N

N
N

HAL

open science

Removable Online Knapsack with Bounded Size Items

Laurent Gourves, Aris Pagourtzis

» To cite this version:

Laurent Gourves, Aris Pagourtzis. Removable Online Knapsack with Bounded Size Items.

International Conference on Current Trends in Theory and Practice of Computer Science, SOFSEM

2024, Feb 2024, Cochem, Germany. pp.283-296, 10.1007/978-3-031-52113-3_20 . hal-04485407

HAL Id: hal-04485407
https://hal.science/hal-04485407

Submitted on 1 Mar 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-04485407
https://hal.archives-ouvertes.fr

Removable Online Knapsack with Bounded Size
Items

1[0000—0002—5076—1583] and Aris
2,3%[0000—0002—6220—3722]

Laurent Gourves
Pagourtzis

! Université Paris Dauphine-PSL, CNRS, LAMSADE, 75016, Paris, France
2 National Technical University of Athens, 15780, Zografou, Greece
3 Archimedes Research Unit, Athena RC, 15125, Marousi, Greece
laurent .gourves@dauphine.fr, pagour@cs.ntua.gr

Abstract. In the online unweighted knapsack problem, some items ar-
rive in sequence and one has to decide to pack them or not into a knap-
sack of given capacity. The objective is to maximize the total size of
packed items. In the traditional setting, decisions are irrevocable, and
the problem cannot admit any p-competitive algorithm. The removable
nature of the items allows to withdraw previously packed elements of
the current solution. This feature makes the online knapsack problem
amenable to competitive analysis under the ratio of (v/5 — 1)/2, which
is at the same time the best possible performance guarantee [12]. This
article deals with refinements of the best possible competitive ratio of the
online unweighted knapsack problem with removable items when either
an upper or a lower bound on the size of the items is known.

Keywords: Online Algorithms - Knapsack - Competitive analysis.

1 Introduction

This article deals with online computation where an instance is revealed over
time and an irrevocable decision has to be made each time a portion of the
input is known [1]. The problem under study in this work is knapsack [14]. In its
online version, we are given the capacity C' of a knapsack, and items are disclosed
sequentially. Each item has a positive size and a positive weight. The goal is,
as usual, to pack items into the knapsack so as to maximize their total weight,
under the constraint that the total size of packed items does not exceed C. The
online knapsack problem is appealing since it models many real life situations,
and many articles have been devoted to it (see for example [16,15,12,2,13,4,
7,5, 3]). Unfortunately, one can rapidly observe that no deterministic algorithm
can exhibit a bounded competitive ratio, which is a worst case performance
guarantee of an online algorithm against an ideal procedure which always makes

* Aris Pagourtzis has been partially supported for this work by project MIS 5154714
of the National Recovery and Resilience Plan Greece 2.0 funded by the European
Union under the NextGeneration EU Program.

2 L. Gourves, and A. Pagourtzis

the optimal decision. This bad news holds even in the unweighted case (a.k.a.
subset sum) where the weight of every item is equal to its size. Indeed, think of an
unweighted instance where the first item is very small, say ¢ - C with 1 > ¢ > 0.
If the item is not packed, and no other item is disclosed, then the competitive
ratio is 0/(e - C') = 0. If the item is packed, but a second item of size C' arrives,
then the first item prevents the second one from being packed. The competitive
ratio is (e - C')/C = € because the right decision would be to pack the second
item. In any case, the competitive ratio is at most €, which can be arbitrarily
small.

Then, how can we bypass this difficulty? Quoting the authors of [14], we
need “to find suitable restrictions on the pure online formulation which make
sense from a real-world point of view and permit the construction and analysis
of more successful algorithms.” Many successful directions have been proposed
for knapsack, including the notion of removable items introduced by Iwama and
Taketomi [12]. An item is removable if its insertion in the knapsack is a revoca-
ble decision. In this setting, a deterministic @

exists, along with a proof that ‘/52_1 is the best possible competitive ratio [12].

In the present work, we aim at going further and combine item removabil-
ity with an additional information on item sizes in order to devise a more ac-
curate competitive analysis. The previously mentioned example comprises two
“extreme” items whose size relative to the capacity is either very small or very
big (e - C and C, respectively). Such an instance may poorly represent the full
spectrum of concrete situations that require to solve an online knapsack prob-
lem. In practice, one can expect to deal with instances where the items’ sizes are
less heterogeneous. Moreover, especially when a decision maker has already faced
several instances in the past, she or he may be knowledgeable of a bound on the
size of every item. Therefore, we propose to exploit the existence and knowledge
of such a bound towards a refined analysis of the best possible competitive ratio
of deterministic algorithms for the online unweighted knapsack problem with
removable items.

