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Abstract—Backdoor attacks pose a significant threat to deep
neural networks as they allow an adversary to inject a malicious
behavior in a victim model during training. This paper addresses
the challenge of defending against backdoor attacks in a black-
box setting where the defender has a limited access to a suspicious
model. In this paper, we introduce Importance Splitting, a Se-
quential Monte-Carlo method previously used in neural network
robustness certification, as an off-the-shelf tool for defending
against backdoors. We demonstrate that a black-box defender
can leverage rare event simulation to assess the presence of
a backdoor, reconstruct its trigger, and finally purify test-time
input data in real-time. So-called REStore, our input purification
defense proves effective in black-box scenarios because it uses
triggers recovered with a query access to a model (only observing
its logit, probit, or top-1 label outputs). We test our method on
MNIST, CIFAR-10, and CASIA-Webface. We believe we are the
first to demonstrate that backdoors may be considered under
the lens of rare event simulation. Moreover, REStore is the first
one-stage, black-box input purification defense that approaches
the performance of more complex comparables. REStore avoids
gradient estimation, model reconstruction, or the vulnerable
training of additional models.

Index Terms—deep neural networks, backdoor defense, black-
box, trigger reconstruction, input purification

I. INTRODUCTION

The rise of Deep Neural Networks (DNN) over the past
decade and their growing use in critical applications raise
significant security concerns. As the driving force behind Ma-
chine Learning as a Service (MLaaS), DNN models are com-
monly outsourced for rapid and economical deployment [1].
However, this third-party reliance introduces vulnerabilities
that malicious agents may hijack.

The exploration of this new attack surface focused first
on test-time adversarial examples [2]. However, attention has
since shifted to a broader range of integrity risks, with back-
door attacks taking center stage. Backdoors involve seemingly-
benign DNNs that nonetheless conceal a stealthy and mali-
cious behavior. Once the model is deployed by a victim, an
adversary may activate the backdoor at any time [3]–[5].

The development of backdoor defenses followed, with a dis-
tinction based on which stage of a machine learning pipeline
they protect: data-based or model-based defenses. In the first
approach, a defender sifts through DNN inputs during training
or inference. In the latter, the defender directly detects a

backdoor within a model. If anomalies are found, the defender
may filter the inputs accordingly [6] or clean the DNN [7].

While effective, many defenses require access to DNN
internals. This white-box approach is a strong requirement that
many real-world settings prohibit. DNN providers safeguard
their models against intellectual property theft by restricting
users to Application Programming Interfaces (API) [8], [9].
This leads to a black-box scenario for defenders, thus making
black-box defenses a pertinent area of research [6], [10]–[12].

In this paper, we demonstrate the first use of rare event sim-
ulation (RES) to defend DNN classifiers against backdoors in a
black-box setting. Our workhorse is Importance Splitting (IS),
a procedure that estimates the probability of increasingly rarer
inputs. IS provides three complementary tools: backdoor di-
agnosis, trigger reconstruction, and test-time data purification
(see illustration in Fig. 1). IS reveals a backdoor within a DNN
by identifying suspiciously fragile classes. IS concurrently
outputs a set of rare input perturbations that have a strong
likelihood of reconstructing backdoor triggers. Finally, these
reconstructions enable a real-time and lightweight, albeit not
state-of-the-art, test-time input purification defense, dubbed
REStore. This paper thus expands the use of RES in the DNN
literature beyond robustness certification [13].

This paper is organized as follows: Section II positions our
work in the backdoor and RES literature. Section III outlines
our threat model and how IS is used against backdoors.
Our results are reported in Section IV. We cover the case
of adaptive adversaries in Section V. Section VI discusses
the application, complexity, and suggested lines for future
directions. Section VII concludes the paper.

II. BACKGROUND AND RELATED WORK

Backdoor attacks inject stealthy behaviors in DNNs by
hijacking their training. Consequently, a range of defenses
have emerged to mitigate these attacks and safeguard trust
between DNN providers and users. This Section provides an
overview of both attacks and defenses, outlines the relevance
of RES to our method, and covers comparables for context.

A. Backdoor Attacks

Data poisoning. Data poisoning is a prevalent backdoor
attack strategy [14]–[17] where an attacker has gained access



Fig. (1) Overview of REStore: (a) The defender interacts with a black-box DNN, e.g. via an API. (b) The defender collects a few clean
inputs and runs Importance Splitting to generate input perturbations yielding outlier scores. (c) IS enables a model assessment, which points
to possibly backdoored classes, and the reconstructions of potential triggers. (d) The defender purifies the triggers from incoming inputs.

to a victim’s training dataset (either directly or by hijacking
data collection). Data poisoning leads to DNNs learning to
associate malicious patterns with specific and erroneous out-
comes. For instance, BadNets [18] alters images with small
pixel patches. We note that other frameworks exist, such as
weight attacks [19]. However, they fall outside the scope of
this paper and its comparables (see Section II-D).

Clean-label vs. poison-label. Backdoors based on data
poisoning are split between poison-label and clean-label strate-
gies [4]. Poison-label attacks work by altering datapoints from
different source classes while flipping their ground truth labels
to a malicious target. Though these attacks achieve high Attack
Success Rates (ASR), they inject conspicuously misclassified
data into a dataset. Clean-label attacks poison the inputs of the
target class instead, thus eschewing the label-flipping step [14].
Doing so prioritizes stealth at the expense of a lower ASR or
needing a greater number of poisoned samples.

Patch-based versus watermark-based triggers. Backdoor
triggers typically fall under two categories: patches and wa-
termarks. That is, triggers that are either localized in an input
or blended in its entirety [14]. BadNets [18] illustrates the
former, while Chen et al. [20] demonstrates the latter by blend-
ing a cartoon logo into benign images. More recent attacks
have explored moving away from this binary framework. For
instance, WaNet [21] proposes a backdoor trigger based on
image warping that fits neither categories.

Other categories. Backdoors are designed to fit a range
of stealth requirements, resulting in many variants. For in-
stance, dynamic backdoors [22] decouple location from being
a necessary component of a trigger’s activation. If an attacker
typically crafts a trigger independently of input semantics,
as with BadNets or SIG [4], they may also create a trigger
through an optimization process (e.g. Liu et al. [23] designs
a pattern to target specific neurons in a DNN). Others also
exploit Universal Adversarial Perturbations (UAP) [24].

Takeaway. Backdoor attacks typically fit several categories.
For instance, SIG [4] uses a watermark-style sine wave to

backdoor a DNN with clean-label data poisoning. In essence,
this diverse range of attacks underscores the key issue of
developing robust defenses against backdoors.

B. Backdoor Defenses

Training-time data filtering. A defender may defeat data
poisoning by unmasking and excluding abnormal samples
during training. Such process revolves around scrutinizing the
interactions between a DNN and its training data. Methods like
Spectral Signatures [25] or SCAn [26] observe that poisoned
samples do not activate the same neurons as benign inputs, or
rely on shortcuts in a DNN’s intermediary layers. A DNN is
then retrained using the cleaned training dataset.

Test-time data filtering. We note that similar defenses can
be implemented at test-time to reject incoming, suspicious
inputs. For instance, Neural Cleanse [27] uses an outlier
detection scheme (an anomaly index) to filter test-time inputs.

Test-time input purification. Prior work also explores the
case where data filtering is not reliable. Instead, a defender
may choose to pre-process all inputs forwarded to a DNN with
a purification strategy. For example, NEO [28] searches images
for aberrant patterns, e.g. unusual colors, that do not fit some
expected data distribution. NEO then erases these anomalies
whether or not they trigger a backdoor. Other defenses offer
similar strategies, leveraging clever data augmentation tech-
niques to cause a trigger-backdoor mismatch. For instance,
Februus [29] studies neuron activations to find suspicious areas
in DNN inputs and, using a generative process, erases then
reconstructs cleaned versions of these areas.

Backdoor diagnosis. Detecting a backdoor relies on us-
ing meticulously-crafted perturbations to reveal the stealthy
behavior [30]. For instance, Universal Litmus Patterns [31]
devises a binary test based on feeding specific, fixed patterns
(referred to as ”litmus tests”) to a DNN to expose that it is
compromised. Diagnosis may also involve examining a DNN’s
neuron activations using explainability techniques [32], feature
clustering [33], or topological analysis [34].



Trigger reconstruction. A defender may try to disclose a
trigger embedded in a suspicious model. This process often
serves as the initial step to other backdoor defenses. For
instance, DeepInspect [35] uses a generative model trained
on a suspicious DNN to learn the distribution of possibly-
backdoored inputs. Afterwards, DeepInspect uses the distribu-
tion to patch the DNN. However, the faithfulness of recovered
triggers is not always guaranteed and remains an ongoing
challenge, as pointed out by Veldanda et al. [36].

Backdoor suppression. As with DeepInspect [35], a de-
fender may retrain a suspicious DNN to erase its backdoor. For
instance, NNoculation [36] relies on a three-model ensemble
strategy. It distills a secondary DNN from the suspicious
one using augmented validation data. Disagreement between
the predictions of these DNNs then helps isolate abnormal
inputs sent to the first model. Afterwards, a third, generative
DNN is trained on the quarantined data to reverse-engineer
a possible trigger. The defender finally uses the third DNN
to generate a new training dataset made of poisoned but
correctly-labeled inputs with which to retrain the first model.
Alternatively, methods like Fine-Pruning [7] directly modify
suspicious DNNs by pruning and/or fine-tuning their neurons.

White-box vs. black-box. White-box defenses assume ac-
cess to a DNN’s training data or its architecture and weights.
Such access allows the defender to either retrain or fine-tune
a compromised DNN [7], [25] or access its neuron activations
as in Februus [29]. While most defenses fall in the white-box
case, there is a growing shift towards black-box defenses. In a
black-box setup, defenders operate under a more challenging
and realistic threat model, assuming only a query access to a
DNN as in BDMAE [11].

Offline vs. online. Offline defenses are used before a DNN’s
deployment. Meanwhile, online defenses proactively monitor
and adjust user interactions with a DNN to thwart attackers.
For example, NNoculation [36] is an online defense that
detects and quarantines abnormal inputs in real-time.

Single-stage vs. multi-stage. Finally, backdoor defenses
differ in the number of stages they involve. For instance, a
defender may require sourcing or training additional DNNs,
as illustrated by NNoculation [36] or BDMAE [11].

Takeaway. As with backdoor attacks, defenses may fit
multiple categories. It is important to note that no one-size-fits-
all defense has been proposed so far, especially in the context
of black-box defenses where we set our work.

