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ON THE HEIGHT OF SOME GENERATORS OF
GALOIS EXTENSIONS WITH BIG GALOIS GROUP

JONATHAN JENVRIN

Abstract. We study the height of generators of Galois exten-
sions of the rationals having the alternating group An as Galois
group. We prove that if such generators are obtained from cer-
tain, albeit classical, constructions, their height tends to infinity
as n increases. This provides an analogue of a result by Amoroso,
originally established for the symmetric group.

1. Introduction

In this article, we let Q be a fixed algebraic closure of Q. Given
α ∈ Q of degree d, we denote by M(α) its Mahler measure, defined as

M(α) = |a|
d∏

i=1

max (1, |αi|) ≥ 1

where a is the leading coefficient of the minimal polynomial of α over
Z, and α1, . . . , αd are the conjugates of α. The logarithmic Weil height
of α, or, for short, the height of α is then given by

h(α) =
log(M(α))

d
.

While, by Kronecker’s theorem, it is well-known that h(α) = 0 if and
only if α = 0 or α is a root of unity, Lehmer’s conjecture predicts the
existence of a positive constant c > 0 such that

h(α) ≥ c

d

whenever h(α) is not zero. The conjecture has been proved for various
classes of algebraic numbers, but it is still open in general. The most
notable progress toward Lehmer’s conjecture is Dobrowolski’s result
[Dob79, Theorem 1], which proves that, if h(α) ̸= 0, then

h(α) ≥ c

d

(
log log d

log d

)3

(one can take c = 1/4 as shown in [Vou96, Theorem on p. 83]).
1
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If, on the one hand, Dobrowolski’s theorem stands as the sole uncon-
ditional result on this problem, on the other hand, it is possible to show
that specific classes of algebraic numbers satisfy even stronger variants
of Lehmer’s conjecture, such as the Bogomolov property introduced by
Bombieri and Zannier in [BZ01]: a set of algebraic numbers S satisfies
the Bogomolov property (B) if there exists a constant c = c(S) > 0
such that for every α ∈ S either h(α) = 0 or h(α) ≥ c.

Property (B) holds, for instance, for abelian extensions of number
fields, as shown in [AZ00, AZ10] and for the field of totally real algebraic
numbers, as proved in [Sch73, Corollary 1].

A set of algebraic numbers which has attracted the attention in this
respect in recent years, is the following

SGal = {α ∈ Q | Q(α)/Q is Galois }.

While Amoroso and David proved that Lehmer’s conjecture holds
for the elements of this set (see [AD99, Corollary 1.7]), later Amoroso
and Masser [AM16, Theorem 3.3] showed that SGal satisfies even the
following stronger result: for any ϵ > 0, there exists a positive effective
constant c(ϵ) such that, for every α ∈ SGal of degree d over Q and not
a root of unity, one has

h(α) ≥ c(ϵ)d−ϵ.

A result this strong might prompt the question, of whether the set
SGal satisfies Property (B) or not.

A quite natural way to tackle this issue is by fixing the Galois group
of Q(α)/Q. As recalled before, the answer is known to be positive
when such group is abelian (see also [AD00]), while the dihedral case
has been considered in [AZ10, Corollary 1.3].

Motivated by a question posed by Smyth (see [APSV, Problem 21]),
Amoroso studied certain classes of generators of Galois extensions whose
Galois group is the full symmetric group Sn and proved the following:

Theorem 1.1 ([Amo18, Theorems 1.1 and 1.2]). Let β be an algebraic
integer of degree n ≥ 3, let β1, . . . , βn be its conjugates and assume that
Gal(Q(β1, . . . , βn)/Q) = Sn.

Let a1, . . . , an be integers. Then:
(i) If β is a unit, α = βa1

1 . . . βan
n is a generator of Q(β1, . . . , βn)/Q

if and only if a1, . . . , an are pairwise distinct. In this case h(α)
tends to infinity as n increases.

(ii) α′ = a1β1 + . . . + anβn is a generator of Q(β1, . . . , βn)/Q if and
only if a1, . . . , an are pairwise distinct. In this case h(α′) tends to
infinity as n increases.
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This result led Amoroso to propose the following conjecture:

Conjecture 1.2 ( [Amo18, Conjecture 1.3]). Let α ∈ Q be a generator
of a Galois extension of degree d = n! of Galois group Sn. Then
h(α) ≥ c(d) with c(d) a function tending to infinity with d.

The goal of this article is to investigate whether some analogue of
Theorem 1.1 holds for other groups. Our first result provides a lower
bound for the height of generators of Galois extensions as in (i) with
no assumption on the structure of the Galois group of the extension.

Theorem 1.3. Let n ≥ 3 be an integer and let β be an algebraic
integer of degree n, with conjugates β1, . . . , βn. Let a1, . . . , an ∈ Z, and
let α = βa1

1 . . . βan
n . Suppose that Q(α) = Q(β1, . . . , βn). Then

h(α) ≥

(
1

n

∣∣∣∣∣
n∑

i=1

ai

∣∣∣∣∣
)

· logmax
(
1,
∣∣NQ(β)/Q(β)

∣∣) .
In particular, if β is not a unit and if the sequence

(
1
n
|
∑n

i=1 ai|
)
n

tends to infinity with n, then h(α) tends also to infinity with n.

The remainder and most significant part of this article is devoted
to proving the analogue of Theorem 1.1 for extensions having Galois
group equal to the alternating group An. We remark that this case,
besides being naturally interesting to examine, can be also consider
in some sense the generic one. For instance, it has been proved in
[BSK20, Theorem 2] that, for any integer ℓ ≥ 2, a random polynomial of
degree n with i.i.d. random integers coefficients taking values uniformly
in {1, . . . , ℓ} will have Galois group containing An with a probability
tending to 1 as n goes to infinity.

Our second main result is the analogue of [Amo18, Theorem 1.1] for
An, for generators obtained as products of conjugates.

Theorem 1.4. Let β be an algebraic number of degree n ≥ 5, let
β1, . . . , βn be its conjugates and assume that Gal(Q(β1, . . . , βn)/Q) =
An. Let α = βa1

1 . . . βan
n where a1, . . . , an ∈ Z. Then:

(1) α is a generator of Q(β1, . . . , βn)/Q if and only if there are at most
two distinct indices i, j such that ai = aj.

(2) If α is a generator of Q(β1, . . . , βn)/Q and β is a unit, then

h(α) ≥ (1 + g(n))

√
n

200π

(
log(log(n))

log(n)

)3

where g(n) tends to 0 as n tends to infinity. In particular, h(α)
tends to infinity with n.
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Our last main result, a counterpart to [Amo18, Theorems 1.2] for An,
deals with generators obtained as linear combination of conjugates:

Theorem 1.5. Let β be an algebraic integer of degree n ≥ 5, let
β1, . . . , βn be its conjugates and suppose that Gal(Q(β1, . . . , βn)/Q) =
An. Consider α = a1β1 + . . .+ anβn where a1, . . . , an ∈ Z. Then:

(1) α is a generator of Q(β1, . . . , βn)/Q if and only if there are at most
two distinct indices i, j such that ai = aj.

(2) If α is a generator of Q(β1, . . . , βn)/Q, then

h(α) ≥ 1

240
log
(n
9

)
.

In particular, h(α) tends to infinity with n.

