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Abstract. The surface energy budget drives the melt of the
snow cover and glacier ice and its computation is thus of
crucial importance in numerical models. This surface energy
budget is the result of various surface energy fluxes, which
depend on the input meteorological variables and surface
temperature; of heat conduction towards the interior of the
snow/ice; and potentially of surface melting if the melt tem-
perature is reached. The surface temperature and melt rate
of a snowpack or ice are thus driven by coupled processes.
In addition, these energy fluxes are non-linear with respect
to the surface temperature, making their numerical treatment
challenging. To handle this complexity, some of the current
numerical models tend to rely on a sequential treatment of
the involved physical processes, in which surface fluxes, heat
conduction, and melting are treated with some degree of de-
coupling. Similarly, some models do not explicitly define a
surface temperature and rather use the temperature of the in-
ternal point closest to the surface instead. While these kinds
of approaches simplify the implementation and increase the
modularity of models, they can also introduce several prob-
lems, such as instabilities and mesh sensitivity. Here, we
present a numerical methodology to treat the surface and in-
ternal energy budgets of snowpacks and glaciers in a tightly
coupled manner, including potential surface melting when
the melt temperature is reached. Specific care is provided to
ensure that the proposed numerical scheme is as fast and ro-
bust as classical numerical treatment of the surface energy
budget. Comparisons based on simple test cases show that
the proposed methodology yields smaller errors for almost
all time steps and mesh sizes considered and does not suffer

from numerical instabilities, contrary to some classical treat-
ments.

1 Introduction

Snowpacks and glaciers are crucial parts of the Earth system
that have a profound impact on, for example, the water cycle
(e.g., Barnett et al., 2005) and on the radiative budget of con-
tinental surfaces (e.g., Flanner et al., 2011). A key tool to un-
derstand the interaction between snowpacks/glaciers and the
other components of the Earth system are numerical models
that aim to quantitatively represent the evolution of snow-
packs and glaciers under various atmospheric forcings. To
reach this goal, the representation and evolution of the ther-
modynamical state (that is to say temperature profiles and
phase changes) of snowpacks and glaciers are implemented
in most numerical snowpack/glacier models (e.g., Anderson,
1976; Brun et al., 1989; Jordan, 1991; Bartelt and Lehning,
2002; Liston and Elder, 2006; Vionnet et al., 2012; Sauter
et al., 2020).
Among the various processes driving the thermodynamical
state of snowpacks and glaciers, the surface energy budget
(SEB) has received detailed attention in the past, notably be-
cause of its central role (e.g., Etchevers et al., 2004; Miller
et al., 2017; Schmidt et al., 2017, among many others). In-
deed, the SEB governs most of the net energy input and out-
put within the snowpack/glacier and thus has a fundamental
role for its warming/cooling and for its melting. This SEB
is the net result of various energy fluxes, including turbu-
lent fluxes and longwave radiative flux that directly depend
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on the surface temperature of the snowpack/glacier. Mathe-
matically, the SEB thus appears as a non-linear top boundary
condition for snowpacks and glaciers. This non-linearity is
even reinforced by the existence of a regime change between
a melting and non-melting surface, with different thermody-
namical behaviors below and at the melting point. Indeed,
once the melting point is reached at the surface, the SEB be-
comes more akin to a Stefan problem with a discontinuity in
the energy fluxes and can no longer be simply described in
terms of surface temperature. This leads to numerical chal-
lenges when solving the governing equations.

As a consequence, there are currently no uniquely em-
ployed strategies to treat this problem, and various numer-
ical schemes have been proposed and implemented for solv-
ing the SEB and its link with the thermodynamical state of a
snowpack/glacier (Bartelt and Lehning, 2002; Vionnet et al.,
2012; van Pelt et al., 2012; Sauter et al., 2020). Among the
different published implementations, one can notably cite
the so-called “skin-layer” formulation, usually employed in
combination with a finite-volume method (FVM) for the in-
ternal heat equation, in which the surface and internal tem-
peratures are solved sequentially over a given time step (Oer-
lemans et al., 2009; Kuipers Munneke et al., 2012; van Pelt
et al., 2012; Covi et al., 2023). While this approach natu-
rally offers modularity and simplifies the treatment of the
SEB (and of the associated surface temperature), a sequen-
tial treatment of tightly coupled processes or variables is also
known to display some instability (e.g., Ubbiali et al., 2021;
Brondex et al., 2023) and large time step sensitivity (e.g.,
Barrett et al., 2019). On the other hand, some FVM imple-
mentations do not define a specific temperature associated
with the surface but rather use the temperature of the top-
most numerical layer of the domain (i.e., the top layer of
the simulated snowpack/glacier) for solving the SEB (An-
derson, 1976; Brun et al., 1989; Jordan, 1991; Vionnet et al.,
2012; van Kampenhout et al., 2017). While this enables the
SEB and the internal heat budget to be easily solved in a
tightly coupled way, this method requires the numerical grid
to be refined near the surface in order to properly simu-
late the SEB. Thus, currently employed FVM strategies in
snowpack/glacier models present some limitations that can
be detrimental for the obtained numerical solutions. Here,
we propose a FVM numerical scheme meant to combine the
advantages of the previously published numerical strategies.
Precisely, our goal is to offer a tightly coupled treatment (as
opposed to a sequential treatment) of the internal and sur-
face temperatures of a snowpack or glacier. For this, the pro-
posed implementation explicitly defines a temperature right
at the surface (viewed as an infinitely thin horizontal layer),
which improves the simulated results in terms of accuracy
and stability. As the snowpack and glacier models are some-
times used in distributed or long-time-spanning simulations,
specific care is taken to ensure that the proposed numerical
scheme has a similar numerical cost to those already pub-
lished. The article is organized as follows: Sect. 2 presents

the physical equations governing the energy budget of snow-
packs and glaciers, Sect. 3 briefly recalls some of the existing
numerical schemes to solve these governing equations, and
Sect. 4 presents the proposed numerical scheme overcoming
some of the limitations of existing strategies while keeping
their strong points. Finally, some simple examples are pre-
sented in Sect. 5, and a discussion comparing the different
numerical schemes is provided in Sect. 6.

2 Governing equations

The goal of this section is to briefly recall the general
equations governing the thermal regime of snowpacks and
glaciers before presenting their numerical discretization in
the next section. As snowpack and glaciers share many simi-
larities and processes, such as heat conduction or the pres-
ence of a phase transition when the melt temperature is
reached, they can be represented by the same type of equa-
tions. These similarities enable simulations mixing snow and
glacier ice within a single framework (e.g., Sauter et al.,
2020). Hence, for the sake of generality, the equations dis-
cussed in the following sections apply to both snow and
glacier ice. That being said, snow and glacier ice present
some differences, notably concerning liquid water percola-
tion. As addressed later, this might require a differential treat-
ment of glacier ice and snow when implementing the liquid
water percolation scheme.

2.1 Internal energy budget

The thermal regime of the inner part of a snowpack or glacier
is governed by the principle of energy conservation. Assum-
ing that Fourier’s law of heat conduction applies in snow/ice
with a well-defined macroscopic thermal conductivity (e.g.,
Calonne et al., 2011), this energy conservation is expressed
as

∂th−∇ · (λ∇T )=Q, (1)

where h is the internal energy content of snow/ice (expressed
in J m−3), λ the thermal conductivity, T the temperature,
and Q volumetric energy sources (such as the distributed
absorption of shortwave radiations). Here, h is understood
as the energy content, including latent heat associated with
the presence of liquid water (Tubini et al., 2021). The vol-
umetric energy sources Q (expressed in W m−3) therefore
do not include the absorption or release of latent heat during
solid/liquid water phase changes. In this article, we assume
that the snowpack/glacier can be represented as a 1D column,
and therefore Eq. (1) should be understood as a 1D equation.
Assuming thermodynamical equilibrium between the ice and
liquid water, the temperature T and the energy content h are
related through

h= cp(T − T0)+ ρwLfusθ, (2)
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where cp is the volumetric heat capacity of snow/ice (ex-
pressed in J K−1 m−3), T0 an arbitrary reference temperature
taken as the melt temperature, ρw the density of liquid wa-
ter, Lfus the specific enthalpy of fusion of water (expressed
in J kg−1), and θ the liquid water content (expressed in cubic
meters of liquid water per cubic meter of snow/ice) (Tubini
et al., 2021). Note that in Eq. (1) the time derivative of the
internal energy content h cannot in principle be replaced by
cp∂tT but should also include the term ρwLfus∂tθ . Indeed,
once the temperature has reached the melting point, a further
increase in energy translates into an increase in the liquid
water content (∂tθ 6= 0) and in the associated latent heat con-
tent rather than a further increase in the temperature. Yet, as
discussed below, snowpack and glacier models nonetheless
usually consider that the temperature can increase past the
melting point when integrating Eq. (1) in time (Vionnet et al.,
2012; Sauter et al., 2020). This is equivalent to neglecting the
effects of first-order phase changes (melting and refreezing)
on the temperature field and thus setting ρwLfus∂tθ to zero
while solving the heat equation. This results in temperature
overshoots that are then corrected in a second step by creat-
ing melt and setting back the temperature to the melt value
(e.g., Vionnet et al., 2012; Sauter et al., 2020). In this article,
we follow this simple scheme as it is commonly employed in
snowpack and glacier models. That being said, other, more
complex strategies have been proposed in the literature. This
notably includes the use of a finite temperature range over
which melting and freezing occur (e.g., Albert, 1983; Dutra
et al., 2010), including melt and refreeze as additional energy
source terms (e.g., Bartelt and Lehning, 2002; Wever et al.,
2020), or the use of enthalpy as the prognostic variable (e.g.,
Meyer and Hewitt, 2017; Tubini et al., 2021). Finally, in this
article we consider the thermal conductivity λ and capacity
cp not to depend on temperature. The motivation for this is
twofold as (i) it corresponds to a simplifying assumption reg-
ularly made by snowpack and glacier surface models (e.g.,
van Pelt et al., 2012; Vionnet et al., 2012; Sauter et al., 2020;
Covi et al., 2023), and (ii) it allows the internal heat equation
to be kept linear.