C. Rare Event Simulation

Accurately estimating rare event probabilities is crucial,
particularly in fields like civil engineering where failures
may be catastrophic. However, the study of rare events faces
numerous hurdles as generic approaches often prove imprac-
tical. For example, the crude Monte Carlo method tends to
underestimate rare event probabilities unless an intractably
large number of samples is used [37], [38].

To overcome these limitations, efficient methods (i.e. need-
ing fewer samples) have emerged, including Sequential Monte
Carlo (SMC) methods like RESTART [37] or Importance

Splitting [38]. They expedite the convergence to a low variance
estimate of a rare event probability by partitioning an event
space into nested, progressively rarer regions (the rare event
is the intersection of all regions within the nested structure,
i.e. the bottom-most region). Moreover, a valuable output of
SMC procedures is a set of observations of the rare event.

RES recently found its way to the DNN literature due to
their intricate nature and the challenge of assessing DNN
robustness. For instance, Importance Sampling [39] and Im-
portance Splitting [13] have been proposed to certify a DNN’s
probability of misclassification under noisy input corruption.

D. Prior Works

This paper introduces Importance Splitting [13] (IS) as a
tool for offline backdoor diagnosis and trigger recovery that
power REStore, a fast online test-time input purification
defense. It is a single-stage, black-box defense that eschews
training additional DNNs and access to a DNN’s internals.

With IS and REStore, we aim to explore the applicability of
RES to defending against DNN backdoors, including whether
simpler input purification methods are achievable. Current
purification comparables typically adopt a DNN-based, multi-
stage generative approach that removes and regenerates sec-
tions of an input to mitigate all-to-one, input-agnostic back-
door threats at test time. These methods operate independently
of whether the protected DNN is backdoored, being built to
run on all incoming inputs. Here, we select two relevant prior
input purification defenses: Februus [29] and BDMAE [11].

Februus [29] is a white-box purification defense that lever-
ages explainability methods (e.g. GradCam [40]) to detect a
backdoor in an input. Once a suspicious input region is found,
Februus uses a Generative Adversarial Network (GAN) to
inpaint the compromised area. BDMAE [11] follows a similar
but black-box approach, using a Masked Autoencoder (MAE)
to (i) sample masks that select portions of an incoming input
to reconstruct, (ii) score these reconstructions given their top-1
label predictions, and (iii) generate a final reconstruction that
erases a potential trigger with a high likelihood.

These methods are effective but come with downsides.
Februus needs a white-box access to the underlying DNN,
which may not be possible in real-life scenarios. Additionally,
Februus and BDMAE both require the use of supplemental
generative DNNs that are typically sourced from a third party.
This only diverts a defender’s concerns about trust from the
underlying, suspicious DNN to the inpainting supplements.

With the need to push forward the black-box capabilities
of defenders against backdoors, this paper ports IS to assess
DNN security, expanding its use beyond and independently
from DNN robustness certification [13], [39]. We use IS due to
its effectiveness [38], prior use in the DNN literature [13], and
our access to a GPU-enabled implementation. We believe that
we are the first to design a SMC-based method for black-box
backdoor defense, specifically in the context of input purifica-
tion. The only exception may be found in a backdoor diagnosis
tool, AEVA [12], which relies on a gradient estimation stage
via a crude Monte Carlo simulation. Crucially, our method



eliminates the need to learn supplemental DNNs, engage in
gradient estimation, optimize a trigger generator, or gain ac-
cess to a DNN’s internals. Finally, we also believe we are first
to try input purification beyond standard input-agnostic, patch-
based backdoors: we additionally cover two watermark or
warping-based attacks (SIG [4] and WaNet [21]) in Section IV
and the case of adaptive adversaries in Section V.

III. METHODOLOGY

A. Threat Model

1) General setup: This paper investigates a two-party setup
between an attacker and a defender. The attacker hides a
backdoor in a DNN. The defender must prevent its use.

On the attacker’s side, we adopt the attack surface from
BadNets [18], SIG [4], and WaNet [21] (see App. A for
detailed descriptions). This is reflected in Section IV where
the attacker relies on a data poisoning strategy (as is also
typical in input purification [29]) to backdoor a target DNN,
unbeknownst to the defender. We expand this attack surface
in Section V by exploring two adaptive attacker settings.

On the defender’s side, we adopt a black-box scenario. The
defender has no information about the training dataset and
parameters, or the architecture and weights of the scrutinized
DNN. The defender only observes its inputs and outputs. This
paper explores three access types: whether the DNN’s outputs
are (i) its logits, (ii) its probits, or (iii) its top-1 predicted label,
also called a ”hard-label” case in BDMAE [11].

2) Formalization: The attacker has access to a clean, la-
beled training set Dcl

train, a backdoor injection function poison :
X → X , and the opportunity to alter the labels of poisoned
datapoints with a flip function c : [κ]→ [κ] such that:

Dcl
train = {(xcli , ycli )}ni=1 ⊂ X × [κ] (1)
xpoi = poison(xcli ) (2)

ypoi = c(ycli ) =

{
yi ∈ [κ], yi 6= ycli (Poison-label)

ycli (Clean-label)
(3)

where cl and po denote clean and poisoned data, X is the input
space of the DNN fθ with parameters θ, [κ] = {1, . . . , κ} is
the set of classes predicted by fθ, xpo is an input altered with
poison, and ypo is the attacker’s target label specified by c.

As stated in Section II-A, data poisoning works in either a
poison-label or clean-label fashion. In the former, an attacker
poisons inputs from different source classes with poison and
flips their ground truth labels to a single target class ypo with
c. In the latter case, an attacker poisons inputs from the target
class itself. In both cases, an attacker poisons the available
inputs up to some proportion, or poisoning rate, β ∈ (0, 1].

Both cases result in a clean dataset C = {(xcli , ycli )}n−mi=1

and a poisoned dataset P = {(xpoi , y
po
i )}mi=1 that the attacker

merges to create a backdoored dataset Dpo
train = C ∪ P . The

attacker is then free to choose training hyperparameters to craft
a stealthy and effective backdoored DNN fpoθ that performs
well on some hold-out set. A backdoored model must achieve
a clean accuracy similar to a benign model so as to be used
by a victim, while also having a high attack success rate.

Fig. (2) Comparison of the distribution of the class logits of ResNet-
18 DNNs trained on MNIST and backdoored with BadNets [18],
SIG [4], or WaNet [21]. Dotted lines: median and maximum (outliers
excl.) of the clean inputs of target class 3.

Meanwhile, the defender has a black-box access to fpoθ and
a limited set of clean-labeled samples denoted Dcl

test. These
samples may be collected in-the-wild and manually labeled.

3) Metrics: We gauge fpoθ on benign inputs with Clean
Data Accuracy (CDA), on poisoned inputs with Attack Suc-
cess Rate (ASR), and on purified inputs, i.e. processed with
a purification defense, with Sanitized Data Accuracy (SDA).

4) Backdoor attacks: Section IV focuses on three ubiqui-
tous all-to-one attacks, central in the backdoor literature on
image classification: (i) BadNets [18], a local pattern, (ii)
SIG [4], a watermark signal, and (iii) WaNet [21], and image
warping (See App. A for the detailed attack descriptions).
Section V explores BadNets in two attacker-adaptive settings.

B. Main idea - intuition

1) Observation: This paper’s core insight is illustrated in
Fig. 2. When examining a DNN’s outputs over a set of clean
inputs, we find that the distributions for each predicted class
are relatively similar. However, the introduction of the trigger t
results in a significant increase of the scores of the backdoored
class. This difference leads us to consider backdoored inputs
as rare event occurrences (i.e. inputs with abnormally large
scores in fθ) that we can sample with the right tool.

2) Backdoors as rare events: Given a suspicious DNN
fθ that performs well on a classification task and a search
distribution LX , we want to model ρτ = P(fθ(X)c > τ). The
quantity ρτ is the probability of occurrence of the following
rare event: a random sample X ∼ LX that yields an output
score from fθ for a class c greater than an arbitrarily-large
threshold τ . We see three types of such rare occurrences:



(A) Inputs with a backdoor trigger t,
(B) Inputs that are purely random,
(C) Inputs with high-scoring adversarial perturbations.

We assume each type defines a disjoint subset in the input
space of fθ, allowing ρτ , the probability of the union of
the subsets, to be written as ρτ = P(X ∈ A) + P(X ∈
B) + P(X ∈ C) (see App. D for our rationale). As such, we
expect to only observe type B and C occurrences in benign
DNNs as opposed to backdoored DNNs. This implies that the
probability ρτ equals a higher value for backdoored models,
particularly when P(X ∈ A)� max(P(X ∈ B),P(X ∈ C)).
This rationale grounds our method’s backdoor diagnosis step.

Then, one may sample rare event realisations given a
cleverly-designed search distribution LX , such that the pro-
portion of samples in A equals c. P(X ∈ A)/ρτ . A majority
of the realisations should then contain observations that reveal
the backdoor trigger t with a high likelihood (P(X ∈ A) �
max(P(X ∈ B),P(X ∈ C))). Analyzing a set of rare event
realisations may therefore reveal t. This rationale grounds our
method’s backdoor trigger recovery step.

Finally, as the set of rare event realisations contains the
trigger t with a high likelihood, a defender may leverage the re-
covered pattern to design a test-time input purification scheme
on the model fθ. For instance, the defender may leverage
simple data augmentation techniques as a pre-processing step
to subtract t from incoming inputs. This rationale grounds this
paper’s input purification defense.

3) Limitations: Our intuition may not always hold. An
attacker aware of a backdoor attack’s outlier logits, and who is
in control of a victim DNN’s training environment, may train
a model to display benign logits. Section IV focuses first on
a threat model where the attacker only uses data poisoning.
Such an adaptive adversary is covered in Section V.

C. Main idea - implementation

The main idea is to consider backdoored inputs as occur-
rences of a rare event that a defender is able to sample. We are
looking for an algorithm that, given a suspicious DNN fθ, can
efficiently sample inputs or input perturbations ∆ that yield
increasingly high scores (i.e. logits, probits, or a metric derived
from top-1 labels). Such procedure would enable checking via
random guesses each class of fθ for a type-A event.

1) Choice of search distribution LX : A key ingredient to
this formulation is the search space with distribution LX . The
defender must carefully choose it such that

P(X ∈ A)� max(P(X ∈ B),P(X ∈ C)).

This not only eases the backdoor diagnosis step but also
enables reconstructing t from the realizations ∆ of the esti-
mated rare event. We explain in further details in App. F why
choosing (i) pure noise or (ii) a perturbation space over 1 clean
test sample for LX respectively favor sampling realizations of
type B and C, i.e. the types of realizations to avoid.