-competitive online algorithm

Setting and contribution. As in [12,7,3,13], we consider the online un-
weighted knapsack (a.k.a. subset sum) problem. Consider a capacity C (a.k.a.
budget) of 1 and some removable items disclosed online 01, 09, Each item o;
has a size |o;| € (0,1] and an identical weight of |o;|. Assuming that C' =1 and
lo;] € (0,1] for all ¢ is without loss of generality since dividing everything by
C does not affect the competitive ratio. The number of items is not known in
advance. Starting from an initial empty set S, an item o; is revealed at every
time step 4 (also called round), and one has to decide if o; is packed in S or
not. Elements inserted during previous rounds can be removed, but discarded
items (i.e., items that were directly rejected or removed after their insertion)
cannot be included afterwards. The value of S, denoted by v(S) and defined as
> 0,es |0il, should never exceed the capacity. The objective is to maximize v(S)
when no more items are disclosed. The competitive ratio p4 of a deterministic
online algorithm A is the worst case ratio between the value of the solution
S 4 built by A and the value of an optimal solution S* which maximizes v(S*):

Removable Online Knapsack with Bounded Size Items 3

pa = v(S4)/v(S*). The online unweighted knapsack problem with removable
items admits a t-competitive online algorithm where

V5 —1
2

t:= ~ 0.618 (1)
is the golden ratio conjugate, and no deterministic online algorithm can be (t+¢)-
competitive for any positive € [12].* Our contribution is to go beyond this result
and propose refined bounds on the best competitive ratio based on known bounds
on the size of the items. All the results of this article apply to deterministic
algorithms for the removable online unweighted knapsack problem. In Section 2,
some parameter v € (0, 1] such that any item’s size is upper bounded by w is given,
and we provide both lower and upper bounds on the best possible competitive
ratio p(u). In Section 3, a lower bound ¢ € (0, 1] on the size of every item is
known, and we characterize the best possible competitive ratio p(¢).

Due to space constraints, some technical elements are skipped and will be
made available in an extended version of the article.

Related work. The online knapsack problem was first studied by Marchetti-
Spaccamela and Vercellis who made an average case analysis of the expected
difference between the optimal and the approximate value [16]. A follow-up ar-
ticle, with a similar approach, is authored by Luecker [15].

Iwama and Taketomi introduced the notion of removable items and proved
that the unweighted online knapsack problem admits a deterministic ¢-competi-
tive algorithm, where ¢ is the best possible performance guarantee [12]. Unfortu-
nately, no competitive algorithm can exist for the online weighted knapsack with
removable items [13]. Sometimes, removing a packed item comes with a cost
which is equal to f times the item’s size where f > 1 is a given buyback factor.
The objective is to maximize the worth of packed items minus the cost paid for
items which were removed after been packed. In this case, Han et al. studied
the unweighted online knapsack problem [7] whereas Babaioff et al. considered a
more general setting including the online weighted knapsack problem [2]. Their
results include deterministic and randomized algorithms whose competitive ratio
depends on f.

Other randomized algorithms for the online knapsack problem can be found
in [8,5] when f = 0. For the weighted case (resp., unweighted case), the com-
petitive ratio for removable items is between 0.5 and 1fre ~ 0.73 (resp., between
0.7 and 0.8). When items cannot be removed, the best competitive ratio for the
weighted and unweighted cases are 0 and 0.5, respectively.

In [13], the authors consider the online knapsack problem under the resource
augmentation framework where the online knapsack is R > 1 times larger than
its offline counterpart. Their results consist of bounds on the competitive ratio as
a function of R for removable or weighted items. In the same vein, an alternative
model supposes that the items can be placed in a buffer of size K > 1 before a
selection of them is put in a knapsack of size 1 [10].

* Every competitive ratio of this article is in [0, 1].

4 L. Gourves, and A. Pagourtzis

Sometimes, the items can be split and partially included in the knapsack.
Han and Makino exploited this opportunity to derive a k/(k + 1)-competitive
online algorithm for the removable weighted case and a matching upper bound
[11]. Here, k is the maximum number of times that an item can be cut.

In [4], Bockenhauer et al. explore the advice complexity of the online knap-
sack problem, where the goal is to evaluate the possible improvements on the
competitive ratio provided by some additional information about the complete
instance.

In a recent article by Bockenhauer et al. [3] on the online unweighted knap-
sack problem, the possibility to reserve an item (i.e., postpone the decision about
it) is studied. Given a € (0, 1), reserving an item costs « times its value. This
model is closely related to the one with removal cost [2,7] but, as opposed to
“bought back” items, reserved items are not temporarily put into the knapsack.
Thus, there is no hard capacity constraint. The authors characterize the best
competitive ratio for all possible value of « [3].