2.2 Surface energy balance

To model an actual snowpack/glacier subjected to atmo-
spheric forcings, it is necessary to complement the internal
energy budget with an appropriate boundary condition. At
the top of the snowpack/glacier, this boundary condition is
given by the SEB. This SEB states that the net sum of energy
fluxes between the top of the snowpack/glacier and the atmo-
sphere equals the energy thermally conducted from the sur-
face to the interior of the snowpack plus a potential surface
melting term if the melt temperature is reached (Oerlemans
et al., 2009; Sauter et al., 2020; Covi et al., 2023). We thus
have

SWsurf
net +LWin+LWout+H +L+R =G+ ṁLfus, (3)

where SWsurf
net is the net shortwave radiation absorbed right

at the surface (that is thus distinguished from the portion of
shortwave radiation penetrating within the snow/ice), LWin
is the incoming longwave radiation flux, LWout is the outgo-
ing longwave radiation flux, H is the turbulent sensible heat
flux, L is the turbulent latent heat flux, R is the surface en-
ergy brought by precipitating rain, G is the conductive heat
flux penetrating within the snowpack/glacier, and ṁ is the
rate of surface melting (expressed in kg m−2 s−1). Fluxes are
oriented towards the bottom and thus towards the surface for
SWsurf

net , LWin, LWout, H , L, and R and away from the sur-
face for G. The surface melting rate ṁ vanishes when the
surface temperature Ts is below the melt temperature and can
take non-zero values when the surface temperature equals the
melt temperature.

Among the various terms of the SEB of Eq. (3), LWout,
H , L, and G depend non-linearly on the surface tempera-
ture Ts. Notably, the outgoing longwave radiation is given by
the Stefan–Boltzmann law, i.e., LWout =−σT

4
s (with σ the

Stefan–Boltzmann constant), and the turbulent heat fluxes
H and L can be estimated through the use of a bulk ap-
proach (e.g., Foken, 2017). These three terms are therefore
non-linear functions of the surface temperature. In addition,
the conductive heat flux is given by

G=−(λ∂zT ) |z=surf (4)

and is therefore proportional to the temperature gradient
within snow/ice right below the surface. This conductive flux
depends on both the surface temperature Ts and the temper-
ature within the snow/ice. This flux is responsible for the
thermal coupling between the surface and the interior of the
snowpack/glacier.

3 Numerical strategy of existing models

Since the computation of the heat budget with a SEB as a top
boundary condition is at the core of all snow/glacier models,
several numerical implementations have been proposed for
solving the resulting system of equations. In order to provide
a general overview of the numerical frameworks and strate-
gies, we propose separating them into two broad classes, to
which most existing models can somehow be related. While
classifying existing strategies into only two groups (and not
more) remains arbitrary, we believe it is helpful to highlight
differences in handling the numerical solving of the energy
budget. Moreover, we focus on numerical schemes based on
FVM, as it is the method employed by most models (e.g., An-
derson, 1976; Sauter et al., 2020; Westermann et al., 2023).
We note that, contrary to the FVM, the use of the finite-
element method (FEM) naturally incorporates the presence
of a surface temperature, which can be used for a fully cou-
pled treatment of the SEB, as done in SNOWPACK for in-
stance (Bartelt and Lehning, 2002).
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3.1 Class 1: finite volumes without explicit surface

A first class of models relies on FVM for discretization of the
internal heat budget, without the inclusion of an extra degree
of freedom to model the surface temperature (schematically
depicted as Class 1 in Fig. 1). To this end, the domain to be
modeled (snowpack or glacier) is first decomposed into a fi-
nite number of cells with non-zero thicknesses (that are also
sometimes referred to as layers but should not be confused
with the strata forming a snowpack). Then, the equations
governing the temporal evolution of the average heat content
of each cell are determined by integrating Eq. (1) over each
cell. The energy fluxes between cells are finally estimated
based on cell-to-cell temperature differences and on the ther-
mal conductivities of the cells. As discussed above, the ef-
fects of the first-order phase transition during melting/re-
freezing are usually not taken into account when solving the
internal heat budget. Rather, it is considered that snow/ice
temperature can exceed the melt temperature without mod-
ification of its physical behavior (i.e., of its heat capacity).
When integrating the equations in time, this can result in
temperature overshooting the melt point. These overshoots
are later used to determine where the melting point has been
crossed, and the excess energy is then used to estimate melt-
ing (e.g., Vionnet et al., 2012). This FVM framework thus
amounts to determining the average temperature in each cell,
which is usually considered to correspond to the temperature
at the center of the cell. Without further modification, the sur-
face temperature, which corresponds to the temperature on
the upper edge of the top cell, is not present in the system of
equations. In order to apply the SEB as a boundary condition,
this first class of models considers the surface temperature to
be equal to the temperature of the topmost cell. The energy
fluxes between the surface and the atmosphere are then di-
rectly integrated into the heat budget of the top cell. The in-
ternal heat budget and the integrated surface fluxes can then
be solved at the same time, i.e., in a tightly coupled fash-
ion. The advantage of this approach is that it naturally allows
one to take into account the SEB within a standard FVM
framework without the necessity to handle extra degrees of
freedom. This numerical strategy roughly corresponds to the
one adopted in SNTHERM (Jordan, 1991), Crocus (Vionnet
et al., 2012), Community Land Model (CLM) (van Kampen-
hout et al., 2017), or CryoGrid (Westermann et al., 2023).

3.2 Class 2: finite volumes with an explicit but
decoupled surface

The second class of models also relies on FVM for the spa-
tial discretization of the internal heat budget. Similarly to the
models of Class 1, the first-order phase transition of snow/ice
is usually neglected for the resolution of the equations, result-
ing in temperature overshoots that are later corrected by cre-
ating melting. However, this class of models explicitly takes
into account the presence of a surface temperature that differs

from the temperature of the cell just below (schematically de-
picted as Class 2 in Fig. 1). This surface temperature is com-
puted by searching for the temperature that equilibrates the
SEB of Eq. (3), assuming no melting. If the equilibrium tem-
perature is larger than the melting point, it is then capped to
the melt temperature and the excess surface energy converted
into surface melting. Because of the numerical complexity of
this task, it is usually performed separately from the compu-
tation of the internal heat budget. Typically, the surface tem-
perature is first resolved, using the internal temperatures of
the previous time step for the heat conduction term of the
SEB, and then the internal temperatures are solved using the
newly computed surface temperature and SEB. This class
of models encompasses the models using a so-called skin-
layer formulation for the SEB. Its advantage is that it allows
a surface temperature to be explicitly defined without com-
plexifying the solving of the internal heat budget and while
keeping a low numerical cost. It roughly corresponds to the
models SnowModel (Liston and Elder, 2006), Energy Bal-
ance – Snow and Firn Model (EBFM) (van Pelt et al., 2012),
or COSIPY (Sauter et al., 2020).

Finally, we want to stress that the actual implementations
of the aforementioned models (e.g., Crocus, SNTHERM,
COSIPY, EBFM) cannot be perfectly captured by our sim-
ple classification. Particular choices regarding the spatial
and temporal discretizations, the treatment of melting and
refreezing, and the coupling between individual processes
make each model unique and more complex than the above
presentation. Also, models can in principle display the char-
acteristics of both classes (i.e., no explicit surface and a SEB
solved with a decoupling from the rest of the domain), al-
though we did not find any concrete example. This diversity
of models offers an actual illustration of how the numerical
implementation of the same processes (internal heat budget
with a complex SEB) has been handled by different authors.

4 A tightly coupled solution for the surface and
internal heat budget

As seen above, each class of models comes with advantages
but also limitations. While Class 1 models solve the internal
energy budget and SEB in a tightly coupled manner, they do
not take into account the fact that the surface temperature is
in general different from the temperature in the cell below. In
contrast, while Class 2 models explicitly consider a surface
temperature, the internal energy budget and SEB are treated
in a sequential and therefore loosely coupled fashion, which
can be detrimental to stability (Ubbiali et al., 2021).

Based on these observations, the goal of this section is to
present a FVM methodology that allows one (i) to explicitly
work with a surface temperature and (ii) to treat the surface
and internal heat budgets in a tightly coupled fashion. More-
over, as the goal of this paper is to focus on the treatment of
the SEB and its coupling with the internal thermal state, we
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Figure 1. Classification of FVM models with respect to their treatment of the SEB. Class 1: the surface energy and the internal temperatures
are solved in a tightly coupled manner, but there is no explicit surface. Class 2: an explicit surface temperature (and surface melting) exists, but
it is solved in a sequential manner with respect to the internal temperatures. Proposed scheme in this article: an explicit surface temperature is
considered and is solved in a tightly coupled manner with the internal temperatures. In the schematic, dots represent the prognostic variables
of the schemes (with or without temperature at the surface), while the colors indicate which variables are solved simultaneously.

also follow the standard approach to handle melting in the
interior of the domain. Namely, first-order phase transition
effects are neglected while solving for the internal energy
budgets. This means that interior temperatures will overshoot
in the case of melting, and these excess temperatures will be
used to generate melt afterward.

4.1 Governing system of discretized equations

In this section, we derive the discretized equations governing
the coupled surface and internal heat budgets, based on the
FVM. For this, we consider a domain divided into N cells.
The temporal evolution of the average heat content of each
cell is given by integrating Eq. (1) over the cell and mak-
ing use of the fundamental theorem of calculus. Neglecting
phase change during the resolution of the internal heat bud-
get, the time derivative of the (average) temperature Tk of the
kth cell is given by

1zkcpk∂tTk +Fk+ 1
2
−F

k− 1
2
−1zkQk = 0, (5)

where 1zk is the thickness of the kth cell, cpk its volumetric
heat capacity, Qk the average volumetric energy source in
the cell, and F

k+ 1
2

and F
k− 1

2
the heat conduction fluxes at the

top and bottom interfaces of the cell. For internal cells, F
k+ 1

2
and F

k− 1
2

correspond to the fluxes between the kth and the
k+1th cells and the k−1th and kth cells, respectively. For the
top cell F

k+ 1
2

corresponds the heat flux leaving towards the
surface (i.e., −G), and for the bottom cell F

k− 1
2

corresponds
to the flux from the ground. By convention, we take F

k+ 1
2

as
positive if the heat flux is oriented from the kth cell to the
k+ 1th. Note that in this paper we consider the first cell to
be at the bottom of the snowpack and the cells to be counted
positively upwards. Other numbering choices could be made
and would lead to the same end result.

