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Abstract. In the online unweighted knapsack problem, some items ar-
rive in sequence and one has to decide to pack them or not into a knap-
sack of given capacity. The objective is to maximize the total size of
packed items. In the traditional setting, decisions are irrevocable, and
the problem cannot admit any ρ-competitive algorithm. The removable
nature of the items allows to withdraw previously packed elements of
the current solution. This feature makes the online knapsack problem
amenable to competitive analysis under the ratio of (

√
5− 1)/2, which

is at the same time the best possible performance guarantee [12]. This
article deals with refinements of the best possible competitive ratio of the
online unweighted knapsack problem with removable items when either
an upper or a lower bound on the size of the items is known.

Keywords: Online Algorithms · Knapsack · Competitive analysis.

1 Introduction

This article deals with online computation where an instance is revealed over
time and an irrevocable decision has to be made each time a portion of the
input is known [1]. The problem under study in this work is knapsack [14]. In its
online version, we are given the capacity C of a knapsack, and items are disclosed
sequentially. Each item has a positive size and a positive weight. The goal is,
as usual, to pack items into the knapsack so as to maximize their total weight,
under the constraint that the total size of packed items does not exceed C. The
online knapsack problem is appealing since it models many real life situations,
and many articles have been devoted to it (see for example [16, 15, 12, 2, 13, 4,
7, 5, 3]). Unfortunately, one can rapidly observe that no deterministic algorithm
can exhibit a bounded competitive ratio, which is a worst case performance
guarantee of an online algorithm against an ideal procedure which always makes
⋆ Aris Pagourtzis has been partially supported for this work by project MIS 5154714

of the National Recovery and Resilience Plan Greece 2.0 funded by the European
Union under the NextGeneration EU Program.
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the optimal decision. This bad news holds even in the unweighted case (a.k.a.
subset sum) where the weight of every item is equal to its size. Indeed, think of an
unweighted instance where the first item is very small, say ϵ ·C with 1 ≫ ϵ > 0.
If the item is not packed, and no other item is disclosed, then the competitive
ratio is 0/(ϵ · C) = 0. If the item is packed, but a second item of size C arrives,
then the first item prevents the second one from being packed. The competitive
ratio is (ϵ · C)/C = ϵ because the right decision would be to pack the second
item. In any case, the competitive ratio is at most ϵ, which can be arbitrarily
small.

Then, how can we bypass this difficulty? Quoting the authors of [14], we
need “to find suitable restrictions on the pure online formulation which make
sense from a real-world point of view and permit the construction and analysis
of more successful algorithms.” Many successful directions have been proposed
for knapsack, including the notion of removable items introduced by Iwama and
Taketomi [12]. An item is removable if its insertion in the knapsack is a revoca-
ble decision. In this setting, a deterministic

√
5−1
2 -competitive online algorithm

exists, along with a proof that
√
5−1
2 is the best possible competitive ratio [12].

In the present work, we aim at going further and combine item removabil-
ity with an additional information on item sizes in order to devise a more ac-
curate competitive analysis. The previously mentioned example comprises two
“extreme” items whose size relative to the capacity is either very small or very
big (ϵ · C and C, respectively). Such an instance may poorly represent the full
spectrum of concrete situations that require to solve an online knapsack prob-
lem. In practice, one can expect to deal with instances where the items’ sizes are
less heterogeneous. Moreover, especially when a decision maker has already faced
several instances in the past, she or he may be knowledgeable of a bound on the
size of every item. Therefore, we propose to exploit the existence and knowledge
of such a bound towards a refined analysis of the best possible competitive ratio
of deterministic algorithms for the online unweighted knapsack problem with
removable items.

Setting and contribution. As in [12, 7, 3, 13], we consider the online un-
weighted knapsack (a.k.a. subset sum) problem. Consider a capacity C (a.k.a.
budget) of 1 and some removable items disclosed online o1, o2, . . .. Each item oi
has a size |oi| ∈ (0, 1] and an identical weight of |oi|. Assuming that C = 1 and
|oi| ∈ (0, 1] for all i is without loss of generality since dividing everything by
C does not affect the competitive ratio. The number of items is not known in
advance. Starting from an initial empty set S, an item oi is revealed at every
time step i (also called round), and one has to decide if oi is packed in S or
not. Elements inserted during previous rounds can be removed, but discarded
items (i.e., items that were directly rejected or removed after their insertion)
cannot be included afterwards. The value of S, denoted by v(S) and defined as∑

