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SUMMARY

Gene expression levels vary across developmental
stage, cell type, and region in the brain. Genomic var-
iants also contribute to the variation in expression,
and some neuropsychiatric disorder loci may exert
their effects through this mechanism. To investigate
these relationships, we present BrainVar, a unique
resource of paired whole-genome and bulk tissue
RNA sequencing from the dorsolateral prefrontal
cortex of 176 individuals across prenatal and post-
natal development. Here we identify common vari-
ants that alter gene expression (expression quantita-
tive trait loci [eQTLs]) constantly across development
or predominantly during prenatal or postnatal
stages. Both ‘‘constant’’ and ‘‘temporal-predomi-
nant’’ eQTLs are enriched for loci associated with
This is an open access article und
neuropsychiatric traits and disorders and colocalize
with specific variants. Expression levels of more
than 12,000 genes rise or fall in a concerted late-fetal
transition, with the transitional genes enriched for
cell-type-specific genes and neuropsychiatric risk
loci, underscoring the importance of cataloging
developmental trajectories in understanding cortical
physiology and pathology.
INTRODUCTION

The human nervous system develops slowly over several de-

cades, starting during embryogenesis and extending postnatally

through infancy, childhood, adolescence, and young adulthood

(Keshavan et al., 2014; Shaw et al., 2010; Silbereis et al., 2016;

Tau and Peterson, 2010). Over this time, myriads of functionally

distinct cell types, circuits, and regions are formed (Hu et al.,
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2014; Lui et al., 2011; Silbereis et al., 2016). To produce distinct

structures and circuits, neural cells are born in an immature state

and undergo a variety of molecular and morphological changes

as they differentiate, migrate, and establish circuits. Conse-

quently, the characteristics of a given cell and brain region at a

given time offer only a snapshot of organogenesis and brain

function, necessitating consistent profiling across development.

The molecular and cellular processes underlying development

of the nervous system rely on the diversity of transcripts and their

precise spatiotemporal regulation (Bae and Walsh, 2013; Silber-

eis et al., 2016). Functional genomic analyses of the developing

human brain have revealed highly dynamic gene expression and

epigenetic changes during prenatal and early postnatal develop-

ment (Kang et al., 2011; Li et al., 2018) versus comparative sta-

bility over several decades of adulthood (Colantuoni et al., 2011;

Jaffe et al., 2018; Kang et al., 2011; Li et al., 2018; Pletikos et al.,

2014). Disruption of developmentally dynamic regulatory pro-

cesses is likely to contribute to neurodevelopmental and neuro-

psychiatric disorders (Birnbaum and Weinberger, 2017; Breen

et al., 2016; Geschwind and Flint, 2015; McCarroll and Hyman,

2013; Rosti et al., 2014; Sestan and State, 2018; Turner and Eich-

ler, 2019). In keeping with this expectation, spatiotemporal

expression patterns have implicated mid-fetal brain develop-

ment as a vulnerable process and the prefrontal cortex as a

vulnerable region for autism spectrum disorder (ASD) and

schizophrenia risk genes (Chang et al., 2015b; Gulsuner et al.,

2013; Li et al., 2018; Network and Pathway Analysis Subgroup

of the Psychiatric Genomics Consortium, 2015; Parikshak

et al., 2013; Satterstrom et al., 2020; Willsey et al., 2013; Xu

et al., 2014). More generally, atypical trajectories of brain matu-

ration have been described in ASD, schizophrenia, and other

neuropsychiatric traits and disorders (Birnbaum and Wein-

berger, 2017; Courchesne et al., 2007; Ecker et al., 2015; Insel,

2010; Keshavan et al., 2014; Shaw et al., 2010; Tang and Gur,

2018). Given that neuropsychiatric disorders have discrete

ages of onset and progression andmay arise because of genetic

or environmental insults at various times during the life of an in-

dividual, there is a clear need to examine gene expression and

neuropsychiatric risk across the span of human brain

development.

In addition to spatiotemporal variation, genetic sequence var-

iants also affect gene expression levels, which can contribute to
2 Cell Reports 31, 107489, April 7, 2020
differences in brain structure, function, and behavior (Elliott et al.,

2018). Several laboratories and consortia have systematically

identified such expression quantitative trait loci (eQTLs) in

numerous tissues, including the brain (Akbarian et al., 2015;

Dobbyn et al., 2018; Fromer et al., 2016; Gibbs et al., 2010,

GTEx Consortium, 2015; Heinzen et al., 2008; Jaffe et al.,

2018; Liu et al., 2010;Myers et al., 2007;Wang et al., 2018; Brain-

Seq: A Human Brain Genomics Consortium, 2015), but fewer

include the developing human brain (Colantuoni et al., 2011;

Jaffe et al., 2018; Kang et al., 2011; O’Brien et al., 2018; Walker

et al., 2019). Therefore, developmentally regulated eQTLs are

sparsely represented in the current catalog of human brain

eQTLs, highlighting the need for additional resources. Such

eQTL catalogs offer the potential to gain insight into the func-

tional consequences of the hundreds of coding and noncoding

genetic loci that have been associated with neuropsychiatric

traits and disorders, including developmental delay, ASD,

educational attainment, schizophrenia, major depressive disor-

der, and Alzheimer’s disease (Deciphering Developmental Disor-

ders Study, 2017, SchizophreniaWorking Group of the Psychiat-

ric Genomics Consortium, 2014; Grove et al., 2019; Kosmicki et

al., 2016; Lee et al., 2018; Sanders et al., 2015, 2017; Satterstrom

et al., 2020).

To help fill this gap, we generated BrainVar, a unique resource

of whole-genome sequencing (WGS) pairedwith bulk tissue RNA

sequencing (RNA-seq) of 176 samples from the human dorsolat-

eral prefrontal cortex (DLPFC) across development, from 6 post-

conception weeks to young adulthood (20 years). We focused

our analyses on the DLPFC because of its importance in

higher-order cognition (Silbereis et al., 2016) and the observation

that many risk genes for ASD and schizophrenia are co-ex-

pressed in the DLPFC during mid-fetal development (Gulsuner

et al., 2013; Li et al., 2018; Network and Pathway Analysis Sub-

group of the Psychiatric Genomics Consortium, 2015; Parikshak

et al., 2013; Willsey et al., 2013). We present a systematic

description of this resource, including demographics, gene

expression across development, gene co-expression modules,

and eQTLs. We describe interactions between these factors

and comparisons with the BrainSpan dataset, cell-type-specific

genes, and loci associated with neuropsychiatric traits and dis-

orders. Our analysis replicates the late-fetal transition observa-

tion, a dramatic shift in gene expression between mid-fetal
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Figure 1. Overview of the Dataset and the

Analysis

(A) 176 samples from the dorsolateral prefrontal

cortex (DLFPC) of the developing human brain

were processed to generate RNA-seq gene

expression data and WGS data (top). The distri-

bution of the samples is shown by sex (color) and

developmental stage (x axis). Periods were defined

previously (Kang et al., 2011), and epochs are

defined as a superset of periods based on principal

component analysis of these RNA-seq data (Fig-

ure 2).

(B) Analyses conducted using these data. The

width of each box corresponds to the samples

included in each analysis.

See also Table S1 and Figure S1.
development and infancy (Li et al., 2018); refines the timing of this

event; and delineates the degree to which each gene is involved.

We also identify 252,629 cis-eQTLs affecting 8,421 genes and

classify their effects as prenatal-predominant, postnatal-pre-

dominant, or constant across brain development. Finally, we

identify eQTLs that co-localize with genome-wide association

study (GWAS) loci, linking specific genes to neuropsychiatric

phenotypes.

RESULTS

Description of the Cohort and Data Generation
To characterize gene expression across prenatal and postnatal

development of the human DLPFC and to identify genetic vari-

ants associated with expression changes, post mortem tissue

was obtained from 176 de-identified, clinically unremarkable do-

nors (genotypic sex: 104 male, 72 female) without known neuro-

psychiatric disorders or large-scale genomic abnormalities,

ranging between 6 post-conception weeks and 20 years of age

(Figure 1; Table S1). In keeping with prior analyses (Kang et al.,

2011), we assign these samples to 12 developmental periods,

which we group into four developmental epochs (Figures 1 and

2). Gene expression data were generated using RNA-seq from

tissue dissected from the DLPFC (correspondingmainly to Brod-

mann area 46) or from the frontal cerebral wall (donors younger

than 10 post-conception weeks). WGS data (31.53 median

coverage) were generated simultaneously from DNA isolated

from the same individuals.

Data Processing
RNA-seq reads were aligned and converted to log base 2 counts

per million (log2CPM) per gene (STAR Methods), with 23,782

genes meeting minimum expression criteria. We restricted

further analysis to these 23,782 cortically expressed genes, of

which 16,296 (68.5%) encode proteins, whereas 7,486 (31.5%)

are noncoding, including long noncoding RNA (lncRNA) (12.6%
of total) and antisense (9.2% of total)

genes (Table S2). For the 14 samples

also profiled in BrainSpan (Li et al.,

2018), gene expression was highly corre-

lated per sample and per gene (Figure S1).
In both datasets, the first principal component of gene expres-

sion is strongly correlated with developmental age (Figures 2A

and S1). All samples were genotypically concordant between

theWGS and RNA-seq data (Regier et al., 2018). Ancestry corre-

lated strongly between principal-component analysis clusters

and self-report (STAR Methods).

Temporal Dynamics of Gene Expression
Prior analysis of the 40 brains in the BrainSpan cohort identified

developmental age as the greatest source of between-sample

variance in gene expression, especially during a ‘‘late-fetal tran-

sition’’ between 22 post-conception weeks and 6 postnatal

months (Kang et al., 2011; Li et al., 2018). We replicate these

findings in BrainVar. The first principal component explains

42% of the variance in gene expression and is highly correlated

with developmental age (partial R2 = 0.88; Figures 2A and S2;

similar results when excluding the 14 overlapping samples),

with the greatest changes occurring in late fetal development

and early infancy (Figure 2A).

Using the increased resolution from the 176 brains in BrainVar,

we show that the late-fetal transition begins around 19 post-

conception weeks (start of period 6) and that the most dramatic

changes are complete by 6 postnatal months (end of period 8);

we label this transitional phase as epoch 2 (Figure 2A). Consid-

ering the nine samples younger than 10 post-conception weeks

(periods 1–2), we also observe an ‘‘early-fetal transition,’’ i.e., a

coordinated shift in embryonic and early fetal development,

which we label epoch 0 (Figure 2A).

To identify the specific genes that change in the late-fetal tran-

sition, we performed a trajectory analysis on the 167 samples in

epochs 1–3; we excluded epoch 0 because of the sparse sam-

pling before and during the early-fetal transition. Remarkably,

over half of the genes expressed in the cortex exhibit a persis-

tent, progressive, and statistically significant expression vari-

ance across this late-fetal transition (Figure 2B). We identified

three distinct trajectories, with 6,934 ‘‘rising’’ genes (higher
Cell Reports 31, 107489, April 7, 2020 3
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Figure 2. Temporal Trajectories of Gene Expression in the Human DLPFC

(A) Gene expression log base 2 counts per million (log2CPM) for each sample was used to calculate principal components (Figure S2). The first principal

component (PC1) explains 42% of the variance between samples, and 81% of variance in PC1 is explained by developmental stage (Figure S2). The changes in

PC1 over time were used to define four ‘‘epochs’’ of gene expression. Dotted lines represent the boundaries of the indicated developmental period as defined

previously (Kang et al., 2011).

(B and C) Trajectory analysis identifies three sets of genes with similar developmental profiles across the late-fetal transition in epoch 2 (B; Table S2). For each

group, the expression over time, normalized by the interquartile range and locally estimated scatterplot smoothing (LOESS), is shown as a line, with the narrow

(legend continued on next page)

4 Cell Reports 31, 107489, April 7, 2020



postnatal expression), 5,143 ‘‘falling’’ genes (higher prenatal

expression), and 11,705 ‘‘non-transitional’’ genes (no statistically

significant change). Considering more than three trajectories

further split gene sets by variance rather than developmental

profile (STAR Methods). Similar trajectories are observed for

these three gene lists in the BrainSpan DLPFC data (Figure S2).

Emphasizing the magnitude of this transition, the first principal

component of the 11,705 non-transitional genes explains only

18.4% of the variance in gene expression and is weakly corre-

lated with developmental age (partial R2 = 0.3; Figure S2).

The magnitude of the changes in individual genes’ expression

levels across late-fetal transition can be estimated by calculating

the difference in log2CPM expression between epoch 3 and

epoch 1, ranging from 12.1 (OPALIN, a component of myelin)

to �9.2 (IGF2BP1, an IGF2 binding protein); for context, the me-

dian epoch 3-to-epoch 1 changes in log2CPM values were 2.1,

0.1, and �1.1 for rising, non-transitional, and falling, respec-

tively. The majority of changes in gene expression reflected rela-

tive amplification or attenuation of expression levels rather than

binary presence/absence of expression, with only 621 rising

genes and 95 falling genes specific to epoch 3 or 1 (defined as

log2CPM % �5 in the other epoch; Figure 2C; Table S2).

Characteristics of Transitional and Non-transitional
Genes
Compared with rising and non-transitional genes, falling genes

had the highest median expression in epoch 1 (p < 2 3 10�16)

and epoch 3 (p < 2 3 10�16, Wilcoxon rank-sum test [WRST];

Figure 2C) and the highest fraction of protein-coding genes

(p < 2 3 10�16, Fisher’s exact test [FET]; Figure 2D) and were

highly enriched for genes with high probability loss-of-function

intolerant (pLI) scores (p = 5 3 10�11, WRST; Figure 2E). High

pLI scores reflect detection of fewer protein-truncating variants

than expected (Lek et al., 2016), suggesting that loss-of-function

mutations in the gene are disfavored by natural selection (i.e., the

gene is haploinsufficient). Rising genes had a similar proportion

of protein-coding genes as falling genes (p = 0.94, FET; Fig-

ure 2D) but were depleted for genes with high pLI scores (p =

1 3 10�7, WRST; Figure 2E). If the timing of a gene’s highest

expression corresponds to the timing of its most critical func-

tions, then the pLI difference between falling and rising genes

suggests that prenatal development is especially sensitive to

haploinsufficiency.