The heat conduction fluxes between cells need to be es-
timated from the temperatures and thermal conductivities of
adjacent cells. The flux F

k+ 1
2

between cells k and k+ 1 is
computed as

F
k+ 1

2
= λharm

k+ 1
2

Tk − Tk+1
1zk

2 +
1zk+1

2

, (6)

where λharm
k+ 1

2
is the weighted harmonic average of the thermal

conductivity of the two adjacent cells. The use of a harmonic
average provides better results in the case of layered media
such as snow (Kadioglu et al., 2008) and ensures that no heat
conduction occurs in the case that one of the cells is a perfect
thermal insulator. Note that Eq. (6) only applies to fluxes be-
tween cells and must be replaced for the two boundary cells
at the top and bottom of the domain. For the bottom cell, a
flux between the domain and the ground below must be used
as a bottom boundary condition. For the top cell, the heat flux
coming from the surface must be used. This flux is given by
the discretized version of the termG in the SEB, provided in
Eq. (10) below.

This FVM discretization results in N equations govern-
ing the evolution of the N internal temperatures. The surface
temperature can be added to this system of equations by in-
troducing an additional degree of freedom, localized at the
top of the domain. This surface temperature can be deduced
from the SEB of Eq. (3) and its coupling to the interior of the
domain through the subsurface heat flux G of Eq. (4). How-
ever, the SEB cannot be fully characterized using the surface
temperature only. Indeed, in the case of melting, the surface
temperature is blocked at the melt temperature T0 and can
no longer be used as a prognostic variable to characterize the
surface. In this case, it is necessary to introduce a non-zero
melting rate ṁ to close the energy budget. We thus have two
regimes for the surface: below the melting point the surface
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is fully characterized by its temperature and the melting rate
term vanishes; at the melting point, the surface temperature
becomes constant, and the melting rate term ṁ becomes the
quantity that characterizes the state of the surface. At any
time, the surface is fully characterized by only one indepen-
dent variable, but neither the temperature nor the melt rate
can be used in the general case. To circumvent this problem,
we rely on a variable switching technique (Bassetto et al.,
2020). Concretely, we introduce a fictitious variable, denoted
τ , whose goal is to behave as Ts below the melting point
and as ṁ during melting. In other words, we parametrize
the {Ts(τ ),ṁ(τ )} graph such that every possible state of the
surface can be appropriately described by a well-defined τ
value. A possibility is to take τ such as

Ts =

{
τ if τ < T0

T0 otherwise
(7)

and

ṁ=

{
0 if τ < T0
τ−T0
β

otherwise
, (8)

where β is an arbitrary constant, necessary to ensure dimen-
sional homogeneity (concretely taken as 1 kg m−2 s−1 K−1 in
our implementation).

Then, the SEB can be expressed as

SWsurf
net +LWin+LWout(τ )+H(τ)+L(τ)+R(τ)

−G(τ)− ṁ(τ )Lfus = 0 , (9)

where the dependence of LWout, H , L, R, and G on τ

through Ts has been made explicit. The subsurface conduc-
tion heat flux can thus be approximated by spatially discretiz-
ing Eq. (4):

G= λk
Ts(τ )− Tk

1zk/2
, (10)

where the index k is taken to correspond to the topmost cell.
As explained above, this flux must also be taken into account
in the equation governing the heat content of the topmost cell.

We thus have a system of N + 1 equations (one for each
cell plus the SEB), which governs the evolution of N + 1
prognostic variables (the temperature of each cell plus the
surface temperature and melt rate encapsulated into τ ). To
be numerically solved, this system also requires a temporal
discretization. In this article, we choose an implicit back-
ward Euler method for its simplicity and stability (Fazio,
2001; Butcher, 2008). Nonetheless, the method proposed
here could also be applied with other temporal integra-
tion schemes (e.g., Crank–Nicolson). This system of equa-
tions presents several non-linearities, coming from the non-
linearity of some terms in the SEB with respect to the surface
temperature (LWout, H , and L) and from the regime change
in the surface (between melting and non-melting conditions).

In order to deal with these non-linearities, we rely on the
use of a specific Newton method, described below. We also
note that the choice was made for some models to perform
only a single iteration to solve this linear system of equations
(sometimes with an extra iteration to handle specific cases,
such as surface melting). However, we chose here to perform
multiple iterations in order to obtain the actual backward Eu-
ler solution.

4.1.1 A dedicated Newton method

One of the main benefits of the skin-layer formulation used
by models of Class 2 is its low numerical cost. Indeed, all
of the non-linearity of the problem only appears in the SEB,
i.e., in a single scalar equation that can be solved iteratively.
While iterations are costly in numerical models, this cost is
tempered here by the fact that this only needs to be performed
on a scalar equation, with a limited number of terms to be
re-estimated at each iteration. Once the surface temperature
has been determined, the internal temperatures can be solved
through a N ×N linear system of equations that does not
require multiple iterations. In contrast, solving the (N+1)×
(N+1) non-linear system of equations derived in Sect. 4 can
be much more numerically expensive if the whole system is
to be re-assembled and re-inverted at each iteration.

Keeping this issue of numerical cost in mind, we propose
a numerical strategy to solve the system of equations de-
scribing the coupled internal and surface energy budgets. It is
based on a modified Newton scheme, with two modifications
proposed to make the iteration process both more robust and
faster.

Truncation method for regime changes

A first modification made to this standard Newton method is
the use of the truncation method when crossing discontinu-
ities during the iteration process (Wang and Tchelepi, 2013;
Bassetto et al., 2020). The idea behind truncation is that the
Jacobian (i.e., the derivative of the equations with respect to
the unknowns to be solved for) computed on one side of a
derivative discontinuity does not apply on the other side and
can therefore perturb the convergence towards the solution,
typically leading to an endless iteration loop. In our model,
this problem notably arises from the SEB that shows discon-
tinuity with respect to τ when crossing the melting point. A
similar problem can also appear in the turbulence terms of
the SEB. For instance, some formulations of the turbulent
fluxes can include derivative discontinuities for the stability
correction of the latent and sensible fluxes with respect to
the bulk Richardson number (as in, for example, Martin and
Lejeune, 1998; Sauter et al., 2020). Thus, during the iteration
process each time the surface changes regime (between non-
melting/melting or stable/unstable conditions), the value of τ
is brought back in the vicinity of the regime change by set-
ting τ = τ ∗± ε, where τ ∗ is the value for which a derivative
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discontinuity occurs. This truncation procedure is schema-
tized in Fig. 2, depicting a switch between a non-melting and
melting surface. The numerical parameter ε is made to en-
sure that the next iteration starts from the good regime and
needs to be taken small (typically 10−5).

Variable elimination to reduce the size of the non-linear
problem

A second improvement can be made by realizing that most
of the equations governing the internal heat budgets are ac-
tually linear equations and thus only need to be assembled
and inverted once per time step. Indeed, the first (N − 1)
equations, corresponding to the time evolution of the tem-
perature of the internal cells not in contact with the surface,
express simple linear relationships between the N internal
cell temperatures. This can be used to reduce the size of the
non-linear system to be iteratively solved. For this, we elimi-
nate the N − 1 linearly dependent variables using a Schur-
complement technique (Zhang, 2005). Concretely, writing
the system of Eqs. (5) and (9) in block matrix form, one has

, (11)

where Adiag, Aup, Alow, and As are (N −1)× (N −1), (N −
1)×2, 2×(N−1), and 2×2 matrices, respectively. Note that
we refer to the vector composed of the two last unknowns
([TN ,τ ]) as U s in order to not have it mistaken with the
surface temperature. The expressions of the matrices form-
ing the block system are given in Appendix A, including the
derivatives necessary for Newton’s method.

Under this form, the matrices Adiag, Aup, and Alow and the
vector B int are constant during the non-linear iterations and
do not need to be re-estimated at each non-linear iteration.
Thus, the (N − 1) internal temperatures can be expressed as

T int = A−1
diag

(
B int−AupU s

)
(12)

and thus

(As−AlowA−1
diagAup)U s = Bs−AlowA−1

diagB int, (13)

where As−AlowA−1
diagAup corresponds to the Schur comple-

ment of Adiag in the system of Eq. (11) (Zhang, 2005).
The system of Eq. (13) is a 2× 2 non-linear system where

only As and Bs need to be re-assembled at each non-linear
iteration and whose solution for U s is the same as the large
system of Eq. (11). Therefore, an efficient numerical scheme
to solve the whole system of Eq. (11) is to (i) first assem-
ble Alow, Adiag, Aup, and B int; (ii) compute the products
A−1

diagB int and A−1
diagAup (which is cheaper than directly in-

verting Adiag); (iii) iteratively solve the 2× 2 non-linear sys-
tem of Eq. (13) yielding U s (only reassembling As and Bs at

each iteration); and (iv) retrieve the remaining internal tem-
peratures by applying Eq. (12).

This technique, namely eliminating linearly dependent
variables using a Schur complement to reduce the size of
non-linear systems to be solved for, can also be applied to
speed up the solving of Class 1 models. This is presented in
Appendix B. We also note that to apply this technique, the as-
sumption of temperature-independent heat capacity and con-
ductivity is important, as otherwise the internal heat equation
system would not be linear, and thus the matrices Adiag, Aup,
and Alow would not be constant. Finally, a translation of this
numerical strategy (including the fictitious variable and the
Schur-complement technique) in a FEM framework is pre-
sented in Appendix C.

An analysis of the numerical cost (in terms of number of
basic operations) of this numerical scheme is given in Ap-
pendix A, alongside analyses of the numerical cost of Class
1 and 2 models. It shows that the proposed scheme and
the Class 1 models have similar numerical costs, which are
nearly 1.7 times larger than the standard skin layer.

5 Simulation setup

The system of Eq. (11) and its resolution scheme presented
in Sect. 4 enable the computation of the tightly coupled evo-
lution of the surface and of the internal energy budget. The
goal of this section is to compare this approach to more clas-
sical implementations, falling into either Class 1 (all temper-
atures solved at once but without an explicit surface) or Class
2 (presence of an explicit surface but sequential treatment for
the computation of the surface and internal temperatures).

For this purpose, we thus implemented a Class 1 and a
Class 2 model alongside the scheme presented in Sect. 4.
For the implementation of a Class 1 model, a specific treat-
ment of the first cell is adopted. Indeed, in order to have
results comparable with the other model implementations,
the temperature of the first cell is computed, taking into ac-
count the effect of first-order phase transition in order to cap
the surface temperature at T0. The resulting non-linear sys-
tem is solved with the modified Newton method presented in
Sect. 4.1.1, including the truncation and Schur-complement
techniques. Not taking into account first-order phase tran-
sitions in the first cell would result in surface temperature
overshoots (not present in the other implementations), which
would be detrimental to the SEB. We stress that our specific
implementation has differences with already published mod-
els (for instance the Crocus model does not perform non-
linear iterations and treats surface melting differently; Vion-
net et al., 2012) and thus that the results obtained with our
implementation might deviate from those of the aforemen-
tioned models (Crocus, SNTHERM, Cryogrid, or CLM).