The present work combines removable items with an additional information
about the range of the items size. Having upper bounds on the worth of ob-
jects has already been done for analysing fair allocations of indivisible goods [6].
Concerning the online weighted knapsack problem, Babaioff et al. have used a
parameter v € (0,1] which restricts the size of any item to v - C. They gave a
deterministic algorithm for the case v < 1/2 whose competitive ratio tends to
1 — 2v when the buyback factor goes to 0. The work of Chakrabarty et al. on
the weighted knapsack problem also makes assumptions about both the size of
objects and their weight-to-size ratio [17].

2 Upper bounded item size

Given an upper bound u € (0, 1] on the size of every item, we aim at determining
the best possible competitive ratio p(u) of deterministic online algorithms for the
unweighted knapsack problem with removable items. Our results are depicted in
Figure 1. The lower (solid) and upper (dotted) bounds on p(u) are non increasing
functions u. One can observe that the competitive ratio is always above ¢, and
the performance guarantee increases (and tends to 1) as the size of the items
reduces. The curves of Figure 1 meet for many values of u all over the interval
(0, 1] but some gaps remain to be filled.

In this section, we begin with lower bounds on p(u) obtained with a single
parametric algorithm (cf. Section 2.1), followed by upper bounds on p(u) induced
by a family of instances (cf. Section 2.2).

2.1 Lower bounds on the competitive ratio

Throughout our presentation we will say that an item is rejected if it is discarded
immediately after its disclosure; if the item is first inserted in the solution and it
is discarded at a later step then we say that it is removed. We consider a single

Removable Online Knapsack with Bounded Size Items 5

t~ 0.618 —

0.5 % % > u

Fig. 1. Lower (solid) and upper (dotted) bounds on the competitive ratio p as a function
of u.

parametric online algorithm described in Algorithm 1. For every positive integer
k, the competitive ratio of Algorithm 1 is either a constant 7, defined as

k=24 VEkZ+4

2
Ve 5% ()
or a decreasing function of u equal to 1 kl:ﬁu'

Note that 7, belongs to (0, 1] for all positive integers k. It increases with k,

and y; = ‘/52_1 = t. The rationale of 4 originates from the following equality
which will be interpreted and exploited later on.
L=
(k=11 —)+ it (3)

Other useful technical properties of 7, (valid for all positive integers k) are the
following four (their proof will appear in an extended version of this article).

1= 1 —m
0<1l—y< <1l/k < 4
g Vi / Vi)
17
(k=1)——% <1 (5)
Vi
(k+1)(1 = %) > 7k (6)
1- L1
Vi
—a e = Yk (7)
_ 1\ 1=
(k=D

Our analysis of the competitive ratio of Algorithm 1 is divided into two
theorems for the sake of clarity. Theorems 1 and 2 correspond to intervals where
the proposed lower bound on the competitive ratio is constant and decreasing
with u, respectively. On Figure 1, the i-th constant part of the solid curve,

6 L. Gourves, and A. Pagourtzis

Algorithm 1
1: S+ 0

2: while a new item o; arrives do
3. if v(S) >y, then

4: Reject 0; {S is not changed afterwards}

5. else

6: S+ SuU{o;}

7 if v(S) > 1 then

8: Let B={o€ S:|o| >1—}

9: if v(B) > 1 then

10: if B contains a subset S such that 1 > v($) > v, then
11: S « S {S is not changed afterwards}

12: else

13: Remove the largest item of S

14: end if

15: else

16: while v(S) > 1 do

17: Remove from S one element of S\ B {chosen arbitrarily}
18: end while

19: end if
20: end if
21: end if

22: end while

when counting from the right, corresponds to Theorem 1 when ¢ = k and u <
(1 —v&)/~2. The i-th decreasing part of the solid curve, still counting from the
right, corresponds to Theorem 2 when i =k — 1 and v < 1/(k — 1).

The solid curve depicted on Figure 1 corresponds, for every possible value of
u € (0,1], to the best (i.e., largest) lower bound offered by either Theorem 1 or
Theorem 2, with an appropriate choice of the parameter k.

Theorem 1. For all positive integers k, Algorithm 1 is ~y,-competitive when
u € (0, 1;;’“]
k

Proof. Let B;, S;, S;, and S} denote B, S, S and an optimal solution at the end
of round ¢ of Algorithm 1 (i.e., when 0y to o; have been disclosed), respectively.

U5 > 4 hold for all i.