Compared with RNA-seq data from 53 adult tissues (GTEx

Consortium, 2015), falling genes were only enriched in non-

cortical tissues (driven by genes related to RNA transcription

and cell division; Table S2), whereas rising genes were enriched

for many brain regions, including the adult cortex and excluding
95%CI in gray. These three groups are further characterized by plotting (C) theme

each gene shown as a line.

(D) The relative proportion of Gencode protein-coding and noncoding genes wit

(E) The distribution of probability loss-of-function intolerance (pLI) scores for pro

(F) Enrichment in the most tissue-specific genes from the 53 tissues with bulk tis

(GTEx Consortium, 2015).

(G) Pattern of expression for ten cell type-specific genes (Table S2) for each of fi

(H) Analysis in (G) repeated for five glial lineage cell types.

OPC, oligodendrocyte progenitor cell. Statistical analyses: (A) principal componen

sided WRST; (F) t-test. See also Table S2 and Figures S1 and S2.
cerebellum (Figure 2F), highlighting the distinctions between the

fetal and adult cortex. Non-transitional genes had the lowest

proportion of protein-coding genes and were expressed ubiqui-

tously across adult tissues (Figure 2).

Cell Type Dynamics across Development
To capture the contribution of changing cell type proportions to

gene expression profiles, we assessed expression trajectories of

genes specific to each of ten cortical cell types from prenatal

(Nowakowski et al., 2017) and postnatal human brain (Li et al.,

2018; Velmeshev et al., 2019). The estimated profiles of all ten

cell types vary dramatically across epoch 2, with radial glia/neu-

ral progenitor cells and fetal neurons decreasing as mature neu-

rons and other glial cells increase (Figures 2G and 2H); this

pattern is replicated in BrainSpan DLPFC samples (Figure S2).

These analyses support the hypothesis that varying cell type pro-

portions are major contributors to the late-fetal transition in the

DLPFC (Li et al., 2018), but distinguishing cellular composition

effects from differential expression within a cell type will require

single-cell data from across this age range.

Co-expression Modules in the Developing Human
Cortex
To furthercharacterize the relationshipsbetween the23,782corti-

cally expressed genes, we applied a weighted gene co-expres-

sion network analysis (WGCNA) (Langfelder and Horvath, 2008)

to define 19 consensusmodules that included 10,459 genes (Fig-

ures 3A and S3; Table S3). As expected, genes within each mod-

ule shared functional roles (Figure 3B), temporal trajectories of

geneexpression (Figures3Cand3D), regulatory transcription fac-

tors (Figure S3), and cell type enrichment (Figures 3E and 3F).

Module preservation analysis using BrainSpan data (Li et al.,

2018) identified similar co-expression patterns across brain re-

gions, especially independent DLPFC samples (Figure 3G).

Similar to transitional genes (Figure 2), multidimensional

scaling of the module eigengenes demonstrated that develop-

mental age accounted for 44.7% and 36.1% of the variance in

the first two dimensions. Considering the position of the 19mod-

ules along these two dimensions and the developmental trajec-

tories of the genes in each module, we identified five groups of

related modules (Figures 3A and 3B). Group 1 modules (M1

black, M2 royal blue, M3 green-yellow, and M4 yellow) are en-

riched for falling genes, whereas group 5 modules (M16 blue,

M17 silver, M18 light cyan, and M19 turquoise) are enriched

for rising genes (Figure 3D). The remaining three groups (2, 3,

and 4) are enriched for non-transitional genes (Figure 3D).

Five modules are of particular note. The M2 royal blue module

(group 1) captures cell cycle ontology and is enriched in
dian log2CPMacross all samples in epoch 1 and epoch 3, with the difference for

h gene counts.

tein-coding genes (Lek et al., 2016) with gene counts.

sue RNA-seq data from the Genotype-Tissue Expression Consortium (GTEx)

ve neuronal lineage cell types (LOESS with 95% CI).

t analysis; (B) longitudinal mixture model with Gaussian noise; (D) FET; (E) two-
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neuroprogenitor cells, radial glia, and intermediate progenitor

cells. The M4 yellow module (group 1) is enriched for numerous

ontology terms related to neuronal development, contains genes

specific to neuronal stem cells (e.g., NCAM1/ncam and PROM1/

cd133), and is highly enriched for genes related to maturing

excitatory and inhibitory neurons. The M8 red module (group 3)

is enriched for ontology terms relating to cell fate and morpho-

genesis, is highly enriched for noncoding genes, and has an

expression peak in early fetal development, capturing many

genes that are involved in early-fetal transition (Figure 2A).

Several genes associatedwith regional patterning in non-cortical

tissues, including the hindbrain (e.g., UNCX and CCDC140) and

hypothalamus (e.g., DMBX1 and SOX14), are expressed at high

levels in this module. The M18 light cyan and M19 turquoise

modules (group 5) are strongly enriched in glial and other non-

neuronal cell clusters; accordingly, both modules are enriched

for ontology terms related to immune responses. The M19 tur-

quoise module is also enriched in excitatory neurons in the post-

natal cortex and ontology terms relating to synaptic signaling

and neurotransmitter transport.

Intersection of Developmental Expression with Human
Traits and Disorders
We next considered the intersection between genes associated

with developmental trajectories, modules, or cell types and

genes associated with ten human traits and disorders. For

ASD and developmental delay with and without seizures, we

used gene lists derived from exome association studies of rare

and de novo variants (Deciphering Developmental Disorders

Study, 2017; Heyne et al., 2018; Satterstrom et al., 2020). For

educational attainment, attention deficit hyperactivity disorder

(ADHD), schizophrenia, major depressive disorder, multiple scle-

rosis, Parkinson’s disease, and Alzheimer’s disease, we used

genes within 10 kb of the lead SNP detected in GWASs (Chang

et al., 2017; Demontis et al., 2019; Beecham et al., 2013;

Lambert et al., 2013; Lee et al., 2018; Schizophrenia Working

Group of the Psychiatric Genomics Consortium, 2014; Wray

et al., 2018). For our analyses, we excluded genes within the ma-

jor histocompatibility complex on chromosome 6 because of the
Figure 3. Co-expression Modules in the Developing Human Cortex

(A) Weighted genome co-expression network analysis (WGCNA) identified 19 mo

colored nodes plotted based on the first two dimensions from multidimensional

correlation between module eigengenes.

(B) LOESS expression values across development are shown with 95% CIs for

temporal trajectories.

(C) Gene Ontology enrichment analysis for each module, showing only biologica

(D) Mosaic plot showing the relationship between the five groups of co-expressio

trajectories (Figure 2). The area is proportional to the number of genes in each bin.

Figure S3.

(E) Enrichment between the 19 modules and the 200 genes most specific to 19 c

cortex (Nowakowski et al., 2017).

(F) Enrichment between the 19 modules and the 200 genes most specific to 29

DLPFC (Li et al., 2018).

(G) Module preservation in independent BrainSpan samples (Li et al., 2018) from

regions (right).

SRP, signal recognition particle; C, cluster of single nuclei; L, cortical layer; ND, la

neuron; ExN, excitatory neuron; InN, inhibitory neuron; CGE, caudal ganglionic e

with consensusmodule detection from 100 random resamplings; (C) FET, correcte

for 361 comparisons; (F) FET corrected for 551 comparisons; (G) FET corrected
complicated nature of this region (Schizophrenia Working Group

of the Psychiatric Genomics Consortium, 2014).

Developmental delay, ASD, and educational attainment genes

were enriched for falling genes (p = 8.5 3 10�6, p = 5.1 3 10�3,

and p = 2.4 3 10�4 respectively; FET adjusted for 30 compari-

sons), consistent with a prenatal origin for aspects of their neuro-

biology. A non-significant trend toward enrichment for rising

genes was observed for Parkinson’s disease and Alzheimer’s

disease (Figure 4A; Table S4). The M4 yellow module was en-

riched for ASD and educational attainment genes, including

NRXN1, TCF4, and BCL11A (Figure 4B; Table S4), and the M9

brown module (enriched for chromatin organization Gene

Ontology terms and non-transitional genes; Figure 3) was en-

riched for genes associated with developmental delay and

educational attainment, including CDK13, PACS1, and EP300

(Figure 4B; Table S4).

Across the ten CNS traits and disorders, five cell type clusters

(C) (Li et al., 2018; Nowakowski et al., 2017) showed significant

enrichment in fetal brain (Figure 4C; Table S4) and none in adult

brain (Figure S4; Table S4). ASD genes were enriched for C18

excitatory newborn neurons and C1 striatal interneurons (Fig-

ure 4C), in keeping with a role of excitatory and inhibitory line-

ages (Satterstrom et al., 2020). Both lineages were also enriched

in educational attainment, specifically C3 early excitatory neu-

rons and C6 medial ganglionic eminence (MGE)-derived inter-

neurons, whereas genes associated with developmental delay

with seizures were enriched in C15 caudal ganglionic eminence

(CGE)-derived interneurons (Figure 4C). We observed a nomi-

nally significant trend toward enrichment of C19 microglia genes

in multiple sclerosis and Alzheimer’s disease.

Common Genetic Variants Regulating Gene Expression
We identified 6,573,196 high-quality SNPs and insertions or de-

letions (indels) from theWGSdata usingmethods described pre-

viously (Werling et al., 2018), with an allele frequency of at least

5% in our prenatal (periods 1–6, n = 112) and postnatal (periods

8–12, n = 60) samples (Figure 1). To identify eQTLs within 1Mb of

a gene (eGene), we used linear regression for adjusted expres-

sion level (STAR Methods), with developmental period, sex,
dules comprised of 10,459 of 23,782 expressed genes. Modules are shown as

scaling. The weight of the connecting lines (edges) represents the degree of

the 19 modules arranged in five groups based on proximity in (A) and similar

l processes with the lowest false discovery rate (FDR).

n modules (from A) and genes with falling, rising, or non-transitional temporal

Detailed relationships betweenmodules and temporal trajectories are shown in

ell type clusters defined by single-cell RNA-seq data in the developing human

cell type clusters defined by single nucleus RNA-seq data in the adult human

the same brain region (left), other cortical regions (center), and five subcortical

yer not defined; RG, radial glia; IPC, intermediate progenitor cell; NN, newborn

minence; MGE, medial ganglionic eminence. Statistical analysis: (A) WGCNA

d for gProfiler GeneOntology pathways (10–2,000 term size); (E) FET corrected

for 19 comparisons. See also Tables S2 and S3 and Figure S3.
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Figure 4. Expression of Genes Associated

with CNS Traits and Disorders

(A) Genes from genome-wide significant loci were

collated for ten CNS traits and disorders from

exome sequencing or genome-wide association

studies (GWASs). The enrichment is shown for the

three trajectory groups (Figure 2).

(B) The analysis in (A) repeated for co-expression

modules.

(C) The analysis in (A) repeated for genes enriched

for cell type clusters from single-cell RNA-seq of

the prenatal human brain.

Statistical analysis: (A) FET corrected for 30 com-

parisons; (B) FET corrected for 190 comparisons;

(C) FET corrected for 190 comparisons. See also

Tables S2 and S4, and Figure S4.
and the first five principal components for ancestry as covari-

ates. Results were corrected for multiple comparisons using

Benjamini-Hochberg (false discovery rate [FDR] % 0.05). To

distinguish temporal-predominant eQTLs, we performed three

cis-eQTL analyses: all 176 samples (complete sample, 216,026

eQTLs of 5,728 eGenes), 112 prenatal samples (periods 1–6,

154,440 eQTLs of 4,378 eGenes), and 60 postnatal samples (pe-

riods 8–12, 51,528 eQTLs of 2,199 eGenes). These discovery

rates are in line with similarly sized cohorts (Figure S5). The union

of these three analyses identified 252,629 eQTLs of 8,421

eGenes (Table S5). As expected, the eQTLs are enriched for

markers of active transcription derived from the human brain

(Figure S5; Li et al., 2018; Reilly et al., 2015; Kundaje et al.,

2015). We find that eQTL effect size and direction are correlated

with prenatal whole brain (O’Brien et al., 2018) (Pearson’s r =

0.73, p% 13 10�16; Figure 5A) and postnatal (adult) frontal cor-

tex (Aguet et al., 2017) (Pearson’s r = 0.73, p % 1 3 10�16; Fig-

ure 5A) from independent datasets.

Temporal Predominance of eQTLs
We leveraged the consistently processed prenatal and postnatal

data in BrainVar to identify eQTLs with differing effect sizes

across development (Figure 5B; STAR Methods). The majority
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of eQTLs were constant, reaching nomi-

nal significance in all three analyses with

the same direction of effect (161,923

eQTLs, 64.1% of the total). Many eQTLs

were prenatal-predominant, with signifi-

cantly greater prenatal than postnatal ef-

fect sizes (24,760 eQTLs, 9.8%). Fewer

eQTLs were postnatal-predominant, with

significantly greater postnatal than prena-

tal effect sizes (9,352 eQTLs, 3.7%). The

remaining 56,593 eQTLs (22.4%) showed

a trend toward stronger prenatal effects

(19.8%) or postnatal effects (2.6%). With

larger sample sizes, we would expect a

greater fraction of constant eQTLs to

show some degree of temporal speci-

ficity, especially postnatal. Although the
magnitude of effect varied across development for many eQTLs,

we did not observe a single eQTL with opposing prenatal and

postnatal directions of effect.

Temporal Predominance of eGenes
Most eGenes have more than one eQTL (5,538 of the 8,421,

65.8%). Defining the top eQTL per eGene as that with the lowest

FDR-significant p value in any of the three sample sets (Table

S5), we identified 2,977 (35.4% of total) constant eGenes,

1,691 (20.1%) prenatal-predominant eGenes, and 1,145

(13.6%) postnatal-predominant eGenes (Figure 5B). The remain-

ing 2,608 eGenes (31.0%) trend toward prenatal (25.1%) or post-

natal (5.9%) effects. Because of linkage disequilibrium (LD), cis-

eQTLs for an eGene are likely to have a similar direction and

magnitude of effect; accordingly, the temporal category of the

top eQTLmatched themajority of eQTLs for 88.2% of all eGenes

(7,425 eGenes; Figure S5).