For the implementation of a Class 2 model, we adopt the
following sequential treatment for each time step: (i) first the
surface temperature that equilibrates the SEB is computed
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Figure 2. Example of the truncation method made to handle derivative discontinuities during Newton’s iterations (schematic inspired by
Fig. 2.3 of Bassetto, 2021). Starting from an estimate τ i , a new estimate τ i+1 is computed based on the Jacobian estimated at τ i . As a
derivative discontinuity is crossed, the fictitious variable τ is set back near the discontinuity τ∗ but in the “melting surface” regime.

using the internal temperatures of the previous time step and
ignoring potential melting, (ii) if the surface temperature ex-
ceeds melt it is capped at T0 and the excess energy used for
surface melting, and (iii) the internal temperatures are then
computed using the value of the subsurface heat fluxG com-
puted from the SEB as the top boundary condition. Again,
our specific implementation of a Class 2 model might dif-
fer from some of the already-existing “skin-layer” models
(COSIPY, EBFM, or SnowModel).

In order to obtain physically sound results, note that we
have included a treatment of water percolation through a
simple bucket scheme (Bartelt and Lehning, 2002; Vionnet
et al., 2012; Sauter et al., 2020) as well as the representa-
tion of the motion of the surface in response to surface melt-
ing and vapor sublimation/deposition. In our bucket scheme,
cells whose density is close to that of ice are considered to
be impermeable, and water cannot percolate through them.
Instead, excess water present in cells above an impermeable
horizon is sent to runoff. This choice is meant to avoid liq-
uid water percolation through an entire glacier. Our models
also include a remeshing algorithm that merges adjacent cells
when they become smaller than a given threshold (defined
here as 75% of the smallest cell size at the start of a sim-
ulation). This remeshing step is also used to ensure that the
melt of a layer cannot exceed its ice content. If such a case
is encountered, the layer is merged with one of its neighbors
before attempting melting. If the total melt exceeds the total
mass, the simulations should be stopped. However, this last
case did not arise in the simulations presented here. These
processes (melting, percolation, and remeshing) are treated
after the resolution of the heat budget and are handled in a

sequential (and thus partially decoupled) fashion, as usually
done in current snowpack/glacier modeling (e.g., Bartelt and
Lehning, 2002; Vionnet et al., 2012; Sauter et al., 2020). To
ease comparison between the various implementations, the
melting, percolation, and remeshing routines are common to
all of them. The temporal integration scheme is also the same
for all models in order to facilitate the comparison between
them, namely an implicit backward Euler method. Also, as
some of the current snowpack and glacier models include
the effect of internal phase change while solving the internal
heat equation (e.g., Bartelt and Lehning, 2002; Meyer and
Hewitt, 2017), we quantified the sensitivity of our results to
this specific treatment of melt/freeze. For that, we have also
implemented versions of our three models that include such
internal phase changes in the heat equation.

Finally, note that we do not include the FEM in this com-
parison. As detailed in Appendix C, a specificity of FEM
models is to rely on a temperature field that can be defined
element-wise or node-wise. It is thus required to convert back
and forth between these two representations. However, the
relation between the two is not bijective. This prevents an un-
ambiguous transformation from element-wise to node-wise
temperatures, which affects the end result of our simulations.
Because of this problem, the FEM is not further explored in
this article, as a direct comparison to the FVM models is not
possible.

Two simple examples, showcasing the differences between
numerical treatments, are presented below. We note that these
simulations cannot be considered to be fully realistic simu-
lations of a snowpack or glacier surface, as many processes,
such as the deposition of atmospheric precipitation (rain or
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snow) or mechanical settling, are lacking. The goal is rather
to provide a simplified setting in which the impact of the nu-
merical implementation of the SEB can be analyzed. Along
these same lines, we do not attempt to compare the simu-
lation results to field observations. Indeed, it would not be
possible to decipher errors due to the numerical discretiza-
tion (the focus of this paper) from errors due to the as-
sumed physics, parametrizations, and atmospheric forcings.
Nonetheless, in order for the results to still be informative
of how a given numerical implementation might behave in a
more realistic setting, we use realistic atmospheric forcing,
initial conditions, and physical parametrizations. The first
simulation is meant to highlight the behavior of the numeri-
cal models when simulating the SEB on a snow-free glacier.
The second one focuses on the impact of the model imple-
mentations on the simulation of the energy budget of a sea-
sonal snowpack during the melting period.

5.1 Test case 1: snow-free glacier

We start by considering the case of a snow-free and firn-free
glacier, neglecting the accumulation of mass through precip-
itation. This test case is motivated by the recent studies of
Potocki et al. (2022) and Brun et al. (2023), which discuss
current models’ capability of modeling the surface mass bal-
ance of such a snow- and firn-free glacier in a cold environ-
ment.

As such, our simulations are forced by the weather data
provided by Potocki et al. (2022) that include all necessary
information to take into account the shortwave, longwave,
and turbulent energy fluxes at the top of our domain. To com-
pute the shortwave absorption, we assume that the surface
has a constant broadband albedo of 0.4 and that 80% of the
flux is absorbed right at the surface (Bintanja and Broeke,
1995; Sauter et al., 2020) without penetrating deeper. The re-
maining shortwave radiation penetrates the ice following an
exponential decay profile with a 0.4 m e-folding depth (Bin-
tanja and Broeke, 1995; Sauter et al., 2020). The longwave
emissivity of the ice is assumed to be unity. Finally, the turbu-
lent fluxes are computed based on a slightly modified version
of Eqs. (17)–(21) of Sauter et al. (2020) and are described in
Appendix D. The roughness length over the ice surface is
taken constant and set to z0 = 1.7 mm (Sauter et al., 2020).
For the bottom boundary condition, we apply a simple no-
heat-flux condition. As the simulated domain is large (about
189 m), and the simulation was only run for a single year,
this choice of bottom boundary condition has little effect on
the simulated surface temperature and energy budget. For in-
stance, we performed a simulation in which a 64.7 mW m−2

geothermal heat flux is applied instead (Davies, 2013). The
impact on the surface temperature remains below 0.4 mK.
For the internal material properties, we assumed the ice heat
capacity cp to equal 2000 J K−1 kg−1 and not to depend on
temperature (Lide, 2006). Similarly, the ice thermal conduc-
tivity λ is set to 2.24 W K−1 m−1, independently of temper-

ature (Lide, 2006; Sauter et al., 2020). Finally, we want to
stress that in such a case of a snow- and firn-free glacier,
the numerical implementation of our bucket-scheme results
in the runoff of all melted water without percolation into the
glacier and thus without warming the ice below it.

For the initial conditions, we used a spin-up simulation
presented in Brun et al. (2023) and generated with the
COSIPY model (Sauter et al., 2020). It corresponds to an ini-
tially 189 m thick glacier. The output of the spin-up notably
includes a non-uniform mesh for the glacier, from which we
build the meshes for our simulations. In order to study the
influence of spatial resolution on the simulation, the origi-
nal spin-up mesh was refined/downgraded by increasing/de-
creasing the number of cells. This was done by keeping the
same relative cell sizes in the domain, such that the small-
est cells remained near the surface and the largest ones deep
in the glacier, as in the original spin-up mesh. Finally, we
want to stress that the aforementioned simplifying assump-
tions (such as constant albedo, constant surface roughness
length, absence of precipitation, simplistic treatment of per-
colation) imply that the results of our simulations should not
be quantitatively interpreted. Rather, the choice of simplified
physics is meant to ease the comparison of the numerical
treatments of the SEB.

For each numerical scheme, we perform simulations with
initial numbers of cells varying between 22 and 450 and with
time steps ranging from 30 to 7200 s. This range includes
the time steps typically used in models (e.g., 900 s in Crocus
or 3600 s in COSIPY). In the absence of an analytical solu-
tion, the simulations performed at a high spatial and tempo-
ral resolution (i.e., 30 s and 450 cells) are meant to provide
a reference to study the convergence of the other simulations
with the gradual increase in the spatial and temporal resolu-
tions. These high-resolution simulations reveal that the Class
1 model implementation (no explicit surface) remains differ-
ent from the other two implementations even for this level
of time step and mesh refinement. Therefore, as the refer-
ence solution for the glacier test case, we take the average
of the two implementations with an explicit surface, as they
both converged to similar solutions (and similar results will
thus be obtained if only the solution of the proposed tightly
coupled-surface scheme were taken). Specifically, to quan-
tify the difference between a given simulation and the refer-
ence, we focus on the surface temperature and on the phase
change rate (understood in this article as the net melt and re-
freeze over the entire domain after solving the heat equation).
For this purpose, we compute the time series of absolute dif-
ferences between the simulations and the reference, as well
as the corresponding root mean square deviation (RMSD).
Note that in this specific test case, no refreezing was observed
(as melt occurs at the surface and is sent to runoff), meaning
that the phase change rate directly corresponds to the melt
rate.
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Figure 3. Overview of the simulation of a snow- and firn-free glacier using three different numerical schemes. The simulations were per-
formed with a time step of 3600 s and an initial number of cells of 44 (minimum cell size of 10 mm). (a, b) Surface temperature and total
phase change rate (including surface and subsurface melt/refreeze) around mid-September. (c) Upper part of the temperature profiles on
12 September 2019 at 15:45 local time. The dashed orange line in panels (a) and (b) corresponds to the selected date of panel (c).

