is repeated for all the variables included in the database.

3.2. Time interpolation

The hypothesis that two subsequent snapshots are close in time, or, in other words,
that the time between two snapshots is small if it is compared with the character-
istic evolution time of the phenomenon, is very optimistic. In order to relax this
hypothesis, instead of using first-order finite differences, that is equivalent to per-
form a linear interpolation between snapshots, a different kind of interpolation can
be used. However, a higher-order finite difference scheme, equivalent to a polynomial
interpolation between the snapshots, would require a large number of snapshots.
As an alternative, still assuming that only two images are available, an additional
hypothesis about the growth rate could be retained. Here, we consider two cases.
In the case of exponential growth we write:

Ẏ ≈ A exp{ζt} + B exp{−ζt} = f(ζ), (3.23)

where A, B are chosen in such a way that the two available snapshots are interpo-
lated. One parameter, ζ, is free and enters the residual minimization process. The
first equation of the system (3.1)–(3.4) becomes:

f(ζ) + ∇ · (a(v)
i φ(v)

i Y ) = a(γP )
i φ(γP )

i . (3.24)

1250003-10
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In the case of a logistic-type growth we proceed in a similar way. We take

Y ≈ AG(ω, σ) + BG(−ω,−σ), (3.25)

where

G(ω, σ) =
ωeωt

ω − σeωt
. (3.26)

As before A and B are adjusted such that the snapshots are interpolated. In this
case, however, we are left with two free parameters (ω and σ) that are found within
the residual minimization process.

4. Identification of a Stokes-Type Flow Using 2D
Darcy-Type Model

The objective of this section is to give a quantitative a posteriori error analysis of the
identification procedure. The framework is as similar as possible to an actual clinical
situation. In this sense, we consider the identification of a Stokes-type flow using
a Darcy-type model, in two different physical situations. This is a more realistic
situation compared to what one would like to do in clinical practice. The equations
describing a Stokes flow are the following ones:

∇ · v = 0, (4.1)

−∇ · σ + ∇p = 0, (4.2)

σ = ν(∇v + ∇T v), (4.3)

where ν is the kinematic viscosity, σ is the stress–tensor, p is the pressure field, and
v the velocity field.

For the direct simulations the following parameters were used: ν =
2.0− (P + Q), so that kinematic viscosity is a non-uniform isotropic field depending
on the tissue, α = 2.0, K = 0.8, λ = 0.01.

In order to perform the identification, we use two subsequent snapshots taken
from the numerical simulations of a Stokes-type flow. The Stokes-type model and
its discretization are fully described in Ref. 7. These snapshots are considered as if
they were part of the evolution of a Darcy-type flow. In order to solve the inverse
problem we follow exactly the procedure described in the previous section. To this
end we build a database of solutions of the Darcy-type flow, starting with the same
initial conditions of the Stokes-type flow. We construct the eigenfunction basis, we
regularize the inverse problem and we solve it by minimizing the residuals.

We point out that in the Stokes-type flow the cellular species obey the same
population dynamics as in the Darcy-type model. What changes is the mechanical
closure. As pointed out in Ref. 3 a viscoelastic flow in a two-dimensional limit can be
well-described by a Darcy-type law with a suitable definition of permeability. Thus
we expect that the 2D simplified Darcy model represents in a satisfactory manner
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all the main physical features of the more complex Stokes-type flow. Nevertheless
we point out that there are also differences between the models (mainly the role of
diffusivity) so that this can be considered a good test approaching realistic system
identifications. Let us note that in this case we try to perform our regularization
using the eigenfunctions that have been extracted from the simple model. This is
realistic since it is what we can actually do in real applications.

As a preliminary test we investigate how the density of proliferating cells P
determined using a Stokes mechanical closure is approximated by empirical eigen-
modes obtained for a Darcy-type flow with the same initial conditions. The initial
conditions and the computational setup is identical to that of the next section. We
consider the L2 relative projection error, see Table 1. This table shows that the
relative projection error is acceptable and that it decreases with the number of
modes and increases with time, as expected.

Next, we present the results of two different inverse problems, in which both the
behavior of the oxygen concentration and the mechanical behavior of the healthy
tissue vary. In the first case the oxygen concentration on the boundary of the
blood vessel is given, whereas in the second test case we assume that the oxygen is
provided through the boundary of the computational domain and the value of the
oxygen concentration on this boundary has to be identified. In the second test case
we also impose a geometrical constraint corresponding to the fact that the tumor
cannot leave the computational domain. This is done by modifying the boundary
condition on the velocity, which in turn affects the dilatation rate and therefore
the mechanics of all the tissues, including the healthy one. This is a model for the
tumor growth inside an organ before the metastatic process.