To validate the prenatal- and postnatal-predominant eQTLs,

we evaluated their performance in independent datasets. In pre-

natal whole brain (O’Brien et al., 2018), we observed stronger

correlation for the effects of prenatal-predominant (r = 0.54,

p = 3.9 3 10�22) than postnatal-predominant eGenes (r = 0.36,

p = 1.13 10�3; Figure 5C). In contrast, in postnatal frontal cortex



(legend on next page)
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(Aguet et al., 2017), stronger correlations were observed for the

effects of postnatal-predominant (r = 0.60, p = 4.03 10�24) than

prenatal-predominant eGenes (r = 0.37, p = 1.1 3 10�6;

Figure 5C).

Characteristics of Genes Influenced by eQTLs
The top eQTL for constant eGenes is closer to the transcription

start site than that for temporal-predominant eGenes (median:

92,223 bp versus 403,702 bp, p % 2 3 10�16, two-sided

WRST; Figure 5D). However, �log10(P) values increased with

proximity to the transcription start site for constant and tempo-

ral-predominant eQTLs (for both sets, p % 2 3 10�16, linear

regression), as did eQTL effect size to a small degree (constant

p = 1.0 3 10�12, temporal-predominant p = 0.03, linear regres-

sion). Compared with constant eGenes, temporal-predominant

eGenes also included a higher proportion of protein-coding

genes (odds ratio [OR] = 1.56, 95% confidence interval [CI]:

1.40–1.74), p = 3.7 3 10�16, two-sided FET; Figure 5E), genes

with high pLI scores (pLI R 0.995; OR = 1.45 [95% CI: 1.12–

1.90], p = 0.004, two-sided FET; Figure 5F), and greater connec-

tivity in protein-protein interaction (PPI) networks (median Z

score 1.45 versus �0.91, p % 2 3 10�16, two-sided WRST;

Figure 5H).

Given the dynamic expression profiles over development (Fig-

ure 2), we expected prenatal-predominant eGenes to be en-

riched for falling genes and postnatal-predominant eGenes to

be enriched for rising genes. We did not observe these effects

(Figure 5I). Instead, the prenatal-predominant eGenes are en-

riched for rising genes (OR = 1.5 [95% CI: 1.3–1.6], p = 1.1 3

10�10, two-sided FET; for example, Figure 5J), and pre- and

postnatal-predominant eGenes are depleted for falling genes

(prenatal OR = 0.79 [95%CI: 0.69–0.9], p = 4.23 10�4; postnatal

OR = 0.85 [0.73–0.997], p = 0.04; two-sided FET). Instead, we

observed coordination between the timing of eQTLs’ strongest

effects and the timing of eGenes’ greatest expression variation

between samples (STAR Methods). Prenatal-predominant

eGenes are strongly enriched for genes with greater prenatal
Figure 5. Common Variant cis-eQTLs

(A) Effects of the top expression quantitative trait locus (eQTL) per gene regulated

results from complete sample, prenatal-only, and postnatal-only analyses) versu

postnatal frontal cortex (Aguet et al., 2017) (right, y axis).

(B) Prenatal (x axis) and postnatal (y axis) effects for the eQTLs with the smallest p

on temporal predominance using effect size and statistical thresholds; categorie

(C) Effects of the top eQTL per eGene with FDR % 0.05 from the prenatal-predom

axis) versus effects observed in the published datasets described in (A) (y axis).

(D) Density plot of the distance of top eQTLs per eGene from the transcription st

(E–G) Characteristics of non-eGenes, temporal-predominant eGenes, and disor

noncoding genes, (F) proportion of genes with pLI scores in different bins, and (G

function; Cornish and Markowetz, 2014; the black line is the non-eGene median

(H) Mosaic plot of the proportion of genes in each temporal trajectory with eGen

(I) Expression data binned by genotype for the top prenatal-predominant eQTL for

age across development. Lines represent LOESS trajectories for expression in

prenatal (left) and postnatal (right) samples with each of three rs138586968 geno

(J) Distribution of eQTL effect size for eGenes binned by pLI scores. The black li

(K) Distributions of between-sample variance in the expression level of expressed

the transcripts with no pLI score.

TSS, transcription start site; Statistical analysis: (A) and (C) Pearson correlation; (

two-sided FET for constant versus other eGenes; (J) and (K), two-sidedWRST test

S5 and Figure S5.
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variance (OR = 2.3, p = 4.0 3 10�52, two-sided FET) and

depleted for genes with greater postnatal variance (OR = 0.36,

p = 1.63 10�15, two-sided FET). Postnatal-predominant eGenes

show a complementary but weaker pattern of enrichment for

genes with greater postnatal variance (OR = 1.1, p = 0.25, two-

sided FET) and depletion of genes with greater prenatal variance

(OR = 0.76, p = 7.03 10�5, two-sided FET). Considering the role

of selective pressure, we observed that genes with higher pLI

scores also had lower eQTL effect sizes (p = 4.0 3 10�36; two-

sidedWRST; Figure 5J) as well as lower expression variance be-

tween samples (Figure 5K).

eQTLs in Human Traits and Disorders
The differences in constant and temporal-predominant eGenes

led us to consider how genes associated with neuropsychiatric

traits and disorders (Figure 4) fit into this classification. Gene

sets associated with traits by GWAS loci or exome sequence as-

sociation followed the patterns of temporal-predominant

eGenes but to a greater extent, with a higher proportion of

protein-coding genes (Figure 5E), higher pLI scores (Figure 5F),

and stronger clustering within PPI networks (Figure 5H).

At the variant level, we expect GWAS loci to be enriched for

eQTLs in relevant tissues (Fromer et al., 2016; Nicolae et al.,

2010). Using a permutation-based method accounting for LD

structure, minor allele frequency (MAF), and gene density

(STAR Methods), we tested four of the larger GWASs and

observed eQTL enrichment for educational attainment, schizo-

phrenia, and multiple sclerosis but not Alzheimer’s disease

(Figure S6; Table S6). We did not see evidence of the reverse hy-

pothesis that eGenes are enriched for GWAS signals (Figure S6).

Using a colocalization analysis, we looked for overlap between

specific eQTL loci with educational attainment and schizo-

phrenia GWAS loci using a posterior probability of colocalization

threshold of 0.8. In the schizophrenia GWAS, 13 of 108 loci

(12.0%) showed evidence of colocalization, including two prena-

tal-predominant and two postnatal-predominant eQTLs (Table

S6). A lower proportion of educational attainment loci showed
by an eQTL (eGene) with FDR% 0.05 in the BrainVar analyses (x axis, union of

s effects observed in the prenatal whole brain (O’Brien et al., 2018) (left) and

value for 8,421 eGenes (points). The eQTLs are split into five categories based

s are represented by color.

inant (red) or postnatal-predominant (blue) eQTL categories from BrainVar (x

art site by eGene temporal category.

der-associated genes are shown by plotting the (E) proportion of coding and

) BioGRID protein-protein interactions (permuted Z scores from Ripley’s K-net

).

es split by temporal category.

CHD1L, a gene with a rising trajectory. Main panel: gene expression by sample

samples with each of three genotypes for rs138586968. Inset: boxplots for

types.

ne represents the median of the transcripts with no pLI score.

genes binned by pLI scores. The black line represents the median variance of

D) and (G), two-sided WRST test for constant versus other eGenes; (E) and (F),

for each of four pLI bins versus geneswith no pLI score. See also Tables S2 and
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Figure 6. Colocalization of Two eQTLs with Educational Attainment GWAS Loci

(A) Statistical evidence of association with educational attainment for SNPs (points) alongside the recombination rate (blue line). Color shows the correlation with

the SNP rs1043209 (Pruim et al., 2010).

(B) The statistical evidence for the SNP rs1043209 being an eQTL is shown for each gene within proximity of the locus. No other genes had high posterior

probabilities for colocalization.

(C) The statistical evidence for being an eQTL for the noncoding RNA LOC101926933 (x axis) is shown against the evidence for association with educational

attainment (y axis) for each SNP (points).

(D) The expression of LOC101926933 is shown for each sample across development with genotype at rs1043209, indicated by color.

(E–H) Another educational attainment locus that colocalized with the gene RHEBL1 in the prenatal period only is shown, as in (A)–(D).

Statistical analysis: (B) colocalization analysis; (D) inset, ANOVA; (E) colocalization analysis; (H) inset, ANOVA. See also Tables S2 and S6 and Figure S6.
evidence of colocalization (4.1%, 52 of 1,271), including 14 pre-

natal-predominant and two postnatal-predominant eQTLs (Ta-

ble S6). Focusing on multigenic loci with the strongest evidence

of colocalization, we implicate specific genes and expression

changes as the likely mechanism underlying the GWAS loci.

SNPs associated with educational attainment at a chromosome

14 locus (Figure 6A) colocalized only with eQTLs for the lncRNA

LOC101926933 (also called RP11-298I3.1, AL132780.1, or
ENSG00000257285; Figure 6B). Across the locus, the p values

for the GWAS SNPs and LOC101926933 eQTLs are highly corre-

lated, resulting in a posterior probability for colocalization of 0.92

(Figure 6C); for this locus, eQTL effect size is similar across

development (Figure 6D). We also observe colocalization of pre-

natal-predominant eQTLs with educational attainment or schizo-

phrenia GWAS loci. For example, SNPs contributing to an

educational attainment GWAS locus on chromosome 12
Cell Reports 31, 107489, April 7, 2020 11



(Figure 6E) overlap specifically with eQTLs for the protein-coding

gene RHEBL1, which encodes a brain-enriched G-protein acti-

vator of the mTOR pathway (Figure 6F). GWAS and RHEBL1

eQTL prenatal p values are highly correlated and result in a pos-

terior probability for colocalization of 0.97 (Figure 6G). We see a

significantly greater eQTL effect size in prenatal compared with

postnatal samples (p = 0.003; Figure 6H), with higher RHEBL1

expression associated with increased educational attainment.

DISCUSSION

In this manuscript, we describe BrainVar, a unique resource of

paired genome (WGS) and transcriptome (bulk tissue RNA-

seq) data derived from 176 human DLPFC samples across pre-

natal and postnatal development (Figure 1). We identify 23,782

genes expressed during human cortical development, gene lists

relating to developmental trajectories and co-expression, and

common variants that alter gene expression (eQTLs). Our ana-

lyses show how these datasets relate to each other and to

gene expression in cell types derived from single-cell RNA-seq

data and to CNS traits and disorders derived from genomic an-

alyses (exome sequencing andGWAS). In addition to developing

a resource with utility for future studies of human development,

neurobiology, and neuropsychiatric disorders, we also describe

key biological insights, including the nature of the late-fetal tran-

sition in gene expression (Figures 2 and 3), an early-fetal transi-

tion (Figures 2 and 3), developmental processes and cell types

implicated in CNS traits and disorders (Figure 4), eQTLs split

by effect size across development (Figure 5), differing character-

istics of genes with constant versus temporal-predominant

eQTLs (Figure 5), and the application of this dataset to implicate

specific genes at GWAS loci (Figure 6).

Principal component analysis identifies developmental age as

the most important factor underlying the variance in gene

expression in this dataset. The majority of this temporal variance

occurs in two transitional phases (Figure 2), the early-fetal and

late-fetal transitions. The early-fetal transition is a coordinated

decrease in expression of multiple genes in early development

(epoch 0; periods 1–2; 6–10 post-conception weeks) that coin-

cides with the establishment of regional identity across the brain.

Concordant with a possible role of the early-fetal transition in this

process, the expression of several genes associated with non-

cortical tissues (e.g., UNCX and DMBX1) is decreased during

this period. In addition, we found that the early-fetal transition

is captured in the M8 red module (Figure 3), which is enriched

for lncRNA transcripts and Gene Ontology terms related to

morphogenesis and cell fate.

The late-fetal transition between mid-fetal development and

infancy involves over 12,000 genes with similar numbers rising

and falling (Figure 2). Prior reports of humans (Li et al., 2018)

and primates (Zhu et al., 2018) associated this transition with a

reduction in intra- and inter-regional variation evident at the

levels of bulk tissue and individual cell types. Our data similarly

suggest that this transition represents a combination of changes

in the relative proportions of various cell types and biological

processes within these cells (Figures 2 and 3). Critically, the

larger BrainVar sample set allowed us to define 19 post-concep-

tion weeks as the inflection point at which the late-fetal transition
12 Cell Reports 31, 107489, April 7, 2020
begins (Figure 2), further distinguishing the late-fetal transition

from previously reported organotypic changes (Domazet-Lo�so

and Tautz, 2010; Kalinka et al., 2010; Li et al., 2018).

Although previous analyses have identified eQTLs in human

brain tissue postnatally (Fromer et al., 2016; GTEx Consortium,

2015) and prenatally (Jaffe et al., 2018; O’Brien et al., 2018;

Walker et al., 2019), no prior study has assessed the effect of

genomic variation on gene expression across the whole of

brain development, from embryogenesis through fetal develop-

ment, infancy, childhood, and adolescence and into young

adulthood. Consequently, we were able to identify temporal-

predominant eQTLs that have a greater effect on expression

prenatally or postnatally (Figure 5B). The eQTLs identified

here were highly correlated with prior eQTL catalogs (Aguet

et al., 2017; O’Brien et al., 2018) despite differing cohorts,

methods, and analysis (Figures 5A and 5B). Furthermore, com-

parison with these independent catalogs support our temporal

categorization of eQTLs, with prenatal-predominant eQTL ef-

fects more correlated in prenatal whole-brain and postnatal-

predominant eQTL effects more correlated in the postnatal

frontal cortex (Figure 5C).

Across multiple metrics, we observe dramatic differences

between eGenes with constant and temporal-predominant

eQTLs (Figures 5D–5G). Compared with other genes ex-

pressed in the cortex, genes affected by constant eQTLs

are more likely to be noncoding and have low pLI scores

and few protein-protein interactions. In contrast, genes regu-

lated by eQTLs with a degree of temporal specificity are

similar to genes for which we did not detect eQTLs. Critically,

we find that pLI score, a measure of sensitivity to variation in

genetic sequence, and eQTL effect size are inversely related

(Figure 5J). Furthermore, prenatal-predominant eGenes are

more common among rising genes, which have their highest

expression during postnatal time. These observations suggest

that developmental and evolutionary constraints limit the pop-

ulation frequency or effect of eQTLs on key developmental

processes, a hypothesis that might be testable in future

studies as additional information concerning spatiotemporal

and cell type specificity of enhancers and eQTLs becomes

available for a variety of tissues. Under this model, constant

eQTLs with high effect sizes tend to influence genes that

tolerate variation in expression (e.g., non-rate-limiting meta-

bolic steps) or are non-critical to brain function, whereas tem-

poral-predominant eQTLs tend to influence genes with critical

roles that are sensitive to variation in genetic sequence but

only to a small degree or at a stage in development when vari-

ation in expression of the gene is tolerated.