Instead, we follow an approach that considers a search
distribution LX such that a single perturbation ∆ ∼ LX (e.g.
LX = N (0d, σ

2Id)) is applied to several clean test inputs

not classified as c by fθ. We denote this set X cl
test and the

perturbation function over all samples as g (e.g. an add-and-
clip operation). The score associated with ∆ is an aggregate
of the |X cl

test| scores of the perturbed inputs. We thus use the
empirical mean as our scorer function:

scorer(∆) =
1

|X cl
test|

∑
x∈X cl

test

fθ (g(x,∆))c . (4)

This redefines the rare event probability as:

ρτ = P(scorer(∆) > τ). (5)

Simulating a rare event thus amounts to finding a perturba-
tion that jointly deludes the model fθ over the set X cl

test. This
approach has a higher likelihood of success because it samples
inputs close to the manifold of typical images while avoiding
pure noise (type B) and adversarial examples (type C).

A final advantage of this formulation is that it enables using
the hard-label outputs of fθ and not just its logits or probits.
The score associated with ∆ becomes the number of label flips
to the target class c among the perturbed elements of X cl

test.
2) Importance Splitting as our RES algorithm: Even if

this randomness favors the realization of a type-A event
compared to B and C, the probability ρτ may be minuscule.
The accurate reconstruction of the trigger t roughly needs a
hundred realizations of the event A. The Crude Monte Carlo
needs approximately 100/ρτ random samples to sieve these
hundred realizations. In our experiments, finding a backdoor
occurs when targeting an extremely rare event with probability
ρτ below 10−11. Monte Carlo is thus intractable.

We choose IS as our workhorse thanks to (i) its efficiency
for estimating a rare event probability [38], with a com-
plexity only needing O(log(1/ρτ )) samples, (ii) its prior use
in the DNN robustness certification1 literature [13], and (iii)
our access to a GPU-enabled implementation. As an iterative
algorithm, IS enables us to:

(i) compute low-variance estimates (ρ̂τj )j=1:J for a series of
increasing score thresholds (τj)j=1:J (with τJ = τ , and
J the number of iterations afforded to IS),

(ii) generate a set of fθ input perturbations ∆ typical of the
rarest event associated with τJ = τ .

Thanks to (i), our backdoor diagnosis and reconstruction steps
are not just based on a single probability estimation, but on
the shape of the estimated map τ → ρτ . Outputs (ii) enable
our backdoor trigger reconstruction step.

D. Technical details

To keep this paper self-contained, the full implementation
details of IS are covered in App. E-F.

1) Defender’s standpoint: We consider a DNN classifier
model fθ that outputs either (i) logits s.t. fθ : Rd → Rκ,
(ii) probits after the application of the Softmax function s.t.
fθ : Rd → [0, 1]κ, or (iii) its top-1 label s.t. fθ : Rd → [κ].

1We note that this paper explores the use of IS in the context of DNN
security independently from its prior application in DNN certification.



Fig. (3) Expected difference between benign and backdoored τ →
ρτ mappings. The x-axis represents score thresholds and the y-axis
the log-probabilities.

To run the IS procedure (with the scorer (4) function), the
defender owns a small, fixed set of clean, correctly-labeled
elements Dcl

test from which to create the set X cl
test. To test

whether the DNN is backdoored for a given class c, and to
stay on the manifold of typical images, the defender only has
to pick a few inputs in Dcl

test not classified as c by fθ. For
example, X cl

test may contain κ − 1 clean-label, test images
taken from Dcl

test (i.e. one input for each non-target class). The
defender then runs IS to compute a score for a perturbation ∆
over the κ−1 elements in X cl

test. In practice, we cap the number
of elements in X cl

test when κ is large (|X cl
test| = min(κ−1, 9)),

without observed loss in effectiveness.
2) Expected observations: Given that benign DNNs only

suffer from rare events B or C and backdoored DNNs from
rare events A, B, and C, IS should estimate a higher proba-
bility map τ → ρτ when the scrutinized class c is backdoored,
as illustrated in Fig. 3. That is, high scores are achieved at a
higher probability when a DNN is backdoored.

IS also outputs k perturbations ∆ for a given class whose
associated scores cross the final rare event threshold τJ . These
perturbations can be tested as potential triggers on the elements
of Dcl

test. A drop in a DNN’s CDA and, conversely, an increase
in ASR then validate the quality of the reconstructed trigger.

Additionally, purifying the recovered patterns from possibly
backdoored test-time inputs may lead to a poison-backdoor
mismatch (i.e. SDA tends towards CDA while ASR drops),
yielding an online defense against backdoor attacks.

3) Defender’s Input Purification defense: We finally ex-
plore a possible single-stage, lightweight input purification
defense, dubbed REStore. REStore works by removing the
IS-reconstructed patterns from all test-time inputs. In practice,
REStore is a set of transformations designed such that the
DNN’s CDA does not degrade beyond some threshold.

The defender therefore proceeds as such: (i) they design
a list of pre-processing steps related to their task at hand,
(ii) using their clean test data Dcl

test, they find purification
transformations that does not degrade the model’s CDA
beyond some threshold, (iii) they deploy the defense. In this
paper, we focus on two basic data transformations2:

• subtracting the mean of the IS patterns weighted by their
signal-to-noise ratio (SNR),

2Another approach is briefly covered in Section IV-G.

Fig. (4) Benign CIFAR-10 sample (left), poisoned with Bad-
Nets [18] (middle left), SIG [4] (right), or WaNet [21] (right).

• masking pixel values proportionally to the additive in-
verse of the IS perturbations’ SNR.

Because IS is run offline, it allows a computational trade-
off for REStore. At test-time, REStore is fast, having next to
no overhead cost compared to Februus [29] or BDMAE [11],
which both require multiple queries to supplemental DNNs.

IV. EXPERIMENTS

A. Datasets and model setups

Datasets. We focus on three classification datasets:
MNIST [41], CIFAR-10 [42], and a custom face recognition
task derived from CASIA-Webface [43]. Further details, includ-
ing the construction of the latter dataset, are found in App. B.

Models. Following the backdoor literature for MNIST [4],
[27], we select two models: a shallow LeNet-5 as in [30], and
a deeper ResNet-18 model as in [11], [34]. For CIFAR-10, we
use a ResNet-18 as in [10], [11]. Finally, for CASIA-Webface,
we use a ResNet-50 pre-trained with ArcFace [44].

Backdoors. We backdoor each dataset with the following
three all-to-one attacks: (i) BadNets [18], (ii) SIG [4], and (iii)
WaNet [21] (see Fig. 4 for CIFAR-10 examples). The target
class for all three is the 4th one (e.g. digit 3 for MNIST).

Poison parameters. For BadNets [18], we use a static 3-by-
3-pixel checkerboard that is stamped over the original pixels of
an image (MNIST: 3-by-3 grayscale checkerboard located at
the bottom left of an image; CIFAR-10 and CASIA-Webface:
we reuse the 3-by-3 color pattern found in BDMAE [11],
respectively located in the bottom right and top right quad-
rants of a given image). For SIG [4], we use a sinusoidal
signal (8) with frequencies (Fx, Fy) = (6/28, 0), (6/32, 0)
or (6/112, 0), and blending ratios αatk = 60/255, 40/255, or
40/255 for MNIST, CIFAR-10, and CASIA-Webface respec-
tively. For WaNet, we use the original implementation [21].
All backdoors use the poisoning ratio β = 0.05. Visual
illustrations of the triggers are found in Fig. 10 in App. J.

Training and checkpoint policies. Training regimens, hy-
perparameters, and our model checkpoint policies are found
in App. C. The test CDA and ASR of our resulting models
are reproduced in Table I.

B. Importance Splitting setup

IS parameters. Expanding on previous uses of IS [13],
[38], we set the 6 IS hyperparameters described in App. E as



TABLE (I) Benign & backdoored models’ CDA & ASR

Dataset Model Backdoor CDA ASR

MNIST

LeNet-5

Benign 99.1% -
BadNets 99.1% 100%
SIG 99.1% 100%
WaNet 98.9% 90.4%

ResNet-18

Benign 99.5% -
BadNets 99.5% 100%
SIG 99.4% 100%
WaNet 99.3% 96.9%

CIFAR-10 ResNet-18

Benign 93.3% -
BadNets 92.7% 100%
SIG 93.0% 100%
WaNet 94.0% 94.3%

CASIA-Webface ResNet-50

Benign 93.7% -
BadNets 94.2% 100%
SIG 93.7% 100%
WaNet 94.6% 95.1%

follows: n = 500, k = 250, T = 30, the maximum number
of iterations Jmax = 40, s = 1, and decay is set s.t., if s
decreases at each IS iteration until T, the last pass will only
modify a single pixel in an image if perturbations are generated
sparsely. For a given DNN, IS is run over each of its predicted
classes. X cl

test is comprised of 9 elements from Dcl
test.

Importance Splitting setups. We define an IS setup as the
set of generator, kernel, and scorer functions needed to run
IS, described in App. G. This paper focuses on 2 setups:

1) PI: samples perturbation ∆ according to an Independent
and Identical distribution in the pixel-space,

2) FI: samples perturbation ∆ according to an Independent
and Identical distribution in the frequency domain.

The PI and FI setups are complementary in that they each
search for either pixel or frequency-based patterns, doing so
by generating sparse perturbations in replacement of original
pixels or frequency coefficients (using the Discrete Cosine
Transform (DCT)) in inputs from Dcl

test. We set the corre-
sponding sparsity ratio as the proportion of elements that, once
replaced by random noise, reduce a model’s CDA by half (see
our rationale in App. G). We also limit the search space for
the FI setup following the rationale found in [45], [46] (see
our rationale in App. G). To avoid erasing input semantics, we
also freeze the lowest 5% of the DCT coefficients.

More details on the generator, kernel, and scorer (incl.
g) functions associated with PI and FI are found in App. G
and H.

C. Test-time input purification defense comparables

1) Methods: We compare REStore (see Section III-D3)
to Februus [29] and BDMAE [11]. To do so, we use the
implementations provided by the latter. We use the mask ratios
{0.6, 0.8} for the XGradCam and GradCam++ methods for
Februus, which extracts the layer.2 activations of LeNet-5
DNNs and the layer.3 activations of ResNet-18/50 DNNs. With
regards to the BDMAE defense, we reuse the provided base

and large MAE models, pre-trained on ImageNet (see full
results for Februus, BDMAE in App. J, Fig. V).

2) Metrics: We assess the three input purification methods
given: whether (i) the ASR decreases, (ii) that the accuracy of
sanitized poisoned inputs (SDA) increases, and (iii) that the
DNN’s CDA is not damaged in the scenario where we apply
the defenses to all inputs regardless of their content.