4.1. Database and POD representation

In the numerical examples presented in this section the database was built as fol-
lows: 576 simulations were completed, taking 20 snapshots of each. The parameters
used were:

• χ = k2/k1: [0.50, 1.0, 1.5, 2.0], k1 = 1 for all the simulations,
• η = K/Dmax: [0.10, 0.45, 0.80], Dmax = 2 for all the simulations,
• α: [0.1, 1.0, 3.0, 5.0],

Table 1. Relative projection error as a func-
tion of the number of POD modes NP and of
the time instant considered T .

NP T = 0 T = 5 T = 10 T = 15

5 5.18e-2 9.64e-2 15.10e-2 15.68e-2
10 3.85e-2 5.12e-2 5.81e-2 9.13e-2
15 2.64e-2 3.62e-2 3.12e-2 4.45e-2
20 1.53e-2 2.38e-2 2.42e-2 3.51e-2
25 1.12e-2 1.44e-2 1.91e-2 2.52e-2
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• Chyp: [0.05, 0.045, 0.085, 0.125], maxΩ {C} = 0.15,
• λ: [0.001, 0.1, 0.5].

For the Darcy-type model the unknowns are P , Y , C, γ, Π (or v). There are two
possibilities to build the regularization basis: the first one consists in extracting
a unique vector basis, taking all the variables as components of the same vector
field into account. The second one consists in looking for a separated expansion
for each variable. This second option was chosen as the involved variables have
different meanings and they are inhomogeneous from a physical standpoint. We
show the first POD modes of C and P for Case I presented in the next section.
In Fig. 2(a), the first POD mode is shown, representing the average of the oxygen
fields. The blood vessel is recognized. In the other modes the presence of the tumor
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Fig. 2. POD modes for the oxygen field: (a) first, (b) second and (c) third mode.
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Fig. 3. POD modes for the proliferating cells density: (a) first, (b) second and (c) third mode.

becomes clearer as it induces variations due to oxygen consumption. In Fig. 3,
the POD modes for the proliferating cell density are shown. They are compactly
supported. P is moving toward the blood vessel and the movement is rendered by
the wavy structure highlighted by the second and third modes. The quantitative
properties of representation of the modes have been investigated. In Fig. 4, the
L2 representation error for the oxygen (a) and for proliferating cells density (b) is
represented as function of the number of POD modes, when the setting presented
in Case I, detailed below, is adopted. This error is relative to a growth simulation
that does not belong to the database (initialized with random parameters). The
error for oxygen decreases faster. This is due to the fact that oxygen is governed
by a diffusion equation, while proliferating cells evolve driven by a transport and
their support evolves during the simulation. More POD modes are needed to take
this non-global behavior for proliferating cells into account.
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Fig. 4. L2 representation error with respect to the number of used modes for (a) oxygen and
(b) proliferating cells density; the database for the Darcy model was used.

4.2. Case I : Distant blood vessel

The tumor is a spheroid that starts growing alimented by a single blood vessel of
known position and source intensity. In particular, the computational domain is the
box Lx = 8, Ly = 8, the tumor is initially located at x = 6, y = 4, the blood vessel
at x = 3, y = 4.

Dirichlet boundary conditions for both the oxygen and the pressure fields are
imposed. In particular, we have:

Π and C = 0 on ∂Ω, C = C0 on ∂ΩC , (4.4)

where ΩC represents the blood vessel and C0 = 0.15. In Fig. 5, two snap-
shots of the solution of the Stokes-type flow for this case are represented. In

(a) (b)

Fig. 5. (Color online) Solution of the Stokes-type flow in the case of a distant blood vessel, at:
(a) T = 0; (b) T = 20; isolines represent oxygen concentration in the tissue. Color scale goes from
0 (dark) to 1 (clear).
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Fig. 5(a) the initial condition is plotted: at the right-hand side the tumor (the
proliferating cell density is represented) is initialized as a spheroid with an
exponential distribution of proliferating cell density. The contour lines represent
the isosurfaces of the oxygen concentration in the tissue. The same quantities
are represented in Fig. 5(b) for a subsequent time. It can be seen that the
tumor has grown, it has started moving towards the blood vessel, and that due
to the oxygen consumption the tumor changes the oxygen distribution in the
tissue.