An item o is said to be smallif 0 < |o| < 1=, medium if 1 —;, < |o| < %,
large if % < lo| < k71, and extra-large if k=1 < |o| < % Note that
the extra-large category does not exist when k£ = 1. The categories lead to the
following useful interpretation of equation (3): k—1 medium items plus one large
or extra-large item constitute a desirable set because its total size is between

(k—1)(1—)+ % =, and (k — 1)% + % =1, i.e., it is a feasible set
k

We are going to prove that v(S;) < 1 and

satisfying the guarantee .
The proof is by induction and we begin with the base case (i = 1). Since
S1 = ST = {01}, we have that v(S;) < 1 and Sgl% =1 > 7. In order to prove
1

Removable Online Knapsack with Bounded Size Items 7

v(S9;) <1 and ;’((gi)) > v, when ¢ > 1, we make the induction hypotheses that
both ’U(Si_l) <1 and Zggl;lg > Vi hold.
i—1

If v(S;—1) > i at line 4 of the algorithm, then S; = S;_; (item o; is rejected).

Since v(S}) < 1, the competitive ratio satisfies 5((51)) > k- The solution is not

modified afterwards. Otherwise (v(S;—1) < 7&), the algorithm puts the new

item o; in the current solution (cf. line 6): S; = S;—1 U {o;}. If o; fits (i.e.,

v(S;) < 1 holds after the insertion of 0;), then v(S;) = v(S;—1)+|o;| and v(S}) <
* v(Si v(Si— 0; v(Si_

v(S;_;) + |oi]. We get that v((gi‘)) > vES;&i;i}m} > vESZLig > v where the last

inequality derives from the induction hypothesis.

From now on, suppose that v(S;) > 1 holds after the insertion of 0;. We know
from v(S;_1) < % and v(S;) > 1 that |o;] > 1 — 7&. In other words, o; is not
a small item. By construction, B; is the subset of non-small items of S; and it
contains o;. If v(B;) < 1, then the algorithm executes the while loop containing
line 17. The while loop starts with v(S;) > 1 and removes small items of S;
until v(S;) < 1. Since a small item has size at most 1 — v, we end up with a

solution satisfying i < v(S;) < 1. Therefore, % > 7, and the solution is not

modified afterwards. If v(B;) > 1, then the algorithm tries to find in B; a subset
of non-small items S; such that 1 > U(Sz) > vk, and sets S; to S; if S; exists.
In this case, the competitive ratio is reached and the solution is not modified
afterwards.

Let us explain that verifying the existence of S; is not difficult. B; contains
at most k+ 1 items for the following reasons: |B;| — 1 non-small items of B; were
already present in S;_1. Using v(S;_1) < 7%, and the fact that a non-small item
has size at least 1 — -y, we get that |B;| — 1 < k (indeed, Inequality (6) indicates
that k+ 1 items of size 1 — v, have a total size of at least), which is equivalent
to |B;| < k + 1. Inequality (5) indicates that a set of k — 1 items of the largest
possible size fits in the budget of 1. Together with v(B;) > 1, we deduce that
B; cannot contain k — 1 (or less) non-small items. Thus, B; contains &k or k + 1
non-small items. Taking k — 1 items of B; gives a feasible solution (cf. Inequality
(5)). By taking the k — 1 biggest items of B;, we can verify whether 7, can be
reached. If not, S; possibly requires k items (when |B;| = k + 1), which requires
to test k + 1 possibilities. In all, at most k£ + 2 solutions are tested, where k is
upper bounded by the number of disclosed items.

So far we have considered the cases where the algorithm was able to find a
subset of items whose total size is between ~y; and 1. In these cases, the solution
is not changed afterwards because the expected guarantee is reached, whichever
item comes subsequently. Hereafter, we analyse the case where S; C B; such
that 1 > v(.SA'l) > v, does not exist. In this situation, the largest element is
removed (cf. line 13). Note that line 13 is executed for round ¢, and line 13
was possibly executed during previous rounds. However, line 11 or the while
loop were not previously executed because, so far, the guarantee has not been
reached (v(S;—1) < Y&).

‘We have seen that B; contains either k or & + 1 non-small items at line 8 of
the algorithm. Let us make some observations which are valid for both cases.

8 L. Gourves, and A. Pagourtzis

(i) So far, the algorithm has not rejected or removed a small item. Only items
of B; were removed by the possible execution of line 13 (by construction, B;
is the set of non-small items).

(it) The algorithm has not switched from one case to the other. If |B;| = k,
then it could not be |B;| = k+ 1 in a previous round j < 4. Similarly, if
|Bi| = k + 1, then it could not be |B;| = k in a previous round j < .
Indeed, suppose we have |B;| # |B;_1].% Since we removed one item from
B;_1, and o; was inserted afterwards to yield B;, we get that |B;| = |B;—1|,
contradiction.

(791) We have v(S;) < 1 after the largest element of B; is removed (line 13).
Indeed, S; is built as follows: take S;_1, add an item o;, and remove its
largest item. We get that v(S;) < v(S;—1) and v(S;—1) < 1 holds by induction
hypothesis.