We notice that our results potentially support an extension of Con-
jecture 1.2 to generators of Galois extensions with Galois group con-
taining An.

We now describe the structure of the article and briefly outline the
main ideas involved in the proofs of our results.

The proof of Theorem 1.3, presented in Section 2, relies on elemen-
tary group theory and basic properties of the Mahler measure. It is
notably simpler than the proof of Theorem 1.4, which suggests that
the most challenging scenario arises when β is a unit.

The proofs of Theorems 1.4 and 1.5 are presented in Sections 3 and
4, respectively.

Our proof strategy for Theorem 1.4 builds upon Amoroso’s approach
in [Amo18, Theorem 1.1]. Point (1) is proved in Section 3.1 and relies
on an adaption of a result of Smyth (see Proposition 3.1) and some
elementary Galois theoretic arguments.

Point (2) is a corollary of a more precise statement, given in Propo-
sition 3.3, whose proof, done in Section 3.2, is more subtle and requires
some technicalities. First, in Proposition 3.4, we link the Mahler mea-
sures of α and β to the values taken by the function

2

n!

∑
σ∈An

∣∣∣∣∣ 1n
n∑

j=1

log |βσ(j)|

(
aj −

1

n

n∑
i=1

ai

)∣∣∣∣∣ .
We then study the properties of this function and provide an upper

and lower bound for it (see Proposition 3.5) in terms of a constant
cn (estimated in Proposition 3.6). Point (2) then follows combining
the above results with the explicit version of Dobrowolski’s theorem by
Voutier [Vou96, Theorem, p. 83].
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As for Theorem 1.5, the proof of point (1), carried out in Section 4.1,
is the same, in additive notation, as the one of point (1) of Theorem
1.4 and it is even simpler than its multiplicative variant.

It is in the proof of point (2), done in Section 4.2, that lies the
main novelty of our strategy. The key point here is Lemma 4.3 which
describes how the Mahler measure of α changes when one applies a
transposition to α, so, by hypothesis, an element not in Gal(Q(α)/Q)
and that should not act on α. This is then used to give a lower bound for
M(α) (see Proposition 4.4) independent on the chosen transposition,
but depending, amongst others, on the quantity

V (a) =
∏

1≤i<j≤n

(aj − ai).

This bound is exploitable only when all ai’s are distinct, and in this case
the quantities involved can be bounded using, among other ingredients,
estimates on the derangement numbers.

However, α could be a generator of the extension even if two of the
indices ai’s are equal, causing the quantity V (a) to be zero and pro-
viding no useful information. To overcome this, we construct another
generator given by a linear combination of the βi’s with all distinct
integral coefficients and having height close to that of α. This is done
using the key Lemma 4.6. The height of such a generator can then
be bounded applying the first part of the proof, and this allows to
conclude.

Finally, in Section 5, we present some applications of our results
to specific families of polynomials. Additionally, we discuss whether
the proof strategy of our main results can be adapted to generators of
Galois extensions with Galois groups different from An or Sn.

2. Proof of Theorem 1.3

For the proof of Theorem 1.3, we will need the following elementary
lemma.

Lemma 2.1. Let G < Sn be a transitive subgroup. For i, k ∈ {1, . . . , n}
let Gi,k = {σ ∈ G | σ(k) = i}. Then |Gi,k| = |G|

n
.

Proof. Let i, j, k ∈ {1, . . . , n} be fixed, and let σ ∈ G. Since G is
transitive, we can take τ ∈ G such that τ(i) = j. We define the
function

ϕτ : Gi,k → Gj,k

σ 7→ τσ
.
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One can check that ϕτ is well-defined, and it is a bijection, with inverse
given by σ 7→ τ−1σ. So we have |Gi,k| = |Gj,k|. Since

n∑
ℓ=1

|Gℓ,k| = |G|

we have the sought-for equality. □

We can now prove Theorem 1.3.

Proof of Theorem 1.3. Let G be the Galois group of Q(β1, . . . , βn) over
Q. Notice that, by the definition of the Mahler measure, we have

(1) M(α) ≥
∣∣NQ(α)/Q(α)

∣∣ .
Our goal is to show that

(2)
∣∣NQ(α)/Q(α)

∣∣1/|G|
=
∣∣NQ(β)/Q(β)

∣∣ 1n ∑n
i=1 ai .

We have
(3)∣∣NQ(α)/Q(α)

∣∣ = ∏
σ∈G

n∏
i=1

∣∣∣βaσ−1(i)

i

∣∣∣ = n∏
i=1

∣∣∣β∑
σ∈G aσ−1(i)

i

∣∣∣ = n∏
i=1

∣∣∣β∑
σ∈G aσ(i)

i

∣∣∣ .
Since G is a transitive subgroup of Sn, for all i ∈ {1, . . . , n}, by

Lemma 2.1, we have ∑
σ∈G

aσ(i) =
∑
σ∈G

aσ(1).

Therefore
n∏

i=1

∣∣∣β∑
σ∈G aσ(i)

i

∣∣∣ = n∏
i=1

|βi|
∑

σ∈G aσ(1) =
∣∣NQ(β)/Q(β)

∣∣∑σ∈G aσ(1) .

Letting Gi,1 = {σ ∈ G | σ(1) = i}, by Lemma 2.1 we have

∑
σ∈G

aσ(1) =
n∑

i=1

 ∑
σ∈Gi,1

ai

 =
|G|
n

n∑
i=1

ai.

Hence, from (3) we obtain∣∣NQ(α)/Q(α)
∣∣ ≥ ∣∣NQ(β)/Q(β)

∣∣ |G|
n

∑n
i=1 ai .

This proves (2) by taking the |G|-th root. Finally, from (1), we have

M(α)1/|G| ≥
∣∣NQ(β)/Q(β)

∣∣ 1n ∑n
i=1 ai .

Applying this to 1/α and using M(α) = M(1/α), we also have

M(α)1/|G| ≥
∣∣NQ(β)/Q(β)

∣∣− 1
n

∑n
i=1 ai .
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This proves Theorem 1.3 by noticing that |G| = [Q(α) : Q]. □

3. Proof of Theorem 1.4

The objective of this section is to establish Theorem 1.4. To achieve
this, as mentioned earlier, we will follow the proof outlined by Amoroso
in [Amo18, Sections 2 and 3] and adapt it as needed.

For enhanced readability, the proof of the distinct points in Theorem
1.4 is divided into separate subsections. Within each subsection, we
introduce the necessary technical results and definitions needed in the
proof of the corresponding point.

Throughout the article, if β1, . . . , βn ∈ Q is a full set of Galois con-
jugates, when writing An ⊆ Gal(Q(β1, . . . , βn)/Q), we identify σ ∈ An

with the automorphism σ(βi) = βσ(i).

3.1. The multiplicative case: proof of Theorem 1.4, point (1).
We start, as in [Amo18], by adapting the multiplicative version of
[Smy86, Lemma 1]:

Proposition 3.1. Let β be an algebraic number of degree n ≥ 5 such
that βk /∈ Q for any non-zero integer k. Let β1, . . . , βn be the conjugates
of β, and suppose that An ⊂ Gal(Q(β1, . . . , βn)/Q). Then, for every
v1, . . . , vn ∈ Z, not all equal, the product βv1

1 . . . βvn
n is not a root of

unity.