The eQTLs identified here also provide insights into CNS

traits and disorders, with co-localization in 13 of 108 GWAS

loci for schizophrenia and 52 of 1,271 GWAS loci for educa-

tional attainment, including the lncRNA LOC101926933 and

the protein-coding gene RHEBL1 (Figure 6). LOC101926933

remains largely uncharacterized, whereas RHEBL1 (Ras ho-

molog enriched in brain-like 1) is a highly conserved G-protein

that activates mTOR (Bonneau and Parmar, 2012), a pathway

that has been implicated previously in neurodevelopmental

and neurodegenerative disorders (Lipton and Sahin, 2014).

Our results suggest that higher expression of RHEBL1,



which may lead to greater mTOR activation, is associated with

increased educational attainment. Of note, RHEBL1 has a pLI

score of 0, suggesting that loss of one allele does not lead to a

selective disadvantage. Higher-resolution datasets across

development, including single cells, additional brain regions,

and larger sample sizes, along with complementary analyses

of brains of individuals with neuropsychiatric disorders and

rare genetic disorders, are likely to provide additional insights.

The combination of genomic and transcriptomic data across

development allows us to interrogate human cortical develop-

ment from a molecular perspective at a higher resolution than

before. Understanding patterns of temporal and cell type spec-

ificity, along with eQTL colocalization to resolve GWAS loci,

has already provided insights into the pathology underlying

neuropsychiatric disorders. Further delineation of these patterns

is likely to be critical for a detailed understanding of etiology as a

foundation for therapeutic development.
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Matys, V., Fricke, E., Geffers, R., Gössling, E., Haubrock, M., Hehl, R., Horn-

ischer, K., Karas, D., Kel, A.E., Kel-Margoulis, O.V., et al. (2003). TRANSFAC:

transcriptional regulation, from patterns to profiles. Nucleic Acids Res. 31,

374–378.

McCarroll, S.A., and Hyman, S.E. (2013). Progress in the genetics of polygenic

brain disorders: significant new challenges for neurobiology. Neuron 80,

578–587.

McKenna, A., Hanna, M., Banks, E., Sivachenko, A., Cibulskis, K., Kernytsky,

A., Garimella, K., Altshuler, D., Gabriel, S., Daly, M., and DePristo, M.A. (2010).

The Genome Analysis Toolkit: a MapReduce framework for analyzing next-

generation DNA sequencing data. Genome Res. 20, 1297–1303.

McLaren, W., Gil, L., Hunt, S.E., Riat, H.S., Ritchie, G.R., Thormann, A., Flicek,

P., and Cunningham, F. (2016). The Ensembl Variant Effect Predictor. Genome

Biol. 17, 122.

Mostafavi, S., Battle, A., Zhu, X., Urban, A.E., Levinson, D., Montgomery, S.B.,

and Koller, D. (2013). Normalizing RNA-sequencing data by modeling hidden

covariates with prior knowledge. PLoS ONE 8, e68141.

Myers, A.J., Gibbs, J.R., Webster, J.A., Rohrer, K., Zhao, A., Marlowe, L., Ka-

leem, M., Leung, D., Bryden, L., Nath, P., et al. (2007). A survey of genetic hu-

man cortical gene expression. Nat. Genet. 39, 1494–1499.

Network and Pathway Analysis Subgroup of the Psychiatric Genomics Con-

sortium (2015). Corrigendum: Psychiatric genome-wide association study an-

alyses implicate neuronal, immune and histone pathways. Nat. Neurosci. 18,

926.

Nicolae, D.L., Gamazon, E., Zhang, W., Duan, S., Dolan, M.E., and Cox, N.J.

(2010). Trait-associated SNPs are more likely to be eQTLs: annotation to

enhance discovery from GWAS. PLoS Genet. 6, e1000888.

Nowakowski, T.J., Bhaduri, A., Pollen, A.A., Alvarado, B., Mostajo-Radji, M.A.,

Di Lullo, E., Haeussler, M., Sandoval-Espinosa, C., Liu, S.J., Velmeshev, D.,

et al. (2017). Spatiotemporal gene expression trajectories reveal develop-

mental hierarchies of the human cortex. Science 358, 1318–1323.

O’Brien, H.E., Hannon, E., Hill, M.J., Toste, C.C., Robertson, M.J., Morgan,

J.E., McLaughlin, G., Lewis, C.M., Schalkwyk, L.C., Hall, L.S., et al. (2018).

Expression quantitative trait loci in the developing human brain and their

enrichment in neuropsychiatric disorders. Genome Biol. 19, 194.

Parikshak, N.N., Luo, R., Zhang, A., Won, H., Lowe, J.K., Chandran, V., Hor-

vath, S., and Geschwind, D.H. (2013). Integrative functional genomic analyses

implicate specific molecular pathways and circuits in autism. Cell 155, 1008–

1021.

Pedersen, B.S., and Quinlan, A.R. (2017). Who’s Who? Detecting and

Resolving Sample Anomalies in Human DNA Sequencing Studies with Peddy.

Am. J. Hum. Genet. 100, 406–413.

Pletikos, M., Sousa, A.M., Sedmak, G., Meyer, K.A., Zhu, Y., Cheng, F., Li, M.,

Kawasawa, Y.I., and Sestan, N. (2014). Temporal specification and bilaterality

of human neocortical topographic gene expression. Neuron 81, 321–332.

Pruim, R.J., Welch, R.P., Sanna, S., Teslovich, T.M., Chines, P.S., Gliedt, T.P.,

Boehnke, M., Abecasis, G.R., and Willer, C.J. (2010). LocusZoom: regional

visualization of genome-wide association scan results. Bioinformatics 26,

2336–2337.

Quinlan, A.R., and Hall, I.M. (2010). BEDTools: a flexible suite of utilities for

comparing genomic features. Bioinformatics 26, 841–842.

Regier, A.A., Farjoun, Y., Larson, D.E., Krasheninina, O., Kang, H.M., Howri-

gan, D.P., Chen, B.J., Kher, M., Banks, E., Ames, D.C., et al. (2018). Functional

equivalence of genome sequencing analysis pipelines enables harmonized

variant calling across human genetics projects. Nat. Commun. 9, 4038.

Reilly, S.K., Yin, J., Ayoub, A.E., Emera, D., Leng, J., Cotney, J., Sarro, R.,

Rakic, P., and Noonan, J.P. (2015). Evolutionary genomics. Evolutionary

changes in promoter and enhancer activity during human corticogenesis. Sci-

ence 347, 1155–1159.

Reimand, J., Arak, T., and Vilo, J. (2011). g:Profiler–a web server for functional

interpretation of gene lists (2011 update). Nucleic Acids Res. 39, W307-15.
16 Cell Reports 31, 107489, April 7, 2020
Ritchie, M.E., Phipson, B., Wu, D., Hu, Y., Law, C.W., Shi, W., and Smyth, G.K.

(2015). limma powers differential expression analyses for RNA-sequencing

and microarray studies. Nucleic Acids Res. 43, e47.

Roeder, K., Lynch, K.G., and Nagin, D.S. (1999). Modeling Uncertainty in

Latent Class Membership: A Case Study in Criminology. J. Am. Stat. Assoc.

94, 766–776.

Rosti, R.O., Sadek, A.A., Vaux, K.K., and Gleeson, J.G. (2014). The genetic

landscape of autism spectrum disorders. Dev. Med. Child Neurol. 56, 12–18.

Sanders, S.J., He, X., Willsey, A.J., Ercan-Sencicek, A.G., Samocha, K.E., Ci-

cek, A.E., Murtha, M.T., Bal, V.H., Bishop, S.L., Dong, S., et al.; Autism

Sequencing Consortium (2015). Insights into Autism Spectrum Disorder

Genomic Architecture and Biology from 71 Risk Loci. Neuron 87, 1215–1233.

Sanders, S.J., Neale, B.M., Huang, H., Werling, D.M., An, J.Y., Dong, S., Abe-

casis, G., Arguello, P.A., Blangero, J., Boehnke, M., et al.; Whole Genome

Sequencing for Psychiatric Disorders (WGSPD) (2017). Whole genome

sequencing in psychiatric disorders: the WGSPD consortium. Nat. Neurosci.

20, 1661–1668.

Satterstrom, F.K., Kosmicki, J.A., Wang, J., Breen, M.S., De Rubeis, S., An,

J.Y., Peng, M., Collins, R., Grove, J., Klei, L., et al. (2020). Large-Scale Exome

Sequencing Study Implicates Both Developmental and Functional Changes in

the Neurobiology of Autism. Cell 180, 568–584.e23.

SchizophreniaWorking Group of the Psychiatric Genomics Consortium (2014).

Biological insights from 108 schizophrenia-associated genetic loci. Nature

511, 421–427.

Schmidt, E.M., Zhang, J., Zhou, W., Chen, J., Mohlke, K.L., Chen, Y.E., and

Willer, C.J. (2015). GREGOR: evaluating global enrichment of trait-associated

variants in epigenomic features using a systematic, data-driven approach.

Bioinformatics 31, 2601–2606.

Sestan, N., and State, M.W. (2018). Lost in Translation: Traversing the Com-

plex Path from Genomics to Therapeutics in Autism Spectrum Disorder.

Neuron 100, 406–423.

Shaw, P., Gogtay, N., and Rapoport, J. (2010). Childhood psychiatric disor-

ders as anomalies in neurodevelopmental trajectories. Hum. Brain Mapp.

31, 917–925.

Silbereis, J.C., Pochareddy, S., Zhu, Y., Li, M., and Sestan, N. (2016). The

Cellular and Molecular Landscapes of the Developing Human Central Nervous

System. Neuron 89, 248–268.

Stark, C., Breitkreutz, B.J., Reguly, T., Boucher, L., Breitkreutz, A., and Tyers,

M. (2006). BioGRID: a general repository for interaction datasets. Nucleic

Acids Res. 34, D535–D539.

Tang, S.X., and Gur, R.E. (2018). Longitudinal perspectives on the psychosis

spectrum in 22q11.2 deletion syndrome. Am. J. Med. Genet. A. 176, 2192–

2202.

Tau, G.Z., and Peterson, B.S. (2010). Normal development of brain circuits.

Neuropsychopharmacology 35, 147–168.

Turner, T.N., and Eichler, E.E. (2019). The Role of De Novo Noncoding Regu-

latory Mutations in Neurodevelopmental Disorders. Trends Neurosci. 42,

115–127.

Velmeshev, D., Schirmer, L., Jung, D., Haeussler, M., Perez, Y., Mayer, S.,

Bhaduri, A., Goyal, N., Rowitch, D.H., and Kriegstein, A.R. (2019). Single-cell

genomics identifies cell type-specific molecular changes in autism. Science

364, 685–689.

Walker, R.L., Ramaswami, G., Hartl, C., Mancuso, N., Gandal, M.J., de la

Torre-Ubieta, L., Pasaniuc, B., Stein, J.L., and Geschwind, D.H. (2019). Ge-

netic Control of Expression and Splicing in Developing Human Brain Informs

Disease Mechanisms. Cell 179, 750–771.e722.

Wang, D., Liu, S., Warrell, J., Won, H., Shi, X., Navarro, F.C.P., Clarke, D., Gu,

M., Emani, P., Yang, Y.T., et al.; PsychENCODE Consortium (2018). Compre-

hensive functional genomic resource and integrative model for the human

brain. Science 362, 6420.

Werling, D.M., Brand, H., An, J.Y., Stone, M.R., Zhu, L., Glessner, J.T., Collins,

