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Narrowing the coordination 
solution space during motor 
learning standardizes individual 
patterns of search strategy 
but diversifies learning rates
John Komar 1*, Ludovic Seifert 2, Nicolas Vergne 3 & Karl M. Newell 4

Constraints on practice can benefit motor learning by guiding the learner towards efficient 
coordination patterns, but can also narrow the potential solution space of coordination and control. 
The aim of this paper was to investigate whether narrowing the solution space through more 
restrictive task constraints limits the expression of potential exploratory behaviours during the 
learning process, identified using Drifting Markov Models. In a breaststroke swimming task, the 
change in interlimb coordination of 7 learners practicing for 16 lessons over 2 months was analysed 
to quantify motor exploration and identify periods of metastable regimes of coordination. Results 
showed that the observed exploratory dynamics were highly individual both in terms of range of 
exploration and in the patterns of search. The more restrictive task constraints did not impair the 
amount of exploration but rather channelled the exploration around a few selected patterns. In 
addition, restraining the nature of the exploratory process increased the inter-individual differences 
of the learning rate. Although manipulating the task constraints during learning can help learners to 
escape from the behavioural consequences of their intrinsic dynamics, maintaining a broad solution 
space for a diversity of coordination patterns to emerge was key to fostering effective exploration of 
individual coordination solutions.

The study of motor learning as a process of active exploration of a workspace was initially proposed by Gel’fand 
and Tsetlin1 and elaborated into a perception-action framework for exploration in movement coordination and 
control2–4, a perspective that has gained renewed attention5–7. Exploration reflects the navigation through the 
perceptual-motor workspace in a search for an effective and efficient task solution2. With practice and learning, 
the perceptual-motor workspace evolves qualitatively as the temporary stabilization of newly explored coordina-
tion patterns that allows for subsequent exploration8,9. Indeed, the ecological approach to perception and action 
exploration is defined as a continuous and active process through which the learner differentiates and picks up 
information in the control of action10. In other words, exploration is a process of information gathering from 
the search for solutions within the perceptual-motor workspace5.

Exploration is a search through the space of possibilities to adapt to the most useful information in achiev-
ing the task goal. This exploration has been associated with variability in the movement or the outcome of the 
task6. In redundant systems, the learner has the opportunity to explore a larger set of different motor solutions 
in order to reach the task goal8. In this regard, exploration between those motor solutions has been viewed on a 
continuum, i.e., as a balance between variability and stability rather than merely an increased variability between 
two different behaviors7.

This perspective is in line with the concepts of exploration and exploitation from reinforcement learning 
theory, where an optimal ratio between exploration and exploitation (or stabilization) during practice has 
been shown to lead to better performance11–13. Trial-to-trial motor variability is typically seen as a reflection of 
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exploration that is essential for motor learning14 and dynamically regulated based on the outcome of previous 
trials to promote motor learning15,16. Uehara et al.17 found that exploration could remain elevated to facilitate 
learning in subsequent training blocks. More specifically looking at the acquisition of coordination, for example 
in a football kicking task, Chow et al.18 showed how a learner can search for functional coordination patterns 
trial after trial, with both periods of relative stability and periods of high variability.

Using a similar methodology, Komar et al.19 quantified the ratio between trial-to-trial variability (i.e., con-
sidered as exploration of the perceptual motor workspace) and trial-to-trial stability (i.e., considered as exploita-
tion of existing coordination patterns). This ratio represents the balance between exploration and exploitation 
of coordination pattern during learning, although an optimal ratio was not presented. However, the absence of 
considering the qualitative nature of exploration (i.e., which behaviors are explored and how) remains a limita-
tion, since that exploration was quantified as a switch between different coordination patterns without looking 
at the nature of the transitions.