5.2 Test case 2: melting snowpack

Our second test case corresponds to the case of a melting
snowpack. For simplicity, we assume that the snowpack sur-
face has a constant broadband albedo of 0.7 and that all short-
wave radiation penetrates the snow following an exponen-
tial decay profile with a 0.058 m e-folding depth (Bintanja
and Broeke, 1995; Sauter et al., 2020). Similarly to that of
ice, the longwave emissivity of snow is assumed to be unity.
The turbulent fluxes are computed with the same law as in
the glacier test case but with a constant roughness length of
z0 = 0.24 mm (Sauter et al., 2020). As in the glacier case, the
bottom boundary condition for the heat equation is taken as a
no-flux condition. The use of a more realistic boundary con-
dition could be achieved by coupling the snowpack model to
a soil model (e.g., Decharme et al., 2011). However, it re-
mains beyond the scope of this article, which is focused on
the impact of the implementation of the SEB on simulations.
Regarding internal material properties, we assume snow to
have the specific heat capacity of ice, i.e., 2000 J K−1 kg−1,
independent of temperature (Lide, 2006; Morin et al., 2010).
The thermal conductivity of snow is taken as a function of
density, following the Calonne et al. (2011) parametrization.
For the percolation scheme, we assume that a snow cell is
able to retain up to 5% of its porosity as liquid water (Vion-
net et al., 2012). Liquid water percolating from the last cell
of the snowpack is simply sent to runoff. The initial condi-
tions of the simulation are taken from a Crocus simulation

of the snowpack at Col de Porte (Lejeune et al., 2019) dur-
ing the 2010/2011 season. As we are interested in the case of
melting, we start our simulation from 14 March 2011, cor-
responding to the peak of snow height in the Crocus simu-
lation (1.49 m); run it for 63 d; and stop it before reaching
the total disappearance of the snowpack in our simulations.
The original Crocus mesh is refined/downgraded by increas-
ing/decreasing the number of cells in order to study the im-
pact of mesh resolution of the numerical solutions. The at-
mospheric forcings, for both the spin-up and the simulation,
are based on the reanalysis of Vernay et al. (2022). Finally, as
in the glacier case, the results of the simulations should not
be quantitatively interpreted (for instance in terms of days
for snowpack disappearance) but are only meant to provide
an easy way of comparison between numerical treatments of
the internal and surface energy budgets.

The simulations are performed with initial cell numbers
varying between 22 and 440 and with time steps ranging
from 30 to 7200 s. As in the glacier test case, the high-
resolution simulations (30 s time step and 440 cells) are
meant to provide a reference solution. In this case, all three
models converge to similar solutions with the considered lev-
els of mesh and time step refinement. Thus, the reference so-
lution was taken as the average of the three implementations.
The comparison between a given simulation and the refer-
ence was done focusing on the surface temperature and the
phase change rate, as in the glacier test case.
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Figure 4. Overview of the simulation of a snowpack using three different numerical schemes. The simulations were performed with a time
step of 3600 s and an initial number of cells of 44 (minimum cell size of 9.1 mm). (a, b) Surface temperature and total phase change rate
(including surface and subsurface melt/refreeze) near the end of March. Note that negative phase-change-rate values imply refreezing within
the snowpack. (c) Upper part of the temperature profiles on 18 March 2011 at 19:00 local time. The dashed orange line in panels (a) and
(b) corresponds to the selected date of panel (c).

6 Results and discussion

6.1 General behavior of the models

An example of simulated surface temperature, phase change
rate, and temperature profiles obtained in the glacier test case
for a time step of 3600 s and an initial cell number of 44
(corresponding to a minimum cell size of 10 mm at the top)
is displayed in Fig. 3. Similarly, for the snowpack test case,
simulated surface temperatures, phase change rates, and tem-
perature profiles obtained for a time step of 3600 s and a start-
ing cell number of 44 (corresponding to a minimum cell size
of 9.1 mm at the top) are visible in Fig. 4.

While the three models tend to generally agree in terms
of simulated surface temperatures and phase change rates,
they nonetheless present some notable differences. Concern-
ing the glacier test case, Fig. 3 shows that the Class 1
model (no explicit surface) is systematically different com-
pared to the other two models, with a slower decrease in
the surface temperature at night, resulting in a surface tem-
perature that is usually warmer by a couple of degrees for
the represented period. For comparison, Sauter et al. (2020)
report root mean square errors around 3 K when compar-
ing COSIPY simulations with observations of the Zhadang
glacier surface temperature. Besides the surface temperature,
the Class 1 model also displays internal temperatures (start-
ing from about 10 cm below the surface) that are colder (by

about 0.50 K) than the other two implementations. This in-
ternal temperature difference is consistent with the fact that
the surface temperature in the Class 1 model is on aver-
age warmer than the two others, favoring the loss of energy
through turbulent and radiative fluxes.

As in the glacier test case, models tend to generally agree
in the snowpack case, nonetheless with some differences, as
displayed in Fig. 4. In particular, all predict that most of the
melt occurs internally and without the surface temperature
necessarily reaching the melting point. As before, the Class 2
model and the new tightly coupled approach exhibit the best
agreement (even though the agreement is not as clear as with
the glacier case), while the Class 1 model displays surface
temperatures that reach higher peaks during the day. As with
the glacier test case, the models exhibit surface temperature
differences of about a couple of degrees. This is of the same
order as the biases observed in the snow model intercompari-
son exercise Earth System Model–Snow Model Intercompar-
ison Project (ESM–SnowMIP) (Menard et al., 2021). Despite
their relative agreement, the Class 2 model appears to “lag”
by about one time step behind the tightly coupled implemen-
tation. This lag can be explained by the fact that, in this case,
shortwave radiation is not directly affected by the surface (as
they penetrate). A large variation in shortwave radiation is
therefore not directly visible by the surface, which only re-
acts to it at the next time step, once the shortwave radiation
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Figure 5. Impact of time step size on the simulated surface temperature for the glacier test case and for the three numerical schemes. (a–c)
Errors in surface temperature for the different implementations (panels) and for different time step sizes (colors) during the simulated period.
Right panel: RMSD of the surface temperature over the whole simulated period for each implementation (marker) and time step (color). The
same time step color scheme applies to all panels.

has impacted the cell below the surface. The impact of this
lagging problem can be mitigated by the use of small time
steps, but with the drawback of numerical cost. Beside sur-
face temperature, the Class 1 model also shows differences
compared to the other two models in terms of internal tem-
peratures, being colder in the deepest part of the snowpack.
This effect is due to the smaller melting predicted by the
Class 1 model. There is therefore less meltwater percolating
down the snowpack, which carries latent heat to warm the
snowpack. Finally, we note that the Class 2 model exhibits
some oscillations from time step to time step, characteris-
tic of numerical instability. Such oscillations are visible both
in the surface temperature and the phase change rate, which
display over- and undershoots compared to the other models.

Finally, using the versions of the models including phase
changes in the heat equation, we quantified the sensitivity
of these observations to the treatment of the melt/refreeze.
While the simulated temperature sometimes differs from our
basic implementations (especially in the snowpack test case
where melt occurs internally), the general behavior of the
models, including the potential presence of instabilities in the
Class 2 models, remains unchanged.

6.2 Convergence with time step and mesh refinement

As they solve the same physical equations, all numerical im-
plementations of the heat budget are expected to converge
to the same results when the time step size and mesh size
approach zero. However, in general different numerical im-
plementations do not show the same levels of error and con-
vergence rates toward this solution, as the time step and mesh
size are progressively reduced. The goal of this section is to
analyze the convergence of the three SEB implementations
discussed in this article with time step and mesh size refine-
ment. In other words, we quantify their respective time step
and mesh size sensitivities.

We start here by analyzing the sensitivity of the three nu-
merical implementations to the time step. For this purpose,
we analyze the differences between the reference solutions
and the 3 implementations using about 220 cells (i.e., about
5 times the usual number of cells used in detailed models)
and time steps between 112 and 7200 s. Figures 5 to 8 com-
pare the simulations performed with various time steps to
the reference (time step of 30 s) for the glacier and snow-
pack test cases, respectively. The largest time step of 7200 s
corresponds to twice the default value used for instance in
COSIPY (Sauter et al., 2020) and is meant to represent the
case of models used at quite large time steps for numerical
cost considerations. Note that for the left panels showing
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Figure 6. Impact of time step size on the simulated phase change rate (here denoted ϕ to lighten the plot) for the glacier test case and for
the three numerical schemes. (a–c) Errors in phase change rate for the different implementations (panels) and for different time step sizes
(colors) during the simulated period. Right panel: RMSD of the phase change rate over the whole simulated period for each implementation
(marker) and time step (color). The same time step color scheme applies to all panels.

time series of absolute differences, a 10 d running average
was used to remove daily and weekly variability from the
data. Also, while the right panels display RMSDs over the
entire simulation, we also computed biases. These were in
general about an order of magnitude smaller than the RMSD
values, except for the surface temperature of the snowpack
test case, where the bias was about half of the RMSD.

As seen in the four figures, all models show a general de-
crease in errors with smaller time steps. For almost all in-
vestigated time steps and in both test cases, the newly pro-
posed scheme displays the lowest level of errors. Sometimes
the Class 2 model yields the smallest error but does so only
by a small margin. Figure 5 reveals that for the glacier test
case and at large time steps (between 30 min and 2 h), the
decoupled skin-layer formulation (Class 2 model) shows the
largest errors in terms of surface temperature, with a marked
increase in the error with increasing time step. However, we
do not observe such a sharp increase at large time steps for
the phase-change-rate errors with the Class 2 model, even
though Fig. 6 highlights that for such large time steps, the
Class 2 model wrongly predicts melting early in the season
(notably during the month of February). Figures 5 and 7 show
that for smaller time steps and in both test cases, it is the
Class 1 model that yields the largest errors in terms of sur-
face temperature, with a limited decrease in the error level

with decreasing time steps compared to the other two im-
plementations. Concerning the phase-change-rate errors for
small time steps, it depends on the investigated test case: for
the glacier it is the Class 2 model that shows the largest errors
(Fig. 6), while it is the Class 1 model for the snowpack test
case (Fig. 8). The results of the glacier test case displayed
in Figs. 5 and 6 thus highlight that depending on the consid-
ered metric (surface temperature or phase change rate), the
ranking of models might differ.

Similarly, while the numerical results are expected to con-
verge to the same solution when the grid is refined, they do
not show the same errors and convergence rates with decreas-
ing mesh size. Notably, integrating the top boundary condi-
tions directly in the first cell (as in Class 1 models) instead of
adding an extra independent variable at the surface is known
to slow the convergence of FVM with mesh refinement, as
it requires a very small top cell to properly approximate the
surface temperature. As with time step sensitivity, we quan-
tify the impact of mesh refinement by comparing simulations
performed with different spatial resolutions to reference sim-
ulations. We used the same reference simulations as with
the time step analysis. The results are displayed in Figs. 9
to 12 and show the errors in terms of surface temperature and
phase change rate for both investigated test cases. As with the
time step convergence, bias values over the simulations were
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Figure 7. Same as Fig. 5, but for the snowpack test case.