R.L., Dong, S., Layer, R.M., Markenscoff-Papadimitriou, E., et al. (2018). An

http://refhub.elsevier.com/S2211-1247(20)30367-3/sref67
http://refhub.elsevier.com/S2211-1247(20)30367-3/sref67
http://refhub.elsevier.com/S2211-1247(20)30367-3/sref68
http://refhub.elsevier.com/S2211-1247(20)30367-3/sref68
http://refhub.elsevier.com/S2211-1247(20)30367-3/sref68
http://refhub.elsevier.com/S2211-1247(20)30367-3/sref68
http://refhub.elsevier.com/S2211-1247(20)30367-3/sref69
http://refhub.elsevier.com/S2211-1247(20)30367-3/sref69
http://refhub.elsevier.com/S2211-1247(20)30367-3/sref69
http://refhub.elsevier.com/S2211-1247(20)30367-3/sref70
http://refhub.elsevier.com/S2211-1247(20)30367-3/sref70
http://refhub.elsevier.com/S2211-1247(20)30367-3/sref70
http://refhub.elsevier.com/S2211-1247(20)30367-3/sref70
http://refhub.elsevier.com/S2211-1247(20)30367-3/sref71
http://refhub.elsevier.com/S2211-1247(20)30367-3/sref71
http://refhub.elsevier.com/S2211-1247(20)30367-3/sref71
http://refhub.elsevier.com/S2211-1247(20)30367-3/sref72
http://refhub.elsevier.com/S2211-1247(20)30367-3/sref72
http://refhub.elsevier.com/S2211-1247(20)30367-3/sref72
http://refhub.elsevier.com/S2211-1247(20)30367-3/sref73
http://refhub.elsevier.com/S2211-1247(20)30367-3/sref73
http://refhub.elsevier.com/S2211-1247(20)30367-3/sref73
http://refhub.elsevier.com/S2211-1247(20)30367-3/sref74
http://refhub.elsevier.com/S2211-1247(20)30367-3/sref74
http://refhub.elsevier.com/S2211-1247(20)30367-3/sref74
http://refhub.elsevier.com/S2211-1247(20)30367-3/sref74
http://refhub.elsevier.com/S2211-1247(20)30367-3/sref75
http://refhub.elsevier.com/S2211-1247(20)30367-3/sref75
http://refhub.elsevier.com/S2211-1247(20)30367-3/sref75
http://refhub.elsevier.com/S2211-1247(20)30367-3/sref76
http://refhub.elsevier.com/S2211-1247(20)30367-3/sref76
http://refhub.elsevier.com/S2211-1247(20)30367-3/sref76
http://refhub.elsevier.com/S2211-1247(20)30367-3/sref76
http://refhub.elsevier.com/S2211-1247(20)30367-3/sref77
http://refhub.elsevier.com/S2211-1247(20)30367-3/sref77
http://refhub.elsevier.com/S2211-1247(20)30367-3/sref77
http://refhub.elsevier.com/S2211-1247(20)30367-3/sref77
http://refhub.elsevier.com/S2211-1247(20)30367-3/sref78
http://refhub.elsevier.com/S2211-1247(20)30367-3/sref78
http://refhub.elsevier.com/S2211-1247(20)30367-3/sref78
http://refhub.elsevier.com/S2211-1247(20)30367-3/sref78
http://refhub.elsevier.com/S2211-1247(20)30367-3/sref79
http://refhub.elsevier.com/S2211-1247(20)30367-3/sref79
http://refhub.elsevier.com/S2211-1247(20)30367-3/sref79
http://refhub.elsevier.com/S2211-1247(20)30367-3/sref80
http://refhub.elsevier.com/S2211-1247(20)30367-3/sref80
http://refhub.elsevier.com/S2211-1247(20)30367-3/sref80
http://refhub.elsevier.com/S2211-1247(20)30367-3/sref81
http://refhub.elsevier.com/S2211-1247(20)30367-3/sref81
http://refhub.elsevier.com/S2211-1247(20)30367-3/sref81
http://refhub.elsevier.com/S2211-1247(20)30367-3/sref81
http://refhub.elsevier.com/S2211-1247(20)30367-3/sref82
http://refhub.elsevier.com/S2211-1247(20)30367-3/sref82
http://refhub.elsevier.com/S2211-1247(20)30367-3/sref83
http://refhub.elsevier.com/S2211-1247(20)30367-3/sref83
http://refhub.elsevier.com/S2211-1247(20)30367-3/sref83
http://refhub.elsevier.com/S2211-1247(20)30367-3/sref83
http://refhub.elsevier.com/S2211-1247(20)30367-3/sref84
http://refhub.elsevier.com/S2211-1247(20)30367-3/sref84
http://refhub.elsevier.com/S2211-1247(20)30367-3/sref84
http://refhub.elsevier.com/S2211-1247(20)30367-3/sref84
http://refhub.elsevier.com/S2211-1247(20)30367-3/sref85
http://refhub.elsevier.com/S2211-1247(20)30367-3/sref85
http://refhub.elsevier.com/S2211-1247(20)30367-3/sref86
http://refhub.elsevier.com/S2211-1247(20)30367-3/sref86
http://refhub.elsevier.com/S2211-1247(20)30367-3/sref86
http://refhub.elsevier.com/S2211-1247(20)30367-3/sref87
http://refhub.elsevier.com/S2211-1247(20)30367-3/sref87
http://refhub.elsevier.com/S2211-1247(20)30367-3/sref87
http://refhub.elsevier.com/S2211-1247(20)30367-3/sref88
http://refhub.elsevier.com/S2211-1247(20)30367-3/sref88
http://refhub.elsevier.com/S2211-1247(20)30367-3/sref89
http://refhub.elsevier.com/S2211-1247(20)30367-3/sref89
http://refhub.elsevier.com/S2211-1247(20)30367-3/sref89
http://refhub.elsevier.com/S2211-1247(20)30367-3/sref89
http://refhub.elsevier.com/S2211-1247(20)30367-3/sref90
http://refhub.elsevier.com/S2211-1247(20)30367-3/sref90
http://refhub.elsevier.com/S2211-1247(20)30367-3/sref90
http://refhub.elsevier.com/S2211-1247(20)30367-3/sref90
http://refhub.elsevier.com/S2211-1247(20)30367-3/sref90
http://refhub.elsevier.com/S2211-1247(20)30367-3/sref91
http://refhub.elsevier.com/S2211-1247(20)30367-3/sref91
http://refhub.elsevier.com/S2211-1247(20)30367-3/sref91
http://refhub.elsevier.com/S2211-1247(20)30367-3/sref91
http://refhub.elsevier.com/S2211-1247(20)30367-3/sref92
http://refhub.elsevier.com/S2211-1247(20)30367-3/sref92
http://refhub.elsevier.com/S2211-1247(20)30367-3/sref92
http://refhub.elsevier.com/S2211-1247(20)30367-3/sref93
http://refhub.elsevier.com/S2211-1247(20)30367-3/sref93
http://refhub.elsevier.com/S2211-1247(20)30367-3/sref93
http://refhub.elsevier.com/S2211-1247(20)30367-3/sref93
http://refhub.elsevier.com/S2211-1247(20)30367-3/sref94
http://refhub.elsevier.com/S2211-1247(20)30367-3/sref94
http://refhub.elsevier.com/S2211-1247(20)30367-3/sref94
http://refhub.elsevier.com/S2211-1247(20)30367-3/sref95
http://refhub.elsevier.com/S2211-1247(20)30367-3/sref95
http://refhub.elsevier.com/S2211-1247(20)30367-3/sref95
http://refhub.elsevier.com/S2211-1247(20)30367-3/sref96
http://refhub.elsevier.com/S2211-1247(20)30367-3/sref96
http://refhub.elsevier.com/S2211-1247(20)30367-3/sref96
http://refhub.elsevier.com/S2211-1247(20)30367-3/sref97
http://refhub.elsevier.com/S2211-1247(20)30367-3/sref97
http://refhub.elsevier.com/S2211-1247(20)30367-3/sref97
http://refhub.elsevier.com/S2211-1247(20)30367-3/sref98
http://refhub.elsevier.com/S2211-1247(20)30367-3/sref98
http://refhub.elsevier.com/S2211-1247(20)30367-3/sref98
http://refhub.elsevier.com/S2211-1247(20)30367-3/sref99
http://refhub.elsevier.com/S2211-1247(20)30367-3/sref99
http://refhub.elsevier.com/S2211-1247(20)30367-3/sref100
http://refhub.elsevier.com/S2211-1247(20)30367-3/sref100
http://refhub.elsevier.com/S2211-1247(20)30367-3/sref100
http://refhub.elsevier.com/S2211-1247(20)30367-3/sref101
http://refhub.elsevier.com/S2211-1247(20)30367-3/sref101
http://refhub.elsevier.com/S2211-1247(20)30367-3/sref101
http://refhub.elsevier.com/S2211-1247(20)30367-3/sref101
http://refhub.elsevier.com/S2211-1247(20)30367-3/sref102
http://refhub.elsevier.com/S2211-1247(20)30367-3/sref102
http://refhub.elsevier.com/S2211-1247(20)30367-3/sref102
http://refhub.elsevier.com/S2211-1247(20)30367-3/sref102
http://refhub.elsevier.com/S2211-1247(20)30367-3/sref103
http://refhub.elsevier.com/S2211-1247(20)30367-3/sref103
http://refhub.elsevier.com/S2211-1247(20)30367-3/sref103
http://refhub.elsevier.com/S2211-1247(20)30367-3/sref103
http://refhub.elsevier.com/S2211-1247(20)30367-3/sref104
http://refhub.elsevier.com/S2211-1247(20)30367-3/sref104


analytical framework for whole-genome sequence association studies and its

implications for autism spectrum disorder. Nat. Genet. 50, 727–736.

Willer, C.J., Schmidt, E.M., Sengupta, S., Peloso, G.M., Gustafsson, S., Ka-

noni, S., Ganna, A., Chen, J., Buchkovich, M.L., Mora, S., et al.; Global Lipids

Genetics Consortium (2013). Discovery and refinement of loci associated with

lipid levels. Nat. Genet. 45, 1274–1283.

Willsey, A.J., Sanders, S.J., Li, M., Dong, S., Tebbenkamp, A.T., Muhle, R.A.,

Reilly, S.K., Lin, L., Fertuzinhos, S., Miller, J.A., et al. (2013). Coexpression net-

works implicate human midfetal deep cortical projection neurons in the path-

ogenesis of autism. Cell 155, 997–1007.

Winter, A.G.,Wildenhain, J., and Tyers, M. (2011). BioGRID REST Service, Bio-

gridPlugin2 and BioGRID WebGraph: new tools for access to interaction data

at BioGRID. Bioinformatics 27, 1043–1044.

Wood, A.R., Esko, T., Yang, J., Vedantam, S., Pers, T.H., Gustafsson, S., Chu,

A.Y., Estrada, K., Luan, J., Kutalik, Z., et al.; Electronic Medical Records and

Genomics (eMEMERGEGE) Consortium; MIGen Consortium; PAGEGE Con-
sortium; LifeLines Cohort Study (2014). Defining the role of common variation

in the genomic and biological architecture of adult human height. Nat. Genet.

46, 1173–1186.

Wray, N.R., Ripke, S., Mattheisen, M., Trzaskowski, M., Byrne, E.M., Abdel-

laoui, A., Adams, M.J., Agerbo, E., Air, T.M., Andlauer, T.M.F., et al.; eQTLGen;

23andMe; Major Depressive Disorder Working Group of the Psychiatric Geno-

mics Consortium (2018). Genome-wide association analyses identify 44 risk

variants and refine the genetic architecture of major depression. Nat. Genet.

50, 668–681.

Xu, X., Wells, A.B., O’Brien, D.R., Nehorai, A., and Dougherty, J.D. (2014). Cell

type-specific expression analysis to identify putative cellular mechanisms for

neurogenetic disorders. J. Neurosci. 34, 1420–1431.

Zhu, Y., Sousa, A.M.M., Gao, T., Skarica, M., Li, M., Santpere, G., Esteller-Cu-

cala, P., Juan, D., Ferrández-Peral, L., Gulden, F.O., et al. (2018). Spatiotem-

poral transcriptomic divergence across human and macaque brain develop-

ment. Science 362, 362.
Cell Reports 31, 107489, April 7, 2020 17

http://refhub.elsevier.com/S2211-1247(20)30367-3/sref104
http://refhub.elsevier.com/S2211-1247(20)30367-3/sref104
http://refhub.elsevier.com/S2211-1247(20)30367-3/sref105
http://refhub.elsevier.com/S2211-1247(20)30367-3/sref105
http://refhub.elsevier.com/S2211-1247(20)30367-3/sref105
http://refhub.elsevier.com/S2211-1247(20)30367-3/sref105
http://refhub.elsevier.com/S2211-1247(20)30367-3/sref106
http://refhub.elsevier.com/S2211-1247(20)30367-3/sref106
http://refhub.elsevier.com/S2211-1247(20)30367-3/sref106
http://refhub.elsevier.com/S2211-1247(20)30367-3/sref106
http://refhub.elsevier.com/S2211-1247(20)30367-3/sref107
http://refhub.elsevier.com/S2211-1247(20)30367-3/sref107
http://refhub.elsevier.com/S2211-1247(20)30367-3/sref107
http://refhub.elsevier.com/S2211-1247(20)30367-3/sref108
http://refhub.elsevier.com/S2211-1247(20)30367-3/sref108
http://refhub.elsevier.com/S2211-1247(20)30367-3/sref108
http://refhub.elsevier.com/S2211-1247(20)30367-3/sref108
http://refhub.elsevier.com/S2211-1247(20)30367-3/sref108
http://refhub.elsevier.com/S2211-1247(20)30367-3/sref108
http://refhub.elsevier.com/S2211-1247(20)30367-3/sref109
http://refhub.elsevier.com/S2211-1247(20)30367-3/sref109
http://refhub.elsevier.com/S2211-1247(20)30367-3/sref109
http://refhub.elsevier.com/S2211-1247(20)30367-3/sref109
http://refhub.elsevier.com/S2211-1247(20)30367-3/sref109
http://refhub.elsevier.com/S2211-1247(20)30367-3/sref109
http://refhub.elsevier.com/S2211-1247(20)30367-3/sref110
http://refhub.elsevier.com/S2211-1247(20)30367-3/sref110
http://refhub.elsevier.com/S2211-1247(20)30367-3/sref110
http://refhub.elsevier.com/S2211-1247(20)30367-3/sref111
http://refhub.elsevier.com/S2211-1247(20)30367-3/sref111
http://refhub.elsevier.com/S2211-1247(20)30367-3/sref111
http://refhub.elsevier.com/S2211-1247(20)30367-3/sref111


STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Biological Samples

See Table S1 for a list of human post-mortem

tissue included in the study.
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Chemicals, Peptides, and Recombinant Proteins

Agencourt AMPure XP beads Beckman Coulter A63881

RNAClean XP beads Beckman Coulter A63987

RNA ScreenTape Agilent 5067-5576

RNA ScreenTape Sample Buffer Agilent 5067-5577

D1000 ScreenTape Agilent 5067-5582

D1000 Sample Buffer Agilent 5067-5602

Stainless Steel Beads 0.9 – 2.0 mm blend Next Advance SSB14B

Critical Commercial Assays

mirVana miRNA Isolation Kit, with phenol Thermo Fisher Scientific AM1560

TURBO DNA-free Kit Thermo Fisher Scientific AM1907

TruSeq Stranded Total RNA HT Sample Prep

Kit with Ribo-Zero Gold kit

Illumina 20020599

QIAamp DNA Mini Kit (250) QIAGEN 51306

Deposited Data

Raw WGS data https://www.synapse.org/

#!Synapse:syn4921369

syn21557948

Processed WGS data https://www.synapse.org/

#!Synapse:syn4921369

syn21557948

Raw RNA-seq data https://www.synapse.org/

#!Synapse:syn4921369

syn21557948

Processed RNA-seq data https://www.synapse.org/

#!Synapse:syn4921369

syn21557948

Software and Algorithms

HTSeq v.0.6.0. Anders et al., 2015 https://htseq.readthedocs.io/en/master/

STAR v.2.4.2a Dobin et al., 2013 https://github.com/alexdobin/STAR

limma v.3.36.5 Ritchie et al., 2015 http://bioconductor.org/packages/release/

bioc/html/limma.html

HCP Mostafavi et al., 2013 https://github.com/mvaniterson/Rhcpp

SVA v. 3.28.0 Leek et al., 2012 https://www.bioconductor.org/packages/

release/bioc/html/sva.html

rsq v.1.1 Zhang Lab, Purdue https://cran.r-project.org/web/packages/

rsq/index.html

igraph v.1.2.2 RStudio, Inc., Boston https://cran.r-project.org/web/packages/

igraph/index.html

SANTA v.2.14.0 Cornish and Markowetz, 2014 https://bioconductor.org/packages/release/

bioc/html/SANTA.html

WGCNA v 1.63 Langfelder and Horvath, 2008 https://horvath.genetics.ucla.edu/html/