oi∈S |oi|, should never exceed the capacity. The objective is to maximize v(S)
when no more items are disclosed. The competitive ratio ρA of a deterministic
online algorithm A is the worst case ratio between the value of the solution
SA built by A and the value of an optimal solution S∗ which maximizes v(S∗):
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ρA := v(SA)/v(S
∗). The online unweighted knapsack problem with removable

items admits a t-competitive online algorithm where

t :=

√
5− 1

2
≈ 0.618 (1)

is the golden ratio conjugate, and no deterministic online algorithm can be (t+ϵ)-
competitive for any positive ϵ [12].4 Our contribution is to go beyond this result
and propose refined bounds on the best competitive ratio based on known bounds
on the size of the items. All the results of this article apply to deterministic
algorithms for the removable online unweighted knapsack problem. In Section 2,
some parameter u ∈ (0, 1] such that any item’s size is upper bounded by u is given,
and we provide both lower and upper bounds on the best possible competitive
ratio ρ(u). In Section 3, a lower bound ℓ ∈ (0, 1] on the size of every item is
known, and we characterize the best possible competitive ratio ρ(ℓ).

Due to space constraints, some technical elements are skipped and will be
made available in an extended version of the article.

Related work. The online knapsack problem was first studied by Marchetti-
Spaccamela and Vercellis who made an average case analysis of the expected
difference between the optimal and the approximate value [16]. A follow-up ar-
ticle, with a similar approach, is authored by Luecker [15].

Iwama and Taketomi introduced the notion of removable items and proved
that the unweighted online knapsack problem admits a deterministic t-competi-
tive algorithm, where t is the best possible performance guarantee [12]. Unfortu-
nately, no competitive algorithm can exist for the online weighted knapsack with
removable items [13]. Sometimes, removing a packed item comes with a cost
which is equal to f times the item’s size where f > 1 is a given buyback factor.
The objective is to maximize the worth of packed items minus the cost paid for
items which were removed after been packed. In this case, Han et al. studied
the unweighted online knapsack problem [7] whereas Babaioff et al. considered a
more general setting including the online weighted knapsack problem [2]. Their
results include deterministic and randomized algorithms whose competitive ratio
depends on f .

Other randomized algorithms for the online knapsack problem can be found
in [8, 5] when f = 0. For the weighted case (resp., unweighted case), the com-
petitive ratio for removable items is between 0.5 and e

1+e ≈ 0.73 (resp., between
0.7 and 0.8). When items cannot be removed, the best competitive ratio for the
weighted and unweighted cases are 0 and 0.5, respectively.

In [13], the authors consider the online knapsack problem under the resource
augmentation framework where the online knapsack is R ≥ 1 times larger than
its offline counterpart. Their results consist of bounds on the competitive ratio as
a function of R for removable or weighted items. In the same vein, an alternative
model supposes that the items can be placed in a buffer of size K > 1 before a
selection of them is put in a knapsack of size 1 [10].
4 Every competitive ratio of this article is in [0, 1].
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Sometimes, the items can be split and partially included in the knapsack.
Han and Makino exploited this opportunity to derive a k/(k + 1)-competitive
online algorithm for the removable weighted case and a matching upper bound
[11]. Here, k is the maximum number of times that an item can be cut.

In [4], Böckenhauer et al. explore the advice complexity of the online knap-
sack problem, where the goal is to evaluate the possible improvements on the
competitive ratio provided by some additional information about the complete
instance.

In a recent article by Böckenhauer et al. [3] on the online unweighted knap-
sack problem, the possibility to reserve an item (i.e., postpone the decision about
it) is studied. Given α ∈ (0, 1), reserving an item costs α times its value. This
model is closely related to the one with removal cost [2, 7] but, as opposed to
“bought back” items, reserved items are not temporarily put into the knapsack.
Thus, there is no hard capacity constraint. The authors characterize the best
competitive ratio for all possible value of α [3].

The present work combines removable items with an additional information
about the range of the items size. Having upper bounds on the worth of ob-
jects has already been done for analysing fair allocations of indivisible goods [6].
Concerning the online weighted knapsack problem, Babaioff et al. have used a
parameter γ ∈ (0, 1] which restricts the size of any item to γ · C. They gave a
deterministic algorithm for the case γ < 1/2 whose competitive ratio tends to
1 − 2γ when the buyback factor goes to 0. The work of Chakrabarty et al. on
the weighted knapsack problem also makes assumptions about both the size of
objects and their weight-to-size ratio [17].