(iv) An optimal (offline) solution contains at most | B;| — 1 non-small items. Since
the algorithm keeps the smallest non-small items in B;, and until now v(B;)
is always strictly larger than 1, it is not possible to find | B;| non-small items
(within the set of non-small items already disclosed) whose total size is at
most 1.

It remains to prove g((“sg‘))

8 of the algorithm. '

> 4 in both cases, namely |B;| € {k,k+ 1} at line

Case |B;| = k. The current solution S; contains all the small items disclosed

so far (cf. observation (i)). The total size of non-small items of S; is at least

1-— 1;# because we had v(B;) > 1 and one item of size at most 1;;”“ has been
k k

removed. Meanwhile, observation (iv) says that the optimum contains at most

|B;] =1 = k — 1 non-small items, each of which has size at most 1;;’“, and

k
possibly all the small items disclosed so far. Therefore, the competitive ratio is
lower bounded by

v({0:0<|0|§1—%})+1—% 1—1;#
k k _
({0 0<lof <1)+ (k-1 = h-nip

where the last equality is due to (7).

Case |B;| = k + 1. Every item of B; is medium. Indeed, exactly k items of B;
come from S;_; and we know that v(S;—1) < 7. If the non-small items of S;_;
were not exclusively medium items, then its total size would be at least (k —

1)(1—7@4—%, which is equal to v by (3), contradiction. The item of B;\ B;_1

(i.e., 0;) must be medium because the algorithm failed to find S;. Indeed, if o;
were large or extra-large, then one could combine it with £ — 1 medium items of
B; and create S; whose total size is between v, and 1 (cf. interpretation of (3)).
No large or extra-large item was disclosed so far, because either this large or

® The assumption that the change in the size of B occurs between rounds i — 1 and 4
is made without loss of generality because we can apply the arguments to the round
(possibly prior to 7) during which the size of B is modified for the first time.

Removable Online Knapsack with Bounded Size Items 9

extra-large item could be used to produce S; with & — 1 medium items already
present in the solution (contradiction with the non-existence of S;), or such a
large or extra-large item was removed in a previous round j, but it corresponds
to an incompatible situation where |B;| = k # |B;|, and we have seen that the
algorithm does not switch from one case to the other (cf. observation (ii)).
The algorithm has kept all the small items disclosed so far and the k smallest
medium items. The optimum S} possibly contains all the small items disclosed
so far, and at most k& non-small items (cf. observation (iv)) which are medium
because no large or extra-large item has been disclosed. The size of a medium

item being between 1 —~; and 1:”:“ , the competitive ratio can be lower bounded
as follows.

v({o:0<]o| <1—9%})+k(1—) o k(1 —)

v(fo:0 <o <T—mp}) + k2 7 k()

=Yk d

When k& = 1, Theorem 1 indicates that Algorithm 1 is ¢-competitive for all

u € (0,1] because vy, =t and 1;;“ = 1, thus generalizing the result of [12].
1

When k > 2, Inequality (5) indicates that

12 < L 50 we can consider in
Vi -

the following theorem how Algorithm 1 performs when u € (1;27 k| ﬁ]
k

1—u

Theorem 2. For all integers k > 2, Algorithm 1 is =

T
u € (wgk’ﬁ]‘

-competitive when

Proof. We keep the same notations as in the proof of Theorem 1. Only the notion
of extra-large item changes: o is said to be extra-large if k=1 < |o| < u. All the
cases of the proof of Theorem 1 remain unchanged and lead to a competitive
ratio of vy except when S; such that Ve < v(SZ) < 1 does not exist, and |B;| = k.
In this case, the current solution S; contains all the small items disclosed so far.
The total size of non-small items of \S; is at least 1 —u because we had v(B;) > 1
and one item of size at most u has been removed. Meanwhile, the optimum
contains at most |B;| —1 = k — 1 non-small items, each of which has size at most
u, and possibly all the small items disclosed so far. Note that & — 1 items of size
at most v fit in the budget since u < ﬁ holds by assumption. The competitive
ratio is lower bounded by

v({o:0<|o| <1—y})+1—u S 1—u
v({o:0<o| <1 —wb)+(k—1u = (k—1u’

: 1—k _ ==/ 1—u
Using (7) and 72 < u, we get that v, = TD—0)/2% 2 GoDu- Therefore,
the competitive ratio is —~=%— in the worst case. a

(k—1)u

To conclude this part, the combination of Theorems 1 and 2 gives the lower
bounds on the competitive ratio depicted in solid on Figure 1. Sometimes, the
intervals of the theorems intersect for consecutive values of k. In this case, the
best (i.e., largest) lower bound on the competitive ratio is retained.

