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Abstract: The analysis of air pollution behavior is becoming crucial, where information on air
pollution behavior is vital for managing air quality events. Many studies have described the stochastic
behavior of air pollution based on the Markov chain (MC) models. Fitting the optimum order of MC
models is essential for describing the stochastic process. However, uncertainty remains concerning
the optimum order of such models for representing and characterizing air pollution index (API) data.
In this study, the optimum order of the MC models for hourly and daily API sequences from seven
stations in the central region of Peninsular Malaysia is identified, based on the Bayesian information
criteria (BIC), contributing to exploring an adequate explanation of the probabilistic dependence of
air pollution. A summary of the statistics for the API was calculated prior to the analysis. The Markov
property and the divergence for the empirically estimated transition matrix of an MC sequence are
also investigated. It is found from the analysis that the optimum order varies from one station to
another. At most stations, for both observed and simulated API data, the second and third orders of
the MC models are found to be optimum for hourly API occurrences, while the first-order MC is found
to be most fitting for describing the dynamics of the daily API. Overall, fitting the optimum order
of the MC model for the API data sequence captured the delay effect of air pollution. Accordingly,
we concluded that the air quality standard lies within controllable limits, except for some infrequent
occurrences of API values exceeding the unhealthy level.

Keywords: chi-squared test; high-order Markov chain; log-likelihood function; Markov property;
maximum likelihood estimation; R software

MSC: 60J10

1. Introduction

Clean air is necessary for healthy living; however, much of the air in the atmosphere is
polluted. Air pollution is an environmental phenomenon that occurs as a result of natural
disasters and anthropogenic activities [1]. It is one of the most serious environmental issues
that have negative impacts on people’s health and quality of life [2]. The Department
of Environment (DOE) defines the air pollution index (API) as a generalized metric for
characterizing the status of the air quality in the environment. The API is computed using
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the average indices for five major pollution variables: ozone (O3), nitric oxide (NO2),
particulate matter (PM10), carbon monoxide (CO), and sulphur dioxide (SO2), and the
highest value from these five subindices at a particular hour is chosen as the API value [3,4].

There are many applications of the MC model in various areas of research, where it is
considered a useful tool to describe probabilistic dependence in a model for a stochastic
process. MC models are widely used in many different disciplines such as in economics,
environment, education, medical, business engineering, queuing networks, and manufac-
turing systems [5]. For example, Zhou et al. [6] have used the MC model for predicting
the transition probabilities of bike rental and returns for a bike-sharing system in China.
Choji et al. [7] have employed the MC model for predicting the long run of share prices for
two banks in Nigeria. Saad et al. [8] have investigated the track movements of lecturers in
universities using the MC model. In [9], a discrete-time MC model has been applied for
analyzing job transitions in Mexico.

Among the statistical models that are widely used in environmental research, the
MC model is considered a powerful model, particularly for describing the probabilistic
behavior in environmental problems, as reported in the studies by [10–13]. They found that
the MC is a superior model in characterizing the probabilistic behavior of environmental
problems. Particularly, MC models have been used for modeling the air quality conditions
in the environment and implemented to represent air pollution occurrences. For example,
Larsen et al. [14] modeled air quality using ozone data for a given level of threshold based
on the MC. They worked with the high-order chains that can be estimated by examining
correlation plots, and transition probabilities have been estimated using the maximum
likelihood method. Hoyos et al. [15] employed the MC model for modeling O3 and SO2
for evaluating the effect of air pollution events in Mexico City. Rodrigues and Achcar [16]
have proposed a discrete-time MC model for ozone air pollution based on the maximum
daily observations. They investigated the case of air pollution problems with maximum
daily measurements and found that ozone behavior did not indicate a time-homogeneous
property. Asadollahfardi et al. [17] have predicted the air pollution of PM2.5 index using a
combination method of MC and artificial neural network methods.