2 Upper bounded item size

Given an upper bound u ∈ (0, 1] on the size of every item, we aim at determining
the best possible competitive ratio ρ(u) of deterministic online algorithms for the
unweighted knapsack problem with removable items. Our results are depicted in
Figure 1. The lower (solid) and upper (dotted) bounds on ρ(u) are non increasing
functions u. One can observe that the competitive ratio is always above t, and
the performance guarantee increases (and tends to 1) as the size of the items
reduces. The curves of Figure 1 meet for many values of u all over the interval
(0, 1] but some gaps remain to be filled.

In this section, we begin with lower bounds on ρ(u) obtained with a single
parametric algorithm (cf. Section 2.1), followed by upper bounds on ρ(u) induced
by a family of instances (cf. Section 2.2).

2.1 Lower bounds on the competitive ratio

Throughout our presentation we will say that an item is rejected if it is discarded
immediately after its disclosure; if the item is first inserted in the solution and it
is discarded at a later step then we say that it is removed. We consider a single
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u
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1

t 1

t ≈ 0.618
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0.5

Fig. 1. Lower (solid) and upper (dotted) bounds on the competitive ratio ρ as a function
of u.

parametric online algorithm described in Algorithm 1. For every positive integer
k, the competitive ratio of Algorithm 1 is either a constant γk defined as

γk =
k − 2 +

√
k2 + 4

2k
, (2)

or a decreasing function of u equal to 1−u
(k−1)u .

Note that γk belongs to (0, 1] for all positive integers k. It increases with k,
and γ1 =

√
5−1
2 = t. The rationale of γk originates from the following equality

which will be interpreted and exploited later on.

(k − 1)(1− γk) +
1− γk
γk

= γk (3)

Other useful technical properties of γk (valid for all positive integers k) are the
following four (their proof will appear in an extended version of this article).

0 < 1− γk ≤ 1− γk
γk

< 1/k ≤ 1− γk
γ2
k

(4)

(k − 1)
1− γk
γ2
k

≤ 1 (5)

(k + 1)(1− γk) ≥ γk (6)
1− 1−γk

γ2
k

(k − 1) 1−γk

γ2
k

= γk (7)

Our analysis of the competitive ratio of Algorithm 1 is divided into two
theorems for the sake of clarity. Theorems 1 and 2 correspond to intervals where
the proposed lower bound on the competitive ratio is constant and decreasing
with u, respectively. On Figure 1, the i-th constant part of the solid curve,
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Algorithm 1
1: S ← ∅
2: while a new item oi arrives do
3: if v(S) ≥ γk then
4: Reject oi {S is not changed afterwards}
5: else
6: S ← S ∪ {oi}
7: if v(S) > 1 then
8: Let B = {o ∈ S : |o| > 1− γk}
9: if v(B) > 1 then

10: if B contains a subset Ŝ such that 1 ≥ v(Ŝ) ≥ γk then
11: S ← Ŝ {S is not changed afterwards}
12: else
13: Remove the largest item of S
14: end if
15: else
16: while v(S) > 1 do
17: Remove from S one element of S \B {chosen arbitrarily}
18: end while
19: end if
20: end if
21: end if
22: end while

when counting from the right, corresponds to Theorem 1 when i = k and u ≤
(1− γk)/γ

2
k. The i-th decreasing part of the solid curve, still counting from the

right, corresponds to Theorem 2 when i = k − 1 and u ≤ 1/(k − 1).
The solid curve depicted on Figure 1 corresponds, for every possible value of

u ∈ (0, 1], to the best (i.e., largest) lower bound offered by either Theorem 1 or
Theorem 2, with an appropriate choice of the parameter k.

Theorem 1. For all positive integers k, Algorithm 1 is γk-competitive when
u ∈ (0, 1−γk

γ2
k

].

Proof. Let Bi, Ŝi, Si, and S∗
i denote B, Ŝ, S and an optimal solution at the end

of round i of Algorithm 1 (i.e., when o1 to oi have been disclosed), respectively.
We are going to prove that v(Si) ≤ 1 and v(Si)

v(S∗
i )

≥ γk hold for all i.
An item o is said to be small if 0 < |o| ≤ 1−γk, medium if 1−γk < |o| ≤ 1−γk

γk
,

large if 1−γk

γk
< |o| ≤ k−1, and extra-large if k−1 < |o| ≤ 1−γk

γ2
k

. Note that
the extra-large category does not exist when k = 1. The categories lead to the
following useful interpretation of equation (3): k−1 medium items plus one large
or extra-large item constitute a desirable set because its total size is between
(k − 1)(1− γk) +

1−γk

γk
= γk and (k − 1) 1−γk

γk
+ 1−γk

γ2
k

= 1, i.e., it is a feasible set
satisfying the guarantee γk.