CoexpressionNetwork/Rpackages/WGCNA/

BWA v0.7.15 Li and Durbin, 2009 https://github.com/lh3/bwa/releases

Picard v2.17.5 for sorting & removing

duplicate reads, v2.18.1 for checking

sample sequencing depth

Broad Institute, Boston https://github.com/broadinstitute/picard/
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GenomeAnalysisToolKit GATK v3.8-0-

ge9d806836

McKenna et al., 2010 https://github.com/broadgsa/gatk

Sentieon v201711.01 Freed et al., 2017 https://www.sentieon.com/products/

VerifyBamId v1.1.3 Jun et al., 2012 https://github.com/statgen/verifyBamID/

Peddy v0.3.2 Pedersen and Quinlan, 2017 https://github.com/brentp/peddy

Hail v0.1 Github https://github.com/hail-is/hail

coloc Giambartolomei et al., 2014 http://cran.r-project.org/web/packages/coloc

MAGMA v1.07b de Leeuw et al., 2015 https://ctg.cncr.nl/software/magma

gProfileR v0.6.7 Reimand et al., 2011 https://github.com/cran/gProfileR/releases

GREGOR Schmidt et al., 2015 http://csg.sph.umich.edu/GREGOR/index.

php/site/download

Whole-genome analysis pipeline Sanders Lab, UCSF https://github.com/sanderslab/psychcore-

compute-platform

Other

GENCODE annotation v21 (GRCh38) Harrow et al., 2012 https://www.gencodegenes.org/human/

release_21.html

HUGO Gene Nomenclature Committee

Complete dataset (2018)

European Bioinformatics

Institute, Cambridge, UK

ftp://ftp.ebi.ac.uk/pub/databases/

genenames/new/tsv/hgnc_complete_set.txt

BioGRID (v3.4.132) Stark et al., 2006 https://downloads.thebiogrid.org/BioGRID/

Release-Archive/BIOGRID-3.4.132/

ENSEMBLE VEP (v90) McLaren et al., 2016 https://github.com/Ensembl/ensembl-

vep/releases
LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources and reagents should be directed to and will be fulfilled by Stephan Sanders (stephan.

sanders@ucsf.edu).

This study did not generate new unique reagents.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

This study was conducted using postmortem human brain specimens from tissue collections at the Department of Neuroscience at

Yale University School of Medicine. Additional specimens were procured from the Birth Defects Research Laboratory at the Univer-

sity of Washington, Advanced Bioscience Resources Inc., Human Brain Collection Core (HBCC), the Brain and Tissue Bank at the

University of Maryland, the MRC-Wellcome Trust Human Developmental Biology Resource at the Institute of Human Genetics, Uni-

versity of Newcastle, UK, and the Human Fetal Tissue Repository at the Albert Einstein College of Medicine (AECOM). Tissue was

collected after obtaining parental or next of kin consent and with approval by the institutional review boards at the Yale University

School of Medicine, the National Institutes of Health, and at each institution from which tissue specimens were obtained. Tissue

was handled in accordance with ethical guidelines and regulations for the research use of human brain tissue set forth by the NIH

(https://oir.nih.gov/sites/default/files/uploads/sourcebook/documents/ethical_conduct/guidelines-biospecimen.pdf and the WMA

Declaration of Helsinki (https://www.wma.net/policies-post/wma-declaration-of-helsinki-ethical-principles-for-medical-research-

involving-human-subjects/).

All available non-identifying information was recorded for each specimen in Table S1. In total, 176 postmortem brain specimens

(104 male, 72 female; postmortem interval of 21.7 ± 15.9 (mean ± SD) hours and pH, 6.41 ± 0.35) ranging in age from 6 post-concep-

tion weeks to 20 postnatal years (Figure 1; Table S1) were included in this study. Fetal age was extrapolated based on the date of the

mother’s last menstruation, characteristics of the fetus noted upon ultrasonography scanning, foot length of the fetus, and visual in-

spection. The postmortem interval (PMI) was defined as hours between time of death and time when tissue samples were frozen.

METHOD DETAILS

Tissue dissection
Tissue was dissected as described previously (Kang et al., 2011). Samples collected from 6 – 9 post-conception weeks specimens

contained the entire thickness of the cerebral wall. Samples collected from 12 to 22 post-conception weeks specimens contained the
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cortical plate. Samples from 35 post-conception weeks to 20 postnatal years were dissected such that the entire gray matter (layer

1-6) and part of the underlying subplate (4 – 12 postnatal months) or white matter (1 – 20 postnatal years) were collected.

RNA extraction and quality assessment
Total RNA was extracted using mirVana kit (Ambion) with some modificationsto the manufacturer’s protocol, as described below.

Each tissue sample was pulverized with liquid nitrogen in a prechilled mortar and pestle and transferred to a chilled safe-lock micro-

centrifuge tube (Eppendorf). Per tissue mass, equal mass of chilled stainless-steel beads (Next Advance, catalog # SSB14B) along

with one volume of lysis/binding buffer were added. Tissue was homogenized for 1 min in Bullet Blender (Next Advance) and incu-

bated at 37�C for 1 min. Another nine volumes of the lysis/binding buffer were added, homogenized for 1 min, and incubated at 37�C
for 2 min. One-tenth volume of miRNA Homogenate Additive was added, and extraction was carried out according to the manufac-

turer’s protocol. RNA was treated with DNase using TURBO DNA-free Kit (Ambion/Life Technologies) and RNA integrity was

measured using Agilent 2200 TapeStation System.

RNA-seq library preparation and sequencing
Barcoded libraries for RNA-seqwere preparedwith 5ng of RNA using TruSeq Stranded Total RNAHTSample Prep Kit with Ribo-Zero

Gold kit (Illumina) per manufacturer’s protocol. Paired-end sequencing (100 bp x 2) was performed on HiSeq 4000 sequencers (Illu-

mina) at Yale Center for Genome Analysis.

DNA extraction
Genomic DNA was isolated using the QIAamp DNAMini Kit (QIAGEN). In detail, approximately 25 mg of brain tissue was transferred

to a chilled safe-lock microcentrifuge tube (Eppendorf) and equal mass of chilled stainless-steel beads (Next Advance, catalog #

SSB14B) along with 90 ml of buffer ATL were added. Tissue was homogenized for 1 min in Bullet Blender (Next Advance) and incu-

bated at 37�C for 1min. Another 90 ul of buffer ATL was added and blended for an additional minute. After incubation on ice for 5min,

tubes were gently centrifuged to collect beads at the bottom. Supernatant was transferred to a new tube and 20 ml of Proteinase K

was added. Sample was incubated at 56�C for 3 hours in a shaking heat block. After incubation, genomic DNA was further purified

following the manufacturer’s protocol. DNA was eluted in nuclease free water and concentration was estimated by nanodrop.

Whole-genome sequencing
DNA library preparation and sequencing were carried out at GENEWIZ (New Jersey). Before library preparation, the concentration of

the DNA was measured using a fluorescent assay and DNA quality was assessed by visualization on agarose gels. PCR-free DNA

library preparation was performed and resulting libraries were sequenced at 2x150 bp to achieve mean coverage of 30x (Table S1).

QUANTIFICATION AND STATISTICAL ANALYSIS

WGS variant calling
Using the pipeline from the Centers for the CommonDisease Genomics project (Regier et al., 2018), FASTQ reads were aligned to the

GRCh38 reference from the 1000 Genomes Project using BWA-MEM version 0.7.15 (Li and Durbin, 2009). Reads were sorted and

duplicates were removedwith Picard, version 2.17.5 (https://github.com/broadinstitute/picard/); base quality score recalibration was

then performed with the Genome Analysis Toolkit (GATK), v3.8-0-ge9d806836 (McKenna et al., 2010). Variant calling and joint gen-

otyping were done with the Haplotyper and Genotyper tools from Sentieon v201711.01, a toolkit containing modules that are math-

ematically equivalent to their counterparts in the GATK (Freed et al., 2017). SNP and indel recalibration were performed on the joint

genotyped VCF file. Variant Quality Score Recalibration (VQSR) metrics were created from a training set of highly validated variant

resources: dbSNP build 138, HapMap 3.3, 1000 Genomes OMNI 2.5, and 1000 Genomes Phase 1. For the following analyses, we

excluded: variant calls with any VQSR tranches (keeping ‘‘PASS’’ only), variants located in low-complexity regions (Li, 2014), variants

located on non-canonical chromosomes (decoy chromosomes or contigs), indels > 50 bp, single nucleotide variants (SNVs) with

allele balance > 0.78 or < 0.22 (indels > 0.8 or < 0.2), variants with < 90% call rate, and variants and genotypes that did not meet

high quality thresholds as identified in an ROC-based optimization procedure using family-based WGS data (Werling et al., 2018).

Variants with a minor allele frequency of R 5% in both the prenatal (periods 1-6; N = 112) and postnatal (periods 8-12; N = 60)

samples and Hardy Weinberg equilibrium p value R 1x10�12, were included in downstream expression quantitative trait locus

(eQTL) analysis (N = 6,573,196 variants). For annotation and subsequent analyses, we converted the final VCF into Variant Dataset

Format using Hail version 0.1. SNPs and insertions/deletions (up to 50bp) annotation based on the GENCODE comprehensive

version 21 (Harrow et al., 2012) using Ensemble VEP version 90 (McLaren et al., 2016).

RNA-seq alignment and gene-level read count quantification
RNA-seq reads were aligned to the human genome (hg38/GRCh38) using STAR aligner (Dobin et al., 2013) and gene-level read

counts were calculated using HTSeq (Anders et al., 2015) based on GENCODE v21 annotation (Harrow et al., 2012).

Read counts per gene were then converted to counts per million (CPM), which were logarithmically scaled to base 2 (log2CPM). Of

the 60,155 genes assessed, 23,782 were defined as being cortically expressed, based on CPM R 1 in at least 50% of samples of
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either sex in at least one of the 12 developmental periods (Table S2). For these 23,782 genes, the median log2CPM ranged from�5.9

to 12.3, with a median of 2.3.

RNA-seq normalization and technical artifact correction
The read count data matrix of 176 samples by 60,155 genes (Table S2) was normalized as follows:

d Step 1: Read count data matrix converted to counts per million (CPM).

d Step 2: Genes with CPMR 1 CPM in at least 50% of the samples in any one sex in any one period were included; 23,782 genes

passed these criteria.

d Step 3: CPM values were transformed to log2(CPM) using the voom function in the limma R package (Law et al., 2014; Ritchie

et al., 2015).

d Step 4A: In order to correct for the technical artifacts, we performed hidden covariate analysis on the residuals of the expression

matrix after developmental period and sex were subtracted from the log2(CPM) data matrix using the hidden covariate analysis

method (HCP) (Mostafavi et al., 2013).

d Step 4B: In parallel, we performed surrogate variable analysis (SVA) on residuals of the expression matrix after developmental

period and sex were subtracted from the log2(CPM) data matrix using the SVA R package (Leek et al., 2012).

d Step 5: In each of Step 4A and 4B, we subtracted contributions from 20 hidden covariates (HCP) and 2 surrogate variables

(SVA) from the log2(CPM) data matrix.

Unadjusted log2CPM gene expression data for 176 samples by 23,782 genes was used for expression trajectory (Figure 2) and

WGCNA analyses (Figure 3), while the adjusted (HCP/SVA) values were used for eQTL analysis.

DATA QUALITY AND SAMPLE IDENTITY ASSESSMENT

To confirm that the WGS and RNA-seq data from each sample were of sufficient quality for downstream analysis and corresponded

to the same individual, a series of quality metrics and checks were performed (Table S1).

For the WGS data, coverage metrics were assessed using PicardTools (v2.18.1). Mean coverage per sample ranged from 22.7-

65.4x, with a cohort median of 31.5x. Across all samples, 92.1%–93.6% of the mapped genome was covered at 10x or greater

(mean of 92.8%). The FREEMIXmetric from VerifyBamId (v1.1.3; Jun et al., 2012) was used to identify samples with potential contam-

ination, with a maximum observed FREEMIX score of 0.064, suggesting no contamination (Lek et al., 2016).

Sample identity was verified by comparing sex and genotype between the WGS and RNA-seq data. In the WGS data, sex was

determined from chromosome X heterozygosity using Peddy (v0.3.2; (Pedersen and Quinlan, 2017)), with the Peddy hg19.sites con-

verted to GRCh38 using the UCSC Genome Browser LiftOver utility. High-quality variants with an allele frequency R 1% were ex-

ported from the VCF using Hail for input into Peddy. In the RNA-seq data, sex was determined from the expression levels of XIST

and the 18 most highly expressed genes on chromosome Y: KDM5D, DDX3Y, ZFY, TBL1Y, PCDH11Y, PRKY, USP9Y, RPS4Y1,

TXLNGY, NLGN4Y, TTTY14, UTY, EIF1AY, GYG2P1, TTTY10, TTTY15, KALP. Based on gene-specific expression thresholds deter-

mined by visual inspection of bi-modal expression histograms, each sample’s sex was predicted according to the expression level of

all 19 genes. Sex was consistent in the WGS and RNA-seq data for all 176 samples and matched the recorded sex in 132 out of 134

samples with such data (55/56 females, 77/78 males).

To confirm identity by genotype, we compared the genotypes from 289 common, coding SNPs with high fixation index (FST)

(Sanders et al., 2015), called from both the WGS and RNA-seq data. Genotypes were callable in both data types for 118-206

SNPs per sample (40.8%–71.3% of 289 SNPs; median = 177, 61.2%). SNP variant genotypes were highly concordant between

the WGS and RNA-seq data (median 87.4% concordance between WGS and RNA-seq for the corresponding sample; lowest

concordance 73%), with corresponding samples showing higher concordance than comparisons between all discordant samples.