Recently, Nebenzal and Fishbain [18] predicted the long run of air pollution using
discrete-time MC models, which have precisely explained the distribution of the nitrogen
levels. Mohamad et al. [19] have used the first-order MC to model the daily PM10 concen-
trations in Malaysia. Alyousifi et al. [20] have proposed the use of the discrete-time MC
model for describing the probabilistic behavior of air pollution in Klang, Malaysia, based
on API data. Alyousifi et al. [21] have improved the estimation of the transition probability
matrix of the MC model, based on the Bayesian-based method under three different priors.
Chen and Wu [22] have applied the MC model for online air quality monitoring data for
predicting the air quality and determining the main air pollutants for a certain area in Tai-
wan. Alyousifi et al. [23] have introduced the spatial MC model for exploring the potential
regional impact of air pollution in Malaysia. Gao [20] has implemented the discrete-time
MC model for identifying the stochastic behavior of Air Quality Index data in China.

The uncertainty of the optimum order of the MC model may lead to a lack of sureness
about the prediction of the future state, such as the air pollution state, and whether it
depends only on the previous state, some or all past states. Uncertainty may range from
falling short of certainty to an almost complete lack of conviction or knowledge, especially
about an outcome or result.

Based on the reviewed studies mentioned above, as well as to the best of our knowl-
edge, fitting the optimum order of the MC model for the API has not yet been conducted.
Thus, this study aims to fit the optimum order of the MC for modeling the stochastic
dependence of the API. This study considers an extension of the analysis of the stochastic
dependence of the API conducted by [20,21,23], contributing to an adequate description
of the probabilistic behaviors of the API in Malaysia, and estimating the transition proba-
bilities from one state of air pollution to another. Based on a chi-squared test, the Markov
property test to analyze the serial dependence or independence in the time series through
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testing and a divergence test for the estimated transition matrices have been investigated.
The high-order MC model has been fitted to the API data in order to determine the opti-
mum order of the MC model for describing API data. This might suggest that the future
transition of the state of air pollution relies on the current k-state and is unaffected by the
past states of the process, which contribute to providing an appropriate illustration of air
pollution transitions that would improve the prediction of air quality status. The rest of this
paper is organized as follows. Section 2 includes the research framework and the approach
used for the analysis. In Section 3, a description of the dataset as well as the results and
discussion are presented. Finally, the conclusions of the paper are presented in Section 4.

2. Methodology

In this section, the concepts and the main definitions of the high-order MC and the
maximum likelihood estimation (MLE) of the transition probability matrix of the model are
introduced. In addition, the statistical criteria for testing the Markovian property and the
goodness of fit for the MC models are presented.

2.1. Discrete-Time Markov Chain Model

A stochastic process {Xt, t = 0, 1, 2, . . . , T}with the state space S = {1, 2, . . . , k} that
satisfies the Markov property is called a discrete-time Markov chain (DTMC), meaning that
the Markov process Xt+1 at time t + 1 depends only on its present value at time t or Xt,
regardless of how Xt is obtained. For every t and all states j, i, i0, i1, · · · it−1 in S, we have

P(Xt+1 = j|X0 = i0, X1 = i1, . . . , Xt = it)= P(Xt+1 = j|Xt = it) (1)

Suppose that pij =Pr(Xt+1 = j|Xt = i) is the transition probability from state i to state
j at time t and t + 1, respectively, which can be represented by the components of the
transition probability matrix given by P =

[
pij
]
, where 0 ≤ pij ≤ 1, for all i, j = 1, 2, . . . , k,

∑k
j=1 pij = 1 for all j = 1, 2, . . . , k, and k is the number of states [24]. Each row of P is a

multinomial distribution. If the transition probabilities between the individual state pairs
do not depend on time, the DTMC is called time-homogeneous, which is given by

P(Xt+1 = j|Xt = it) = P(X1 = j|X0 = i) = pij for all i and j in S (2)

where pij is the one-step transition probability from state i to state j in the sequence of
discrete-time states, indicating that the Markov process has satisfied the Markov property.
The values of pij’s are the probabilities that describe the cells in the transition probability
matrix Pk×k of MC [25–27]. The quantities pij must satisfy the conditions pij ≥ 0, and for
all i, j, ∑k

j=1 pij = 1. The above requirements exist because, given that we are in state i, the
next state must be one of the possible states. Therefore, the sum of the rows of any state
transition matrix must equal one. The MC is usually revealed by a state transition diagram
in which the arrows from each state to other states illustrate transition probabilities pij. If
there is no arrow from state i to state j, then it indicates that pij = 0 [26,28].