Gel’fand and Tsetlin1 described three types of exploration strategy in system control (see also2). One is a blind 
strategy, where all points of the perceptual-motor workspace are explored in a random order until a functional 
solution is found, i.e., the direction of the exploration is not based on the result of the previous exploration. 
Another strategy was named local and corresponds to a continuous and directed search towards the functional 
solution; moreover, the exploration at time t is dependent on the result of the previous exploration at time t − 1 
as the learner gets linearly closer and closer to the functional solution proportionally with practice quantity. 
The past has a certain effect on the exploration in this strategy that leads to the progressive discovery of expert 
behavior. The third strategy was non-local or hybrid and corresponds to a discontinuous search. This means that 
a temporary anchoring point is made within the workspace and exploration then continues around this point 
until another anchor emerges and is explored. From this perspective, individual learners can exhibit different 
strategies and each learner can also change her/his own strategy through the learning process. However, a ratio 
quantifying the global percentage of switches between behaviors during learning is not relevant to identifying 
learning strategies. Rather, investigating the process of learning necessitates examining the convergence/diver-
gence towards/from specific behaviors and how those evolve with practice (i.e., how some specific patterns are 
progressively anchored and how some are forgotten). In other words, it would be necessary to deeply look at the 
transition over time between patterns and how those transitions are organized and evolve, for which Markov 
Modelling could help.

If the deployment of augmented constraints on practice can benefit learning by effectively guiding 
exploration20, those constraints can also limit the expression of potential innovative movement solutions as 
they tend to restrict the diversity of emerging movement solutions21. Therefore, there is an intimate relation 
between the range of exploration (i.e., how many different patterns can be explored) and the qualitative nature 
of exploration (i.e., how the exploration happens) during practice and learning. The aim of this paper was to 
identify and quantify the exploratory strategies during learning in a task where the original level of constraint is 
relatively low such that the exploratory behaviour can be observed. A secondary aim was to investigate whether 
the manipulation of more restrictive task constraints to the coordination solutions impacts the expression of 
potential exploratory behaviours and strategies during learning. Lastly, the relationship between motor explora-
tion and performance improvement was investigated.

Breaststroke swimming requires the development of a multi-articular coordination where a variety of forms 
of coordination can theoretically emerge, although a biomechanically optimal pattern of coordination between 
elbow and knee oscillations is adopted by expert performers compared to novices22. For example, experts were 
able to start a swimming cycle with arm–leg coordination in anti-phase followed by an in-phase mode and 
then back to anti-phase mode through every cycle of movement (i.e., every 1–2 s). In aquatic activities where 
the environmental constraints play an important role (e.g., due to high density of water), the use of an optimal 
coordination pattern becomes pertinent for efficient performances23,24. Although the coordination pattern is a 
key factor in swimming performance (i.e., whether the performance is about swimming faster or swimming 
more efficiently), this coordination pattern has to match multiple factors to reach high performance, e.g., swim-
mers’ energetic characteristics25–27, anthropometric variables, or even swimming specialty (e.g., long versus short 
distance swimmers)28. Therefore, the acquisition of an optimal coordination pattern is only one of the multiple 
interacting factors for performance improvement in swimming26. Interestingly in swimming, the level of envi-
ronmental constraint (i.e., the amount of forward resistance swimmers have to overcome in order to move) is 
related to the swimming speed squared29, therefore an increase in swimming speed leads to quadratic increase 
of water resistance as an environmental constraint.

The first hypothesis examined was that an exploratory process would reflect a balance between flexibility and 
stability of the movement dynamics and focusing on the transitions between patterns (i.e., using Markov chains) 
allows the identification of different search strategies. Our second hypothesis was that more restrictive task 
constraints would impact the opportunities for exploration, both in lowering the quantity of exploration and in 
the nature of the exploration (i.e., how much is explored and what is explored and how). In that sense, a limited 
number of exhibited patterns by a participant (i.e. a limited diversity in the patterns) would be associated with 
a lower level of exploration. The final hypothesis examined was that a limited quantity of exploration during the 
learning process would slow the rate of improvement in performance over the practice period.

Results
During the entire learning process (i.e., during each session and trial/repetition), we recorded the learner inter-
limb coordination and associated outcome in terms of performance (i.e., distance covered per cycle). Using a 
clustering of movement coordination and a modelling of learning dynamics through Drifting Markov Models, 
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we quantified the level of motor exploration happening during learning as well as the dynamics of the perfor-
mance improvement.