The proof is by induction and we begin with the base case (i = 1). Since
S1 = S∗

1 = {o1}, we have that v(S1) ≤ 1 and v(S1)
v(S∗

1 )
= 1 ≥ γk. In order to prove
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v(Si) ≤ 1 and v(Si)
v(S∗

i )
≥ γk when i > 1, we make the induction hypotheses that

both v(Si−1) ≤ 1 and v(Si−1)
v(S∗

i−1)
≥ γk hold.

If v(Si−1) ≥ γk at line 4 of the algorithm, then Si = Si−1 (item oi is rejected).
Since v(S∗

i ) ≤ 1, the competitive ratio satisfies v(Si)
v(S∗

i )
≥ γk. The solution is not

modified afterwards. Otherwise (v(Si−1) < γk), the algorithm puts the new
item oi in the current solution (cf. line 6): Si = Si−1 ∪ {oi}. If oi fits (i.e.,
v(Si) ≤ 1 holds after the insertion of oi), then v(Si) = v(Si−1)+ |oi| and v(S∗

i ) ≤
v(S∗

i−1) + |oi|. We get that v(Si)
v(S∗

i )
≥ v(Si−1)+|oi|

v(S∗
i−1)+|oi| ≥ v(Si−1)

v(S∗
i−1)

≥ γk where the last
inequality derives from the induction hypothesis.

From now on, suppose that v(Si) > 1 holds after the insertion of oi. We know
from v(Si−1) < γk and v(Si) > 1 that |oi| > 1 − γk. In other words, oi is not
a small item. By construction, Bi is the subset of non-small items of Si and it
contains oi. If v(Bi) ≤ 1, then the algorithm executes the while loop containing
line 17. The while loop starts with v(Si) > 1 and removes small items of Si

until v(Si) ≤ 1. Since a small item has size at most 1 − γk, we end up with a
solution satisfying γk ≤ v(Si) ≤ 1. Therefore, v(Si)

v(S∗
i )

≥ γk and the solution is not
modified afterwards. If v(Bi) > 1, then the algorithm tries to find in Bi a subset
of non-small items Ŝi such that 1 ≥ v(Ŝi) ≥ γk, and sets Si to Ŝi if Ŝi exists.
In this case, the competitive ratio is reached and the solution is not modified
afterwards.

Let us explain that verifying the existence of Ŝi is not difficult. Bi contains
at most k+1 items for the following reasons: |Bi|−1 non-small items of Bi were
already present in Si−1. Using v(Si−1) < γk, and the fact that a non-small item
has size at least 1−γk, we get that |Bi|−1 ≤ k (indeed, Inequality (6) indicates
that k+1 items of size 1−γk have a total size of at least γk), which is equivalent
to |Bi| ≤ k + 1. Inequality (5) indicates that a set of k − 1 items of the largest
possible size fits in the budget of 1. Together with v(Bi) > 1, we deduce that
Bi cannot contain k − 1 (or less) non-small items. Thus, Bi contains k or k + 1
non-small items. Taking k−1 items of Bi gives a feasible solution (cf. Inequality
(5)). By taking the k − 1 biggest items of Bi, we can verify whether γk can be
reached. If not, Ŝi possibly requires k items (when |Bi| = k+1), which requires
to test k + 1 possibilities. In all, at most k + 2 solutions are tested, where k is
upper bounded by the number of disclosed items.

So far we have considered the cases where the algorithm was able to find a
subset of items whose total size is between γk and 1. In these cases, the solution
is not changed afterwards because the expected guarantee is reached, whichever
item comes subsequently. Hereafter, we analyse the case where Ŝi ⊆ Bi such
that 1 ≥ v(Ŝi) ≥ γk does not exist. In this situation, the largest element is
removed (cf. line 13). Note that line 13 is executed for round i, and line 13
was possibly executed during previous rounds. However, line 11 or the while
loop were not previously executed because, so far, the guarantee has not been
reached (v(Si−1) < γk).

We have seen that Bi contains either k or k + 1 non-small items at line 8 of
the algorithm. Let us make some observations which are valid for both cases.
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(i) So far, the algorithm has not rejected or removed a small item. Only items
of Bi were removed by the possible execution of line 13 (by construction, Bi

is the set of non-small items).
(ii) The algorithm has not switched from one case to the other. If |Bi| = k,

then it could not be |Bj | = k + 1 in a previous round j < i. Similarly, if
|Bi| = k + 1, then it could not be |Bj | = k in a previous round j < i.
Indeed, suppose we have |Bi| ̸= |Bi−1|.5 Since we removed one item from
Bi−1, and oi was inserted afterwards to yield Bi, we get that |Bi| = |Bi−1|,
contradiction.