Proof. Assume, by contradiction, that βv1
1 . . . βvn

n is a root of unity. Up
to multiplying all the vi’s by the same non-zero integer, we can suppose
that βv1

1 . . . βvn
n = 1.

Notice that by hypothesis, Gal(Q(β1, . . . , βn)/Q) contains all 3-cycles.
Without loss of generality, we can suppose that β = β1 and v1 ̸= v2.

Applying the cycle (1 3 2) to both sides of the equality βv1
1 . . . βvn

n =
1, we obtain βv1−v2

1 βv2−v3
2 βv3−v1

3 = 1. Applying to this last equality the
cycle (1 i j), for i ̸= j and i, j ≥ 4, we obtain βv1−v2

1 = βv1−v2
i for all

i ≥ 4.
Applying further the cycles (1 2 k) and (1 3 ℓ) for k, ℓ ̸∈ {2, 3, i}, we

finally get that for all 1 ≤ i ≤ n, βv1−v2
1 = βv1−v2

i . So, βv1−v2 ∈ Q as
it is fixed by all elements of Gal(Q(β1, . . . , βn)/Q), contradicting the
hypothesis on β as v1 ̸= v2. □

Now we are able to prove point (1) of Theorem 1.4.

Proof of Point (1) of Theorem 1.4. Assume first that α is a generator
of Q(β1, . . . , βn)/Q. If |{ai | 1 ≤ i ≤ n}| < n − 1, then either there
exist indices i < j < k such that ai = aj = ak, or there are two couples
(i, j) ̸= (k, ℓ) with i < j and k < ℓ such that ai = aj and ak = aℓ.
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In the first case, we have that α is fixed by the 3-cycle (i j k), while
in the second case α is fixed by the double transposition (i j)(k ℓ). In
all cases, we find [Q(α) : Q] < |An|, contradicting the fact that α is a
generator of Q(β1, . . . , βn)/Q.

For the converse, assuming that |{ai, 1 ≤ i ≤ n}| ≥ n − 1, we want
to show that the group Gal(Q(β1, ..., βn)/Q(α)) is trivial.

Let σ ∈ Gal(Q(β1, ..., βn)/Q(α)) and let τ = σ−1. We want to show
that τ is the identity. Regarding σ as an element of An, the equality
σ(α) = α gives

(4)
n∏

k=1

β
ak−aτ(k)
k = 1.

Notice now that β satisfies the hypothesis of Proposition 3.1. Indeed,
suppose that βk ∈ Q for some integer k > 0. Then, for all i, j, we have
βk
i = βk

j . So, for all i, j, there exists a k-th root of unity ζi,j,k such that
βi = ζi,j,kβj. We have for all i, j

(5) ζi,j,k =
βi

βj

∈ Q(β1, . . . , βn).

Hence, we get for all i, j

Q(ζi,j,k) ⊂ Q(β1, . . . , βn).

Since Q(ζi,j,k)/Q is Galois, then Gal(Q(β1, . . . , βn)/Q(ζi,j,k)) is a nor-
mal subgroup of Gal(Q(β1, . . . , βn)/Q) = An, which is simple for n ≥ 5.
Hence, either Q(β1, . . . , βn) = Q(ζi,j,k), but this cannot be the case as
An is not abelian for n ≥ 4, or Q = Q(ζi,j,k).

If Q(ζi,j,k) = Q for all i, j, since ζi,j,k is a root of unity, we have either
ζi,j,k = 1 or ζi,j,k = −1. If ζi,j,k = 1 for some i ̸= j, by (5), we would
have βi = βj, which is a contradiction. If ζi,j,k = −1 for all i ̸= j, then
we have by (5), β1 = −β2 = −β3, and so β2 = β3, which is again a
contradiction. Finally, for all non-zero integer k, we have βk /∈ Q.

Therefore, applying the conclusion of Proposition 3.1 to (4), there
exists an integer c such that ak − aτ(k) = c for all k.

If ℓ if the order of τ , we have, a1 = aτℓ(1) = · · · = a1 + cℓ. So c = 0
and aτ(k) = ak for all k.

If the ai are all distinct, then τ is necessarily the identity.
If |{ai, 1 ≤ i ≤ n}| = n − 1, we can suppose that a1 = a2. We then

have, τ(k) = k for all k ≥ 3 and τ(1), τ(2) ∈ {1, 2}.
But τ ∈ An, so τ cannot be the transposition (1 2). Hence τ is the

identity, concluding the proof. □
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Remark 3.2. We notice that the argument from the previous proof
allows us to remove the condition β unit, also for [Amo18, Theorem
1.1 point (1)].

3.2. Proof of Theorem 1.4, point (2). The goal of this section is to
prove the following result, of which Theorem 1.4, point (2) is a simple
corollary.

Proposition 3.3. Let β be an algebraic unit of degree n ≥ 5, let
β1, . . . , βn be its conjugates and assume that Gal(Q(β1, . . . , βn)/Q) =
An. Let α = βa1

1 . . . βan
n where a1, . . . , an ∈ Z.

Let yj = aj − 1
n

∑n
i=1 ai and set |y|1 = 1

n

∑n
j=1 |yj|. Then

M(β)|y|1 ≥ M(α)2/n! ≥ M(β)cn|y|1 ,

where cn is an effective computable constant satisfying

lim
n→∞

cn

√
πn

2
= 1.

Before proceeding with the proof of this part, we need to recall some
definitions from [Amo18, Section 2] and adapt some other technical
results therein.

Let Hn = {x ∈ Rn, x1 + · · ·+ xn = 0}, and for x ∈ Hn, we set

(6) |x|1 =
1

n

n∑
j=1

|xj|.

The group An acts on Hn by σ(x) =
(
xσ(1), . . . , xσ(n)

)
. For x, y ∈ Hn,

we set

(7) sn(x, y) =
2

n!

∑
σ∈An

∣∣∣∣∣ 1n
n∑

j=1

xσ(j)yj

∣∣∣∣∣ .
We notice that sn is symmetric, and for every y ∈ Hn, the function

φn,y(x) = sn(x, y) is a seminorm, stable under the action of An.
The proof of Proposition 3.3 is then a combination of three results.

The first, given in the following proposition, links the Mahler measure
of α to the function sn.

Proposition 3.4. Let α, β1, . . . , βn and y = (y1, . . . , yn) be as in the
statement of Proposition 3.3. Let x = (x1, . . . , xn) where xi = log |βi|.
Then

log(M(β)) =
n

2
|x|1

and
log(M(α)) =

n(n!)

4
sn(x, y).
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Proof. Notice that
n∑

j=1

xj = log(NK/Q(β)) = 0

so x ∈ Hn. Let I = {j ∈ {1, . . . , n} | |βj| ≥ 1}. Then
n∑

j=1

|xj| =
∑
j∈I

log |βj| −
∑
j ̸∈I

log |βj| = 2
∑
j∈I

log |βj|

= 2
n∑

j=1

log(max(|βj|, 1)) = 2 log(M(β))

proving, together with (6), the first equality in the statement. By
applying this equality to α, whose conjugates are βa1

σ(1) . . . β
an
σ(n) for σ ∈

An, we obtain

2 log(M(α)) =
∑
σ∈An

| log(|βa1
σ(1) . . . β

an
σ(n)|)| =

∑
σ∈An

∣∣∣∣∣
n∑

j=1

ajxσ(j)

∣∣∣∣∣ .
Thus, by recalling that aj = yj +

1
n

∑n
i=1 ai and that

∑n
j=1 xσ(j) = 0 for

every σ ∈ An, we obtain

2 log(M(α)) =
∑
σ∈An

∣∣∣∣∣
n∑

j=1

yjxσ(j) +

(
1

n

n∑
i=1

ai

)(
n∑

j=1

xσ(j)

)∣∣∣∣∣
=
∑
σ∈An

∣∣∣∣∣
n∑

j=1

yjxσ(j)

∣∣∣∣∣ = sn(x, y) ·
n(n!)