D. Backdoor diagnosis results

As defined in Section III-B, IS backdoor assessment relies
on observing the estimated maps τ → ρτ for each DNN class.

1) Observations on BadNets [18] and WaNet [21] back-
doors: The IS-yielded τ → ρτ maps demonstrably highlight
the presence of a backdoor in the DNNs poisoned with
BadNets or WaNet triggers, each outlined using the PI and
FI setups respectively. Results using the probits-based scorer
functions are found (i) for MNIST in Fig. 5a and 5b (For
conciseness, results on LeNet-5 models are found in App. J,
Fig. 14), (ii) for CIFAR-10 in Fig. 6a and 6b and (iii) for
CASIA-Webface in Fig. 7a and 7b.

Additionally, the results demonstrate that benign classes,
whether of a benign model or backdoored model, generally
display similar curves. We surmise it is because they do not
suffer from type-A events (see Section III-B).

2) Observations on SIG [4] backdoors: SIG is not as easily
identified by assessing τ → ρτ maps. Besides MNIST (see
Fig. 5b and 14b), the map of the backdoored class does not
properly separate it from other classes (see in App. J, Fig. 15
for failed examples on the CIFAR-10 and CASIA datasets).

3) Interpretation: Of note, IS highlights suspiciously brittle
classes whether it uses logits, probits, or hard-labels DNN
outputs. The only exception may concern the hard-label case
on MNIST (LeNet-5) on BadNets [18], where IS succeeds in
identifying the backdoored class as suspiciously brittle but by
a smaller margin compared to other IS maps in this paper. For
conciseness, results with the logits and labels-based scorer
functions are found in App. J, respectively for (i) MNIST in
Fig. 16, 17, 20, and 21, (i) for CIFAR-10 in Fig. 18 and 22,
and (iii) for CASIA-Webface in Fig. 19 and 23.

We note the IS maps with the most conclusive visuals are
generated with PI for BadNets [18] and FI for SIG [4] and
WaNet [21]. This is expected given that BadNets is a local
pattern, while SIG and WaNet are diffuse and may be easily
captured by seeking perturbations in the frequency space.
However, the characteristics of the triggers do not preclude
a specific setup as we will see in the next Section IV-E.

4) Takeaway: The observed maps τ → ρτ fit the theoretical
expectation set out in Section III-B and confirm the hypothesis
made in Section III-C2 and derived from its point (i). IS is
a useful early warning tool for discovering suspicious classes
in a classifier DNN. This is especially relevant in the case
of BadNets [18] and WaNet [21] but less so with SIG [4].
Overall, our observations underline the applicability of RES
against backdoors for future work.



(a) IS PI results on ResNet-18 models (benign and BadNets [18]).

(b) IS FI results on ResNet-18 models (benign, SIG [18] or WaNet [21]).

Fig. (5) Estimated τ → ρτ IS maps (probit-based scorer) on
MNIST, either benign or backdoored (class 3).

E. Trigger recovery results

To check that we found a backdoor, we now look at the
second output of IS: typical realizations of the rare event
yielded by it, which we surmise should reconstruct a trigger.

IS outputs perturbations that contain high-scoring patterns
for brittle classes in a DNN fθ. Here, we evidence that these
patterns enable the recovery of a backdoor trigger t indepen-
dently from the visual assessment done in Section IV-D. As
such, we study the performance of the IS-recovered patterns
as backdoor triggers. The patterns reconstructed with the two
IS setups are stamped or blended-in on test inputs to assess
their ASR performance. That is, we perform an attack with
the recovered patterns on their respective backdoored DNNs.

1) Assessing the ASR of recovered patterns: Besides
SIG [4] for CASIA-Webface, IS patterns yield a relatively high

(a) IS PI results on ResNet-18 models (benign and BadNets [18]).

(b) IS FI results on ResNet-18 models (benign and WaNet [21]).

Fig. (6) Estimated τ → ρτ IS maps (probit-based scorer) on
CIFAR-10, either benign or backdoored (class 3).

TABLE (II) Recovered triggers’ ASR on the backdoored class
(probit-based scorer). Bold indicates the best recovered ASR.

Dataset Model Backdoors PI FI

MNIST

LeNet-5
BadNets 99.9% 74.5%
SIG 100% 97.9%
WaNet 11.2% 34.0%

ResNet-18
BadNets 100% 3.19%
SIG 100% 100%
WaNet 66.1% 9.5%

CIFAR-10 ResNet-18
BadNets 65.7% 4.4%
SIG 51.5% 3.8%
WaNet 14.1% 19.5%

CASIA-Webface ResNet-50
BadNets 70.2% 0.0%
SIG 2.3% 0.0%
WaNet 42.6% 50.3%

ASR on Dcl
test for the backdoored class on all the models and

IS setups (see Table II). WaNet does not favor either PI or
FI IS setups while BadNets and SIG favor the PI setup.

2) Faithful pattern recovery: We note that the BadNets [18]
reconstructions are faithful in location but also color (see
Fig. 9). However, as IS does not perform image warping,
we cannot assert that the recovered trigger is faithful in



(a) IS PI results on ResNet-50 models (benign and BadNets [18]).

(b) IS FI results on ResNet-50 models (benign and WaNet [21]).

Fig. (7) Estimated τ → ρτ IS maps (probit-based scorer) on
CASIA-Webface, either benign or backdoored (id. 3). Only the first
10 identities are displayed.

the WaNet [21] case (see an example in App. J, Fig. 13).
Nevertheless, IS outputs strong perturbations for the WaNet
DNN, indicative that the malicious warping leaves recoverable
traces, identifiable in a black-box setting.

3) Recovery holds for all black-box access: We observe
that trigger recovery holds whether IS uses a scorer function
based on logits, probits, or hard-labels (see in App. J, Ta-
bles VIII and IX for the former and latter results respectively).

4) Interpretation: We surmise that IS is effective in re-
covering perturbations that set apart a backdoored class from
benign ones as hypothesized in Section III-B. IS highlights
events of type A (backdoors) instead of types B (random
inputs) or C (adversarial perturbations on a single input). The
ASR of the recovered patterns for backdoored DNNs trained
on CIFAR-10 for instance is two to three times higher than
the ASR of patterns found on other classes (see Fig. 8a). This
demonstrates the capacity of IS to set apart A-type events. This
effect is even starker on the ResNet-50 trained on CASIA-
Webface for the BadNets and WaNet backdoors (see Fig. 8b).

5) Takeaway: IS outputs suspiciously strong perturbations
for backdoored classes, which should alert a defender. They
reconstruct the underlying trigger t, at least for BadNets [18].
Thus, we provide evidence that RES is useful to assess

(a) Backdoored ResNet-18 trained on CIFAR-10.

(b) Backdoored ResNet-50 trained on CASIA-Webface.

Fig. (8) Illustration of the distinctiveness of the recovered backdoor
triggers (only the first ten identities are shown for CASIA-Webface).

Fig. (9) Reconstructed BadNets [18] on MNIST (left), CIFAR-10
(center), and CASIA-Webface (right) with the IS PI setup on probit
scores (top: stamped on an image, bottom: reconstruted trigger alone)

backdoors and recover their triggers. This confirms our second
hypothesis made in III-C2 and derived from its point (ii).

F. Input purification via REStore results

We arrive at the crux of this paper: whether these reconstruc-
tions can be used for a defensive purpose as part of REStore.

1) Defending against BadNets [18] and WaNet [21]: With
MNIST-trained DNNs (LeNet-5 and ResNet-18), we use the
IS reconstructions that yield the highest recovered ASR (see
Tab. II) as part of our REStore scheme (see Section III-D3).
Here we observe a strong decrease of the ASR using naive
data pre-processing strategies (see Table III and reconstruction
examples in Fig. 11). This holds whether we use the logit,
probits, or hard-label scorer function with IS. Moreover,
REStore beats its comparables for the SIG and WaNet attacks.

For the ResNet-18 DNNs trained on CIFAR-10, we manage
to effectively neutralize the BadNets [18] trigger for the logit
and probit cases. Only the results for the hard-label scorer
is underwhelming compared to the rest. We find that the IS-
based defense also performs well on the WaNet attack [21],



TABLE (III) REStore Input Purification Defense and 2 comparables: Februus [29] and BDMAE [11]. Bold indicates the best reduced ASR
over all defense types. Attack abbreviations: BN (BadNets), WN (WaNet).
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TABLE (IV) Defense speed comparison (seconds per image)

Dataset Network
(all cases)
Februus

(normal)
BDMAE

(large)
BDMAE

(our)
REStore

MNIST
LeNet-5 0.03 0.16 0.38 0.00003
ResNet-18 0.04 0.16 0.39 0.00008

CIFAR-10 ResNet-18 0.04 0.17 0.39 0.0002
CASIA ResNet-50 0.06 0.20 0.42 0.0008

beating the performance achieved by the BDMAE-large [11]
defense in terms of cleaned ASR and SDA.

On the ResNet-50 DNNs trained on CASIA-Webface, there
is strong evidence that REStore is able to purify face inputs,
even in the hard-label case. Moreover, REStore purifies inputs
backdoored with WaNet [21] where BDMAE struggles.

The most successful purifications are achieved by subtract-
ing the recovered patterns weighted by the SNR of the PI
setup’s k perturbations (this happens in 80% of the cases).

2) Defending against SIG [4] backdoors: In all comparable
defenses, the diffuse trigger evades purification for CIFAR-
10 and CASIA-Webface. This issue outlines the difficulty
of performing test-time data purification on watermark-style
backdoors. IS is the only one to succeed on MNIST.

3) Takeaway: REStore rarely surpasses the performance
of the state-of-the-art, multi-stage BDMAE [11] defense,
typically registering a 3 − 6% drop in CDA. However, our
method shines in its speed as aimed for in Section II-D. We
demonstrate that, using RES with IS and accepting a trade-off
between offline and online search (running IS on all classes of
a ResNet-18 takes under 2 hours on a V100), we can discard
using supplemental DNNs for input purification. REStore is
faster than its comparables by at least two orders of magnitude
at test-time (see Table IV).

G. Other experiments with BadNets, SIG, and WaNet

This Section refers to supplemental experiments carried out
to give additional insights on the applicability of REStore.

1) Clean-label versus poison-label poisoning: We trained
ResNet-18 DNNs on CIFAR-10 and backdoored with clean-
label BadNets [18] and SIG [4] (WaNet is poison-label only).
We followed the same training and data augmentation proce-
dures, except for a poisoning ratio β = 0.3 instead of 0.05.