(iii) We have v(Si) ≤ 1 after the largest element of Bi is removed (line 13).
Indeed, Si is built as follows: take Si−1, add an item oi, and remove its
largest item. We get that v(Si) ≤ v(Si−1) and v(Si−1) ≤ 1 holds by induction
hypothesis.

(iv) An optimal (offline) solution contains at most |Bi|−1 non-small items. Since
the algorithm keeps the smallest non-small items in Bi, and until now v(Bi)
is always strictly larger than 1, it is not possible to find |Bi| non-small items
(within the set of non-small items already disclosed) whose total size is at
most 1.

It remains to prove v(Si)
v(S∗

i )
≥ γk in both cases, namely |Bi| ∈ {k, k+1} at line

8 of the algorithm.
Case |Bi| = k. The current solution Si contains all the small items disclosed
so far (cf. observation (i)). The total size of non-small items of Si is at least
1− 1−γk

γ2
k

because we had v(Bi) > 1 and one item of size at most 1−γk

γ2
k

has been
removed. Meanwhile, observation (iv) says that the optimum contains at most
|Bi| − 1 = k − 1 non-small items, each of which has size at most 1−γk

γ2
k

, and
possibly all the small items disclosed so far. Therefore, the competitive ratio is
lower bounded by

v({o : 0 < |o| ≤ 1− γk}) + 1− 1−γk

γ2
k

v({o : 0 < |o| ≤ 1− γk}) + (k − 1) 1−γk

γ2
k

≥
1− 1−γk

γ2
k

(k − 1) 1−γk

γ2
k

= γk

where the last equality is due to (7).
Case |Bi| = k + 1. Every item of Bi is medium. Indeed, exactly k items of Bi

come from Si−1 and we know that v(Si−1) < γk. If the non-small items of Si−1

were not exclusively medium items, then its total size would be at least (k −
1)(1−γk)+

1−γk

γk
, which is equal to γk by (3), contradiction. The item of Bi\Bi−1

(i.e., oi) must be medium because the algorithm failed to find Ŝi. Indeed, if oi
were large or extra-large, then one could combine it with k− 1 medium items of
Bi and create Ŝi whose total size is between γk and 1 (cf. interpretation of (3)).
No large or extra-large item was disclosed so far, because either this large or
5 The assumption that the change in the size of B occurs between rounds i− 1 and i

is made without loss of generality because we can apply the arguments to the round
(possibly prior to i) during which the size of B is modified for the first time.
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extra-large item could be used to produce Ŝi with k − 1 medium items already
present in the solution (contradiction with the non-existence of Ŝi), or such a
large or extra-large item was removed in a previous round j, but it corresponds
to an incompatible situation where |Bj | = k ̸= |Bi|, and we have seen that the
algorithm does not switch from one case to the other (cf. observation (ii)).

The algorithm has kept all the small items disclosed so far and the k smallest
medium items. The optimum S∗

i possibly contains all the small items disclosed
so far, and at most k non-small items (cf. observation (iv)) which are medium
because no large or extra-large item has been disclosed. The size of a medium
item being between 1−γk and 1−γk

γk
, the competitive ratio can be lower bounded

as follows.

v({o : 0 < |o| ≤ 1− γk}) + k(1− γk)

v({o : 0 < |o| ≤ 1− γk}) + k 1−γk

γk

≥ k(1− γk)

k( 1−γk

γk
)

= γk ⊓⊔

When k = 1, Theorem 1 indicates that Algorithm 1 is t-competitive for all
u ∈ (0, 1] because γ1 = t and 1−γ1

γ2
1

= 1, thus generalizing the result of [12].
When k ≥ 2, Inequality (5) indicates that 1−γk

γ2
k

≤ 1
k−1 so we can consider in

the following theorem how Algorithm 1 performs when u ∈ ( 1−γk

γ2
k

, 1
k−1 ].

Theorem 2. For all integers k ≥ 2, Algorithm 1 is 1−u
(k−1)u -competitive when

u ∈ ( 1−γk

γ2
k

, 1
k−1 ].