There was no evidence of duplicate or closely related samples (SNP-based relatedness coefficients from Peddy: �0.000332 to

0.1481).

To confirm the approximate accuracy of samples’ reported age, the expression level of the doublecortin gene (DCX) was exam-

ined. DCX is involved in neuron migration, and is expressed most strongly during prenatal development, with distinctly decreased

postnatal expression. All 176 samples showed the expected DCX expression levels given samples’ reported age. Similar results

across all expressed genes were obtained using principal component analysis (below).

Ancestry estimation
Ancestry was estimated using principal component analysis of common SNPs and indels in theWGS data, run alongside 3,804 addi-

tional individuals of known ancestry with WGS data (parents from the Simons Simplex Collection; An et al., 2018). From 10,688,106

SNPs and indels with allele frequency R 5% in either this dataset, one of the three batches of Simons Simplex Collection data, or

GnomAD genomes, variants were pruned for independence with linkage disequilibrium r2 < 0.1 and then randomly downsampled

to 118,849 variants. Principal component analysis was run using Hail 0.1. The first two principal components were used to classify

samples by ancestry, and the first five principal components were used as covariates in the identification of eQTL loci (Figure S1).
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Using the first two principal components of SNP-based ancestry estimated above, we identified clusters corresponding to African-

American ancestry (42 samples, 24% of cohort), European ancestry (82 sample, 47%), and Asian ancestry (4 samples, 2%), while 48

samples (27%) were outside of these clusters and enriched for individuals who identified as Hispanic, Alaskan native, or mixed

ancestry (Figure S1; Table S1). Analyzing the first principal component of ancestry shows ancestry groups were differentially repre-

sented across developmental periods (F = 3.4, df = 5, p = 0.006, ANOVA), with post hoc analysis showing a greater representation of

African American samples in later developmental periods compared with samples of Hispanic, Alaskan native, or mixed ancestry

(p.adj = 0.02, TukeyHSD).

Estimation of biological and technical covariates in RNA-seq data
PCAwas performed on the covariancematrix of 23,782 cortically expressed genes in 176 samples. A secondary PCAwas performed

on the 11,705 Non-transitional genes in 167 samples (excluding Period 1 and 2 samples) to assess the extent to which removing the

late-fetal transition accounted for variance in gene expression. For each PCA, the variance explained by each principal component

was assessed (Figure S2).

To quantify the relative contributions of biological and technical covariates, we calculated the partial R2 of each covariate with each

principal component using the rsq R package, in a generalized linear model where loadings of principal components are considered

as a response and biological and technical covariates (such as developmental period, sex, sequencing batch, sequencing depth,

RNA integrity number (RIN), mitochondrial RNA proportion, ribosomal RNA proportion, intronic reads proportion, intergenic reads

proportion) are considered as predictor variables (Figure S2).

Comparison between BrainVar and BrainSpan
While the BrainVar bulk tissue RNA-seq dataset catalogs gene expression in the DLPFC of 176 donors across development (6 post-

conception weeks to 20 years of age), BrainSpan catalogs gene expression across 16 brain regions, including DLPFC, in 40 brains

ranging from 8 post-conception weeks to 40 postnatal years (Li et al., 2018). Of note, data were generated for 14 brains in both

BrainVar and BrainSpan. To compare the data from the 14 samples profiled in both BrainSpan (Li et al., 2018) and BrainVar, we re-

processed the entire BrainSpan dataset using the BrainVar RNA-seq analysis pipeline, transforming raw read counts to log2CPM

values. We then filtered to genes that passed BrainVar minimum expression criteria and calculated sample-to-sample and gene-

to-gene Pearson correlation coefficients. We performed principal component analysis on a covariance matrix of the 14 commonly

sequenced samples and the 23,782 BrainVar-expressed genes for both datasets. Despite differences in library preparation, with

BrainSpan using poly-A priming compared to TruSeq randompriming in BrainVar, gene expression was highly correlated per-sample

and per-gene .

BrainSpan also generated ChIP-seq datasets of histone 3 lysine 27 acetylation (H3K27ac), a marker of active genes, in DLPFC

samples (Li et al., 2018). These H3K27ac data mirror the expression profiles in BrainVar, with Falling genes enriched for fetal-biased

H3K27ac peaks and depleted for adult-biased H3K27ac peaks, while Rising genes show the opposite pattern of enrichment

(Figure S2).

Transcriptome temporal trajectory estimation
Statistically, the temporal dynamics of the expression of genes can be modeled as a mixture of K distinct trajectories, each with

Gaussian noise (Jones et al., 2001; Roeder et al., 1999). To delineate the temporal dynamics for K groups of genes, we used the Flex-

mix R package, which provides the expected trajectory for each group and the soft group assignments of individual genes to groups.

The expression of 23,782 genes was transformed as log2(CPM) and normalized by the interquartile range. The samples in epoch

0 were excluded to avoid biased estimation due to very few samples. To identify the overall trend of expression over age, first we

fitted the model on all the 23,782 genes assuming there are three groups and that the expected trajectories for each group can

be represented with degree-4 polynomials on age. Three typical trajectories were identified, including a group of 6,941 genes

with Rising expression levels, a group of 5,173 with Falling expression levels, and a group of 11,705 genes with roughly flat (fitted)

expression over time, which we called Non-transitional (Figure 2B).

We considered whether fewer or more trajectory groups described the data better. If we input more than four groups, adjacent

classes are automatically combined due to the estimated priors falling below the minimum threshold leaving a maximum of four

groups. Using the Akaike information criterion (AIC) and Bayesian information criterion (BIC) we observe the lowest values, indicating

a better fit to the data, for four groups, followed closely by three groups, but not for two groups. However, the additional group does

not reveal a new profile (e.g., genes rising to period 8/9 then falling for 10-12), instead it distinguishes two Rising groups based on

gene variance. Since our objective was to identify temporal gene trajectories, not differences in variance, we selected three groups

for the final model to avoid overfitting and ensure interpretability.

Gene ontology functional enrichment for temporal trajectories
For functional enrichment, we characterized genes sets for each trajectory using the R package, gProfiler (Reimand et al., 2011). The

pathway enrichment test was performed using GeneOntology Biological Process terms, which contain between 10 and 2,000 genes,

and all 23,782 cortically expressed genes were used as background. Enrichment tests were subject to the ‘‘moderate’’ hierarchical

filtering parameter, and the FDR multiple correction in the gProfiler (Figure 2F).
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Assessing enrichment in tissue-specific genes from GTEx
To assess enrichment across tissues, 27,546 transcripts with an RPKMR 0.5 in 80%of samples one ormore tissues inGTEx (https://

gtexportal.org/home/) were defined and log-transformed (log2[RPKM+1]). For each gene, expression between each tissue and all

other tissues was assessed using a moderated t-test (R package limma), with models adjusted for age, RIN, gender, and surrogate

variables. The Benjamini and Hochberg method was used to estimate false discovery rate (FDR) and tissue enriched genes were

defined as: log fold-change > 0.5 and FDR < 0.05. The enrichment of the Falling, Non-transitional, and Rising genes was assessed

with using Fisher’s exact test with 23,782 cortically expressed genes as a background (Figure 2).

Identifying genes enriched in cell types from single cell data
To identify cell type-enriched genes we calculated a tau metric (Kryuchkova-Mostacci and Robinson-Rechavi, 2017) from the per

gene log2TPM of log2UMI values for genes within cell type clusters in prenatal forebrain (Nowakowski et al., 2017) and postnatal cor-

tex (Li et al., 2018). Each gene was also ranked across all clusters within the dataset on the basis of TPM/UMI, so that the cluster with

the highest TPM/UMIwas ranked as ‘‘1,’’ while the cluster with the second highest TPM/UMI for that genewas ranked as ‘‘2,’’ etc. The

genes were sorted by TPM/UMI rank and visually inspected for cell type specificity or substantial enrichment in single cell RNA-seq

data from the prenatal and postnatal human cortex (https://cells.ucsc.edu/?ds=cortex-dev#). For each cell type, the top ten genes

that showed clear specificity/enrichment were selected.

Enrichment of gene trajectories in temporal putative cis-regulatory elements
H3K27ac peaks present in more than two samples of fetal or adult dorsal frontal cortex in BrainSpan (Li et al., 2018) were tested for

fetal versus adult temporal bias using DESeq2 (Love et al., 2014). Temporally biased geneswere defined as adjusted p < 0.01 and fold

changeR 2. A category of ‘‘non-temporal’’ H3K27ac peaks was generated with peaks showing p > 0.05. All peaks were annotated

using the gene with the closest transcription start site in Gencode v21. Genes were classified as only-fetal or only-adult if they were

associated with fetal or adult-only H3K27ac peaks, respectively. Enrichments of each category of H3K27ac-genes in each category

of eGenes were tested by means of a Fisher Exact’s test and p-values were adjusted using Benjamini-Hochberg, using genes asso-

ciated to non-variant H3K27ac peaks as a reference background.

WGCNA network construction and module definition
To assess the functional topology in cortical samples, we applied Weighted Gene Co-Expression Network Analysis (WGCNA) (Lang-

felder and Horvath, 2008) to 23,782 cortically expressed transcripts. Network analysis was performed with WGCNA (version 1.63)

using a signed network, choosing a soft-threshold power, the mean connectivity less than 50, and scale-free topology greater

than 0.8. To reduce the bias driven by a few sample outliers, we applied the blockwiseConsensusModules function, which detects

consensusmodules across 100 subsampled networks.We used the average linkage hierarchical clustering of the topological overlap

dissimilarity matrix (1-TOM) to generate the network dendrogram. Modules were defined as branches of the dendrogram using the

hybrid adaptive tree cut with the following parameters: minimummodule size = 200, negative pamStage, height cut = 0.999, and deep

split = 2 (Langfelder and Horvath, 2007). Modules were summarized by their first principal component (ME, module eigengene), fol-

lowed by merging modules with high correlations (eigengene value R 0.9).

WGCNA functional enrichment for module characterization
For functional enrichment, we characterized WGCNA module genes using the gProfiler R package (Reimand et al., 2011), as

described above in the analysis of temporal trajectory genes. To identify WGCNA module genes that are regulatory targets, we

searched for transcription factor binding targets using the ChEA (Lachmann et al., 2010; Satterstrom et al., 2020), and TRANSFAC

(Matys et al., 2003), and microRNA using the mirTarbase database (Chou et al., 2018).

WGCNA module preservation
To assess whether 19 co-expression modules in our samples were preserved in other, independent DLPFC or frontal cortex expres-

sion datasets, we compared our dataset with non-overlapping samples from the BrainSpan dataset (Li et al., 2018) and applied the

module preservation function from theWGCNARpackage (Langfelder et al., 2011). From the BrainSpan dataset, we selected DLPFC

(n = 30), 10 non-DLPFC neocortical regions (n = 317), and subcortical regions excluding the cerebellum (n = 140). Given the original

co-expression network constructed above, we used modulePreservation to calculate module preservation statistics from 100 per-

mutations (Table S3).

Clustering analysis in protein-protein interaction network
To examine functional association of a group of genes/proteins, we performed a clustering analysis of a protein-protein interaction

network implemented in SANTARpackage (Cornish andMarkowetz, 2014). Ripley’s K function provides ameasure of whether points

are clustered together or randomly dispersed (homogeneous) in a network and the SANTA R package reformulated Ripley’s K func-

tion for a protein-protein interaction network. Clustering can be indicative of functional association between the genes/proteins under

consideration. To test departure from homogeneity of a given gene set, we drew an empirical null distribution of clustering from

1,000 random samples of matching sized gene sets from the BioGRID protein-protein interaction network data (Stark et al., 2006;
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Winter et al., 2011) (v3.4.132). We reported departure from null distribution as a Z-score (i.e., Z > 0: level of clustering of a gene set

greater than null expectation and Z < 0: level of clustering of a gene set less than null expectation).

Cis-eQTL detection and classification
Cis-eQTLs were identified for all high quality, common variants (N = 6,573,196) within 1 Mb of a gene boundary using the linreg func-

tion in Hail 0.1, with period, sex, and the first five principal components of common variant ancestry as covariates. This analysis was

run on three cuts of the BrainVar dataset: complete sample (N = 176, periods 1-12), prenatal-only (N = 112, periods 1-6), and

postnatal-only (N = 60, periods 8-12). Separately for the results of each analysis, false discovery rate (FDR) was calculated for all

gene-variant pairs using the Benjamini-Hochberg procedure.

We then classified all gene-variant pairs with FDR% 0.05 from at least one analysis into groups defined by the temporal specificity

of their eQTL effects. To do this, we first identified one variant per gene with the smallest, FDR-significant p value, from any of the

three analyses.We then used a Z-test to compare the regression coefficients for these variant-gene pairs from the prenatal and post-

natal analyses:

Z =
bPre � bPostffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SE2

Pre +SE2
Post

q

Using the results from the eQTL analyses and from this prenatal-postnatal comparison, we then classified each of these top (one per

gene) gene-variant pairs and their corresponding target gene (eGene) into one of five groups:

1. Constant eQTLs/eGenes, characterized by consistent effects across this developmental dataset: FDR% 0.05 in the complete

sample analysis, same direction of effect and unadjusted p % 0.05 in both the prenatal and postnatal analyses

2. Prenatal-predominant eQTLs/eGenes, with strongest effects during prenatal development: FDR % 0.05 in the prenatal anal-

ysis, unadjusted p > 0.05 in the postnatal analysis, pre-post comparison Z-test FDR-adjusted p % 0.05

3. Postnatal-predominant eQTLs/eGenes, with strongest effects during postnatal development: FDR % 0.05 in the postnatal

analysis, unadjusted p > 0.05 in the prenatal analysis, pre-post comparison Z-test FDR-adjusted p % 0.05

4. Prenatal-trending eQTLs/eGenes, which did not fit into earlier categories, but had higher prenatal effects (BPre > BPost)

5. Postnatal-trending eQTLs/eGenes, which did not fit into earlier categories, but had higher prenatal effects (BPost > BPre)

All FDR-significant variants associated with the expression of a single gene were classified into one of these five groups according

to the classification of the top variant for the same gene (Figure 5).