In this case the system of Eqs. (3.1) and (3.4) reduces to:

Ẏ + ∇ · (av
i φv

i Y ) = aγP
i φγP

i , (4.5)

aγP
i =

1 + tanh(R(ac
iφ

c
i − Chyp))

2
, (4.6)

av
i ∇ · φv

i = aγP
i φγP

i , (4.7)

k(Y )∇ ∧ av
i φ

v
i = ∇k ∧ av

i φv
i , (4.8)

∇ · (D(Y )ac
i∇φc

i ) = αaP
j aC

i φP
j φC

i + λaC
i φC

i . (4.9)

Constraints to the oxygen field are imposed in order to prevent unphysical solu-
tions to arise, as explained in the previous section. Linear interpolation, exponential
interpolation and logistic interpolation are used to obtain an estimate of Ẏ . Accord-
ing to the sensitivity analysis on the representation properties of POD modes, we
used the following number of POD modes: for the variable P , NP = 10, for C,
NC = 5, for v, Nv = 30 and for γP , NγP = 10. We present the main results of our
numerical tests.

In this section the numerical results of the procedure are discussed. Before ana-
lyzing in detail the errors from a quantitative point of view we present briefly the
qualitative behavior of the solution obtained by simulating with a Darcy-type flow
the same tumor we have simulated using a Stokes-type model, when the parame-
ters of the Darcy model are found by system identification. In Fig. 6, we present
three snapshots taken from the two simulations. We performed the identification at
T = 5 using the second snapshot at T = 10 to approximate the time derivative with
an exponential-type interpolation. The qualitative behavior of the reconstruction is
very similar.

Since the medical data usually involves only the sum of P + Q, we choose to
concentrate the investigation on the tumor volume error and the tumor center of
mass error. In particular, we compute the volume as:

VY (t) =
∫

Ω
1Y dΩ, (4.10)

where 1Y is the indicatrix of the variable Y, and so that the volume is a measure
of the support of that variable. In an equivalent manner we consider the position
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(a) (b) (c)

Fig. 6. (Color online) Cell density Y for the Stokes flow (upper row) and for the Darcy flow
(below): (a) T = 5, (b) T = 10, (c) T = 15; Color scale ranges from 0 (blue) to 1 (red).

of the mass center as being:

xG =
∫
Ω 1Yx dΩ∫
Ω 1Y dΩ

. (4.11)

The procedure to evaluate the error is the following: two snapshots of the Stokes-
type flow are taken and the identification using a Darcy-type flow is performed. We
simulate the Darcy flow system using the parameters we have identified and taking
as initial condition the first snapshot of the Stokes-type flow. The volume and the
center-of-mass position are evaluated. If we denote as V (e)

Y and x(e)
G the volume and

the center-of-mass position of the tumor in the Stokes-type flow, we can define the
relative errors as follows:

εV (t) =
VY (t) − V (e)

Y (t)

V (e)
Y (t)

, (4.12)

εX(t) =
(XG(t) − X(e)

G (t))2

(V (e)
Y (t))(1/2)

. (4.13)

The system is identified at different times, varying the time interval between the
snapshots. In Fig. 7(a), the relative error in volume is plotted. The reference snap-
shot is taken at T = 5 and a linear time interpolation is used. The errors are com-
puted varying the time at which the second snapshot is taken. The error remains
below the value of 0.1 for a large part of the time history of the simulation of the
Darcy-type flow. All the identification are practically equivalent.
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Fig. 7. Relative error when identification time is T = 5, with linear interpolation: (a) volume
error and (b) center-of-mass position error.

In Fig. 7(b), we show the error on the center-of-mass position scaled with the
square root of the volume. We adopt this normalization in order to have a dimen-
sionless error. Indeed it is reasonable to assume that the higher the dimension of
the tumor the higher could be the absolute error in the center-of-mass position. In
other words, the relative error obtained represents the absolute error of the center-
of-mass position per unit length of the mean tumor radius. All the simulations are
equivalent and the error is particularly low, so that we can conclude that the trans-
port approximation is rather good. We point out that the time scales considered
are rather realistic, in terms of the increase of the tumor size.