2
.

□

The next step in the proof is to provide an upper and lower bound
for the quantity sn(x, y). To this aim, for h = 1, . . . , n − 1, we define
the vector z(n,h) ∈ Hn by

z
(n,h)
j =

{
n
2h

if j ≤ h
− n

2(n−h)
if j > h

and we set
cn = min

0<h,k<n
sn(z

(n,h), z(n,k)).

We have the following proposition:

Proposition 3.5. For every x, y ∈ Hn we have

cn ≤ sn(x, y)

|x|1|y|1
≤ 1.
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Proof. We first notice that the upper bound is easy to obtain. We have

(8) sn(x, y) ≤
2

n!

1

n

∑
σ∈An

n∑
j=1

|xσ(j)||yj| =
2

n!

1

n

n∑
j=1

|yj|
∑
σ∈An

|xσ(j)|.

By Lemma 2.1, since An is a transitive subgroup of Sn, we know that
for all 1 ≤ i, j ≤ n we have

|{σ ∈ An | σ(j) = i}| = |An|
n

=
(n− 1)!

2
.

Therefore, replacing in (8) we have

2

n!

1

n

n∑
j=1

|yj|
∑
σ∈An

|xσ(j)| =
2

n!

1

n

n∑
j=1

|yj|
(n− 1)!

2

n∑
i=1

|xi|

=
1

n2

n∑
j=1

|yj|
n∑

i=1

|xi| = |x|1|y|1

concluding the proof of the upper bound.
We are now left with the proof of the lower bound. Let x and y be two

non-zero vectors in Hn and let h and k be the number of non-negative
components of x and y, respectively. We want to show that

(9)
sn(x, y)

|x|1|y|1
≥ sn(z

(n,h), y)

|y|1
≥ sn(z

(n,h), z(n,k)).

Let x = (x1, . . . , xn) and y = (y1, . . . , yn). Since for real numbers
c, c′ > 0 we have sn(cx, c

′y) = cc′sn(x, y), we can suppose that |x|1 =
|y|1 = 1. Moreover, letting

A = {j ∈ {1, . . . , n} | xj ≥ 0},

since φn,y(x) is invariant under the action of An, we can further suppose
that A = {1, . . . , h}.

Let G be the subgroup of An defined as G = {σ ∈ An | σ(A) = A}.
We want to show that

(10) |G|−1
∑
σ∈G

σ(x) = z(n,h).

Using the fact that x1 + · · ·+ xn = 0, we have

1 = |x|1 =
1

n

n∑
j=1

|xj| =
1

n

(
h∑

j=1

xj −
n∑

j=h+1

xj

)
=

2

n

h∑
j=1

xj = − 2

n

n∑
j=h+1

xj.



12 JONATHAN JENVRIN

So, in particular

(11)
h∑

j=1

xj =
n

2
= −

n∑
j=h+1

xj.

We also notice that G is a transitive subgroup of S(A) ≃ Sh. Indeed,
if h = 1 there is nothing to show. If h = 2, then A = {1, 2}, and
τ := (1 2)(3 4) ∈ G verifies τ(1) = 2. If h ≥ 3, let us take i, j, k ∈ A,
all distinct. Then τ := (i j k) ∈ G verifies τ(i) = j. We set for j, i ∈ A,
Gj,i = {σ ∈ G | σ(i) = j}. We denote the i-th component of the vector∑

σ∈G σ(x) by (∑
σ∈G

σ(x)

)
i

.

So, by Lemma 2.1 and (11), we get for 1 ≤ i ≤ h(∑
σ∈G

σ(x)

)
i

=
∑
σ∈G

xσ(i) =
h∑

j=1

|Gj,i|xj =
|G|
h

h∑
j=1

xj =
n

2h
|G|.

A similar argument shows that, for h+ 1 ≤ i ≤ n, we have(∑
σ∈G

σ(x)

)
i

=
|G|

n− h

n∑
j=h+1

xj = − n

2(n− h)
|G|,

completing the proof of (10).
As in [Amo18], the proof now concludes with a convexity argument.

As the function φn,y(x) = sn(x, y) is convex and recalling that |x|1 = 1,
we have

sn(z
(n,h), y) = sn

(
1

|G|
∑
σ∈G

σ(x), y

)
≤
∑
σ∈G

1

|G|
sn(σ(x), y) =

sn(x, y)

|x|1
.

From this, the symmetry of sn and recalling that |y|1 = 1, we get

sn(z
(n,h), y)

|y|1
=

sn(y, z
(n,h))

|y|1
≥ sn(z

(n,k), z(n,h)) = sn(z
(n,h), z(n,k))

which concludes the proof of (9) and of Proposition 3.5. □

The next and last step to prove Proposition 3.3 is to provide an
asymptotic estimate for the quantity cn. This is done in the following
proposition.

Proposition 3.6.

lim
n→∞

cn

√
πn

2
= 1.
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The proof of Proposition 3.6 relies on the following two lemmas.
The first gives a closed formula for the quantity sn(z

(n,h), z(n,k)) which
equals the one in [Amo18, Lemma 2.3], even though, we notice that
the definition of the function sn therein is slightly different from ours.

Lemma 3.7. Let y ∈ Hn and h, k ∈ {1, . . . , n− 1}. Then

(12) sn(z
(n,h), y) =

n

2h(n− h)

(
n

h

)−1 ∑
S⊂{1,...,n}

|S|=h

∣∣∣∣∣∑
j∈S

yj

∣∣∣∣∣
and
(13)

sn(z
(n,h), z(n,k)) =

n2(h− ⌊hk
n
⌋)(k − ⌊hk

n
⌋)

2hk(n− h)(n− k)

(
n

h

)−1(
k

⌊hk
n
⌋

)(
n− k

h− ⌊hk
n
⌋

)
.

Proof. By the definition of sn and z(n,h), and recalling that, for y =
(y1, . . . , yn) ∈ Hn, we also have σ(y) ∈ Hn, which is equivalent to∑n

j=1 yσ(j) = 0 for all σ ∈ An, we have

sn(z
(n,h), y) =

2

n!

∑
σ∈An

∣∣∣∣∣ 1n
n∑

j=1

z
(n,h)
j yσ(j)

∣∣∣∣∣
=

2

n!

∑
σ∈An

∣∣∣∣∣ 12h
h∑

j=1

yσ(j) −
1

2(n− h)

n∑
j=h+1

yσ(j)

∣∣∣∣∣
=

2

n!

∑
σ∈An

∣∣∣∣∣
(

1

2h
+

1

2(n− h)

) h∑
j=1

yσ(j)

∣∣∣∣∣
=

n

h(n− h)

1

n!