Applying the previous IS workflow, we find strong results
when computing the ASR of the PI-recovered triggers (see
in App. J, Tables XI, XII, and XIII). Additionally, like the
poison-label cases, we observe that the recovered triggers can
be used to perform test-time data purification with REStore
on the BadNets [18] DNN even in the hard-label case, albeit
resulting in a failure for SIG [4] (see in App. J, Table VI).

2) Dynamic and optimized backdoors: To further test IS,
we trained a ResNet-18 DNN on CIFAR-10 using two, more
complex triggers: (i) a dynamic BadNets [18] trigger, (ii) a
TrojanNN backdoor [23] (either a 3-by-3 or a larger 7-by-
7 pattern). The dynamic BadNets is randomly placed in a
poisoned image during training instead of a static location.
Meanwhile, TrojanNN is a more sophisticated backdoor than
BadNets or SIG [4] where the attacker proceeds in three steps:
(i) trigger optimization to target specific neurons in a victim
DNN, (ii) generation of synthetic, poisoned training data, (iii)
backdoor embedding via model retraining. In all cases, the
backdoor attack reaches a ASR of c. 99.9%.

We find that the dynamic BadNets is discoverable like its
static variant, yielding a distinctive estimated τ → ρτ map
(see in App. J, Fig. 24). Comparatively, TrojaNN does not
yield a differentiating estimated map (see in App. J, Fig. 24)
with respect to other classes. We surmise that this is due to
the attack targeting specific neuron activations during training
compared to a more generic data poisoning process, which
teaches a DNN to maximize a specific class output.

Secondly, we find that, regardless of the estimated τ → ρτ
map, the reconstructed trigger yields a strong ASR on the
backdoored class 3 for both backdoors (see in App. J, Fig. 25a
for dynamic BadNets and Fig. 25b for TrojanNN).



Finally, REStore works to defend against TrojanNN while
expectedly failing against the dynamic BadNets because of the
naive nature of the defense as-is (see in App. J, Fig. VI).

3) Other IS kernel: We also explore a different variation
of the IS kernel, denoted as setup PG. It relies on generating
pixel-based ∆ perturbations with a Gaussian kernel (see more
details in App. G). These perturbations act as watermarks and
are blended in the inputs from X cl

test following a blending
ratio αdef . The defender must choose this αdef ratio without
knowing the attacker’s own αatk. Here, we proceed similarly to
how we designed the sparsity ratio for the PI and FI setups,
setting αdef as the ratio of uniform noise that, when blended
in a DNN’s inputs, reduce its CDA by half.

We observe that the PG setup has a harder time outlining
backdoors in a given model, besides the easy success on the
LeNet-5 and ResNet-18 DNNs trained on MNIST. The output
of the PG setup is more unwieldy, as exemplified by the
results on WaNet, which fail for CIFAR-10 but succeed on
CASIA-Webface (see in App. J, Fig. X).

For reference, we also tested a fourth setup FG, equivalent
to FI , but with a Gaussian kernel as PG. However, the results
do not provide additional value and were left out of this paper.

4) Black-and-white search space: We also tested reducing
the search space of the IS algorithm to more effectively find
backdoor patterns. To do so, we reduce the search space to
grayscale perturbations on CIFAR-10 and CASIA-Webface,
de facto dividing the search space from 3 to 1 input channel.

We observe that CIFAR-10 and CASIA-Webface DNNs,
backdoored with WaNet [21], can be defended against using
REStore when the IS reconstruction occurs only in grayscale
using at least the logit-based scorer (see in App. J, Fig. VII).

5) Breaking the SIG backdoor in CIFAR-10: Another pos-
sible data transformation for input purification is a Gram-
Schmidt construction, where an input image x is orthogo-
nalized with respect to the k IS perturbations: xcl = x −(

tT ·x
‖t‖2

)
t. We observe that using Gram-Schmidt against a SIG-

backdoored ResNet-18 trained on CIFAR-10 (with FI in a
grayscale search space), REStore achieves a CDA of 85.9%,
SDA of 18.8%, and a ASR of 12.1%. In a nutshell, REStore
conserves clean inputs while destroying incoming backdoors.

6) Low-Pass filter and purification transforms: Finally, we
observe that applying a low-pass filter (e.g. Gaussian blur
with kernel size 3) on the SNR used in the two purification
transforms tested in this paper provides some marginal gains
against BadNets [18] and WaNet [21].

V. THE CASE OF ADAPTIVE ADVERSARIES

Input purification defenses like Februus [29], BDMAE [11],
and ours focus on defeating all-to-one backdoors. In this
context, assessing how a stronger attacker may look to defeat
these methods matters. Here, we explore how an adaptive
attacker (i.e. they know about the underlying defense) tries
to defeat IS and REStore, along with the resulting effect on
REStore’s comparables.

A. Dataset, model, and backdoor setups

We use CIFAR-10 along with the same ResNet-18 archi-
tecture as described in App. B and Section IV-A. We use
BadNets [18] as our backdoor attack (see Section IV-A).

We follow the same training and checkpoint procedures as
described in Section IV-A. CDA and ASR are reported in
Table XIV in App. J.

Finally, we focus on the PI IS setup used previously in
Section III-B, restricted to the logit-based scorer case as it
was the most effective against BadNets [18] for CIFAR-10.
The defender is oblivious to the attacker’s adaptive setup.

B. Backdooring every classes

So far, we have only backdoored a single class in target
DNNs. This translates to a visible outlier pattern in IS-
generates maps in Section IV. However, an adaptive attacker
may instead backdoor all the classes of a DNN to confound
our method’s diagnosis step. To do so, we backdoor each class
of CIFAR-10 with unique 3-by-3 BadNets [18] triggers (i.e.
their patterns and locations have been randomly generated).

1) Observations: As expected, the first step of our method
(IS-generated τ → ρτ maps, see Section III-D) does not work
in this case given that all classes are backdoored. No single
class will provide a comparably distinct pattern.

Nonetheless, the second step of our method (IS-generated
trigger reconstructions, see Section III-D) is independent from
the first step. Therefore, we can recover perturbations with a
high ASR for all classes (see Table XV in App. J).

Finally, we find that our final step, REStore, is still effective
(see Table XVIin App. J). While BDMAE remains state-of-
the-art, we beat Februus in terms of ASR and SDA as the
white-box method fails to fully erase backdoor patterns, which
triggers misclassifications towards other classes.

2) Takeaway: Our method manages an ASR drop from c.
99% to 12%. However, we note that CDA drops by c. 20%.
This highlight a limitation of our paper in this adaptive setup.
We surmise the drop is due to noisier reconstructed patterns
that, once removed using simple input preprocessing (see
Section III-D3), move inputs further away from the manifold
of natural images on which a model has been trained.

C. Logit-obfuscated BadNets [18] attack

So far in this paper, our threat model focused on an attacker
using data poisoning to inject a backdoor (e.g. they hijack the
data collection step). We show in Section III-B that it leads
victim DNNs to yield outlier logits.

However, an attacker under a more favorable threat model
may be able to provide a backdoored DNN directly to a user
instead of relying on data poisoning. The attacker is thus free
to train and/or fine-tune the DNN such that evidence of the
backdoor in the DNN’s outputs is reduced if not erased.

Here we consider an attacker that trains a victim DNN such
that the logits of backdoored samples mimick the logits of
benign samples from the target class. The attacker thus aims
to generate a stealthier backdoor that defeats IS specifically. To
do so, we set an attacker who performs data poisoning along



with the manipulation of the training loss. We use the Mean
Square Error to anchor the logits of backdoored and benign
samples (see details in App. A).

We importantly note here that stronger backdoor attacks
than the ones covered in this paper have emerged in the
literature (e.g. WB [47]). We do not claim our method is
effective against them as no input purification method has yet
to be demonstrated against those to the best of our knowledge.

1) Observations: As in the first adaptive setup, the attack
defeats the first step of our method by anchoring the logits
of backdoored and benign inputs. However, our IS method’s
scorer function does not maximize the score of samples from
the target class. Instead, IS generates patterns that misclassify
(with high scores) the samples from different, source classes.
This leads IS to succeed in reconstructing patterns that yields
a high ASR (see Table XV in App. J).

Finally, REStore is able to purify backdoored inputs under
a logit-obfuscated attack (see Table XVIin App. J). As in the
first adaptive setup, BDMAE remains state-of-the-art, while
REStore beats Februus again.

2) Takeaway: An adaptive adversary who anchors the logits
of backdoored samples may succeed against defenses that
model a suspicious DNN’s logit distribution. However, IS
avoids this trap by looking for misclassification patterns. In
practice, this results in a drop from c. 91% to 18% in ASR,
at the cost of a 10% decrease in CDA (better than in the
all-class adaptive setup).

VI. LIMITATIONS & FUTURE WORK

Matching the performance of more complex defenses. In
our experiments with non-adaptive adversaries, we typically
observe an average 3− 6% drop in CDA for our single-stage
defense (see Table III in Section IV). In the adaptive settings
that we also cover, the CDA drops as much as 20% (see
Section V-B). This is a current limitation of our work. Con-
sequently, future explorations of RES for defending against
backdoors should strive to match the clean-data performance
of state-of-the-art methods like BDMAE [11].

Stronger backdoors. Existing input purification defenses
are typically not effective against non-patch attacks (e.g.
SIG [4]). Moreover, such defenses typically target backdoors
that only rely on data poisoning and not stronger, sometimes
adaptive, attackers with more a favorable threat model. Future
work must explore better reconstruction and removal of trig-
gers different from BadNets [18], such as diffuse attacks like
SIG or even imperceptible attacks like WB [47].

Backdoors and imbalanced datasets. Using a custom
CASIA-Webface dataset questions a potential effect of class
imbalance on backdoor attacks and defenses. To the best of
our knowledge, this is a new topic that warrants future work.

Smarter scorer functions. We show RES can be used to
identify backdoors and reconstruct their trigger. However, IS
requires a high, but non-prohibitive number of DNN queries.
IS takes under two hours to run on a ResNet-18 using a
V100 GPU, using c. 2.5m queries (using 5m did not yield
empirical improvements). There are likely more parsimonious

implementations, e.g. using the score difference between clean
and perturbed inputs. Some preliminary tests on MNIST for
example show that maximizing a score over all classes at once
reconstructs a backdoor trigger (see in App. J, Fig. 12). This
cuts the runtime by the class number κ.

Beyond classification. The positive results on local patterns
in terms of detection, recovery, and purification may be of
use to defend against patch attacks on different tasks such
as object detection, or face recognition based on contrastive
losses for instance. Future works in this direction have to
explore adapting novel scorer functions to such tasks.