Proof. We keep the same notations as in the proof of Theorem 1. Only the notion
of extra-large item changes: o is said to be extra-large if k−1 < |o| ≤ u. All the
cases of the proof of Theorem 1 remain unchanged and lead to a competitive
ratio of γk except when Ŝi such that γk ≤ v(Ŝi) ≤ 1 does not exist, and |Bi| = k.
In this case, the current solution Si contains all the small items disclosed so far.
The total size of non-small items of Si is at least 1−u because we had v(Bi) > 1
and one item of size at most u has been removed. Meanwhile, the optimum
contains at most |Bi|−1 = k−1 non-small items, each of which has size at most
u, and possibly all the small items disclosed so far. Note that k− 1 items of size
at most u fit in the budget since u ≤ 1

k−1 holds by assumption. The competitive
ratio is lower bounded by

v({o : 0 < |o| ≤ 1− γk}) + 1− u

v({o : 0 < |o| ≤ 1− γk}) + (k − 1)u
≥ 1− u

(k − 1)u
.

Using (7) and 1−γk

γ2
k

≤ u, we get that γk =
1−(1−γk)/γ

2
k

(k−1)(1−γk)/γ2
k
≥ 1−u

(k−1)u . Therefore,
the competitive ratio is 1−u

(k−1)u in the worst case. ⊓⊔

To conclude this part, the combination of Theorems 1 and 2 gives the lower
bounds on the competitive ratio depicted in solid on Figure 1. Sometimes, the
intervals of the theorems intersect for consecutive values of k. In this case, the
best (i.e., largest) lower bound on the competitive ratio is retained.
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2.2 Upper bounds on the competitive ratio

Our upper bounds, depicted in dotted on Figure 1, are obtained from instances
showing that no deterministic online algorithm can have a competitive ratio
larger than some specified value. We will often use the following simple observa-
tion: If the instances employed to show an upper bound of r on the competitive
ratio only contain items of size at most x, then the competitive ratio is at most
r for all u ∈ [x, 1].

Let us first suppose that u ∈ [ 47 , 1], and consider the following instance.

Instance 1 The first item o1 has size u. If o1 is not taken, then the competitive
ratio is zero. The second item o2 has size 1 − u + ϵ. Note that there exists an
ϵ such that 1 − u + ϵ ≤ u because u > 0.5. Since |o1| + |o2| > 1, either o1 or
o2 is kept, but not both. If o2 replaces o1, then no more item is disclosed. The
competitive ratio is 1−u+ϵ

u which tends to 1−u
u when ϵ goes to zero. Otherwise, o1

is kept and a last item o3 of size u− ϵ is disclosed. Again, the two items o1 and
o3 do not fit. Since |o1| ≥ |o3|, we can consider that o1 is kept. The competitive
ratio in this case is u because the optimum {o2, o3} has value 1.

Proposition 1. Instance 1 gives an upper bound of 1−u
u on the competitive ratio

when u ∈ [ 47 , t], and an upper bound of t when u ∈ [t, 1].

Proof. The upper bound is 1−u
u when u ∈ [ 47 , t] because 1−u

u ≥ u in that interval.
Since t =

√
5−1
2 is a root of 1−u

u = u, an upper bound of t on the competitive
ratio is derived from Instance 1 (fix u to t in the instance), and it is valid for all
u ∈ [t, 1] by the aforementioned observation. ⊓⊔

Note that the upper bound of t corresponds to one given in [12, Theorem 2].
Now suppose that u ∈ ( 12 ,

4
7 ) and consider the following instance.

Instance 2 The first 2 items o1, o2 have size 1
4 − ϵ, where ϵ > 0, and 1

4 , respec-
tively. If any of them is not taken, then the competitive ratio tends to 1

2 . The
next item o3 has size 1

2 + 2ϵ. If o3 is kept, then one of o1, o2 must be removed.
Then an item o4 of size 1

2 + ϵ is disclosed, which does not fit in the current
solution and can only replace o3, leading to a solution of smaller value; hence,
o4 is not included, which gives a competitive ratio that tends to 3

4 when ϵ goes
to zero. Indeed, the total size of the current solution is at most 3

4 +2ϵ, while the
optimal value is 1

4 − ϵ+ 1
4 +

1
2 + ϵ = 1. If, on the other hand, o3 is removed, then

the instance is terminated, leading to a competitive ratio of 1/4−ϵ+1/4
1/4+1/2+2ϵ = 1/2−ϵ

3/4+2ϵ

that tends to 2
3 as ϵ goes to zero.

Proposition 2. Instance 2 provides an upper bound of 3
4 on the competitive

ratio when u ∈ ( 12 ,
4
7 ).