∑
σ∈An

∣∣∣∣∣
h∑

j=1

yσ(j)

∣∣∣∣∣ .
To conclude the proof of (12) we need to show that

n

h(n− h)

1

n!

∑
σ∈An

∣∣∣∣∣
h∑

j=1

yσ(j)

∣∣∣∣∣ = n

2h(n− h)

(
n

h

)−1 ∑
S⊂{1,...,n}

|S|=h

∣∣∣∣∣∑
j∈S

yj

∣∣∣∣∣ .
Let S ⊂ {1, . . . , n} such that |S| = h. Let

GS := {σ ∈ An | σ({1, . . . , h}) = S}

and
G′

S := {σ ∈ Sn | σ({1, . . . , h}) = S} ≃ Sh ×Sn−h.
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We suppose first that h ≤ n− 2. If τ is the transposition switching n
with n− 1, the map σ 7→ σ ◦ τ is a bijection between the sets GS and
G′

S \GS. In particular

|GS| =
|G′

S|
2

=
h!(n− h)!

2

providing the sought-for equality. If h = n − 1, we use the same
argument, but with τ = (1 2) this time.

The proof of (13) now is precisely the one done in the proof of
[Amo18, Lemma 2.3]. □

We recall the following result which gives the asymptotic estimate
for (13).

Lemma 3.8 ([Amo18, Lemma 2.4]). Let (nm)m, (hm)m, (km)m be se-
quences of real numbers satisfying 0 < hm, km < nm and such that

lim
m→+∞

nm = +∞, lim
m→+∞

hm

nm

= u, lim
m→+∞

km
nm

= v

for some u, v ∈ [0, 1]. Then (with the convention 1/0 = +∞), we have

lim
m→+∞

2
√
nm · snm

(
z(nm,hm), z(nm,km)

)
=

1√
2πuv(1− u)(1− v)

.

We can now prove the estimate for cn from Proposition 3.6.

Proof of Proposition 3.6. For an integer m ≥ 1, let hm and km be the
indices where the minimum is attained in the definition of cm. Applying
Lemma 3.8 to the sequences (hm)m, (km)m and (nm)m = (m)m, we
obtain

lim
m→+∞

2
√
2πuv(1− u)(1− v)m · sm(z(m,hm , z(m,km))) = 1

for some u, v ∈ [0, 1], and using the fact that

max
0<u,v<1

uv(1− u)(1− v) =
1

16

we get the asymptotic estimate (3.6). □

We have now collected all the results needed to prove Proposition
3.3.

Proof of Proposition 3.3. Combining Proposition 3.4 and Proposition
3.5 we get

cn
2 log(M(β))

n
|y|1 ≤

1

n

(
4

n!
log(M(α))

)
≤ 2 log(M(β))

n
|y|1
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or equivalently

log(M(β)cn|y|1) ≤ log(M(α)2/n!) ≤ log(M(β)|y|1).

The result follows by taking the exponential and using Proposition
3.6. □

To conclude the proof of Theorem 1.4, we need the following lemma:

Lemma 3.9. Let n ≥ 5 and let y = (y1, . . . , yn) ∈ Hn be such that
yj+1 − yj ≥ 1 for all j = 1, . . . , n− 2. Then

(1) If yn − yn−1 ≥ 1, then |y|1 ≥ n−2
4
.

(2) If yn−1 = yn, then |y|1 ≥ n−3
5
.

Proof. The proof of (1) is given in [Amo18, Lemma on p. 1614]. For
the proof of point (2), let 1 ≤ k ≤ n − 1 be such that yk ≤ 0 < yk+1.
Notice that k ≤ n− 2 as yn−1 = yn by hypothesis.

We then have, yj ≤ yk − (k − j) ≤ −(k − j) for 1 ≤ j ≤ k and
yj ≥ yk+1 + (j − k − 1) ≥ j − k − 1 for k + 1 ≤ j ≤ n− 1. So

n|y|1 =
k∑

j=1

(−yj) +
n−1∑

j=k+1

yj + |yn| ≥
k−1∑
h=0

h+
n−k−2∑
h=0

h

=
(k − 1)k

2
+

(n− k − 2)(n− k − 1)

2
≥ (n− 1)(n− 3)

4
.

□

We can finally conclude the proof of Theorem 1.4.

Proof of point (2) of Theorem 1.4. If α = βa1
1 . . . βan

n is a generator of
Gal(Q(β1, . . . , βn)/Q) then, by point (1) of Theorem 1.4, we have

|{ai | 1 ≤ i ≤ n}| ≥ n− 1.

If the ai’s are all distinct, then so are the yi’s defined as

yj = aj −
1

n

n∑
i=1

ai.

As all ai’s are integers, |yℓ − yk| ≥ 1 for ℓ ̸= k and moreover, since for
every σ ∈ Sn we have |σ(y)|1 = |y|1, up to reordering the terms we can
suppose that yj+1 − yj ≥ 1 for all 1 ≤ j ≤ n− 1. Thus by Lemma 3.9
we have |y|1 ≥ n−2

4
.

If two ai’s are equal, so are the corresponding yi’s. Reasoning as
before, up to reordering the ai’s we might assume that yj+1−yj ≥ 1 for
j = 1, . . . , n− 2 and yn−1 = yn. So, by Lemma 3.9 we have |y|1 ≥ n−3

5
.
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In all cases, we have |y|1 ≥ n−3
5

, and therefore, using also Proposition
3.6, we get the asymptotic, as n tends to infinity

cn|y|1 ∼
√

2

πn
|y|1 ≥

√
2

πn

(
n− 3

5

)
∼
√

2n

25π
.

This, together with Proposition 3.3 gives

M(α)
2
n! ≥ M(β)(1+o(1))

√
2n
25π

and taking logarithms we have

h(α) ≥ (1 + o(1))

√
2n

25π
log(M(β)).

By the explicit version of Dobrowolski’s theorem by Voutier [Vou96,
Theorem, p. 83], we have

log(M(β)) ≥ 1

4

(
log(log(n))

log(n)

)3

concluding the proof. □

4. Proof of Theorem 1.5

The aim of this section is to prove Theorem 1.5, which is the analogue
of Theorem 1.4 for additive generators, that is generators obtained as
linear combinations of conjugates.

As usual, if β1, . . . , βn ∈ Q is a full set of Galois conjugates, when
writing An ⊆ Gal(Q(β1, . . . , βn)/Q), we identify σ ∈ An with the auto-
morphism σ(βi) = βσ(i). As before, we split the proof in different parts
for clarity.

4.1. Proof of Theorem 1.5, point (1). The proof of this point is
the same, in additive notation, as the one carried in Section 3.1 and
it is even simpler than its multiplicative variant. We begging with the
following additive version of Proposition 3.1.

Proposition 4.1. Let β be an algebraic number of degree n ≥ 5 with
conjugates β1, . . . , βn over Q. Suppose that An ⊂ Gal(Q(β1, . . . , βn)/Q).
Then, for any integers v1, . . . , vn, not all equal, we have

n∑
i=1

viβi ̸∈ Q.

Proof. The proof is similar to that of Proposition 3.1, and we identify
the elements of Gal(Q(β1, . . . , βn)/Q) with permutations in the usual
way.
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Assume that v1 ̸= v2 and that there exists r ∈ Q such that

(14)
n∑

i=1

viβi = r.