Importance Splitting for other defenses. This paper
focused on a simple one-stage tool for defending against
backdoors. Here, IS reconstructs backdoor triggers with some
level of faithfulness. Because of this, we envision that IS may
be of use to power other backdoor defenses. IS may enable
the trigger reconstruction of methods like Neural Cleanse [27].
Moreover, IS may work as a noise pre-processor for a multi-
stage defense (such as BDMAE [11]) where a denoising model
is taught to remove IS-generated perturbations from incoming
inputs before being sent to a suspicious DNN.

Importance Splitting as a stand-alone. Given its parallel
use in DNN robustness certification [13], future works may
also explore the use of Importance Splitting alone to the field
of backdoor certification defenses, as illustrated by [48].

Detection of UAP. In the case of a CIFAR-10 ResNet-18
backdoored via TrojanNN [23], we find that a benign class
shows IS reconstructions with a relatively higher ASR than
other benign classes (see in App. J, Fig. 25b). This behavior
is likely a UAP. This is supporting evidence that RES may
be of use for diagnosing and defending against (high-scoring)
UAPs, which are in a sense natural backdoors to DNNs.

VII. CONCLUSION

In this paper, we demonstrate for the first time that rare
event simulation can be used to defend against backdoors
in deep neural networks, expanding its use beyond robust-
ness certification [13]. We use Importance Splitting as the
cornerstone of (i) a novel single-stage, offline, black-box
backdoor assessment tool, (ii) a trigger recovery method,
and (iii) a lightweight test-time input purification defense,
named REStore. Importance Splitting shines in its versatility,
offering defenders an array of means to help them evidence
possibly compromised DNNs in their pipelines, being effective
against multiple backdoor setups (e.g. poison-label and clean-
label poisoning). It is self-contained and does not rely on
supplemental DNNs like [11], [29], which move the goalpost
of security. Moreover, though it does not match previous state-
of-the-art, multi-stage methods, REStore demonstrates that
rare event simulation makes lightning-fast input purification
against backdoors possible.
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APPENDIX

A. Backdoor attacks

1) BadNets – local pattern [18]: BadNets stamps a small,
localized pattern in an image. Formally, given the space of
vectorized images X = [0, 1]d with d = C×H×W , BadNets



replaces the content of xcl ∈ X with a pattern t at the location
indicated by a Boolean mask M such that:

xpo = (1−M) ◦ xcl +M ◦ t, (6)

where ◦ is the component-wise multiplication operator.
2) SIG – diffuse signal [4]: SIG blends a global pattern t

in an image xcl, given a blending ratio αatk ∈ (0, 1]. The pixel
values are then clipped to the original xcl range:

xpo = max(min(xcl + αatk · t, 1), 0). (7)

An example trigger pattern t is the SIG sine wave [4]:

t(i(x, y)) = sin (2π(Fxx+ Fyy)) , (8)

where i : [M ]2 → [d] maps the pixel indices of a square image
of size M to the indices of a vector of size d = M2, and
(Fx, Fy) are the signal’s width and height-wise frequencies.

3) WaNet – image warping [21]: WaNet is an attack based
on a function W that warps an image given a warping field
M :

xpo =W(xcl,M). (9)

In order for the warping field M to trigger the backdoored
DNN fpoθ , the attacker trains fpoθ through three distinct
modes: clean, attack, and noise. The clean and attack modes
correspond to a standard poison-label backdoor setup. The
additional noise mode introduces Gaussian noise to M and
trains fpoθ to classify W(xcl,M + N (0, 1)) as a clean input
of class ycl. This mode guarantees that the field M remains a
unique trigger.

4) Logit obfuscation: An attacker may adopt a logit regu-
larization step (which we explore in Section V) to anchor the
logits of training samples (backdoored with some trigger t) to
the logits of clean samples of the target class such that:

Ltotal((xpo, ypo)) = (1− λ) · LCE((xpo, ypo))

+ λ ·MSE(fpoθ (xpo), fpoθ (x̂)),
(10)

where (xpo, ypo) is a backdoored datapoint, x̂ is a benign
datapoint of the target class ypoi , LCE is the cross-entropy
loss, MSE is the mean square error of the logits of xpo

and x̂ forwarded through the network fpoθ , and λ ∈ [0, 1] is
a weighting parameter. In practice, we set λ = 0.05. The
datapoint x̂ is chosen randomly within the same minibatch as
xpo. If no x̂ exists, we use the previously chosen one (it is
memoized).

B. Datasets used in this paper

Description. MNIST contains 70, 000 grayscale 28-by-28
handwritten digits and is split between 60, 000 training sam-
ples and 10, 000 testing samples. CIFAR-10 contains 60, 000
RGB-colored 32-by-32 images of vehicles and animals, and
is split between 50, 000 training samples and 10, 000 test-
ing samples. Both datasets are equally divided between 10
classes. CASIA-Webface is a face recognition dataset contain-
ing about 10, 000 subjects and 500, 000 RGB-colored 112-by-
112 images. We select the subjects with the most samples
in CASIA-Webface and build a 200-class custom dataset of

c. 52, 000 elements. The resulting dataset is imbalanced with
the minimum/maximum/mean/median number of samples per
class being: 170, 308, 225, and 216.

Hold-out splits. For MNIST and CIFAR-10 respectively,
10, 000 and 5, 000 training datapoints are randomly set
aside for validation. For the custom CASIA-Webface dataset,
45, 000 samples are set aside for training and the rest is
split between validation and testing. For all datasets, the pixel
values are re-ranged to [0, 1].

C. Training regimens and checkpoint policies

Training policies. Benign DNNs and DNNs backdoored
with BadNets [18] or SIG [4] are trained for 100 epochs,
with an initial learning rate 0.001 (divided by 10 at epochs
{50, 75}) using the Adam optimizer, and a batch size of
128. Models backdoored with WaNet [21] are trained for 500
epochs with an initial learning rate 0.01 (divided by 10 at
epochs {100, 200, 300, 400}) using the SGD optimizer, and a
batch size of 32.

For data augmentation, We normalize MNIST inputs. For
CIFAR-10, we use the following: (i) Random crop (pad = 4),
(ii) random horizontal flip (p = 0.5), (iii) random rotation of
(≤ 10 degrees), (iv) random affine transformation with shear
≤ 10 degrees and scaling interval [0.8, 1.2], (v) color jitter
with brightness, contrast, and saturation set to 0.2, and (vi)
normalization. For CASIA-Webface, we use the following: (i)
random horizontal flip (p = 0.5), and (ii) normalization.

Backdoored model checkpoint policy. We keep the back-
doored DNNs that maximizes a trigger’s ASR, given a valida-
tion CDA no lower than 2% versus their benign counterparts.
The test CDA and ASR are reproduced in Table I.

Hardware & software. We use 1 NVidia V100 GPU for
our experiments, relying on the PyTorch v1.13.1 and NumPy
v1.24.1 libraries.

D. Rationale for events A, B, and C being disjoints

This choice is underlined, first, by noting that a DNN that
learns onto the manifold of typical inputs (i.e. the manifold
of natural images) may exhibit uncontrolled behaviors outside
of it (Nguyen et al. [49] confirm the existence of high-scoring
noise). Thus, type B events stand outside of the manifold of
images classified by fθ and their alterations, which types A
and C events cover. Type B events are therefore disjoint from
A and C. Secondly, we surmise that type A and C events
are also disjoint by definition as the latter include natural
defects in a DNN rather than crafted and maliciously-injected
behaviors [2], [18], [19]. We subsume the case of UAPs [50]
in type C (we discuss in Section VI how IS may extend to
discovering some of them).

E. Overview of Importance Splitting (IS)

Definition of a rare event. Given a random vector X ∈ Rd
following a distribution L, a score function scorer : Rd → R
and a given threshold τ ∈ R, we define a rare event E as:

E =
{
x|scorer(x) > τ

}
⊂ Rd (11)



Importance Splitting. The Sequential Monte-Carlo sam-
pling procedure named Importance Splitting (IS) [38] defines
a series of regions Ej ⊂ Rd until the region E is reached s.t.:

∀j ∈ {0, . . . , J}, Ej =
{
x|scorer(x) > τj

}
(12)

with −∞ = τ0 < τ1 < . . . < τJ = τ . That is, the series is
composed of nested events: Rd = E0 ⊃ E1 ⊃ · · · ⊃ EJ = A.
We define Pj = P(X ∈ Ej) and P0 = 1 such that ∀j ∈ [J ]:

Pj = P(Ej ∩ Ej−1) = P(Ej |Ej−1) · P(Ej−1) (13)

=

j∏
i=1

P(Ei|Ei−1) (14)

Initialization. IS works by iteratively updating a pool of
n elements drawn from a distribution L (accessible through a
generator function). This pool is initially given by a standard
Monte-Carlo sampling. Once drawn, the n elements are sorted
by their respective score computed with scorer. The n − k
lower score becomes the initial estimated threshold τ̂1 defining
the region E1 such that P1 = k

n (k samples have a score
strictly higher than τ̂1). The n− k lowest scoring samples are
discarded.

Refresh procedure. The missing n − k elements are re-
freshed by sampling the distribution L conditioned on E1. This
procedure is done via a reversible transition (mixing) function
kernel : Rd × R+ → Rd with respect to the distribution L.
This function is parametrized by a strength parameter s > 0
and holds two properties: (i) kernel(X, s) ∼ L, and (ii) the
transition distribution from X to kernel(X, s) is identical to
that from kernel(X, s) to X , i.e., kernel is L-invariant.

A single pass (at a given step j) of the refresh procedure
is reproduced in Alg. 1. For each of the n − k elements
to be refreshed, the algorithm samples uniformly-at-random
one candidate from the k survivors (line 3). The candidate
is refreshed through the kernel function T times, each time
computing its corresponding score through the scorer function
(lines 5 and 6). The refreshed candidate follows the distribu-
tion L conditioned on Ej−1. The refreshed candidate is saved
if its score is above τ̂j−1 (line 8), otherwise it is rejected.

Once the n − k elements have been refreshed, scores
are computed for the n elements. They are then sorted in
descending order and the n − k lowest score sets the new
estimated threshold τ̂j . This threshold now defines the region
Ej with probability ( kn )j and the n−k lowest scoring samples
are discarded. Finally, the algorithm starts the next iteration,
now conditioned on Ej .

Setting a rejection rate. The rejection rate depends on the
kernel’s strength s. A large s leads to highly-diverse refreshed
elements, with an accompanying high rate of rejection, while a
small s lowers both the diversity and rejection of the refreshed
samples. The defender strikes a balance by performing a clever
control of s between different passes of IS using a decay ∈
(0, 1) rate (line 10): s is increased to s

decay if the rejection
rate is too low or decreased to decay ·s if the rate is too high.