10 L. Gourves, and A. Pagourtzis

2.2 Upper bounds on the competitive ratio

Our upper bounds, depicted in dotted on Figure 1, are obtained from instances
showing that no deterministic online algorithm can have a competitive ratio
larger than some specified value. We will often use the following simple observa-
tion: If the instances employed to show an upper bound of r on the competitive
ratio only contain items of size at most x, then the competitive ratio is at most
r for all u € [z, 1].

Let us first suppose that u € [%, 1], and consider the following instance.

Instance 1 The first item o1 has size u. If o1 is not taken, then the competitive
ratio is zero. The second item os has size 1 — u + €. Note that there exists an
€ such that 1 —u + € < u because v > 0.5. Since |o1| + |o2| > 1, either o1 or
09 1s kept, but not both. If oo replaces o1, then no more item is disclosed. The
competitive ratio is % which tends to 1=% when € goes to zero. Otherwise, 01
s kept and a last item o3 of size u — € is disclosed. Again, the two items o1 and
o3 do not fit. Since |o1]| > |os|, we can consider that o1 is kept. The competitive
ratio in this case is u because the optimum {02, 03} has value 1.

Proposition 1. Instance 1 gives an upper bound of 1_7“ on the competitive ratio

when u € [%,t], and an upper bound of t when u € [t,1].

Proof. The upper bound is 1_7“ when u € [%, t] because 1_7“ > w in that interval.

Since t = ‘/52_1 is a root of 1_T" = u, an upper bound of ¢ on the competitive

ratio is derived from Instance 1 (fix u to ¢ in the instance), and it is valid for all
u € [t, 1] by the aforementioned observation. O

Note that the upper bound of ¢ corresponds to one given in [12, Theorem 2].

Now suppose that u € (%, %) and consider the following instance.

Instance 2 The first 2 items 01,02 have size % — €, where e > 0, and %, respec-
1

tively. If any of them is not taken, then the competitive ratio tends to 5. The
next item oz has size % + 2¢. If o3 is kept, then one of 01,09 must be removed.
Then an item o4 of size % + € is disclosed, which does not fit in the current

solution and can only replace o3, leading to a solution of smaller value; hence,
04 1s not included, which gives a competitive ratio that tends to % when € goes
to zero. Indeed, the total size of the current solution is at most % + 2¢, while the
optimal value is % —e+ % + % + ¢ = 1. If, on the other hand, o3 is removed, then
the instance is terminated, leading to a competitive ratio of 11//4:1;16/—;1/246 = 31// 42;266

that tends to % as € goes to zero.

Proposition 2. Instance 2 provides an upper bound of % on the competitive

ratio when u € (1,2).
Proof. The largest item of Instance 2 has size 1/2 4 2e. The two cases lead to

1/2—e¢
3/4t2¢

tends to 3/4 when € goes to zero. By the above observation, the upper bound of
3/4 is valid for u > 1/2. O

competitive ratios of 3/4 + 2e and so we retain the largest one which

Removable Online Knapsack with Bounded Size Items 11

We finally consider a family of instances parameterized by an integer k such
that & > 2, and the interval covered by each individual instance is (k%_l, %]
Thus, the family allows us to cover the case u € (0, %]

Instance 3 The first k items o1,...,0r have size % + € each where € is a
small positive real satisfying
1 1
0<e< = — . 8
‘=% (k+ 1) ®)

If the first k items are not all taken, then the competitive ratio is at most E-1
The next Z'tem Ok+1 has size u. Note that u > %—Fe because of u > k%_l and (8).

Since Z |OZ| > 1, either {o1,...,0r} is kept (case A), or ox11 replaces o; for
some i € {1 Jk} (case B). If case A occurs, then keep disclosing items of size
w until (1) ez’ther k items of size u have been disclosed but none of them entered
the current solution, or (ii) one item of size u is put into the solution (hence,
an item of size 1% + € has been removed). If case A(ii) or case B occurs, then
disclose an item of size I*T“ + €. One cannot improve the value of the current
solution with this last item (it does not fit, and its size is smaller than the size
of any other item of the current solution). The competitive ratio under case A(i)

18 1’37““) which tends to 1,;—;‘ when € goes to zero. The competitive ratio under

(k=1 (FF*+e)+u . k=D 4e k14w
W’i%%) which tends to (k+1)(1 =0 T 0w

cases A(ii) and B is

when € goes to zero.