Applying the cycle (1 3 2) to both sides of (14) we obtain (v1 − v2)β1+
(v2 − v3)β2 + (v3 − v1)β3 = 1. Applying to this the cycle (1 i j), for
i ̸= j and i, j ≥ 4, we obtain (v1 − v2)β1 = (v1 − v2)βi for all i ≥ 4.
Letting act on both sides of this equality the cycles (1 2 k) and (1 3 ℓ)
for k, ℓ ̸∈ {2, 3, i}, we obtain (v1 − v2)β1 = (v1 − v2)βi for all 1 ≤ i ≤ n.
So β1 = . . . = βn and β ∈ Q, which contradicts the hypothesis that
An ⊂ Gal(Q(β1, . . . , βn)/Q). □

We can now conclude the proof of the first part of Theorem 1.5.

Proof of point (1) of Theorem 1.5. The proof follows exactly the one
of point (1) of Theorem 1.4, by using the additive notation instead of
the multiplicative one.

Suppose that α = a1β1+. . .+anβn is such that Q(α) = Q(β1, . . . , βn).
If |{ai | 1 ≤ n ≤ i}| < n − 1 then one can show that there exists a
non-trivial σ ∈ Gal(Q(β1, . . . , βn)/Q) such that σ(α) = α (we take
σ = (i j k) if ai = aj = ak or σ = (i j)(k ℓ) if ai = aj and ak = aℓ).

For the converse, assume that |{ai | 1 ≤ i ≤ n}| ≥ n − 1, let
σ ∈ Gal(Q(β1, ..., βn)/Q(α)) and τ = σ−1. The equality σ(α) = α
gives

∑n
k=1 (ak − aτ(k))βk = 0. By Proposition 4.1, there exists an

integer c such that ak − aτ(k) = c for all k. If ℓ if the order of τ , we
have, a1 = a1 + cℓ, so c = 0 and aτ(k) = ak for all k. As |{ai, 1 ≤ i ≤
n}| ≥ n − 1, we have that τ is either the identity or a transposition,
but this last case cannot occur as τ ∈ An. □

4.2. Proof of Theorem 1.5, point (2). This section deals with the
proof of the last part of Theorem 1.5.

First, as in the multiplicative case, we notice that one can easily
establish the following upper bound for the height of α:

Proposition 4.2. Let β be an algebraic integer of degree n ≥ 5, let
β1, . . . , βn be its conjugates and suppose that Gal(Q(β1, . . . , βn)/Q) =
An. Let a1, . . . , an be integers and suppose that α = a1β1 + . . . + anβn

is a generator of Q(β1, . . . , βn)/Q. Then

log

(
M(β)

n∑
i=1

|ai|

)
≥ h(α).
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Proof. It suffices to observe that, for every σ ∈ An, one has

|σ(α)| =

∣∣∣∣∣
n∑

i=1

aiβσ(i)

∣∣∣∣∣ ≤ max
1≤i≤n

|βi|
n∑

i=1

|ai| ≤ M(β)
n∑

i=1

|ai|.

Notice that
M(α) ≤ max

σ∈An

|σ(α)|
n!
2 ,

and taking logarithms, this allows us to conclude. □

The proof of the lower bound in Theorem 1.5, point (2), is instead
more delicate. Before starting it we fix the setting and introduce some
notation. Let β1, . . . , βn be algebraic integers of degree n ≥ 5 and let
a1, . . . , an be integers. Let

(15) α =
n∑

i=1

aiβi

and assume from this point onward that Q(α) = Q(β1, . . . , βn) and
that Gal(Q(β1, . . . , βn)/Q) = An.

We now recall some notation from [Amo18, Section 4]. For τ ∈ Sn,
we let

ατ =
n∑

i=1

aiβτ(i),

where Sn acts on Q(β1, . . . , βn) as usual by σ(βi) = βσ(i).
We observe that for σ ∈ An, we have σ(α) = ασ. Also, for τ, τ ′ ∈ Sn,

we have

(16) αττ ′ = (ατ ′)τ .

One of the key ideas in the proof of the last part of Theorem 1.5, and
one of the main novelties of our article, is the following lemma, which
describes how the Mahler measure of α changes under the action of an
element that should not act on α. More precisely, it compares M(α)
and M(ατ ), in the case where τ is a transposition, so, by hypothesis,
an element extraneous to Gal(Q(α)/Q).

Lemma 4.3. Let τ ∈ Sn be a transposition, then

M(ατ ) ≤ 5nM(α)5.

Proof. For simplicity, we may suppose that τ = (1 2).
Let σ = (1 3 2) and set

γ = α− σ(α) = β1(a1 − a2) + β2(a2 − a3) + β3(a3 − a1).

If σ′ = (1 4 5) and δ = (4 2)(3 5), then

δ(γ − σ′(γ)) = δ((β1 − β4)(a1 − a2)) = (β1 − β2)(a1 − a2) = α− ατ .
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So we have

(17) ατ = α− δ(α) + δσ(α) + δσ′(α)− δσ′σ(α).

Notice that δ, σ, σ′ ∈ An and so is their product, hence, by the above
equality, ατ equals a linear combination of conjugates of α. By elemen-
tary inequalities for the height and its invariance under Galois action,
we obtain that h(ατ ) ≤ 5h(α) + log 5. By using that M(α) = enh(α),
we have the sought result. □

We now use Lemma 4.3 to get a lower bound for M(α) independent
on the transposition τ . To this aim we need to introduce some more
notation.

Let Tn be the set of transpositions of Sn and, for τ = (i, j) ∈ Tn,
let Aτ be the set of permutations of Sn with support {1, . . . , n}\{i, j}
and without orbits of length 2.

For n ≥ 3, let Λn be the set of permutations of Sn without orbits of
length 1 or 2. Let also

∆ =
∏
τ∈Tn

∏
σ∈Aτ

|αστ − ασ|

and, for a vector of integers a = (a1, . . . , an), let

V (a) =
∏

1≤i<j≤n

(aj − ai).

For an algebraic integer β of degree n and conjugates β1, . . . , βn we
also let

disc(β) = disc(1, β, β2, . . . , βn−1) =
∏

1≤i<j≤n

(βi − βj)
2.

We have the following result.

Proposition 4.4. Let n ≥ 5, and let α =
∑n

i=1 aiβi be as in (15). Set
β = β1 and a = (a1, . . . , an). Then

M(α) ≥ 5−n/6
(
2−|Tn||V (a)||disc(β)|1/2

)|Λn−2|/6
.

Proof. For τ = (i j) ∈ Tn with 1 ≤ i < j ≤ n and σ ∈ Aτ , we have

αστ − ασ = (aj − ai)(βi − βj).

Thus,

(18) ∆ = (|V (a)||disc(β)|1/2)|Λn−2|

as for each τ ∈ Tn, |Aτ | = |Λn−2|.
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We now want to upper bound ∆. Clearly we have that

(19) ∆ ≤
∏
τ∈Tn

∏
σ∈Aτ

2max(|αστ |, 1)max(|ασ|, 1).