Although the first-order MC is found to be a powerful model in representing the
stochastic behavior of air pollution, it cannot be assumed that the order of the model
is always one because sometimes the first-order model is inadequate for explaining the
data [25,29]. Thus, it could be beneficial to examine the suitability of the MC model with a
higher order of dependency on its past data. In this study, a dth-order MC model for d = 2
or more was fitted to the API data. If the dth-order MC model is fitted well to the data,
this indicates that the upcoming air pollution state is affected by all the previous states
when the last d states of the sequence are identified. If this result is found, then the MC of
order d is the optimum order of the model for describing the API data. The high-order MC
model may be carried out for describing the sequence of the API to be compared with the
first-order MC. The dth order of the MC model can be written as follows:

First-order:
P(Xt+1|Xt, . . . , X1, X1) = P(Xt+1|Xt) (3)
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Second-order:

P(Xt+1|Xt, . . . , X1, X0) = P(Xt+1|Xt, Xt−1) (4)

Similarly, for the MC model of the dth order, the general transition probabilities can be
given as

pi,i1, ..., id = Pr(Xt+1 = i| Xt = it, Xt−1 = it−1, . . . , X1 = i1, X0 = i0)
= Pr(Xt+1 = i| Xt = it, Xt−1 = it−1, . . . , Xt−d−1 = id)

(5)

where i, i1, . . . , id ∈ S; S is the state space [30]. In other words, the current state of the
process depends on d past states, such that

S

∑
i=1

pi,i1, ..., id = 1, 1 ≤ i, i1, . . . , id ≤ S (6)

In the case of d = 1, it is the first-order MC. The joint probability distribution
of X = {Xt; t = 0, 1, 2, . . . , T, . . . , U}, which denotes the u variables that represent the
air pollution events in terms of the hourly API are given by Pr(Xu = iu, . . . , X1 = i1)
= P(iu, iu−1, . . . , i1), as we denote Pr( ) by P( ). Then,

P(iu, iu−1, . . . , i1) = P(iu| iu−1, . . . , iu−d) P(iu−1| iu−2, . . . , iu−d−1) . . .
P(id+1| id, . . . , i1) P(id| id−1, . . . , i1) . . . P(i2|i1)P(i1)

= Pi1

u−d
∏
j=1

Pij ,...,id+j

(7)

The transition probabilities of the MC model can be estimated based on the maximum
likelihood estimate (MLE) for pij, which is given by

p̂ij =
yij

∑j yij
=

yij

yi.
(8)

where yij represents the number of transitions in states i and j at time t− 1 and t, respectively,
and yi. denotes the total number of transitions from i. For more details, see [31]. For
estimating the parameters of the high-order MC model, the maximum likelihood function
of the dth order MC can be given by

Ld(X1, . . . , Xu) = ∏
s1, ..., sd

P̂
ys1, ..., sd
s1, ..., sd

Ld(X1, . . . , Xu) = Pi1

u−d
∏
j=1

Pij ,...,id+j = Pij ,...,id+j ∏
s1, ..., sd

P̂
ys1, ..., sd+1
s1, ..., sd+1

(9)

where P̂
ys1, ..., sd+1
s1, ..., sd+1 is the estimated transition probabilities of the random process that goes

from state sd−1 to sd, where sd is the state of the most recent observation. The superscript
ys1, ..., sd+1 denotes the associated transition counts. The MLE estimators of the transition
probabilities of Equation (5) can be given by

P̂s1,...,sd+1 =
ys1, ..., sd+1

∑ sd
ys1, ..., sd

(10)

For further detail see [32–34].