Figure 8. Same as Fig. 6, but for the snowpack test case.
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Figure 9. Impact of mesh size on the simulated surface temperature for the glacier test case and for the three numerical schemes. (a–
c) Errors in surface temperature for the different implementations (panels) and for different mesh sizes (colors) during the simulated period.
Right panel: RMSD of the surface temperature over the whole simulated period for each implementation (marker) and mesh size (color). The
same mesh size color scheme applies to all panels.

found to be an order of magnitude smaller than the RMSD
values.

As with time step refinement, all models display a general
decrease in errors with finer meshes. Again, among the three
implementations the tightly coupled-surface model yields the
smaller errors for almost all investigated mesh refinements
(as in the glacier test case, the Class 2 model is however
sometimes marginally better). On the other hand, the Class
1 model displays comparatively large errors for almost all
mesh refinements and for both test cases. As seen in Fig. 11,
this is particularly marked in the snowpack simulation, where
the Class 1 simulation with the finest mesh refinement (about
220 initial cells) has the same level of surface temperature
error as the other two models with a coarser mesh (44 initial
cells). In other words, in this case, the Class 1 model needs
about 5 times more cells (and thus 5-times-thinner cells) to
achieve the same precision as the other two implementations.
The addition of an extra degree of freedom to represent the
surface is thus highly beneficial and offers the possibility of
using coarser (and thus computationally cheaper) meshes. Fi-
nally, Fig. 10 reveals that in the glacier test case, the phase-
change-rate errors in Class 2 tend to deteriorate with further
mesh refinement past a certain point (here for an initial cell
number above 90). We interpret this deterioration as a result
of the appearance of numerical instabilities that develop with
small mesh sizes. Due to this effect, the Class 2 model ex-

hibits the largest phase-change-rate errors for an initial num-
ber of cells of 225. Finally, using the versions of the models
including phase changes in the heat equation, we verified that
the conclusions of this convergence analysis remain valid in
the case of a different treatment of the internal phase changes.

6.3 Tight coupling as a way to reduce instabilities

As discussed above, the decoupled nature of the standard
skin-layer formulation (Class 2 models) leads to greater er-
rors for large time steps compared to the two coupled for-
mulations, with or without an explicit surface. Moreover, the
Class 2 model can show some deterioration in the case of
highly refined meshes (Fig. 10). Both these phenomena can
be explained by the fact that the skin-layer formulation dis-
plays instabilities. We observe especially large instabilities
for time steps of 2 h, visible as oscillations in the tempera-
tures of the surface and of the cell below, with peak-to-peak
amplitudes sometimes reaching 100 K and with a daily run-
ning standard deviation up to about 50 K. Such oscillations
then lead to an abnormally cold and warm surface and a de-
teriorated SEB. As displayed in Fig. 13, these instabilities
are even worsened in the case of mesh refinement. In con-
trast, no such instabilities have been observed for the tightly
coupled schemes (with or without an explicit surface). The
unstable nature of Class 2 models can be shown with a lin-
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Figure 10. Impact of mesh size on the simulated phase change rate (denoted here as ϕ to lighten the plot) for the glacier test case and for
the three numerical schemes. (a–c) Errors in the phase change rate for the different implementations (panels) and for different mesh sizes
(colors) during the simulated period. Right panel: RMSD of the phase change rate over the whole simulated period for each implementation
(marker) and mesh size (color). The same mesh size color scheme applies to all panels.

ear stability analysis, provided in Appendix E. Such analysis
shows that Class 2 models are only conditionally stable and
confirm that instabilities are favored in the case of large time
steps and small mesh sizes. We stress that these oscillations
can appear even if the time integration of the internal energy
budget relies on the backward Euler method, known for its
robustness against instabilities (Fazio, 2001; Butcher, 2008).
Our understanding is that the sequential treatment of the stan-
dard skin-layer formulation breaks the implicit nature of the
time integration by using “lagged” (in other words, explicit
rather than implicit) terms. This, combined with the fact that
the surface layer does not possess any thermal inertia and that
its temperature can thus vary rapidly in time, permits large
temperature swings if the time step is too large or the mesh
size too small. On the other hand, it can be shown that the
two schemes with a tightly coupled SEB are uncondition-
ally stable (Appendix E), in agreement with the absence of
oscillations in their simulations. Notably, the unconditional
stability of the coupled-surface scheme proposed in this ar-
ticle implies that the model does not need an adaptive time
step size strategy depending on the mesh size. This ensures
that it remains robust, regardless of the time step and mesh
size.

6.4 Energy conservation in the standard skin-layer
formulation

As explained in Sect. 2.2, the heat conduction flux from the
surface to the interior of the domain (i.e., G in Eq. 3) needs
to have the same value in the computation of the SEB and in
the computation of the energy budget of the first interior cell.
Inconsistencies in G between these two budgets lead to the
violation of energy conservation and create an artificial en-
ergy source/sink near the surface. Such inconsistencies could
be created when implementing the standard skin-layer for-
mulation (Class 2 models) due to the sequential treatment of
the surface and internal energy budgets. Indeed, after solv-
ing the SEB, one can use either the surface temperature or
the subsurface heat flux G as a boundary condition for the
computation of the internal temperatures. We note that the
use of the computed surface temperature as a boundary con-
dition leads to an unconditionally stable numerical scheme
(Appendix E). However, using such a Dirichlet condition in
order to stabilize the standard-skin-layer formulation comes
at the expense of energy conservation and deteriorates the
simulated results.

As an illustration, we have also run skin-layer simulations
(Class 2) using the surface temperature as the boundary con-
dition rather than using a flux boundary condition. A com-
parison of the energy-conserving and non-energy-conserving
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Figure 11. Same as Fig. 9, but for the snowpack test case.

Figure 12. Same as Fig. 10, but for the snowpack test case.
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Figure 13. Time series of surface temperatures (in blue, left y axis) and of their 24 h running standard deviations (in orange, right y axis),
highlighting the presence of numerical instabilities with the standard skin-layer scheme. The simulations correspond to the glacier test case
with a time step of 2 h. Each panel corresponds to a level of mesh refinement. The lowest mesh refinement is at the top and displays the
smallest level of instabilities, while the highest mesh refinement is at the bottom and displays numerous large instabilities in the first half of
the simulation.

simulations is shown in Fig. 14. The surface temperatures
show RMSDs of 3.96 and 2.16 K and phase-change-rate
RMSDs of 3.6× 10−1 and 3.0× 10−1 kg m−2 h−1 for the
glacier and snowpack test cases, respectively. In general, the
non-conservative scheme displays smaller daily variations in
the surface temperature, with a less pronounced warming
during the day (sometimes impending surface melt) and a
less pronounced cooling at night. For the non-conservative
implementation, the inconsistency in G can be expressed
as an equivalent and artificial surface energy sink/source.
For the glacier test case, this non-conservation of energy is
equivalent to an additional energy flux with an average of
−14.5 W m−2 (thus cooling the domain) and a standard de-
viation of 123.5 W m−2. In the snowpack test case, this cor-
responds to an additional energy flux with an average of
0.34 W m−2 (warming the domain) and a standard deviation
of 39 W m−2. In both cases, the large value of the standard
deviation compared to the average indicates that this “artifi-
cial” energy term displays large fluctuations, strongly affect-
ing the simulations. Notably, in both cases the ablation of the
glacier and the snowpack is reduced, with a decrease of re-
spectively 40% and 8% compared to the energy-conserving
implementation.

7 Conclusions

Current implementations of the SEB in a finite-volume
framework can present one of the two limitations: (i) with
the standard skin-layer formulation the SEB is solved se-
quentially with the internal heat budget, therefore creating
a form of decoupling between the surface and the interior of
the domain, or (ii) the SEB is integrated in the first cell, and
there is no difference between this first cell temperature and
the surface temperature. To circumvent these limitations, we
derive a mathematical framework that includes both (i) an
explicit surface, with a temperature different from that of the
first cell below, and (ii) the tightly coupled resolution of the
surface and internal heat budgets including a potential sur-
face melting. Notably, a unified treatment of the melting and
non-melting surface is proposed via the use of a fictitious
variable playing the role of a switch between melting and
non-melting conditions. A specific Newton method is also
presented to robustly and efficiently solve the resulting non-
linear system of equations. The robustness of the standard
Newton method is increased by using a truncation method,
made to handle discontinuities in the equations. Furthermore,
a reduction technique, based on the computation of a Schur
complement, is presented so that the numerical cost of the
proposed framework remains of the same order as that of
the standard implementations for the same mesh. In partic-
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Figure 14. Comparison between the energy-conservative and non-energy-conservative skin-layer numerical schemes. Panels (a) and (c) cor-
respond to the glacier test case, and (b) and (d) correspond to the snowpack test case. Panels (a) and (b) display the surface temperatures,
and panels (c) and (d) display the phase change rates.

ular, for a given mesh, the numerical cost is similar to that of
the models that do not explicitly have a surface and is about
1.7 larger than that of the standard-skin-layer formulation.
It can therefore be implemented in existing snowpack and
glacier models while preserving their current numerical effi-
ciency. Moreover, the reduction technique presented in this
article can also be employed for other non-linear systems of
equations (besides the energy budget treated here) by elim-
inating linearly dependent variables and reducing the size
of the non-linear system to be iteratively solved, providing
substantial gain when only a small portion of the discretized
equations contain non-linearities. Numerical test cases, cor-
responding to a snow-free glacier and a snowpack, have been
performed in order to compare the results obtained with the
different numerical treatments of the SEB. Mesh and time
step convergence analyses show that combining a coupled
treatment of the SEB with the explicit introduction of a sur-
face results in an overall better accuracy when compared to
the classical implementations. Notably, defining an explicit
surface temperature enables the use of about 5-times-coarser
meshes compared to models using the temperature of the first
cell as the surface temperature for the same level of accu-
racy of temperature and phase change. Moreover, a tightly
coupled treatment of the SEB allows unconditional stabil-
ity, while the standard-skin-layer formulation can be unstable
and displays large spurious oscillations with large time steps
and small mesh sizes. Thus, while a bit more numerically

costly, the formulation presented in this article can be used
to reduce the numerical cost of a snowpack/glacier model
overall through the use of larger time steps. Finally, we show
that the conservation of energy could easily be broken when
implementing a standard-skin-layer (loosely coupled) model.
While this could be used as a technique to numerically stabi-
lize the model, it leads to greatly deteriorated simulations.