Let τ ,τ ′ ∈ Tn, and let σ ∈ Aτ , σ′ ∈ Aτ ′ . Then στ ̸= σ′ (since they
have different supports). If τ = τ ′ and σ ̸= σ′ then τσ ̸= τ ′σ′. If τ ̸= τ ′

then στ ̸= σ′τ ′ (since σ has no orbits of length 2), and σ ̸= σ′ (since
the supports of σ and σ′ are not the same).

Thus, from (19) we deduce

(20) ∆ ≤ 2|Tn||Λn−2|
∏
σ∈Sn

max(|ασ|, 1).

Writing Sn as the semidirect product of An and a transposition τ ,
that we shall fix, from (20) we have

∆ ≤ 2|Tn||Λn−2|
∏
σ∈An

max(|ασ|, 1)
∏
σ∈An

max(|ατσ|, 1)

= 2|Tn||Λn−2|
∏
σ∈An

max(|σ(α)|, 1)
∏
σ∈An

max(|σ(ατ )|, 1)

hence by (16) we get

(21) ∆ ≤ 2|Tn||Λn−2|M(α)M(ατ ).

From Lemma 4.3 and the inequality (21), we have

∆ ≤ 2|Tn||Λn−2|M(α)M(ατ ) ≤ 2|Tn||Λn−2|5nM(α)6.

By using the equality (18), we obtain(
|V (a)||disc(β)|1/2

)|Λn−2| ≤ 2|Tn||Λn−2|5nM(α)6

which proves the result. □

We now proceed to give estimate for the quantities involved in the
bound from Proposition 4.4. The following lemma is an improvement
of [Amo18, Lemma, p. 1615].

Lemma 4.5. For n ≥ 3, we have

|Λn| ≥
n!

8
.

Proof. Let dn be the n-th derangement number, i.e., the number of
permutations of Sn without fixed points. It is known that

dn = n!
n∑

k=0

(−1)k

k!
.



21

By the inclusion–exclusion principle, we have

|Λn| ≥ dn −
n(n− 1)

2
dn−2.

Letting

f(n) =

(
dn − n(n−1)

2
dn−2

)
n!

,

we want to show that f(n) ≥ f(4) = 1/8 for all n ≥ 3. We can check it
numerically for n = 3, 4, 5. Therefore we may assume n ≥ 6. We have

(22) f(n) =
1

2

n−2∑
k=0

(−1)k

k!
+

(−1)n−1

(n− 1)!
+

(−1)n

n!
≥ 1

2

n−2∑
k=0

(−1)k

k!
+

1− n

n!

where, for the last inequality, a proof by exhaustion based on the parity
of n is sufficient. The study of alternating series gives

n−2∑
k=4

(−1)k

k!
≥ 0

or equivalently,
n−2∑
k=0

(−1)k

k!
≥

3∑
k=0

(−1)k

k!
.

Additionally, we observe that the sequence (1−n
n!

)n≥2 is increasing. Thus
for n ≥ 6, by (22), we have

f(n) ≥ 1

2

3∑
k=0

(−1)k

k!
+

1− 6

6!
=

23

144
≥ 1

8
.

This concludes the proof. □

Proof of point (2) of Theorem 1.5. Notice that the statement is trivial
for 5 ≤ n ≤ 9 as M(α) is always bigger or equal than 1. So, from now
on, we can assume that n ≥ 10.

By Lemma 4.5, since n− 2 ≥ 3, we have

(23) |Λn−2| ≥
(n− 2)!

8
.

Also, one has

(24) |Tn| =
n(n− 1)

2

and

(25) |disc(β)| ≥ 1.
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Now, in order to use Proposition 4.4 to lower bound M(α), we are
left to estimate |V (a)|. Notice that this quantity is zero precisely when
the ai’a are not all distinct, in which case the estimate in Proposition
4.4 is trivial. We then carry on the proof distinguishing two cases.

Case (a): all ai’s are distinct. In this case, like in [Amo18, p. 1616],
we are going to establish a lower bound for |V (a)| ≠ 0. Since |V (a)|
is symmetric with respect to ai, we may assume for simplicity that
aj+1 − aj ≥ 1 for j = 1, . . . , n− 1. Then, we have

|V (a)| =
n∏

i=1

n∏
j=i+1

|aj − ai| ≥
n∏

i=1

n∏
j=i+1

(j − i) =
n−1∏
h=1

h!.

By [Vou96, Lemma 1, p. 84] we have

(26) |V (a)| ≥
n−1∏
h=1

h! ≥ exp

(
n2 log(n)

2
− 3n2

4

)
.

We notice that, as n ≥ 10, we have

2−
n(n−1)

2 exp

(
n2 log(n)

2
− 3n2

4

)
≥ 1.

Therefore, using (26), (23), (24) and (25), Proposition 4.4 gives

M(α)
2
n! ≥

5−
n
6

(
2−

n(n−1)
2 exp

(
n2 log(n)

2
− 3n2

4

)) (n−2)!
48

 2
n!

= 5−
1

3(n−1)!2−
1
48 exp

(
n

n− 1

(
log(n)

48
− 1

32

))
.

Notice that, as n ≥ 10, we have log(n)
48

≥ 1
32

and so

exp

(
n

n− 1

(
log(n)

48
− 1

32

))
≥ exp

(
log(n)

48
− 1

32

)
.

Finally

M(α)
2
n! ≥ 5−

1
9!32−

1
48 exp

(
log(n)

48
− 1

32

)
≥
(n
9

) 1
240

.

Case (b) : the ai’s are not all distinct. Now we suppose that two of
the ai’s are equal, for instance a1 = a2. We set

r = 2 max
1≤i,j≤n

(|aj − ai|)

and
α′ = α + r(β1 − β2).
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Clearly

α′ =
n∑

i=1

a′iβi

where a′1 = a1 + r ∈ Z, a′2 = a2 − r ∈ Z, and a′i = ai ∈ Z for all i ≥ 3.
Since a1 = a2 and α is a generator of Q(β1, . . . , βn)/Q, we know, by

point (1) of Theorem 1.5, that the ai’s are all distinct for 3 ≤ i ≤ n.
The same holds for the a′i’s for 3 ≤ i ≤ n. Of course, we have a′1 ̸= a′2.

Then, by the choice of r, we also have a′1, a
′
2 /∈ {a′i | 3 ≤ i ≤ n}.

Hence, again by point (1) of Theorem 1.5, α′ is a generator of
Q(β1, . . . , βn)/Q and the integers a′1, . . . , a

′
n are all distinct.

Thus, according to case (a) of the proof, we have

(27) M(α′)
2
n! ≥ 5−

1
9!32−

1
48n

1
48 exp

(
− 1

32

)
.

We now want to compare M(α) and M(α′). We will need the fol-
lowing result, which plays here the role of Lemma 4.3.

Lemma 4.6. Let n ≥ 5 and i, j, k, l ∈ {1, . . . , n}. Then

h(α + 2(ai − aj)(βk − βl)) ≤ 5h(α) + log(16).

Proof. We may suppose i ̸= j and k ̸= l otherwise the result is trivial.
Let τ = (i j) ∈ Tn. Then

α− ατ = (ai − aj)(βi − βj).