2.2. Testing the Markov Property and Divergence for Empirically Estimated Transition Matrix of
MC Sequence

In this subsection, the Markov property can be tested by using the chi-square χ2

test [31,35,36]. The test is used to assess the Markovian property, which verifies whether a
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given MC holds the Markov property, whereby the transition probability of the next state
is dependent only on the current state. Let X1, X2 , . . . , Xt be a set of observations where
1 ≤ t ≤ N− 2 and yijm is the number of transitions from state i to state j and then to state
m, written as Xt−1 = i, Xt = j, Xt+1 = m. If the Markov property is verified, yijm follows a
Binomial distribution with the parameters yij and pij. Let

pijm = Pr(Xt+1 = m|Xt = j, Xt−1 = i) = Pr(Xt+1 = m|Xt = j) (11)

Specifically, Equation (11) involves testing the null hypothesis H0 = (verify the Markov
property, pijm = pjm) for j, m = 1, 2, . . . , k against the alternative hypothesis H1 = (does
not verify the Markov property). Then the test statistic is

Q = ∑
i

∑
j

∑
m

(
yijm − yij p̂jm

)
yij p̂jm

∼ χ2(|S|3) (12)

where S is the state space [37]. Thus, if the H0 is true, Q has a chi-square distribution
with |k|3 degrees of freedom. In addition, as applied by [38], the chi-square χ2 test can be
utilized to test the divergence for an empirically estimated transition matrix of the MC
sequence. Suppose yij is the raw count matrix and its test statistics follows a chi-square law.
Then the divergence test can be written as

D = 2 ∗∑
i

∑
j

yij ln
yij

yi pij
∼ χ2(k(k− 1)) (13)

Concerning the Markovian property, fitting the optimum order of the MC model of
the API will be determined and discussed in the following section.

2.3. Fitting the Optimum Order of the MC Model

If the Markovian property of the sequence is determined, it is then important to inves-
tigate which order fits best to the sequence under study. For fitting the most appropriate
order of the MC model, the most commonly used measurements of goodness-of-fit are
computed, which are the Bayesian information criterion (BIC) and Akaike’s information
criterion (AIC). The statistical criterion that is widely used for selecting the appropriate
orders of MC models is the Bayesian information criterion (BIC), due to its advantages
in identifying the appropriate order of the MC model [38,39]. Here, BIC measures the
information lost once a given model is employed to describe the API data. Hence, the
BIC’s least-loss function is considered in this study for selecting the optimum order of the
MC model for the hourly and daily API data. This is because AIC tends to overestimate
the optimum order and may produce inconsistent results compared to the BIC [33,40,41].
Moreover, utilizing the BIC gives a mathematical formulation with a principle of parsi-
mony in model building [42]. Therefore, according to the smallest BIC value, the optimum
order of the MC model that best describes the sequence of the hourly and daily API will
be determined.

The log-likelihood functions for transition probabilities are used in this criterion. The
log-likelihoods for s-state MCs of order 1, 2, . . . , d are [43]:

L1 =
k−1

∑
i=0

k−1

∑
j=2

yij ln
(

p̂ij
)

(14)

L2 =
k−1

∑
i1=0

k−1

∑
i2=2

k−1

∑
i3=0

yi1 i2i3 ln
(

p̂i1i2i3
)

(15)

Ld =
k−1

∑
i1=0

k−1

∑
i2=2

. . .
k−1

∑
id=0

yi1 i2 ...id ln
(

p̂i1 i2 ...id
)

(16)
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The formula for BIC is given by

BIC = −2 ln(Ld) + v ln(Y) (17)

where Ld is the likelihood function, Y is the sample size, and v is the number of parameters
in the MC model.

3. Results and Discussion

This section presents a description of the air pollution data and the study area consid-
ered in this study. In addition, the trend analysis for air pollution, which includes the time
series plots and the descriptive statistics of the air pollution data are depicted. In addition,
the results of the MC modeling and the investigation of the optimum order of MC models
are introduced.

3.1. Application to Air Pollution Data

The hourly and daily API data collected from seven air-monitoring stations located in
the central region of Peninsular Malaysia for three years (1 January 2012–31 December 2014)
were considered in modeling the transition behavior of air pollution states in this study.