Proof. The largest item of Instance 2 has size 1/2 + 2ϵ. The two cases lead to
competitive ratios of 3/4 + 2ϵ and 1/2−ϵ

3/4+2ϵ , so we retain the largest one which
tends to 3/4 when ϵ goes to zero. By the above observation, the upper bound of
3/4 is valid for u > 1/2. ⊓⊔
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We finally consider a family of instances parameterized by an integer k such
that k ≥ 2, and the interval covered by each individual instance is ( 1

k+1 ,
1
k ].

Thus, the family allows us to cover the case u ∈ (0, 1
2 ].

Instance 3 The first k items o1, . . . , ok have size 1−u
k + ϵ each where ϵ is a

small positive real satisfying

0 < ϵ ≤ 1

k

(
u− 1

k + 1

)
. (8)

If the first k items are not all taken, then the competitive ratio is at most k−1
k .

The next item ok+1 has size u. Note that u ≥ 1−u
k +ϵ because of u > 1

k+1 and (8).
Since

∑k+1
i=1 |oi| > 1, either {o1, . . . , ok} is kept (case A), or ok+1 replaces oi for

some i ∈ {1, . . . , k} (case B). If case A occurs, then keep disclosing items of size
u until (i) either k items of size u have been disclosed but none of them entered
the current solution, or (ii) one item of size u is put into the solution (hence,
an item of size 1−u

k + ϵ has been removed). If case A(ii) or case B occurs, then
disclose an item of size 1−u

k + ϵ. One cannot improve the value of the current
solution with this last item (it does not fit, and its size is smaller than the size
of any other item of the current solution). The competitive ratio under case A(i)

is k( 1−u
k +ϵ)

ku which tends to 1−u
ku when ϵ goes to zero. The competitive ratio under

cases A(ii) and B is (k−1)( 1−u
k +ϵ)+u

(k+1)( 1−u
k +ϵ)

which tends to (k−1)( 1−u
k )+u

(k+1)( 1−u
k )

= k−1+u
(k+1)(1−u)

when ϵ goes to zero.

Proposition 3. Instance 3 provides an upper bound of 1−u
ku when u ∈ ( 1

k+1 , ck],
and an upper bound of 1−ck

kck
for u ≥ ck, where

ck :=
(
k2 + k + 2−

√
(k2 + k + 2)2 − 4(k + 1)

)
/2. 6

Proof. The upper bound derived from Instance 3 is max
(

k−1
k , 1−u

ku , k−1+u
(k+1)(1−u)

)
.

Since u ≤ 1
k , we know that k−1

k ≤ 1−u
ku . Thus, the upper bound is max( 1−u

ku ,
k−1+u

(k+1)(1−u) ) where 1−u
ku is a decreasing function of u while k−1+u

(k+1)(1−u) is increas-
ing. The cut point of these functions is ck ∈ ( 1

k+1 ,
1
k ]. By the aforementioned

observation, we have an upper bound on the competitive ratio of 1−ck
kck

when
u ≥ ck. ⊓⊔

The combination of Propositions 1, 2 and 3 leads to the upper bounds de-
picted in dotted on Figure 1.

3 Lower bounded item size

Given a lower bound ℓ ∈ (0, 1] on the size of every item, we are going to show
that the best possible competitive ratio ρ(ℓ) of deterministic online algorithms
6 Note that 1−ck

kck
= γk+1 and ck =

1−γk+1

γ2
k+1

.
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for the unweighted knapsack problem with removable items is as follows.

ρ(ℓ) =


t, if 0 ≤ ℓ ≤ 1− t√
ℓ, if 1− t < ℓ ≤ 1/2

1, if 1/2 < ℓ ≤ 1
(9)

See (1) for the definition of t. One can observe that the competitive ratio is
always above t. As for Section 2 where an upper bound was known, we begin
with lower bounds on ρ(ℓ) followed by upper bounds on ρ(ℓ). Together, they
constitute a characterization of ρ(ℓ) since there is no gap.

3.1 Lower bounds on the competitive ratio

When ℓ ∈ [0, 1 − t], the characterization of ρ(ℓ) given in (9) indicates a com-
petitive ratio of t which can be obtained with either Algorithm 1 (k = 1), or
with the algorithm of Iwama and Taketomi [12]. If ℓ > 1/2, then there exists
a simple algorithm with competitive ratio 1: maintain in the current solution
the largest item encountered thus far. Since any solution contains at most one
item, this simple algorithm is optimal. It remains to provide a

√
ℓ-competitive

algorithm for the case ℓ ∈ [1− t, 1/2], cf. Algorithm 2 and Theorem 3. The proof
of Theorem 3 is deferred to an extended version of this article.