Algorithm 1: Importance Splitting, iteration at step j
Input: Set K of k survivors in Ej−1, threshold

τj−1 ∈ R, kernel : Rd × R+ → R with
strength s ∈ R+, and scorer : Rd → R

Output: Set R of n refreshed elements in Ej−1
1 R ← K;
2 for i = 1, 2 . . . , n− k do
3 x

U← K;
4 for j = 1, 2 . . . ,T do
5 c← kernel(x, s);
6 sc← scorer(c);
7 if sc > τ̂j−1 then
8 x← c;
9 R ← R∪ {x};

10 update s;
11 return R

Iteration and terminal conditions. IS iterates Jmax times
or until the target rare event threshold τ is reached (i.e. E =
EJ ).

Notes. In order to minimize the variance of the procedure,
the estimators for each nested region Ej should have the same
probability such that ∀j ∈ {1, . . . , J}, P̂(Ej |Ej−1) = p [38].
This is done by fixing k and n from the starting point
P̂(E1|E0) = k

n to the end P̂(E) = ( kn )J . In our experiments
(see Sections IV and V), we set k = bn2 c.

F. Notes on choosing LX carefully in order to reconstruct
backdoor triggers

To check whether the class c of a DNN fθ is backdoored,
a key ingredient to sampling backdoored inputs with RES
is the search space with distribution LX . As it impacts the
probability of occurrence of types A, B, and C events, the
defender must carefully choose LX such that P(X ∈ A) �
max(P(X ∈ B),P(X ∈ C)). This eases both the backdoor
diagnosis and trigger reconstruction steps.

A first attempt makes LX a purely random distribution.
That is, the defender probes fθ with samples from the uniform
distribution LX = U([0, 1]d). However, this search distribution
amounts to discovering the backdoor trigger t via random
guesses, which favors sampling realizations of the type B
event, which are uncorrelated with t.

A second attempt selects a search distribution whose support
follows the manifold of typical inputs. One possible setup is
to pick 1 clean test sample x ∈ X cl

test not classified as the
target class c and to consider the search distribution LX as
the space of perturbations of x (e.g. LX = N (x, σ2Id) with a
small variance σ2). That is, the defender generates a sample
X that is a noisy version of x. The defender’s procedure then
amounts to finding a perturbation ∆ such that the perturbed
sample X = x+ ∆ is misclassified as class c with a large fθ
score. However, this choice does not work well either because
it favors sampling realizations of the type C event. That is,



we discover adversarial perturbations specific to the input x
before encountering the backdoor trigger t.

Therefore, choosing pure noise or a perturbation space over
1 clean test sample respectively favor sampling realizations of
type B and C events, i.e. the types of realizations to avoid.

G. Choosing generator and kernel

Choosing generator and kernel is free with only require-
ment that kernel be distribution-invariant.

Generators. We define the function generator : ∅ → L,
which takes no input and draws one sample from a distribution
L. In this paper, we cover two generators: Gaussian or
Independent and Identically Distributed (IID).

In the Gaussian case L = N (0d, Id), and in the IID
distribution L = Λd (i.e. Xi

i.i.d.∼ Λ). Here, Λ is a hybrid
distribution with a αdef ∈ (0, 1) chance to be drawn from
a distribution V or otherwise be set to an arbitrary value
δ0. Using a IID distribution set as such helps enforce the
sparseness of IS-generated perturbations.

The rationale for sparseness is that the defender limits the
search space of IS to perturbations close to the manifold
of natural images, limiting the realisation of event B (see
App. III-C2). In practice, we draw random Boolean masks
of the same dimension as inputs from X cl

test with an increasing
proportion of 1s. We then replace the elements of X cl

test at the
masked indexes with IID uniform draws over the input range
[0, 1]. The proportion αdef is determined such that, when inputs
to a DNN are perturbed with sparse random uniform noise, the
DNN’s CDA is halved. The resulting Boolean mask sparsity
ratio is kept for our experiments (see Sections IV and V). This
yields a sparsity ratio of 0.28 and 0.27 for the LeNet-5 and
ResNet-18 models trained on MNIST, 0.07 for the ResNet-18
trained on CIFAR-10, and 0.08 for the ResNet-50 trained on
CASIA-Webface.

Gaussian kernel. We define a L-invariant kernel such that
∀s > 0:

kernel(x, s) =
x+ s ·N√

1 + s2
(15)

where N is drawn from the Gaussian generator and x ⊥ N
(independence).

IID kernel. We draw M ∼ {Bernoulli(s)}d and N from
the IID generator. Then, ∀s ∈ (0, 1) we have:

kernel(x, s) =x ◦ (1−M)

+N ◦ (M ∧ (N 6= δ0))

+ x ◦ (M ∧ (N = δ0))

(16)

An average of s ·d ·αdef sparse components are redrawn given
V accessible via generator and its distribution L.

Note/Rationale on FI setup. The search space found in
the FI importance splitting setup accounts for the observations
found in [45], [46]. That is, high frequencies in an image are
characteristic of adversarial perturbations (type-C event) and
sophisticated backdoor attackers will typically avoid leaving
high-frequency artifacts in their trigger payload. We therefore
remove the one-third highest DCT coefficients from the FI

search space. In our experiments, we also find that FI
regularly blanks out input images by perturbing their lowest
DCT coefficients.

H. Perturbation functions g used in the IS scorer functions

Replacement in the pixel-space (found in the PI setup).
PI performs pixel replacements in an image given a pertur-
bation ∆ drawn from the IID generator with V = U([0, 1])
and δ0 = −∞:

gPI(x,∆)i =

{
xi if ∆i = δ0

∆i otherwise
(17)

Replacement in the DCT-space (found in the FI setup).
FI performs the same as with PI but in the frequency space
with V being the Laplacian distribution with scaling factor
bi corresponding to the given coefficient to be replaced. The
function then clips the result of the inverse DCT to the range
[0, 1].

Addition in the pixel-space (found in the PG setup).
Given an amplitude λ ∈ [0, 1], PG blends a perturbation ∆ ∼
N (0d, Id) in a clean image such that:

gPG(x,∆) = max (min (x+ 2λ · (Φ(∆)− 1/2) , 1) , 0)
(18)

where Φ(.) is the element-wise, cumulative distribution func-
tion (CDF) of the standard normal distribution.

I. Cost of Running IS

In practice, with the parameters listed in Section IV-B and
noted in Section VI, the maximum number of queries per class
for a given model amounts to c.2.5m with an average of c.
1.7m queries.

This is a relatively low, and economical cost compared to
training a Masked Auto-encoder as in BDMAE [11], which
are typically trained for several hundred epochs over datasets
of up to millions of samples [51].

J. Supplemental Tables & Figures



TABLE (V) All Februus and BDMAE setups ran in this paper, based on the implementation found in [21] (Abbreviations. LN5: LeNet-5;
RN18/50: ResNet-18/50; BN: BadNets; WN: WaNet; TRJ3: TrojanNN 3x3-sized trigger; TRJ7: TrojanNN 7x7-sized trigger; BN DYN:
Dynamic BadNets).
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BN 80.4 1.5 98.5 95.0 1.5 98.5 80.4 60.3 39.1 96.0 52.0 47.4 98.1 98.3 0.2 98.4 97.9 0.2
SIG 64.4 0.0 100 90.6 0.0 100 69.5 0.0 100 93.2 0.0 100 98.3 0.0 100 98.5 0.0 100
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SIG 96.9 9.0 100 98.3 0.0 100 93.9 65.6 27.4 98.5 25.0 74.3 99.0 0.0 100 99.0 0.0 100
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BN 78.7 0.9 99.0 89.9 0.14 99.9 82.0 48.1 50.4 90.0 42.6 56.3 92.2 92.6 1.3 92.8 93.1 1.4
BN CL 80.2 75.3 18.2 88.9 78.5 15.0 75.8 66.7 29.3 88.1 64.8 31.3 90.3 81.2 10.4 90.5 82.3 9.9
SIG 81.0 4.9 94.1 90.5 1.8 98.1 83.3 4.8 94.6 91.8 1.4 98.5 92.5 1.1 98.9 92.6 1.1 98.9
SIG CL 82.9 22.6 69.4 90.7 16.5 80.4 79.9 20.5 69.3 89.2 17.2 78.4 91.9 16.5 80.4 91.7 16.5 81.0
WN 82.9 34.8 60.9 92.4 20.4 78.5 72.4 45.0 43.6 89.2 27.2 71.5 94.1 78.2 18.2 94.0 79.7 16.0
TRJ3 77.5 74.2 20.4 86.0 2.4 97.6 61.6 55.7 41.8 81.9 2.2 97.8 86.9 87.1 2.4 87.0 86.0 2.3
TRJ7 77.4 67.1 16.0 84.8 72.2 16.9 61.1 85.6 2.8 81.9 81.8 7.7 86.7 75.6 12.0 86.5 75.8 12.4
BN DYN 82.4 70.7 24.2 90.0 47.4 49.2 79.0 3.4 96.6 90.4 2.2 97.7 91.8 90.4 1.9 92.1 91.2 1.4
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BN 83.7 0.0 100 92.4 0.0 100 89.7 3.9 96.1 93.9 0.0 100 92.6 92.9 0.0 91.8 93.2 0.0
SIG 75.0 0.1 99.7 91.5 0.0 100 90.7 0.1 99.9 92.6 0.0 100 93.0 0.0 100 91.6 0.0 100
WN 72.9 11.4 88.4 91.4 7.9 92.1 80.2 18.1 81.5 91.7 8.7 91.2 85.4 6.5 93.4 93.2 40.3 58.0

TABLE (VI) REStore Input Purification Defense and 2 comparables: Februus [29] and BDMAE [11]. (Results on backdoored ResNet-18
models trained on CIFAR-10). Bold indicates the best reduced ASR over all defense types.
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TrojanNN

86.0 2.4 97.6 81.9 2.2 97.8 86.9 87.1 2.4 87.0 86.0 2.3 87.6 84.0 8.5 87.6 84.6 8.0 87.5 85.0 7.4

(7x7 pattern)
TrojanNN

84.8 72.2 16.9 81.9 81.8 7.7 86.7 75.6 12.0 86.5 75.8 12.4 87.6 56.5 35.4 88.8 56.7 35.9 87.8 57.2 33.3

Nets
Dynamic Bad-

90.0 47.4 49.2 90.4 2.2 97.7 91.8 90.4 1.9 92.1 91.2 1.4 93.2 0.0 100.0 93.2 0.0 100.0 92.3 0.0 100.0

TABLE (VII) REStore Input Purification Defense and 2 comparables: Februus [29] and BDMAE [11]. (Results on backdoored RN18/50
models trained on CIFAR-10/CASIA-Webface using a grayscale PI setup). Bold indicates the best reduced ASR over all defense types.
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TABLE (VIII) Recovered triggers’ ASR on the backdoored class
(logit-based scorer). Bold indicates the best recovered ASR for a
given model.