In Fig. 8(a), we show the relative volume error with ∆t = 5 and for different
time interpolations. We see that the logistic-type interpolation is less accurate. At
T = 10, the linear interpolation is better than the exponential one. In contrast,
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Fig. 8. Relative volume error when ∆t = 5, varying interpolations: (a) T = 5 and (b) T = 10.
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Fig. 9. Relative volume error when T = 10, varying ∆t with: (a) linear interpolation and (b)
exponential interpolation.

when T = 5, the exponential interpolation provides a rather good approximation
of the time derivative, so that the error remains under 0.1 for all the rest of the
simulation.

Let us analyze the error when T = 10 for both interpolations, when we vary
the time at which we take the second snapshot. We can see in Fig. 9 that the three
types of interpolation yield similar results, although the exponential interpolation
performs slightly better for ∆t = 2. When we perform the identification at T = 10,
the error is small for a large part of the growth history, but in general tends to grow
faster with respect to the error we make when we identify our system at T = 5.
This can be due to the fact that the tumor has started moving towards the blood
vessel so that the derivative can no longer be well approximated by the derivative
of an exponential-type system.

When the Darcy-type flow is integrated, a snapshot taken from the Stokes-
type flow is used as an initial condition: this is equivalent in practical simulations
to assume that the region corresponding to the active part of the tumor is known.
Therefore, the errors we previously computed are solely due to the parameter recon-
struction and the differences between the models.

Since in the identification only the sum P + Q is known at two given times, it
can be useful to reconstruct also the initial condition for the variables P, C,v and
hence analyze the results when we use, as initial condition, the identified initial
condition. Indeed, this reflects the situations occurring in reality. Moreover, we get
estimates about the composition of a tumor in terms of phenotype phases as this
turns out to be valuable clinical information.

When the identified initial condition is used as a starting point for the sim-
ulation, the results worsen and there is a certain sensitivity to the first guess of
the Newton solver. Since the inverse problem is underdetermined and quite ill-
conditioned, plenty of local minima exist. One way to circumvent this problem is
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to take a snapshot of Y from the database as the initial guess. We have obtained
in this way relative errors in volume of 25–30%.

4.3. Case II : Irregular tumor shape

In this subsection the dynamics of an irregular-shaped tumor is identified. The
overall problem setting is the same as before. The aim is to check if the procedure
is accurate enough to identify complex geometries. Spatial accuracy is in fact the
main motivation for using a distributed model based on PDE.

In Fig. 10, the solution of a Stokes flow (upper row) is compared with the
solution of the Darcy flow when the identification procedure has been applied with
an exponential type of interpolation. The initial tumor distribution was taken from a
scan image of a lung cancer (courtesy of Sarrut, Centre Léon Bérard, Lyon, France).
The identification is able to take into account the effects of complex geometries,
even if the models are quite different. In particular, in the Stokes-type flow we
can expect that the tumor boundary becomes less irregular as time increases, since
there is a diffusion process, while in the Darcy-type flow there is no diffusivity.

As before, the error analysis is performed, and the same qualitative and quan-
titative behavior is found with respect to the case of regular shapes. In particular,
the relative error stays under the value of 0.1 for a relevant portion of the growth
history, corresponding to the doubling of the tumor volume.

5. Applications to Biological Data

In collaboration with Institut Bergonié (the cancerology institute of Bordeaux),
we study thyroid cancer metastases in lungs. These metastases are a therapeutic

(a) (b) (c)

Fig. 10. Cell density Y for the Stokes flow (upper row) and for the Darcy flow (below): (a) T = 5,
(b) T = 10 and (c) T = 15.
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challenge because some are fast evolving and are good candidates for trials with
molecular targeted therapies, but others are slowly evolving and it is difficult to
decide when to treat them. For the oncologists the development of predictive tools
could be of interest in the planning and in the evaluation of an anti-tumoral treat-
ment. For example with slowly evolving tumors, a prediction of growth could rein-
force the decision of waiting without specific treatment or on the contrary to help
in the decision of starting radiofrequency thermal ablation or molecular targeted
therapy.

Several scans may hence be available for a slowly evolving nodule and this
occurrence is important in our case since it allows a validation of the assimilation
technique on a long time horizon. We make the choice of keeping a two-dimensional
setting. The main reason for that is computational feasibility, in the sense that
computationally intensive identification procedures in clinical practice seem out
of reach for the moment. Another motivation for this choice is that for practical
reasons physicians tend to interpret the scans on the largest section of the lesion,
even though three-dimensional data are available.

The intervals of the parameters sampled for the database construction is the
same as in the synthetic examples detailed in the previous section. The number of
simulations may vary, and it will be specified later on.