Particularly, the studied stations are located in seven major cities, namely, Kuala
Lumpur, Cheras, Klang, Petaling Jaya, Shah Alam, Banting, and Kuala Selangor. Figure 1
exhibits the sites of these stations in the Peninsula. For modeling the dynamics of air
pollution using a discrete-time MC model, the air pollution data was divided into three
categories, namely, (0 < API ≤ 100), (100 < API ≤ 200), and (API > 200) that are denoted
by numbers from 1 to 3, representing the moderate, unhealthy, and very unhealthy states
of air pollution, respectively [18].

3.2. Trend Analysis for the API Data

When the API value exceeds 100, the air pollution states become unhealthy, suggesting
that the air quality status is harmful to public health. Thus, assessing the risk of an API
that is greater than 100 is critical, particularly in urban settings. Before going into the
study in-depth, some descriptive statistics and time series plots of the API time series are
determined, to provide basic information about the variables in a dataset and to derive
insights into the air pollution data used in this study, which might support the results of
the analysis. Table 1 presents a descriptive statistics summary of the hourly API data; it is
observed that the maximum API values in the year 2013 were 495 and 323 for Klang and
Banting, respectively. The API’s mean, for all the stations considered, ranged from 40 to 57,
indicating that the hourly API’s mean is at a moderate level for all stations. In addition,
the standard deviation of the API ranged from 16 to 25, and proportions of the API values
exceed u, where u = 100, 200, and 300, indicating that some unhealthy air pollution episodes
occurred in the studied area, varying from station to station.

Figure 2 illustrates the time series plots of the observed API values. The study areas of
Petaling Jaya, Banting, Shah Alam, and particularly, Klang showed a more volatile fluctu-
ation of API values because these areas hosted more observations beyond the threshold
limit of 200, whereas for the areas of Cheras, Kuala Lumpur, and Kuala Selangor, the obser-
vations are found to fluctuate around a constant mean and almost all API values are below
the threshold limit of 200. Most of these figures indicate that the air pollution condition in
the studied areas is not severe; nonetheless, some areas require more attention than others.
Furthermore, the time series plots in Figure 2 show that the areas of Klang, Shah Alam,
and Banting had experienced a severe episode of haze, with serious air pollution levels
among the other cities. Because of transboundary pollution, the Klang region had the worst
experiences of all.
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Table 1. Descriptive statistics of hourly air pollution index (API) in the study areas, 2012–2014.

Station Area
Statistics

Max Mean Standard
Deviation

Prop.
API > 100

Prop.
API > 200

Prop.
API > 300 Kurtosis Skewness

A1 Kuala Lumpur 203 46.91 19.05 0.0146 0.00009 0.0000 7.8650 1.84787

A2 Klang 495 56.90 25.13 0.0333 0.00372 0.0024 90.333 7.18003



Mathematics 2022, 10, 2280 8 of 16

Table 1. Cont.

Station Area
Statistics

Max Mean Standard
Deviation

Prop.
API > 100

Prop.
API > 200

Prop.
API > 300 Kurtosis Skewness

A3 Cheras 201 49.85 17.25 0.0141 0.00003 0.0000 6.3822 1.58419

A4 Petaling Jaya 231 47.37 16.53 0.0106 0.00061 0.0000 19.469 2.88533

A5 Banting 323 51.35 19.73 0.0220 0.00182 0.0005 35.720 1.58419

A6 Shah Alam 301 47.32 18.41 0.0146 0.0008 0.00004 20.606 2.72789

A7 Kuala Selangor 247 40.16 19.09 0.0135 0.00057 0.0000 13.121 2.47169
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3.3. The Performance of the Markov Chain Modeling

With reference to the studies by [20,21,23], air pollution behavior may be depicted
as a stochastic process X = {Xt, t = 0, 1, 2, . . . , T}, where Xt is the API value of the air
pollution state at time t. The random variable Xt has values in the state space S, where
S = {1, 2, 3}, equivalent to S = {[0, 100], (100, 200], (200, ∞)}, representing all three
states. Particularly, if the process is in state 2 at time t, then Xt = 2 (or 100 < API ≤ 200);
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if it is in state 3 at time t, then Xt = 3 (or API > 200), which can be represented by
Equation (18),