By (17) from Lemma 4.3 we also have

α− ατ = σ1(α) + σ2(α)− σ3(α)− σ4(α)

for some σ1, σ2, σ3, σ4 ∈ An.
As n ≥ 5, we can check that there is σ ∈ An such that σ(βi − βj) =

βk − βl (if i ̸= k and j ̸= ℓ one can simply take σ = (i k)(j ℓ), while
if i = k and j ̸= ℓ one can take σ = (j, ℓ)(s, t) for some s ̸= t and
s, t ̸∈ {k = i, j, ℓ}). By properties of the height, we have

h(α + 2(ai − aj)(βk − βl)) = h(α + 2(α− ατ ))

= h(α + 2(σ1(α) + σ2(α)− σ3(α)− σ4(α)))

≤ 5h(α) + log(16).

□

Returning to our proof, by Lemma 4.6

h(α′) = h

(
α + 2 max

1≤i,j≤n
(|aj − ai|)(β1 − β2)

)
≤ 5h(α) + log(16)
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hence M(α′) ≤ 16nM(α)5. Using also (27), we get

16
2

(n−1)!M(α)
10
n! ≥ 5−

1
9!32−

1
48n

1
48 exp

(
− 1

32

)
.

Finally, recalling that n ≥ 10, we get

M(α)
2
n! ≥ 16−

2
9!55−

2
9!302−

1
240n

1
240 exp

(
− 1

160

)
≥
(n
9

) 1
240

.

□

5. Some examples and final remarks

In this section we give some application of our results to explicit
families of algebraic numbers generating Galois extensions of Q with
groups An. We also discuss the adaptability of the proof strategy of
our main results to generators of Galois extensions having group other
than An or Sn.

5.1. On certain Laguerre polynomials. A family of particular in-
terest for our applications is that of generalized Laguerre polynomials,
defined, for n ≥ 1 and α ∈ Q, as

L(α)
n (x) =

n∑
j=0

(
n+ α

n− j

)
(−x)j

j!

where (
n+ α

n− j

)
=

(n+ α)(n− 1 + α) . . . (j + 1 + α)

(n− j)!j!
.

This family, first studied by Schur, has received the attention of many
authors (see for instance [Gow89], [FKT12], [BFFL13], [Ban14], [BB20],
and [JL22] for some reference on the topic).

The following result considers a special family of Laguerre polyno-
mials having Galois group An:

Proposition 5.1. Let n ≥ 1 be an integer divisible by 4 and let
βn,1, . . . , βn,n be the roots of the polynomial

L(−n−1)
n (x) = 1 + x+

x2

2
+ · · ·+ xn

n!
.

Let a1, . . . , an be integers such that |{a1, . . . , an}| ≥ n− 1. Then:
(a) If αn = βa1

n,1 · · · βan
n,n and

∑n
i=0 ai ̸= 0 one has that Q(αn)/Q is a

Galois extension with Galois group An and h(αn) tends to infinity
with n.

(b) If α′
n = a1βn,1 + . . . + anβn,n, then Q(α′

n)/Q is a Galois extension
with Galois group An and h(α′

n) tends to infinity with n.
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Proof. Schur showed in [Sch30] that L
(−n−1)
n (x) is irreducible and its

Galois group over Q is An if n is divisible by 4 (while it is Sn otherwise).
Let βn be one of the roots of L(−n−1)

n (x).
We start by proving part (a). By point (1) of Theorem 1.4, we know

that Q(α) is the splitting field of L(−n−1)
n (x) over Q. This proves the

statement on the Galois group. Notice also that that NQ(β)/Q(β) = n!,
hence, by Theorem 1.3,

M(α)1/[Q(α):Q] ≥ (n!)
1
n |

∑n
i=1 ai|

and, since
∑n

i=1 ai ̸= 0 we deduce the statement on h(αn).
To prove part (b), we simply notice that all hypotheses of Theorem

1.5 are satisfied, and we can conclude straightforwardly. □

Remark 5.2. We remark that our Theorem 1.4 cannot be applied to
any Laguerre polynomial, while [Amo18, Theorems 1.1 and 1.2] can.
Indeed, to apply point (2) of Theorem 1.4, we need that β is a unit.
However the roots of L

(α)
n (x) are units if and only if α = 0, and it

follows from [FL02] and [Haj05] that, for all but finitely many integers
n, L(α)

n (x) is irreducible over Q and its Galois group is Sn.

5.2. On the adaptation of the strategy to other subgroups of
Sn. One might question whether the proofs of Theorems 1.4 and 1.5,
as well as their counterparts for Sn in [Amo18], could be modified to
identify generators of Galois extensions with different Galois groups.

On the proof of point (1). We first notice that, in all the above cited re-
sults, the necessary and sufficient conditions of the ai’s so that Q(α)/Q
is a Galois extension of group G ∈ {Sn,An} can be rephrased by say-
ing that |{a1, . . . , an}| ≥ n− k + 1 where k is the index of G in Sn. It
might be tempting to inquire if a similar condition holds for other sub-
groups G of Sn of index 2 < k ≤ n, but no such groups exist. Indeed,
by [Cla84, Chap. 2, §85. Corollary p.64], An is the only subgroup
of Sn of index strictly smaller than n, while by [Per96, Proposition
8.10], for n ̸= 6 all the subgroups of Sn of index n are of the form
{σ ∈ Sn | σ(i) = i}, hence they are not transitive.

A second observation is that our proofs also use the fact that if G is
either Sn or An, then G contains all k-cycles for some integer 2 ≤ k ≤ n
(noting that k = 2 for Sn and k = 3 for An). However, if a subgroup
G of Sn contains all k-cycles for some k, then it contains the subgroup
generated by all of them, which is normal in Sn (as k-cycles form a
full conjugacy class). But, for n ≥ 5, this implies that this subgroup is
either Sn or An (Sn if k is even or An otherwise), so in both cases, G
contains An.
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On the proof of point (2). We notice that, to prove point (2) of Theorem
1.4, one crucial ingredient is Proposition 3.5. Indeed, the remainder of
the results can essentially be derived using the same methodology, irre-
spective of the specific subgroup of Sn under consideration, by suitably
accounting for the pertinent quantities.

One point used in the proof of Proposition 3.5 is that, if G is either
Sn or An then, for any A ⊆ {1, ..., n}, the stabilizer StabG(A) = {σ ∈
G | σ(A) = A} is a transitive subgroup of S(A) ≃ S|A|. However
this property does not hold for other subgroups G of Sn when n is big
enough.

Indeed, notice first that any transitive subgroup of S|A| has a car-
dinality divisible by |A|, so |G| must be divisible by lcm(1, . . . , n). In
particular |G| ≥ 2n−1.

Moreover, it is easy to check that G must be a 2-transitive subgroup
of Sn. Indeed, let (x1, y1), (x2, y2) ∈ {1, . . . , n}2 be such that x1 ̸= y1
and x2 ̸= y2. Then there exists g ∈ G such that g(x1) = x2 and
g(y1) = y2 where

- if y1 ̸= x2, we can take g = γσ with σ ∈ StabH({y1}) such that
σ(x1) = x2 and γ ∈ StabH({x2}) such that γ(y1) = y2 (one can
treat similarly the case x1 ̸= y2).

- If y1 = x2 and x1 = y2, we can take g ∈ StabG({x1, x2}) \ {Id},
which is not empty by assumption on G.

Now, by the main result in [Bab82], either G contains An or |G| ≤
exp(exp(1.18

√
log n)) for all n ≥ 5 · 105, contradicting |G| ≥ 2n−1 for n

big enough.
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