Proposition 3. Instance 3 provides an upper bound of = 1— when u € (k+17 ckl,

and an upper bound of 1,“?“ for u > ¢, where

Cp = (k2+k+2— VE Tk +2)? —4(k+1)) /2.°
Proof. The upper bound derived from Instance 3 is max (%, 1,;7“7 (kf:)%)
Since u < 7, we know that %1 < 1= Thus, the upper bound is max(i=%,
7%_’?1)1(1“@) where k—u“ is a decreasmg function of v while m is increas-

ing. The cut point of these functions is ¢ € (2= By the aforementioned

E+1° k]
observation, we have an upper bound on the competitive ratio of % —= when
U > Ck. O

Ck

The combination of Propositions 1, 2 and 3 leads to the upper bounds de-
picted in dotted on Figure 1.

3 Lower bounded item size
Given a lower bound ¢ € (0,1] on the size of every item, we are going to show
that the best possible competitive ratio p(¢) of deterministic online algorithms

6 Note that C’“ = Yoy1 and ¢ = gAEL

Vie+1 ’

12 L. Gourves, and A. Pagourtzis

for the unweighted knapsack problem with removable items is as follows.

t, f0<e<1-—t
p(l)= VO ifl—t<0<1/2 (9)
1, if1/2<¢<1

See (1) for the definition of t. One can observe that the competitive ratio is
always above t. As for Section 2 where an upper bound was known, we begin
with lower bounds on p(¢) followed by upper bounds on p(¢). Together, they
constitute a characterization of p(¢) since there is no gap.

3.1 Lower bounds on the competitive ratio

When ¢ € [0,1 — t], the characterization of p(¢) given in (9) indicates a com-
petitive ratio of ¢ which can be obtained with either Algorithm 1 (k = 1), or
with the algorithm of Iwama and Taketomi [12]. If £ > 1/2, then there exists
a simple algorithm with competitive ratio 1: maintain in the current solution
the largest item encountered thus far. Since any solution contains at most one
item, this simple algorithm is optimal. It remains to provide a v//-competitive
algorithm for the case £ € [1 —t,1/2], cf. Algorithm 2 and Theorem 3. The proof
of Theorem 3 is deferred to an extended version of this article.

Algorithm 2 A \//-competitive algorithm for the case 1 —t < £ < 1/2

1: S« 0
2: while a new item o; arrives do

3: if v(S) > V£ then

4: Reject 0; {S is not changed afterwards}

5. else if |o;| > Vv then

6: S < {oi} {S is not changed afterwards}

7. else if v(S) + |o;| <1 then

8: S <+ SuU{o;}

9: else

10: Let o be the unique item in S

11: S gets the item of minimum size between o and o;
12: end if

13: end while

Theorem 3. Algorithm 2 is \/{-competitive when £ € [1 —t,1/2].

3.2 Upper bounds on the competitive ratio
Let us begin with £ € (0,1 — t].

Proposition 4. The competitive ratio of deterministic online algorithms is at
most t when £ € (0,1 —t].

Removable Online Knapsack with Bounded Size Items 13

Proof. We can reuse the bound provided by Iwama and Taketomi [12, Theorem
2]. Let us give the corresponding instance for the sake of readability. The first
item o7 has size 1 — t. If 01 is not taken, then the competitive ratio is zero. The
second item oo has size t 4+ ¢ where € is a tiny positive real. Items o; and o9
cannot be both taken without exceeding the budget. If 0o does not replace o1,
then stop. The competitive ratio tends to % when € goes to zero. Otherwise 0o
replaces o1, and a new item oz of size ¢ is disclosed. The optimum {07, 03} has
value 1 while the algorithm’s solution has value at most ¢ + €. The competitive
ratio is either % which is equal to ¢, or ¢ + ¢, so we have an upper bound of t.
In the instance, every item has size at least 1 —t because t +e¢ >t > 1 —t, so
the upper bound on the competitive ratio holds for all £ € (0,1 — ¢]. a

The next step concerns the interval (1 — ¢, 3].

Proposition 5. The competitive ratio of deterministic online algorithms is at
most V/{ when € € (1 —t, 3].

Proof. Consider the following instance. The first item o0, has size £. If 07 is not
taken, then the competitive ratio is zero. The second item oo has size V¢ + €.
Since ¢ < 1, we know that v/ + ¢ > £. Moreover, ¢ + v/{ + ¢ > 1 holds when
¢ > 1—t, so no feasible solution can contain both items. If 05 does not replace
01, then stop. The competitive ratio tends to E/\/Z = v/ when € goes to zero.
Otherwise oy replaces o1, and a new item o3 of size 1 — £ is disclosed. The
optimum {01, 03} has value 1 while the algorithm’s solution has value at most
Vl + € because vVl + ¢ > 1 — £ holds when ¢ > 1 — t, leading to a competitive
ratio which tends to v/ when e goes to zero. Thus, both cases lead to the same
upper bound of /. O

No upper bound is needed when ¢ > 1/2 because an optimal algorithm has
been presented in the previous section.