Xt =


1 Moderate state at time t
2 Unhealthy state at time t

3 Very Unhealthy state at time t
(18)

Based on the studies by [20,21,23], for API data, the first-order MC can derive appro-
priate insights into the transition probability for the behavior of air pollution, and offers a
description of the transition probability’s dependency structure in terms of time. However,
it is important to examine the appropriateness of the MC with a higher order of dependency
on its past data. Accordingly, in addition to the first-order MC, it might be useful to fit
the high-order MC to investigate the dependency of the preceding states on the current
state. This may reveal information about the dependence structures among the d-lag times
congruous to the hourly API transition frequency. Thus, for a preliminary examination, the
autocorrelation function (ACF) of the d-time lag effect is applied, which is given by

rd =
n−d

∑
t=1

(xt − x)(xt+d − x)/
n

∑
t=1

(xt − x)2 (19)

A d-order of the MC indicates that the API state is independent of its previous states
when the present d-lag states of the chain are identified [44,45]. Figure 3 demonstrates
the ACF plot for the API sequence for each station. It is obvious that when the d-time lag
increases, the ACF values decrease. Hence, it will be useful to fit the high-order MC model
to describe the transition behavior of the APIs. Furthermore, to introduce an accurate
analysis regarding the MC model for air pollution, the first-order MC model would be
compared with the high-order MC model.

Although the first order of the MC model was a flexible model in describing the
stochastic behavior of air pollution, as reported in the studies by [20,21,23], it cannot
be assumed that the order is always one because sometimes it is inadequate to give an
appropriate model [46]. In addition, the influence of being exposed to the API is more than
24 h, as reported by the World Health Organization [47]. It could be useful and a good
idea to examine the fittingness of an MC with a higher order of dependency on its past
data. Accordingly, fitting the high-order MC model of the API data implies that the next air
pollution state is identified based on all the past states, once the present k-state of the chain
is known Therefore, investigating the optimum order of the MC model for describing the
air pollution index data is considered.

3.4. Assessment of the Markov Property and Divergence of Markov Chain Sequence

The decision of the test hypothesis on the Markov property and the divergence of the
MC can be made using the calculated chi-squared value and the p-value. If the p-value is
greater than the given significance level, we cannot reject the hypothesis that the sequence
satisfies the Markov property. From Table 2, it can be seen that the assumption of the
Markovian property is satisfied for only three stations, since the p-values found for these
stations are greater than the 0.05 level of significance, while the other two stations have
p-values less than 0.05. Thus, based on the analysis of the Markov property test, these
four stations will be considered for further analysis in the future based on the high-order
MC. In addition, all the p-values of the divergence test are greater than the 0.05 level of
significance, implying that the empirical transition matrix is consistent with the theoretical
transition matrix.
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Table 2. The results of the χ2 and divergence test of MC for all the stations.

Station
Verify Markov Property Verify Divergence

χ2 Statistics df p-Value χ2 Statistics df p-Value

Kuala Lumpur 201.939 27 0.00002 1.908207 6 0.75264

Klang 47.5692 27 0.0086 0.010878 6 0.99857

Cheras 12.6243 27 0.9914 0.001336 6 0.9999

Petaling Jaya 18.8424 27 0.8856 0.009457 6 0.99998

Banting 54.1234 27 0.0015 0.066857 6 0.15348

Shah Alam 77.0592 27 0.00001 8.590637 6 0.07219

Kuala Selangor 0.04123 27 1.0000 0.036617 6 0.99983

3.5. Investigating the Optimum Order of Markov Chain Models

This study considers the optimum order found from the minimum loss function of the
BIC for selecting the optimum order of the MC model for the hourly API data. Therefore,
according to the smallest BIC value, the optimum order of the MC model in this study is the
second order that best describes the sequence of hourly API events in the selected stations.

Table 3 shows the BIC values for the observed hourly and daily API data, indicating
that the second and third order of the MC model are optimum for the BIC values, which
means that the air pollution events for those stations are dependent on the events of two or
three consecutive hours before the observed hours. This indicates that the concentration
of air pollutants in a particular hour depends on the previous two or three hours. The
computational framework employed in the manuscript has been conducted using Python
and R software. In addition, the simulated APIs in Tables 3 and 4 have been generated
through a simulation study that was conducted based on the Markov part of the SMM
package in the R software [48].