Alternative approaches for assigning eGenes to temporal categories
Many eGenes are associated with multiple eQTLs, each of which could individually meet criteria for any one of the five temporal cat-

egories. As described above, we categorized eGenes into temporal categories based on the performance of their top eQTL (smallest

p-value), but we assessed the performance against three alternative approaches: (1) eGene assigned to the same category as a ma-

jority of their eQTLs (‘‘majority eQTL’’ approach), with ties assigned in the order Constant, Prenatal-predominant, Postnatal-predom-

inant, Prenatal-trending, Postnatal-trending, (2) for eGenes with R 1 eQTL, category assignment based on the performance of the

secondmost significant variant (‘‘second eQTL’’ approach), and (3) each eQTL individually assigned to categories (‘‘individual eQTL’’

approach). For each of these alternative approaches, we calculated the percent of eGenes or eQTLs from each top variant-based

category that were assigned to each category using the majority eQTL, the second eQTL, or the individual eQTL approach

(Figure S5).

Assessment of ancestry differences in prenatal and postnatal sample sets using genomic control
To validate that our eQTL discovery analyses were adequately adjusted for differences in sample ancestry, we calculated genomic

control, or lambda, an estimate of inflation of genetic association signal (Devlin and Roeder, 1999), from the results of each of the

three analyses (complete sample, prenatal-only, postnatal-only). To do this, we randomly sampled 500 gene-variant pairs that occur

on the same chromosome but are located 10-100 Mb apart, under the assumption that these distant gene-variant pairs would be

unlikely to be enriched for true gene expression association. Using the eQTL signals for these 500 gene-variant pairs from the three

analyses, we calculated lambda for analysis.We repeated this procedure for 100 random selections of 500 distant gene-variant pairs.

We find that the median lambda values across 100 permutations for each are near 1, in keeping with a test has been properly cor-

rected for population structure (specifically, 1.01 for prenatal, 0.99 for postnatal, and 1.00 for the complete sample).

Comparison with published eQTL studies
To assess the sensitivity of our cis-eQTL discovery analysis relative to previous work, we evaluated the relationship between sample

size and eGene discovery for: the BrainVar prenatal, postnatal, and complete sample analyses as run using the HCP- and

SVA-adjusted expression data, GTEx v7 analyses by tissue (gtexportal.org), postnatal human frontal cortex by the CommonMind

Consortium (Fromer et al., 2016), and prenatal human whole brain (O’Brien et al., 2018). Using the sample size reported in each

analysis, or for each tissue (GTEx), and the number of genes with at least one eQTL reaching significance of FDR% 0.05, we plotted
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the relationship between eGene discovery and sample size (Figure S5). We observe a strongly positive relationship across BrainVar

and the published analyses, in keeping with prior reports that eQTL and eGene discovery is positively associated with sample size

(Aguet et al., 2017).

We evaluated the performance of the eQTLs that we identified in our analyses with published sets of eQTLs identified in the human

postnatal frontal cortex (Aguet et al., 2017) and in the human prenatal whole brain (O’Brien et al., 2018). For the postnatal frontal cor-

tex data, we downloaded significant variant-gene pairs from the GTEx v7 data release from gtexportal.org and used R to write out the

variant locations to a bed file format. We then used the command line LiftOver utility from the UCSC Genome Browser to convert the

hg19 variant positions to GRCh38. For the prenatal brain data, we downloaded the eQTL summary statistics, results for the top

eQTLs per gene, and SNP positions bed file from the study data repository on Figshare (https://figshare.com/articles/

Summary_statistics_for_expression_quantitative_trait_loci_in_the_developing_human_brain_and_their_enrichment_in_neuropsychiatric_

disorders/6881825).We then used each gene’s nominal significance threshold from the top eQTLs file to identify the full set of variant-

gene pairs meeting significance.

Using variant (GRCh38 position, reference, and alternate alleles) and gene (Ensembl gene IDs) identifiers, we matched significant

variant-gene pairs separately fromGTEx frontal cortex and prenatal brain to the variant-gene pairs meeting FDR significance (%0.05)

in the BrainVar analyses. For all significant eQTLs in BrainVar that overlapped with the reference datasets, we then compared the

effect of the variant on the expression of its associated gene to determine the percentage of overlapping eQTLs with concordant di-

rection of effect, as well as the Pearson correlation between the eQTL effects (beta from BrainVar, slope fromGTEx or prenatal whole

brain). The significance of this correlation was evaluated using the cor.test function in R.

Distance between eQTLs and transcription start site
The distance between each significant eQTL and the transcription start site (TSS) of its associated eGene was calculated by

comparing the variant position to the TSS position and strand of the gene according to Gencode v21. Positive distances indicate

variants downstream of the TSS, negative distances indicate upstream variants. Comparison between groups of eQTLs was run us-

ing only the top eQTL per gene and the absolute value of distance from the associated gene’s TSS.

Overlap of eQTLs with H3K27ac
We tested the global overlap between eQTLs and H3K27ac from human fetal, infant and adult dorsal frontal cortex and cerebellum

and embryonic cortex from BrainSpan (Li et al., 2018) and Reilly et al. (2015). Intersection between sets of coordinates were per-

formed using Bedtools (Quinlan and Hall, 2010). We tested three sets of variants: (1) best eQTL per eGENE, (2) all significant eQTLs

with FDR < 0.05 in the corresponding eQTL category of Prenatal-predominant, Postnatal-predominant or Constant, and (3) a back-

ground group composed by all variants tested for eQTL, excluding those with a p < 0.05 to any gene at any time period tested. 95%

confidence intervals were obtained by bootstrapping variants 100 times (Figure S5).

Enrichment of eQTLs in functional genomic elements
We tested the enrichment of different categories of eQTLs in sets of genomics elements using GREGOR (Schmidt et al., 2015). We

tested all best eQTL per gene in: (1) dorsal frontal cortex H3K27ac peaks from fetal and adult brain samples, and (2) 18 chromatin

states whole-genome segmentation of sample E073-Medial Frontal Cortex Lobe from The Roadmap Epigenomics Project (Kundaje

et al., 2015). We reported observed/expected number of overlapping eQTLs and BH adjusted p-values (Figure S5).

Test for differential expression variance in prenatal and postnatal stages
We used an F test to compare prenatal variance (periods 1-6) and postnatal variance (periods 8-12) in gene expression level,

correcting for age (period), sex, and five ancestry principal components within each stage. At a Benjamini-Hochberg-adjusted

p value % 0.05, we identified 8,094 genes with greater prenatal variance, and 1,752 genes with greater postnatal variance.

Gene sets associated with CNS traits and disorders
To compare with 23,782 cortically expressed genes, we created the list of gene sets for previous trait and disorder association and

functional properties. Gene identifiers were converted between studies based on the complete HUGOGene Nomenclature Commit-

tee dataset. Autism spectrum disorder (ASD) risk genes were obtained from Satterstrom et al. (2020), an exome sequencing based

gene discovery refining to high-confidence genes (n = 99) at a false discovery rate (FDR) % 0.1. Genes associated with develop-

mental delay (n = 93) were selected from the exome sequencing analysis of the Deciphering Developmental Disorders project (Deci-

phering Developmental Disorders Study, 2017). From Heyne et al. (2018), we chose 33 genes as high-confidence epilepsy candi-

dates, where multiple de novo variants were seen.

We used significant loci from the genome-wide association studies (GWAS) of attention deficit hyperactivity disorder (ADHD)

(Demontis et al., 2019), Alzheimer’s disease (Lambert et al., 2013), educational attainment (Lee et al., 2018), schizophrenia (Schizo-

phrenia Working Group of the Psychiatric Genomics Consortium, 2014), major depressive disorder (Wray et al., 2018), multiple

sclerosis (Beecham et al., 2013), Parkinson’s disease (Chang et al., 2017). We selected loci from a summary statistics file if publicly

available, otherwise we used the table of genome-wide significant loci from each study. We retrieved genes harboring loci or within

10kb from loci. We excluded the extended major histocompatibility complex region on the chromosome 6, known to have a
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substantial number of genes due to high linkage disequilibrium (Schizophrenia Working Group of the Psychiatric Genomics Con-

sortium, 2014) for downstream enrichment analyses.

Constrained genes were defined as probability of loss-of-function intolerant (pLI) score R 0.995 in the ExAC database (Lek et al.,

2016). Genes specific to cell types in the mid-fetal cortical development were selected from Nowakowski et al. (2017) and BrainSpan

(Li et al., 2018). For all gene lists, see Table S2 and Table S4.

Enrichment of DLPFC eQTLs in SNPs associated with complex phenotypes
We tested for enrichment of DLPFC eQTLs amongGWAS significant SNPs using a permutation-based procedure. GWASSNPswere

taken from published GWAS summary statistics at a significance threshold of p < 5 3 10�8. The following procedure was repeated

separately for summary statistics from GWAS of four phenotypes: schizophrenia (Schizophrenia Working Group of the Psychiatric

Genomics Consortium, 2014), educational attainment (Lee et al., 2018), multiple sclerosis (Beecham et al., 2013), and Alzheimer’s

disease (Lambert et al., 2013). First, SNPs in the summary statistics and the list of SNPs tested for eQTL discovery were filtered

to those in 1000 Genomes Project data. SNPs in the GWAS summary statistics were then filtered to variants also tested for eQTL

discovery, using direct (same SNP) or proxy (r2 > 0.8 in CEU 1000 Genomes samples) as defined by the PLINK 1.9 – r2 command

(Chang et al., 2015a). To estimate the proportion of eQTL SNPs among phenotype associated SNPs versus among all SNPs (or a

sample of null SNPs), we recognized three important factors that could differ between null SNP sets and the phenotype-associated

SNPs: LD structure, MAF distribution, and gene density. First, to account for LD structure, we used PriorityPruner version 0.1.4

(http://prioritypruner.sourceforge.net) to LD prune SNPs supervised by GWAS p-value in order to preferentially retain as many

phenotype-associated SNPs as possible while adequately removing SNPs in high LD (r2 > 0.7 within a sliding 500kb window) using

in 1000GenomesCEU sample data. Second, the remaining SNPswere grouped according to their MAF decile. Third, each remaining

SNPwas grouped into decile of gene density to allow for differential opportunity to be identified as an eQTL. Gene density was deter-

mined by the number of genes within the 1MB eQTL detection window as defined by the annotation package ‘‘TxDb.Hsapien-

s.UCSC.hg38.knownGene’’ from R Bioconductor (Huber et al., 2015). SNPs in the ~3.2 MB HLA region (hg38 coordinates:

chr6:29,751,784-32,915,731) as defined by the ‘‘GWASTools’’ R Bioconductor package (Gogarten et al., 2012) and UCSC genome

browser (Kent et al., 2002) were excluded from enrichment testing. Next, 1million null SNP setswere drawn bymatching each pheno-

type-associated SNP (GWAS p < 53 10�8) to a randomSNPmatched on bothMAF and gene density. Enrichment fold statistics were

computed as the proportion of eQTLs in the phenotype-associated set divided by the mean proportion of eQTLs across null sets. P

valueswere calculated as the proportion of null set fold-enrichment statistics as ormore extreme than the observed phenotype-asso-

ciated fold enrichment statistic. This permutation procedure was repeated for each of six eQTL SNP lists: all, Constant, Prenatal-pre-

dominant, Prenatal-trending, Postnatal-predominant, and Postnatal-trending.

Gene-set analysis of eGenes and GWAS data
To assess whether eQTL targets (eGenes) are enriched for GWAS signal, we performed competitive gene set enrichment analysis for

each group of eGenes using theMAGMA software (de Leeuw et al., 2015).We input the eGene lists fromPrenatal-predominant, Post-

natal-predominant, Constant, Prenatal-trending, and Postnatal-trending (Table S5) and summary statistics from published GWAS of

schizophrenia (Schizophrenia Working Group of the Psychiatric Genomics Consortium, 2014), autism spectrum disorder (Grove et

al., 2019), educational attainment (Lee et al., 2018), multiple sclerosis (Beecham et al., 2013), Alzheimers disease (Lambert et al.,

2013), triglycerides (Willer et al., 2013), and height (Wood et al., 2014). First, SNPs from the GWAS summary statistics files were an-

notated to NCBI protein-coding genes that passed RNA-seq QC in our DLPFC expression data with a 10kb window on either side of

the gene boundaries. Next, a gene-level analysis was done to determine the strength of association for each gene with phenotype of

interest. To assess whether genes in the eGene gene-sets are more strongly associated with the phenotype of interest than other

genes, gene-based z-scores are regressed on a gene-set indicator variable andMAGMA default covariates (gene size, gene density,

sample size, 1/MAC, and the log of each of these). The beta coefficient for the gene-set indicator variable is tested for significance

HA : b1 > 0. Results from this analysis are reported in Table S6.We did not observe significant enrichment of GWAS signal from any of

the six phenotypes tested in any of the five temporally assigned eGene gene sets. However, we repeated a similar test, annotating

GWAS summary statistics SNPs to NCBI protein-coding genes with 10kb flanking region that passed RNA-seq QC in our DLPFC

expression data and had an assigned pLI score, and found that a gene-set defined as pLI score > = 0.995 showed significant enrich-

ment for stronger GWAS association in all tested phenotypes except for multiple sclerosis, compared to genes with pLI score <

0.995.

Co-localization analysis of CNS traits and disorders
Coloc (Giambartolomei et al., 2014) was used to formally test for co-localization of GWAS signal from schizophrenia (Schizophrenia

Working Group of the Psychiatric Genomics Consortium, 2014) and educational attainment (Lee et al., 2018) summary statistics with

our five eQTL categories. Coloc tests five hypotheses (H0: no association, H1: GWAS association only, H2: eQTL association only,

H3: both but not co-localized, H4: both and co-localized) and returns a posterior probability for each hypothesis in each region. Pos-

terior probably of H4 > = 0.8 is strong Bayesian evidence of co-localization.
e9 Cell Reports 31, 107489, April 7, 2020

http://prioritypruner.sourceforge.net


DATA AND CODE AVAILABILITY

Open source scripts used in this study are referenced throughout. The pipeline for whole-genome analysis is available online at:

https://github.com/sanderslab/psychcore-compute-platform. The accession number for the raw RNA-seq and WGS data reported

in this paper, along with processed files, is PsychENCODE Knowledge Portal: syn21557948 on Synapse.org (https://www.synapse.

org/#!Synapse:syn4921369).
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