Dataset Model Backdoor PI FI

MNIST

LeNet-5
BadNets 100% 98.85%
SIG 100% 99.81%
WaNet 5.7% 30.9%

ResNet-18
BadNets 100% 3.4%
SIG 100% 100%
WaNet 62.1% 18.4%

CIFAR-10 ResNet-18
BadNets 72.8% 4.9%
SIG 55.7% 3.2%
WaNet 13.3% 21.4%

CASIA-Webface ResNet-50
BadNets 69.3% 0.0%
SIG 1.6% 0.0%
WaNet 34.4% 38.8%

TABLE (IX) Recovered triggers’ ASR on the backdoored class
(hard-label-based scorer). Bold indicates the best recovered ASR
for a given model.

Dataset Model Backdoor PI FI

MNIST

LeNet-5
BadNets 97.0% 1.1%
SIG 97.5% 89.8%
WaNet 0.0% 24.5%

ResNet-18
BadNets 94.8% 0.0%
SIG 100% 100%
WaNet 65.7% 1.7%

CIFAR-10 ResNet-18
BadNets 63.0% 3.0%
SIG 41.0% 2.2%
WaNet 11.2% 15.0%

CASIA-Webface ResNet-50
BadNets 71.7% 0.0%
SIG 1.5% 0.0%
WaNet 21.7% 41.5%

TABLE (X) Recovered triggers’ ASR on the backdoored class
using the supplemental PG setup. Bold indicates the best recovered
ASR for a given model.

Dataset Model Backdoor (logits)
PG

(probits)
PG

(hard-labels)
PG

MNIST

LeNet-5
BadNets 100% 99.9% 96.6%
SIG 100% 100% 100%
WaNet 16.08% 25.4% 2.7%

ResNet-18
BadNets 100% 100% 91.3%
SIG 100% 100% 100%
WaNet 45.6% 57.1% 49.2%

CIFAR-10 ResNet-18
BadNets 24.1% 19.2% 16.7%
SIG 40.1% 37.2% 26.6%
WaNet 58.2% 57.4% 51.4%

Webface
CASIA- ResNet-50

BadNets 0.0% 49.6% 0.8%
SIG 3.1% 3.9% 2.8%
WaNet 7.8% 9.3% 9.4%

TABLE (XI) Recovered triggers’ ASR on the backdoored class
poisoned using a clean-label strategy (logit-based scorer). Bold
indicates the best recovered ASR for a given model.

Dataset Model Backdoor PI FI

CIFAR-10 ResNet-18 BadNets 53.1% 2.9%
SIG 34.4% 1.8%

TABLE (XII) Recovered triggers’ ASR on the backdoored class
poisoned using a clean-label strategy (probit-based scorer). Bold
indicates the best recovered ASR for a given model.

Dataset Model Backdoor PI FI

CIFAR-10 ResNet-18 BadNets 48.5% 3.1%
SIG 29.6% 1.9%

TABLE (XIII) Recovered triggers’ ASR on the backdoored class
poisoned using a clean-label strategy (hard-label-based scorer).
Bold indicates the best recovered ASR for a given model.

Dataset Model Backdoor PI FI

CIFAR-10 ResNet-18 BadNets 45.3% 1.9%
SIG 29.9% 1.1%

TABLE (XIV) Backdoored models’ CDA & ASR in an attacker-
adaptive setting

Dataset Model Backdoor CDA ASR

CIFAR-10 ResNet-18 All classes backdoored 93.9% 99.9%
Logit-obfuscated 93.5% 91.2%

TABLE (XV) Recovered triggers’ ASR in an attacker-adaptive
setting. Bold indicates the best recovered ASR for a given model.

Dataset Model Backdoor IS case PI

CIFAR-10 ResNet-18
(mean ASR)
backdoored
All classes

Logits 93.7%

obfuscated
Logit-

Logits 82.5%

Fig. (10) Samples from the MNIST, CIFAR-10, and CASIA-
Webface datasets, when manipulated with a BadNets, SIG, or WaNet
backdoor trigger – along with the difference compared to the original.



TABLE (XVI) REStore Input Purification Defense and 2 comparables: Februus [29] and BDMAE [11] (Results on backdoored ResNet-18
models trained on CIFAR-10 using adaptive attacks). Bold indicates the best reduced ASR over all defense types. Abbreviations: CI,
CIFAR-10; R18, ResNet-18; ACB, all classes backdoored; LO, Logit-obfuscation

Dataset Network Trigger
mask=0.8

(XGradCam)

Februus

mask=0.8

(GradCAM++)

Februus

(base)

BDMAE
(large)

BDMAE

scorer

Logits-based

IS with

CDA SDA ASR CDA SDA ASR CDA SDA ASR CDA SDA ASR CDA SDA ASR

CIFAR-10 ResNet-18
All classes backdoored 92.0 20.5 8.3 79.8 19.0 8.7 93.4 91.2 1.3 93.3 92.0 1.0 73.4 64.8 12.0

Logit-obfuscation 89.3 52.9 43.7 88.6 76.6 19.5 92.5 85.5 7.4 92.6 85.2 6.6 82.6 77.7 17.7

Fig. (11) Example purifications of BadNets (left), SIG on MNIST
(top right), and WaNet (center/bottom right) on MNIST and CASIA.

(a) Case with scorer targeting only the backdoored class

(b) Case with scorer maximizing a score over all classes

Fig. (12) Recovered triggers on a LeNet-5 model trained on MNIST,
using a probit-based scorer function that computes a score for each
class or over all classes at once for BadNets [18] (left) and SIG [4]
(center, right) using the IS setups (from left to right): PI , PI , FI .

Fig. (13) WaNet [21] synthesis on CIFAR-10 using the IS FI setup
with probit-based scorer (images in order from left to right: original,
backdoored, trigger, reconstructed trigger).

(a) IS PI setup results on LeNet-5 models (benign and BadNets [18]).

(b) IS FI setup results on LeNet-5 models (benign, SIG [18] or WaNet [21]).

Fig. (14) Estimated τ → ρτ IS maps (probit-based scorer) on
LeNet-5 models trained on MNIST, either benign or backdoored
(class 3) with BadNets [18], SIG [4], or WaNet [21].



(a) IS PI setup results on ResNet-18 models (benign and SIG [4]).

(b) IS PI setup results on ResNet-50 models (benign and SIG [4]).

Fig. (15) Estimated τ → ρτ IS maps (probit-based scorer) on
ResNet-18 and ResNet-50 models respectively trained on CIFAR-10
and CASIA-Webface, either benign or backdoored with SIG [4].

(a) IS PI setup results on LeNet-5 models (benign and BadNets [18]).

(b) IS FI setup results on LeNet-5 models (benign, SIG [18] or WaNet [21]).

Fig. (16) Estimated τ → ρτ IS maps (logit-based scorer) on
LeNet-5 models trained on MNIST, either benign or backdoored
(class 3) with BadNets [18], SIG [4], or WaNet [21].



(a) IS PI setup results on ResNet-18 models (benign and BadNets [18]).

(b) IS FI setup results on ResNet-18 models (benign, SIG [18] or
WaNet [21]).

Fig. (17) Estimated τ → ρτ IS maps (logit-based scorer) on
ResNet-18 models trained on MNIST, either benign or backdoored
(class 3) with BadNets [18], SIG [4], or WaNet [21].

(a) IS PI setup results on ResNet-18 models (benign and BadNets [18]).

(b) IS FI setup results on ResNet-18 models (benign and WaNet [21]).

Fig. (18) Estimated τ → ρτ IS maps (logit-based scorer) on
ResNet-18 models trained on CIFAR-10, either benign or backdoored
(class 3) with BadNets [18] or WaNet [21].

(a) IS PI setup results on ResNet-50 models (benign and BadNets [18]).

(b) IS FI setup results on ResNet-50 models (benign and WaNet [21]).

Fig. (19) Estimated τ → ρτ IS maps (logit-based scorer) on
ResNet-50 models trained on CASIA-Webface, either benign or
backdoored (id. 3) with BadNets [18] or WaNet [21]. Only the first
ten classes/identities are displayed.



(a) IS PI setup results on LeNet-5 models (benign and BadNets [18]).

(b) IS FI setup results on LeNet-5 models (benign, SIG [18] or WaNet [21]).

Fig. (20) Estimated τ → ρτ IS maps (hard-label-based scorer)
on LeNet-5 models trained on MNIST, either benign or backdoored
(class 3) with BadNets [18], SIG [4], or WaNet [21].

(a) IS PI setup results on ResNet-18 models (benign and BadNets [18]).

(b) IS FI setup results on ResNet-18 models (benign, SIG [18] or
WaNet [21]).

Fig. (21) Estimated τ → ρτ IS maps (hard-label-based scorer)
on ResNet-18 models trained on MNIST, either benign or backdoored
(class 3) with BadNets [18], SIG [4], or WaNet [21].



(a) IS PI setup results on ResNet-18 models (benign and BadNets [18]).

(b) IS FI setup results on ResNet-18 models (benign and WaNet [21]).

Fig. (22) Estimated τ → ρτ IS maps (hard-label-based scorer) on
ResNet-18 models trained on CIFAR-10, either benign or backdoored
(class 3) with BadNets [18] or WaNet [21].

(a) IS PI setup results on ResNet-50 models (benign and BadNets [18]).

(b) IS FI setup results on ResNet-50 models (benign and WaNet [21]).

Fig. (23) Estimated τ → ρτ IS maps (hard-label-based scorer)
on ResNet-50 models trained on CASIA-Webface, either benign or
backdoored (id. 3) with BadNets [18] or WaNet [21]. Only the first
ten classes/identities are displayed.

Fig. (24) Estimated τ → ρτ IS maps (probit-based scorer) on
ResNet-18 models trained on CIFAR-10, either benign or backdoored
(class 3) with a dynamic BadNets [18] or a TrojanNN [23] trigger.

(a) ResNet-18 trained on CIFAR-10 backdoored with the dynamic BadNets

(b) ResNet-18 trained on CIFAR-10 backdoored with TrojanNN.

Fig. (25) Illustration of the distinctiveness of the recovered triggers
for the backdoored class 3 on backdoored DNNs trained on CIFAR-
10 using either a dynamic BadNets [18] or a TrojanNN [23] trigger
(here the 3-by-3 pattern result).