Table 3. The values of AIC and BIC for each MC model using the hourly APIs.

Station
Order

BIC of the Hourly API

KL Klang Cheras PJ Banting ShA KS

O
bs

er
ve

d
A

PI

1 1696.011 788.8619 1729.459 472.9546 1161.643 1084.574 374.2396

2 1468.189 619.6946 1539.279 485.638 990.832 994.5611 381.2125

3 1350.565 671.6492 1238.221 690.3285 967.8343 1052.922 578.222

4 2380.511 1772.959 2338.917 1791.672 2069.016 2141.571 1679.577

5 5668.314 5072.603 5637.949 5091.351 5363.804 5441.096 4979.267

6 15,562.45 14,967.25 15,531.98 14986.03 15,245.63 15,335.63 14,873.96

7 45,241.6 44,646.92 45,211.03 44,665.73 44,925.17 45,015.18 44,553.67

8 134,275.8 133,681.5 134,245.1 133,700.5 133,959.7 134,049.8 133,588.4

9 401,375.1 400,781.4 401,344.3 400,800.3 401,059.4 401,149.5 400,688.3

10 1,202,670 1,202,077 1,202,639 1,202,096 1,202,355 1,202,445 1,201,984
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Table 3. Cont.

Station
Order

BIC of the Hourly API

KL Klang Cheras PJ Banting ShA KS

Si
m

ul
at

ed
A

PI

1 1842.167 712.794 1803.19 550.6943 1076.533 1080.534 500.2132

2 1614.669 610.7687 1588.566 517.9346 891.2364 922.0258 443.4873

3 1103.086 651.6381 1115.187 588.1897 691.0557 689.9981 578.0087

4 2203.769 1752.948 2215.855 1689.53 1792.237 1791.181 1679.361

5 5502.787 5052.592 5514.865 4989.205 5091.754 5090.699 4979.048

6 15,396.82 14,947.24 15,408.88 14,883.88 14,986.28 14,985.22 14,873.74

7 450,75.86 44,626.9 45,087.91 44,563.58 44,665.81 44,664.76 44,553.44

8 134,109.9 133,661.6 134,122 133,598.3 133,700.4 133,699.3 133,588.2

9 401,209.2 400,761.4 401,221.2 400,698.2 400,800.1 400,799 400,688.1

10 1,202,504 1,202,057 1,202,516 1,201,993 1,202,095 1,202,094 1,201,983

Significant values are represented in bold.

Table 4. The values of AIC and BIC for each MC model using the daily APIs.