5.1. Case I : Slow rate growth

In Fig. 11 four scans covering an evolution over 45 months are presented. Even
though this patient is affected by several metastases, the evolution of the one marked
in Fig. 11(a) will be studied here. Using only the first two scans, we recover the
parameters and the initial conditions that allow us to perform a forward simulation
beyond the time corresponding to the second scan. Therefore, starting from the
scan corresponding to October 2007, the growth rates obtained are actual model
predictions.

In order to determine the POD modes, two databases were constructed by inte-
grating in time the Darcy-type model. The first database consists of 128-parameter
configurations that result in growth rates of the order of the ones observed between
the first and the second scans on a conventional time scale of 1. For each of the
128 configurations, 20 time snapshots were recorded. 15 POD modes were used for
v, P , and γP , 10 modes for C. In order to check the stability of the identification
with respect to the solution space sampling, a second database of 768 simulations
was also built. Again 20 time snapshots per simulation were considered. The results
shown in the following do not significantly vary as a function of the database used.

Let us show the POD modes extracted from the database of 128 simulations for
the concentration of proliferating cells and the oxygen distribution in the tissue. In
Fig. 12 some eigenmodes of the oxygen field are represented. The modes are regular
and the structures in the oxygen field due to the consumption of the tumor may
be recognized. In Fig. 13, the proliferating cells density modes are represented. In
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(a) (b)

(c) (d)

Fig. 11. Scans: (a) November 2005, (b) October 2007, (c) July 2008 and (d) April 2009.

all the modes the shape of the initial tumor may be recognized and a wave-kind of
behavior appears to render the growth and the tumor invasion of the surrounding
tissue.

Initially the proportion of proliferating cells is fixed to P = 1 on the tumor
support, that is, at the beginning the tumor is totally proliferating. This value is
of course not always realistic, but the results of the identification proved to be
weakly-dependent on this assumption.

In Fig. 14 we present the simulated nodule growth compared to the actual nodule
size resulting from the scan of April 2009. The support of the Y distribution has
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Fig. 12. POD modes for the oxygen field, Case I: (a) first mode, (b) third mode and (c) fifth
mode.

approximately the same area as the real tumor. However, in the simulation the
nodule is more isotropic than in reality. Indeed in Fig. 14(c) a zoom of the space
error is shown: the error is localized on the tumor boundary and concerns essentially
the shape.

In order to give a more quantitative evaluation of the results obtained, we focus
on the overall growth history. To this end, the predicted area of the tumor is
compared to the actual one. In Fig. 15, the solid line represents the simulation
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Fig. 13. POD modes for the proliferating cells density, Case I: (a) first mode, (b) third mode
and (c) fifth mode.

while the circles are the computed areas of the scans. The square is the result of
the last exam, performed recently, for which we provided the physicians a predic-
tion of the size before the actual scan. Similar results on area or volumes can be
obtained by identifying ODE-based models. Nevertheless, the present approach has
the advantage of retrieving a precise spatial localization of the tumor as well as an
indication of its cellular-type and nutrient distribution.
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(a) (b)

Fig. 14. (Color online) Zoom of the superposition of image and computation for the data taken
at November 2008: (a) fourth scan, (b) simulation. The color scale represents Y , from 0 (blue) to
1 (red).
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Fig. 15. Area as function of time.

We point out that only the first two scans were used in the identification.
Nonetheless, the procedure is able to correctly detect the changes in trend at month
35, without having data near this point.

Let us comment this aspect in greater detail, since it is of interest for a
deeper understanding of the procedure. The database of simulations built contains
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solutions of the PDE model commented in the above sections, and no solutions
have been explicitly added of a logistic-type or exponential-type growth. The PDE
model mimics a cellular cycle, whose rhythm may vary both in time and space. This
kind of model is able to produce plateau-type solutions as well as exponential (and
very aggressive) growths, when parameters are varied. In the database a wide range
of solutions are represented, with compatible growth rates, and such a behavior is
retained in the regularization via the POD modes. Once calibrated, the model has
the solution (in terms of volume) represented in Fig. 15.

The volume error on the fourth scan corresponds to 10 days on a time of
39 months, and, for the last exam, to 20 days over 47 months.

5.2. Case II : Lung nodules

In this section the growth of two different metastatic nodules belonging to the
same patient is considered. Their evolution is shown in Fig. 16. The nodules exhibit
different dynamics: while the first one is characterized by a rapid phase of growth
followed by a plateau-type solution, the second one has a regular growth.