Appendix A: Matrix expressions and numerical cost of
the coupled-surface scheme

A1 Matrix expressions

Combing Eqs. (5), (6), and (10), the Newton scheme of the
coupled-surface model proposed in this article can be written
in block matrix form

, (A1)
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with non-zero terms being

Adiag(k,k)=1zkcpk +1t

 λharm
k+ 1

2
1zk

2 +
1zk+1

2

+

λharm
k− 1

2
1zk

2 +
1zk−1

2

 (A2)

Adiag(k,k− 1)=−1t
λharm
k− 1

2
1zk

2 +
1zk−1

2

(A3)

Adiag(k,k+ 1)=−1t
λharm
k+ 1

2
1zk

2 +
1zk+1

2

(A4)

Aup(N − 1,1)= Alow(1,N − 1)=−1t
λharm

N− 1
2

1zN−1
2 +

1zN
2

(A5)

As(1,1)=1zNcpN+1t

 λharm
N− 1

2
1zN

2 +
1zN−1

2

+
λN
1zN

2

 (A6)

As(2,2)=1t

(
λN
1zN

2

dτTsurf+Lfusdτ ṁ− dτH − dτL
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In the above expressions, T n−1
k is the temperature of cell k

at the previous time step, SWint,k is the quantity of shortwave
radiation absorbed in cell k, and τ i is the value of the ficti-
tious variable τ at the start of the current non-linear iteration.
The terms Ts(τ

i),H(τ i), etc. as well as dτTsurf, dτH , etc. are
the values of the surface temperature, sensible heat flux, etc.
as well as their derivatives at the current τ i estimation.

Among the different partial derivatives, dτH and dτL can
be difficult to analytically derive. For that, we first note that

the chain rule yields dτH = dTsHdτTs and dτL= dTsLdτTs.
Then, for the expression of H given in Appendix D we have

dTsH = ρacp,au
(
dTsCH(Ta− Ts)−CH

)
. (A13)

Moreover, the chain rule yields dTsCH = dRibCHdTsRib. In
our case,

dRibCH =
κ2

ln
(
z
z0

)(
z
z0t

)


0 if Rib < 0
50Rib− 10 if 0≤ Rib < 0.2
0 if 0.2≤ Rib

(A14)

and

dTsRib =−
gza

Tau2 . (A15)

Similarly, for L, we have

dTsL= ρaLsu
(
dTsCE(qa− qs)−CEdTsqs

)
. (A16)

The derivative dTsCE can be computed as the one of CH
through the chain rule and its dependence onRib. The deriva-
tive of qs with respect to Ts can be easily obtained using
the derivative of the saturated water vapor pressure, which
is given by the Clausius–Clapeyron relation.

A2 Numerical cost

We see that the whole system of Eq. (A1) is a tri-diagonal
system with dimensions of (N + 1)× (N + 1), with N the
number of cells. Without a Schur complement, the computa-
tion of A−1B can thus be solved with the Thomas algorithm
(Versteeg and Malalasekera, 2007) in 10N − 1 base opera-
tions (addition, subtraction, multiplication, and division) per
non-linear iteration (neglecting the time spent assembling the
matrices). We also note that Adiag is a tri-diagonal matrix, and
thus the Thomas algorithm also applies. Moreover, we see
that Aup and Alow are almost empty matrices, which simpli-
fies the number of operations necessary to compute A−1

diagAup

and AlowA−1
diagAup. Specifically, the Schur-complement tech-

nique used in this paper can be employed with 7N − 9
(A−1

diagAup, once per time step) +10N − 21 (A−1
diagB int, once

per time step) +15 (assembly and solving of Schur comple-
ment, once per iteration) +2N (re-injection to compute T int,
once per time step) steps, i.e., a total of 17N−6+15nit steps,
with nit the number of non-linear iterations. We see that the
advantage of the Schur-complement technique is that the cost
of performing non-linear iterations does not increase with the
mesh resolution, yielding a smaller numerical cost than in-
verting the whole system for each non-linear iteration.

One may then wonder how the numerical cost of the
scheme proposed in the article compares to the Class 1 and
2 models discussed in the paper. The Class 1 model (once a
Schur-complement technique has been employed) has a sim-
ilar numerical cost to the proposed coupled-surface-scheme
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approach, namely 17N −23+15nit steps. For a given mesh,
it has 1 fewer degree of freedom than the coupled-surface
scheme and is thus only marginally less costly. The Class 2
model is the least costly of all schemes discussed in the pa-
per. Indeed, once the SEB and the surface temperature have
been solved through scalar non-linear iterations, it relies on
a single tri-diagonal inversion with dimensions of N ×N ,
which can be done in 10N − 11 steps. The ratio of the nu-
merical cost of the scheme proposed in the article over that
of the standard skin layer is about 1.7.

Appendix B: System size reduction for Class 1 models

The size reduction technique presented in Sect. 4.1.1 can also
be employed for Class 1 models, i.e., models where the SEB
is integrated directly within the first cell and where the tem-
perature of this first cell plays the role of the surface temper-
ature. Such an implementation is used for our comparison in
Sect. 5 as a way to speed up our implementation of a Class 1
model.

As explained in Sect. 5, we made sure that for our resolu-
tion of Class 1 model, the topmost cell does not overshoot the
melt temperature, as it would bias the SEB. This is done by
including the effect of first-order phase change in the topmost
cell. For that, we use the energy content h of the top cell as
the prognostic variable, instead of its temperature. The dis-
crete energy budget of the top cell is thus expressed as

1zh
n+1
+1tFSEB+1tF =1tQ+1zh

n, (B1)

where hn+1 and hn are the energy content at the end and start
of the time step, FSEB the net energy sum of the surface en-
ergy fluxes (taken positive if oriented towards the domain),
F the heat conduction flux exchanged with the cell below,
Q the volumetric internal heat source, and 1t the time step
size. The conduction flux F is computed as the other con-
duction fluxes (Eq. 6), simply noting that the temperature of
the top cell is a non-linear function of its energy content h.
Combining all budget equations over the domain leads to a
matrix system of the type

, (B2)

where U s =
[
TN−1,h

]
, and Adiag, Aup, Alow, and the vector

B int are constant during the non-linear iterations. Therefore,
the reduction technique presented in Sect. 4.1.1 applies, and
the unknown U s can be solved through the 2× 2 non-linear
system:

(As−AlowA−1
diagAup)U s = Bs−AlowA−1

diagB int, (B3)

with only As and Bs being re-assembled at each iteration.

Appendix C: Finite-element-method scheme

In this paper, we focus on the FVM for spatial discretiza-
tion. However, the heat budget equation could also be spa-
tially discretized with the FEM. Indeed, the FEM naturally
includes a node at the surface and thus possesses a surface
temperature, which helps to tightly couple the SEB to the
interior of the snowpack/glacier. This strategy is employed
for instance in the SNOWPACK model (Bartelt and Lehn-
ing, 2002; Wever et al., 2020). Specifically, in SNOWPACK,
the coupled SEB is introduced as a top Robin boundary con-
dition. The goal of this appendix is to briefly present how the
techniques presented in the main part of the paper (namely
the use of a fictitious variable and of a Schur complement)
can be used to implement a tightly coupled FEM model.

C1 Expression of the heat equation in FEM

We consider the mesh of the domain to be discretized into
N 1D elements (the direct equivalent of the cells in FVM)
and thus into N + 1 nodes (the end points of the elements).
As classically done with FEM (Pepper and Heinrich, 2005),
we assume the temperature field to be a linear combination
of basis functions ϕj , i.e., T (z, t)=

∑N
k=1Tj (t)ϕj (z). Here,

we use basic linear elements. In this framework, Tj (t) cor-
responds to the nodal value of the temperature field (which
evolves over time), and the basis functions ϕj (z) are piece-
wise linear functions, valued 1 at node j and 0 at all other
nodes. The standard Galerkin form (Pepper and Heinrich,
2005) of the internal heat budget (Eq. 1) is

∀i
∑
j

dtTj

∫
�

cpϕjϕidL+
∑
j

Tj

∫
�

λ∇ϕj · ∇ϕidL

=

∫
�

QϕidL+Fsϕi(s), (C1)

where � represents the domain of the simulation, Fs rep-
resents the energy fluxes entering at the top of the domain
(i.e., G), and ϕi(s) is the basis function ϕi evaluated at the
top of the domain. We note that similarly to the FVM case,
the temperature at the top of the domain presents a regime
change whether the surface is melting or not. To handle this,
we rely on the fictitious variable τ , i.e., Ts = Ts(τ ). The vec-
tor of unknowns, denoted U , is thus composed of the internal
temperatures and of the surface fictitious variable. Finally,
we have not included any bottom energy flux to lighten the
notation, but it could be included easily. Once temporally dis-
cretized with a backward Euler scheme and linearized, the
problem can be expressed in matrix form AUn

= B, with
A= (M+1tK+1tL)JT and B =MT n−1

+1tQ+1tF

(T n−1 being the vector of temperature from the previous time
step) and

M(i,j)=

∫
�

cpϕjϕidL (C2)
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K(i,j)=
∫
�

λ∇ϕj · ∇ϕidL (C3)

L(N + 1,N + 1)=−dτSEB+Lfusdτ ṁ (C4)

JT (i, i)=

{
1 if i ≤N

dτTs else
(C5)

Q(i)=

∫
�

QϕidL (C6)

as well as

F (N+1)= SEB(τ i)−dτSEBτ i−ṁ+Lfus

(
dτ ṁτ

i
)
, (C7)

where SEB and dτSEB correspond to the atmospheric fluxes
in the SEB and their derivatives with respect to τ at the cur-
rent iteration, and ṁ and dτ ṁ are the melting rate and its
derivative at the current iteration. In the equations above,
only the non-zero terms have been given.

As in the FVM case, this system is composed of a linear
part (the interior, corresponding to the first N − 1 equations)
and a non-linear part (the surface, corresponding to the last
two equations). Its solving can thus be accelerated using a
Schur-complement technique (Sect. 4.1.1) by breaking the
matrix A into four blocks: a constant (N−1)×(N−1) diag-
onal Adiag block, a constant (N−1)×2 vertical Aup block, a
constant 2× (N−1) horizontal Alow block, and a 2×2 diag-
onal block As to be re-computed at each non-linear iteration.

C2 The rest of the model

After solving the coupled heat budgets with FEM, we obtain
a nodal temperature field. Since conserved quantities, such
as energy or mass, are defined element-wise in snowpack-
/glacier FEM models (Bartelt and Lehning, 2002), the nodal
temperature field needs to be converted into an element-
wise energy field. We note that this also defines an element-
wise temperature field, where the temperature of an element
is simply the average of the nodal temperatures at its end.
This element-wise energy field can then be used to simulate
melt/refreeze and liquid water percolation and to remesh the
domain using the same routines as in FVM models.