Station
Order

BIC of the Daily API

KL Klang Cheras PJ Banting ShA KS

O
bs

er
ve

d
A

PI

1 644.1749 352.2063 696.8885 240.6926 448.2603 462.1786 178.31

2 663.4538 332.7529 698.4464 268.6937 458.9507 483.6555 239.9841

3 827.6056 491.2444 828.3058 466.8144 636.4306 660.246 426.0242

4 1548.058 1239.745 1539.657 1224.658 1381.723 1396.332 1184.039

5 3778.04 3509.026 3762.801 3494.378 3635.01 3661.811 3453.944

6 10,569.55 10,313.98 10,543.99 10,299.72 10,432.01 10,458.66 10,259.47

7 30,942.22 30,725.85 30,933.25 30,711.95 30,841.64 30,868.32 30,670.89

8 92,158.24 91,958.35 92,144.79 91,944.8 92,065.15 92,091.46 91,903.93

9 275,833.6 275,651.6 275,812.2 275,639.5 275,750.7 275,770.9 275,598.9

10 826,893.8 826,731.7 826,874 826,720 826,820.8 826,841.2 826,679.5

Si
m

ul
at

ed
A

PI

1 14,485 7672.153 15,679.53 5112.906 9859.986 10,138.47 3322.83

2 13,159.61 5918.581 14,025.42 4393.635 8522.06 9274.675 2777.936

3 10,908.42 3692.711 11,496.32 2942.723 5883.349 7334.391 1802.015

4 11,288.58 4726.253 11,762.87 3978.854 6792.007 8114.475 2890.721

5 13,952.63 7960.398 14,301.05 7251.089 9894.717 11,170.95 6185.456

6 23,201.69 17,810.61 23,490.54 17,118.36 19,639.26 20,878.37 16,065.42

7 52,314.26 47,436.42 52,518.98 46,752.08 49,142.73 50,353.15 45,730.4

8 140,860 136,418.4 141,000.5 135,751 138,021.5 139,172.8 134,752.5

9 407,473.1 403,455.3 407,485.1 402,795 404,986.7 406,044.4 401,849.6

10 1,208,346 1,204,661 1,208,368 1,204,055 1,206,154 1,207,143 1,203,142

Significant values are represented in bold.

Furthermore, Table 4 shows the values of BIC for daily observed and simulated API
data. Based on the smallest values of BIC, it can be concluded that the first order of the
MC model is optimum for all the stations except Klang, which means that the air pollution
events for all the stations are dependent on the events of one day before the observed day.



Mathematics 2022, 10, 2280 13 of 16

Thus, this study considers the optimum order found from the minimum loss function of
the BIC for selecting the optimum order of the MC model for the API data.

Therefore, for the daily API, the optimum order of the MC model is the first order,
according to the smallest BIC value. Furthermore, the results found show that the first
order is the most suitable order for describing the probabilistic behavior of the daily API in
Klang. This means that the concentration of air pollutants on a particular day depends on
the previous day. However, as previously mentioned, the diversity between the first- and
second-order MC models is not great; the interpretation of both orders may be very similar.

Figures 4 and 5 show the results of the analysis on the most appropriate order for the
distribution of the observed hourly and daily API as well as the simulated hourly and daily
API, respectively, for each station in the central region of Peninsular Malaysia. It can be seen
from Figure 4 that it is generally found that the MC of the higher order is appropriate for
describing the distribution of the hourly API at most stations. However, for the observed
and simulated daily API, the first-order model is found to be appropriate at most stations.
Likewise, Figure 5 displays that for the simulated hourly API, the appropriate order of the
MC model is the first order for all stations except Klang. In perspective, we can use drifting
Markov models, introduced by [49] and for which [50] have studied reliability and survival
analysis. These models take into account the heterogeneity of the sequences.
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4. Conclusions

In this study, the optimum order of the MC model for the hourly and daily API data,
collected from seven stations in Peninsular Malaysia for a period of three years from 2012 to
2014, has been fitted in order to adequately represent the stochastic behavior of air pollution.
The current study endeavors to shed some light on the intrinsic serial dependence of the
hourly and daily API data through the proper choice of the MC model, based on the
minimization of the BIC. The BIC has been used to determine the right order of the MC
after testing the Markovian status with the chi-square test, based on the null hypothesis
of serial independence. The log-likelihoods of the various orders of the MC have been
determined and utilized to compute the BIC values. For the daily API, it is obvious that,
according to the smallest values of BIC, the first-order MC is the most dominant in the
stations. This is explained by the fact that the dependence of the concentration of the API on
any given day is mainly reliant on a preceding day, and not on the long path via which that
daily API is obtained. It can be also concluded from this study that the optimum order of
the MC models for daily API occurrences varies from one station to another. It is observed
that for both the observed and simulated hourly API, the second and the third 1order are
more appropriate for most stations. This indicates that the API at any hour has dependence
up to the previous two hours. In summary, this research might have significant implications
for designing effective air quality management policies and promoting public health. In
future work, the high-order multivariate MC model will be applied for modeling the
sub-indexes of the API and some climatic factors, such as wind speed, temperature, and
rainfall, in order to provide a comprehensive investigation of air pollution in the main
cities of Malaysia. In addition, the MLE used in this study has a limitation in capturing the
zero frequencies in the count matrices. According to this, future work should address this
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limitation by using a robust empirical Bayes method and conducting a simulation study
based on the MCMC method to evaluate the model performance.
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