Algorithm 2 A
√
ℓ-competitive algorithm for the case 1− t ≤ ℓ ≤ 1/2

1: S ← ∅
2: while a new item oi arrives do
3: if v(S) ≥

√
ℓ then

4: Reject oi {S is not changed afterwards}
5: else if |oi| ≥

√
ℓ then

6: S ← {oi} {S is not changed afterwards}
7: else if v(S) + |oi| ≤ 1 then
8: S ← S ∪ {oi}
9: else

10: Let o be the unique item in S
11: S gets the item of minimum size between o and oi
12: end if
13: end while

Theorem 3. Algorithm 2 is
√
ℓ-competitive when ℓ ∈ [1− t, 1/2].

3.2 Upper bounds on the competitive ratio

Let us begin with ℓ ∈ (0, 1− t].

Proposition 4. The competitive ratio of deterministic online algorithms is at
most t when ℓ ∈ (0, 1− t].
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Proof. We can reuse the bound provided by Iwama and Taketomi [12, Theorem
2]. Let us give the corresponding instance for the sake of readability. The first
item o1 has size 1− t. If o1 is not taken, then the competitive ratio is zero. The
second item o2 has size t + ϵ where ϵ is a tiny positive real. Items o1 and o2
cannot be both taken without exceeding the budget. If o2 does not replace o1,
then stop. The competitive ratio tends to 1−t

t when ϵ goes to zero. Otherwise o2
replaces o1, and a new item o3 of size t is disclosed. The optimum {o1, o3} has
value 1 while the algorithm’s solution has value at most t+ ϵ. The competitive
ratio is either 1−t

t which is equal to t, or t+ ϵ, so we have an upper bound of t.
In the instance, every item has size at least 1 − t because t + ϵ ≥ t ≥ 1 − t, so
the upper bound on the competitive ratio holds for all ℓ ∈ (0, 1− t]. ⊓⊔

The next step concerns the interval (1− t, 1
2 ].

Proposition 5. The competitive ratio of deterministic online algorithms is at
most

√
ℓ when ℓ ∈ (1− t, 1

2 ].

Proof. Consider the following instance. The first item o1 has size ℓ. If o1 is not
taken, then the competitive ratio is zero. The second item o2 has size

√
ℓ + ϵ.

Since ℓ ≤ 1, we know that
√
ℓ + ϵ ≥ ℓ. Moreover, ℓ +

√
ℓ + ϵ > 1 holds when

ℓ ≥ 1 − t, so no feasible solution can contain both items. If o2 does not replace
o1, then stop. The competitive ratio tends to ℓ/

√
ℓ =

√
ℓ when ϵ goes to zero.

Otherwise o2 replaces o1, and a new item o3 of size 1 − ℓ is disclosed. The
optimum {o1, o3} has value 1 while the algorithm’s solution has value at most√
ℓ + ϵ because

√
ℓ + ϵ ≥ 1 − ℓ holds when ℓ > 1 − t, leading to a competitive

ratio which tends to
√
ℓ when ϵ goes to zero. Thus, both cases lead to the same

upper bound of
√
ℓ. ⊓⊔

No upper bound is needed when ℓ > 1/2 because an optimal algorithm has
been presented in the previous section.

4 Conclusion and directions for future work

We have considered the removable online unweighted knapsack problem with
bounded size items (denoted by u and ℓ for upper bound and lower bound,
respectively). Our contribution consists of lower and upper bounds on the best
competitive ratio for deterministic algorithms. The optimal ratio tends to 1 when
the parameter u goes to 0. A direct extension to our work would be to close the
gap for all possible values of u.

The reader may wonder what the situation is when the items are not remov-
able but their size is bounded. Given an upper bound u (resp., lower bound ℓ) on
the item sizes, the best possible competitive ratio is 1− u (resp., ℓ) and simple
deterministic algorithms can achieve these ratios.

For the future, we believe that it would be interesting to combine bounded
item sizes with other approaches such as resource augmentation [13], buffering
[10], reservation [3], advice [4], or item splitting [11]. Other possible extensions of
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the present work can be: exploring randomized online algorithms (as in [2, 7, 8,
5]) with bounded size items, exploiting a possible prediction of the total number
of disclosed items, or dealing weighted items restricted to convex functions of
the size (as in [9]).
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