4 Conclusion and directions for future work

We have considered the removable online unweighted knapsack problem with
bounded size items (denoted by u and ¢ for upper bound and lower bound,
respectively). Our contribution consists of lower and upper bounds on the best
competitive ratio for deterministic algorithms. The optimal ratio tends to 1 when
the parameter u goes to 0. A direct extension to our work would be to close the
gap for all possible values of u.

The reader may wonder what the situation is when the items are not remov-
able but their size is bounded. Given an upper bound u (resp., lower bound ¢) on
the item sizes, the best possible competitive ratio is 1 — u (resp., £) and simple
deterministic algorithms can achieve these ratios.

For the future, we believe that it would be interesting to combine bounded
item sizes with other approaches such as resource augmentation [13], buffering
[10], reservation [3], advice [4], or item splitting [11]. Other possible extensions of

14

L. Gourves, and A. Pagourtzis

the present work can be: exploring randomized online algorithms (as in [2, 7, 8,
5]) with bounded size items, exploiting a possible prediction of the total number
of disclosed items, or dealing weighted items restricted to convex functions of
the size (as in [9]).

References

10.

11.

12.

13.

14.

15.

16.

17.

Albers, S.: Online algorithms: a survey. Math. Program. 97(1-2), 3-26 (2003)
Babaioff, M., Hartline, J.D., Kleinberg, R.D.: Selling ad campaigns: online algo-
rithms with cancellations. In: Chuang, J., Fortnow, L., Pu, P. (eds.) Proceedings
10th ACM Conference on Electronic Commerce (EC-2009), Stanford, California,
USA, July 6-10, 2009. pp. 61-70. ACM (2009)

Bockenhauer, H., Burjons, E., Hromkovic, J., Lotze, H., Rossmanith, P.: Online
simple knapsack with reservation costs. In: Blaser, M., Monmege, B. (eds.) STACS
2021, March 16-19, 2021, Saarbriicken, Germany (Virtual Conference). LIPIcs,
vol. 187, pp. 16:1-16:18. Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik (2021)
Bockenhauer, H., Komm, D., Krélovic, R., Rossmanith, P.: The online knapsack
problem: Advice and randomization. Theor. Comput. Sci. 527, 61-72 (2014)
Cygan, M., Jez, L., Sgall, J.: Online knapsack revisited. Theory Comput. Syst.
58(1), 153-190 (2016)

Demko, S., Hill, T.P.: Equitable distribution of indivisible objects. Mathematical
Social Sciences 16(2), 145-158 (1988)

Han, X., Kawase, Y., Makino, K.: Online unweighted knapsack problem with re-
moval cost. Algorithmica 70(1), 76-91 (2014)

Han, X., Kawase, Y., Makino, K.: Randomized algorithms for online knapsack
problems. Theor. Comput. Sci. 562, 395-405 (2015)

Han, X., Kawase, Y., Makino, K., Guo, H.: Online removable knapsack problem
under convex function. Theor. Comput. Sci. 540, 62-69 (2014)

Han, X., Kawase, Y., Makino, K., Yokomaku, H.: Online knapsack problems with
a resource buffer. In: Lu, P., Zhang, G. (eds.) ISAAC 2019, December 8-11, 2019,
Shanghai University of Finance and Economics, Shanghai, China. LIPIcs, vol. 149,
pp. 28:1-28:14. Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik (2019)

Han, X., Makino, K.: Online removable knapsack with limited cuts. Theor. Com-
put. Sci. 411(44-46), 3956-3964 (2010)

Iwama, K., Taketomi, S.: Removable online knapsack problems. In: ICALP 2002,
Malaga, Spain, July 8-13, 2002, Proceedings. pp. 293-305 (2002)

Iwama, K., Zhang, G.: Online knapsack with resource augmentation. Inf. Process.
Lett. 110(22), 1016-1020 (2010)

Kellerer, H., Pferschy, U., Pisinger, D.: Knapsack Problems. Springer, Berlin, Ger-
many (2004)

Lueker, G.S.: Average-case analysis of off-line and on-line knapsack problems. J.
Algorithms 29(2), 277-305 (1998)

Marchetti-Spaccamela, A., Vercellis, C.: Stochastic on-line knapsack problems.
Math. Program. 68, 73-104 (1995)

Zhou, Y., Chakrabarty, D., Lukose, R.M.: Budget constrained bidding in key-
word auctions and online knapsack problems. In: Papadimitriou, C.H., Zhang, S.
(eds.) WINE 2008, Shanghai, China, December 17-20, 2008. Proceedings. LNCS,
vol. 5385, pp. 566-576. Springer (2008)