As before, we try to recover the third scan by taking the first two images as
assimilation data. The database used for the identification consists in 512 simu-
lations for both nodules, varying the model parameters so that the growth rates
are comparable to those observed between the first and the second scans, on a

(a) (b) (c)

Fig. 16. Nodule 1 (upper row) and Nodule 2 (lower row) at: (a) June 2008, (b) April 2009 and
(c) July 2009.
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Fig. 17. Volume curve for: (a) Nodule 2 and (b) Nodule 1.

conventional time scale of 1. The low-order representation details are the same as
those of the previous example.

In Fig. 17(a) the volume curve is shown for the Nodule 2. The prediction is
correct and it substantially confirms what was obtained for the case discussed in
the previous section. In Fig. 17(b) the prediction (in terms of volume) for Nodule
1 is shown. The identification is more difficult since two different growth patterns
match the data with comparable residuals: the first one is an exponential-type of
growth (dashed line in the figure) and the second one is a plateau-type evolution.
Here the difficulty lies in the rapid growth of the nodule (its volume increased
by a factor of 4): the configuration corresponding to the second image is too far
in time from the first one. The phenomenon is undersampled and the approxi-
mation of the time derivative becomes poor. Local minima of the functional have
comparable residual values and different families of solutions are possible. The cor-
rect curve has a residual norm slightly smaller than the exponential-type solu-
tion. However, in such a case, a third image is mandatory in order to get reliable
predictions.

This case shows that the present technique is able to detect with a cer-
tain approximation different behaviors. Nevertheless there are certain reliabil-
ity limitations linked to the relationship between the time scale on which the
exams are performed and the proliferation speed of the tumor. These examples
of applications are not yet conclusive from the clinical viewpoint. An appro-
priate experimental protocol is under definition with our partners at Institut
Bergonié in order to systematically investigate the tumor growth prediction
error.

6. Conclusions and Perspectives

An efficient procedure to perform identification of tumor growth models has been
setup. The only part of the procedure that needs high performance computing is the

1250003-27



March 29, 2012 9:46 WSPC/103-M3AS 1250003

T. Colin et al.

construction of the database and the computation of the auto-correlation matrices.
However, this step of the procedure is easily parallelized and performed once for all
for each patient, due to the different initial conditions.

The identification examples presented have been performed in a realistic setting
where the observables are limited and the information scarce in time. Scalar fields
that are not observables, such as proliferating cell density and oxygen concentration
could be reconstructed. These fields play a crucial role in the tumor evolution
determining the degree of aggressivity and eventually the way the tumor undergoes
a metastatic process. In this sense the procedure can be interesting in a context of
diagnosis, prognosis, clinical protocol definition and therapy optimization.

In this perspective, parametric models are interesting since they allow one to
account for physical and biological effects that are not directly modeled. Several
types of models can be analyzed, focusing on the capability of simple models to
represent the solution of more complex ones.

Additional information coming from this study concerns a posteriori analy-
sis of the reconstructed parameters. This analysis may allow to estimate param-
eters values that are invariant or weakly changing for different patients, and
moreover which parameters affect more the tumor evolution. In other words, ref-
erence values of parameters and confidence intervals can be found for different
models.

In the near future we will investigate the clinical relevance of the preliminary
results obtained using biological data relative to a specific patient. More nod-
ules of different biological-type will be considered in order to systematically assess
the results of the identified models. In this respect the data assimilation method
employed here can be improved to take into account uncertainty associated with
the resolution of the scans, properties like initial tumor phenotype, spatial inho-
mogeneities, etc. To this end, a possible path of investigation is the minimization
of the expected residuals with respect to the input data probability distributions,
exploiting the ideas of polynomial chaos.22 On the other hand, additional informa-
tion of integral nature can be obtained from PET scans or even blood markers and
more in general from functional imaging.

The extension to three-dimensional images will allow a more precise description
of non-isotropic tumor growths and of the corresponding nonhomogeneous spatial
distributions of the oxygen (nutrient) distribution C. In perspective, the possibility
of modeling a nonhomogeneous spatial distribution of the nutrient may turn out to
be important for example in the phenomenological modeling of cancer recurrence
after chemotherapy.

Metastases to the lung seem to be the most adapted to be described by the
Darcy-type system, thanks to the homogeneity of the tissues and of the vascular-
ization. For other types of tumors (glioblastoma and breast tumor) the model has to
be complexified to take the heterogeneity of tissues (breast tumor) and the presence
of invasive cells (brain tumor) into account.
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