Once all routines for a given time step have been per-
formed, we are left with an element-wise temperature field
that needs to be converted back to a nodal temperature field,
as required for the FEM. However, this conversion is not
straightforward. First, as we have N element-wise temper-
atures to transform into N + 1 nodal temperatures, the prob-
lem is not properly closed, and an extra (arbitrary) constraint
needs to be added. This could, for instance, be setting the
surface temperature to the value computed in the SEB. Fur-
thermore, even after choosing an extra constraint to close
the problem, the element-wise-to-node-wise transformation
can produce spurious oscillations in the nodal field even if
the element-wise field is monotonous (in other words, the
transformation does not respect a form of discrete maximum

principle; Ciarlet and Raviart, 1973). It is therefore not pos-
sible to derive an optimal scheme for this transformation that
would (i) not modify the element-wise temperature field and
(ii) not create spurious oscillations in the node-wise tem-
perature field. As spurious oscillations in the temperature
field would affect the estimation of the temperature gradi-
ents that are used in snowpack models to estimate meta-
morphism (e.g., Bartelt and Lehning, 2002; Vionnet et al.,
2012), it seems preferable to rather allow the modification of
the element-wise temperature field. That being said, such a
strategy implies a spatial re-distribution of energy between
elements that is not motivated by any underlying physical
mechanism. We note that the SNOWPACK model handles
this element-to-node transformation during a phase change
step after the liquid percolation scheme and does so without
creating large spurious temperature oscillations.

Unfortunately, it is not possible to directly implement the
SNOWPACK scheme in our toy model, as the sequential
treatment is not the same. Moreover, we did not manage to
derive a scheme that performs this element-to-node transfor-
mation without affecting the surface temperature. Thus, in
our numerical simulations, the FVM and FEM models yield
different results. In the absence of an analytical solution, a
direct comparison of the FEM and FVM implementations re-
mains impossible.

Appendix D: Expression of turbulent fluxes used in this
work

The computations of the turbulent fluxes used in this work
are based on those provided by Sauter et al. (2020), with
slight modifications. The sensible and latent heat fluxes, H
and L, are taken as

H = ρacp,aCHu(Ta− Ts) (D1)

and

L= ρaLsCEu(qa− qs), (D2)

with ρa the density of air; cp,a the heat capacity of air at con-
stant pressure; u the wind velocity (at a given height); Lv the
latent heat of sublimation of water; Ta and qa the temperature
and specific humidity of the air; Ts and qs the temperature
and specific humidity of the surface, assuming the saturation
of vapor; and CH and CE two coefficients given by

CH =
κ2

ln
(
z
z0

)(
z
z0t

)ψ(Rib) (D3)

and

CE =
κ2

ln
(
z
z0

)(
z
z0q

)ψ(Rib). (D4)
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Here κ = 0.41 is the von Kármán constant; z0 is the aero-
dynamic roughness length; z0q and z0t are taken 1 and 2 or-
ders of magnitude smaller than z0, respectively (Sauter et al.,
2020); and ψ is a stability correction factor. Specifically, we
take ψ as

ψ(Rib)=


1 if Rib < 0

(1− 5Rib)2 if 0≤ Rib < 0.2
0 if 0.2≤ Rib,

(D5)

with Rib the bulk Richardson number:

Rib =
g

Ta

(Ta− Ts)za

u2 , (D6)

with za the height at which the air temperature measurement
is performed.

There are two main differences compared to the expres-
sion of the turbulent fluxes given in Sauter et al. (2020).
First, in Sauter et al. (2020), the transition between the un-
stable and stable correction factor ψ is taken for Rib = 0.01,
while we take it for Rib = 0. This choice is made to ensure
the continuity of the stability factor, and thus of the turbulent
fluxes, as a function of Ts. In the presence of a discontinuity,
it can indeed happen that the SEB does not have a solution
in terms of Ts, and the surface temperature is no longer de-
fined in this case. Secondly, for the expression of the latent
heat flux, we simply keep the latent heat of sublimation Ls
and do not replace it with the latent heat of vaporization Lv.
Again, the goal is to avoid discontinuities in the SEB as a
function of Ts so that the problem remains mathematically
well posed. This approach is, for instance, used in the Crocus
model (Matthieu Lafaysse, personal communication, 2023).
Another strategy could be to fix the latent heat to either its
sublimation or vaporization value, depending on the initial
state of the surface.

Appendix E: Stability analysis

Here, we present the derivation of the criteria for the numer-
ical stability of the different numerical schemes presented in
the paper. We follow the proof classically used to show the
(un)conditional stability of the forward and backward Eu-
ler method (Butcher, 2008). Notably, the proof relies on a
linearized version of the system of equations. As the sys-
tem needs to be linearized, we cannot account for the po-
tential melting of the surface. Under this consideration, the
atmospheric fluxes in the SEB (longwave radiations, turbu-
lent fluxes, etc.) are simply expressed as a linear function
of the surface temperature Ts, i.e., as f Ts+ b, where f and
b are constant scalars expressed in J s−1 m−2 K−1 and in
J s−1 m−2, respectively. Also, for simplicity, we consider a
system composed of only one cell and its surface. The prob-
lem could be generalized to more cells, but it would make the
computation more cumbersome and is not crucial as we are

considering numerical instabilities that develop in the vicin-
ity of the surface.

E1 Standard-skin-layer formulation (Class 2)

To compute the surface temperature T n+1
s at time step n+1,

we use the discretized surface energy balance (SEB):

f T n+1
s + b+

2λ
1z

(
T n+1

s − T ni

)
= 0, (E1)

where the first two terms correspond to the sum of outgoing
and incoming atmospheric fluxes, and the last term corre-
sponds to the subsurface heat conduction flux. Here, λ is the
thermal conductivity of the internal cell and1z its thickness.
Note that the internal temperature T ni is taken from the pre-
vious time step. To compute the internal temperature at time
step n+ 1, we use the heat budget of the internal cell:

1zcpT
n+1

i +1t
2λ
1z

(
T ni − T

n+1
s

)
=1zcpT

n
i , (E2)

where the second term of the left-hand side is the opposite
of the subsurface conduction flux appearing in the SEB (for
energy conservation), and cp is the heat capacity of the in-
ternal cell. The two above equations can be expressed in ma-
trix form MUn+1 = NUn+B, with Un the solution vector
[Ts,Ti]

T at the nth time step and

M=

[
1 0

−
21tλ
cp1z2 1

]
, (E3)

N=

[
0 2λ

2λ+1zf
0 1− 21tλ

cp1z2

]
, (E4)

and B = [− 1zb
1zf+2λ ,0]

T . We thus have Un+1 =QUn+

M−1B, with

Q=M−1N=

[
0 2λ

2λ+1zf
0 1−1t 2λ

cp1z2
1zf

2λ+1zf

]
. (E5)

By recursion, it follows that Un =QnU0+M−nB. The nu-
merical scheme is deemed stable if limn→∞Qn

= 0. This is
achieved if

|1−1t
2λ

cp1z2
1zf

2λ+1zf
|< 1, (E6)

which after some computation yields a criterion of the time
step 1t :

1t < 1tcrit =
cp1z

λ

2λ+1zf
f

. (E7)

The (linearized) standard skin layer is thus only condition-
ally stable. The stability criterion is relaxed with increasing
heat capacity (cp) and increasing cell size (1z) and is made
more restrictive with increasing thermal conductivity (λ) or
if the SEB is more sensitive to changes in the surface tem-
perature (f term).
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E2 Coupled-surface formulation

Similarly, for a one-cell system, the coupled-surface equa-
tions, after linearization, are expressed as

f T n+1
s + b+

2λ
1z

(
T n+1

s − T n+1
i

)
= 0 (E8)

for the SEB and

1zcpT
n+1

i +1t
2λ
1z

(
T n+1

i − T n+1
s

)
=1zcpT

n
i (E9)

for the cell’s heat budget. These two equations can be
cast into the matrix form MUn+1 = NUn+B, with B =

[−
1zb

1zf+2λ ,0]
T , where

M=

[
1 −2λ

2λ+1zf
−

21tλ
cp1z2+2λ1t 1

]
(E10)

and

N=

[
0 0

0 cp1z
2

cp1z2+2λ1t

]
. (E11)

We thus have Un =QnU0+M−nB, with

Q=

0 2λ
2λ+1zf

cp1z
2

cp1z2+2λ1t

0 cp1z
2

cp1z2+2λ1t

 . (E12)

The numerical scheme is deemed stable if limn→∞Qn
=

0. This is always achieved, as cp1z
2

cp1z2+2λ1t < 1. Thus, the
surface-coupled scheme is unconditionally stable.

E3 Non-conservative skin-layer formulation

For the non-conservative skin-layer formulation (see
Sect. 6.4), we start with the linearized discrete SEB:

f T n+1
s + b+

2λ
1z

(
T n+1

s − T ni

)
= 0. (E13)

Using the surface temperature T n+1
s as a Dirichlet condition

for the internal energy budget, we thus have

1zcpT
n+1
i +1t

2λ
1z

(
T n+1

i − T n+1
s

)
=1zcpT

n
i . (E14)

These two equations can be cast into the matrix form
MUn+1 = NUn+B, with B = [− 1zb

1zf+2λ ,0]
T , where

M=

[
1 0

−
21tλ

cp1z2+2λ1t 1

]
(E15)

and

N=

0 2λ
2λ+1zf

0 cp1z
2

cp1z2+2λ1t

 . (E16)

We thus have Un =QnU0+M−nB, with

Q=
[

0 2λ
2λ+1zf

0 X

]
, (E17)

where X =
2λ1t 2λ

2λ+1zf +cp1z
2

21tλ+cp1z2 . The scheme is deemed stable
if |X|< 1.

As 2λ
2λ+1zf < 1, it always holds that 2λ1t 2λ

2λ+1zf +

cp1z
2 < 21tλ+ cp1z2 and thus that the scheme is uncon-

ditionally stable. That being said, we recall that this scheme
is not energy-conservative and can lead to large errors.

E4 No-surface formulation (Class 1)

Finally, we note that the linearized no-surface formulation
corresponds to a classic heat equation with a backward Euler
time integration. As demonstrated elsewhere in the literature
(e.g., Butcher, 2008), it is unconditionally stable.
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