Performance outcome.  The two-way ANOVA showed a significant main effect of session with a large 
effect size, F(1, 6) = 243.790, p < 0.001, ηp

2 = 0.976, achieved power = 0.99, as well as a main effect of speed 
condition with a large effect size, F(1, 6) = 74.843, p < 0.001, ηp

2 = 0.926, achieved power = 0.99. Interestingly, 
although marginal, a significant interaction effect appeared with p = 0.050 (F(1, 6) = 6.001, p = 0.050, ηp

2 = 0.500, 
achieved power = 0.99). The swimmers, therefore, showed a higher stroke frequency when swimming at higher 
speeds during the first lesson (Mean difference (MD) between low and high speed in session 1 = − 0.134 Hz, 
95% Confidence Interval (CI) = [− 0.222; − 0.045]) as well as the last lesson (MD between low and high speed 
in session 16 = − 0.226 Hz, 95% CI = [− 0.314; − 0.137]). However, the interaction reveals that the decrease in 
stroke frequency was more prevalent in the low-speed condition (MD between session 1 and session 6 in low 
speed = 0.316 Hz, 95% CI = [0.236; 0.397]) compared to high-speed condition (MD between session 1 and ses-
sion 6 in high speed = 0.224 Hz, 95% CI = [0.144; 0.305]) (Fig. 1.A).

Figure 1.B and Table 1 show the learning rate from each individual exponential fitting as well as the r2 and 
RMSE values showing the quality of the fitting. After checking for normally distributed values, the paired-
sample t-test performed on the learning rate did not reveal a significant difference between the two speed con-
ditions (t(6) = − 1.373, p = 0.219) (Fig. 1.B). However, the dispersion of the values within the speed conditions 
(Fig. 1.C) showed a more similar learning rate between the participants in the low-speed condition compared 
to the high-speed condition. Indeed, a Levene’s test for equality of variance on the exponential exponent values 
showed an unequal variance between both speeds (F(1, 12) = 6.070, p = 0.030), with the variance within the low 
speed condition (VARlow = 0.00644 ± 0.07930) being smaller than the variance within the high speed condition 
(VARhigh = 0.03042 ± 0.02031).

Coordination profiling.  The output of the cluster analysis showed the emergence of 11 different arm-
leg coordination patterns throughout the learning phase (i.e., during the 2  months) (Fig.  2). The individual 
dynamics of those patterns cycle per cycle are presented in supplemental material. The BIC criterion ([2–16] 
potential clusters) showed that the optimal number of clusters that best fit the data was 11. Indeed, 11 clusters 
corresponded to the first value of the plateau* in the BIC vector [BIC = − 12266770; − 12054679; − 11835712; 
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Figure 1.   Performance improvement. (A) Stroke frequency during session 1 (pre-test) and session 16 (post-
test) for both speed condition; (B) Exponential model presenting the individual rate of learning in the high-
speed condition (black continuous line) and low-speed condition (red dashed line). (C) Exponential parameter 
values showing the interindividual variability in the rate of learning between high speed and low speed 
conditions.

Table 1.   Parameters of the individual exponential models and indicators of quality of the fitting for both high 
speed and low speed conditions.

Participants

1 2 4 5 6 7 8

Low speed

b value 0.0006178 0.1777 0.1394 0.1796 0.2285 0.1286 0.2407

r2 0.9374 0.8805 0.8935 0.897 0.8342 0.9576 0.95

rmse 0.0233 0.0404 0.0317 0.0427 0.045 0.0261 0.0247

High speed

b value 0.02319 0.3423 0.005785 0.2656 0.1559 0.3524 0.4648

r2 0.7468 0.8571 0.8777 0.9159 0.7573 0.693 0.6866

rmse 0.0484 0.0467 0.0402 0.0442 0.0642 0.0338 0.0484
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− 11758107; − 11478308; − 11414261; − 11299105; − 11096673; − 10771125; − 10382736*; − 10477354; 
− 10527102; − 10513261; − 10358955; − 10398427].

Quantity of exploration.  The DMM outputs are presented in Fig. 3A, B and C for the participant 2 in the 
low speed condition, the modelling for all the participants and speed conditions is included in Online Appendix 
B. Regarding the quantity of exploration per cluster and for the two speed conditions, the two-way ANOVA 
showed no significant effect of speed between the two conditions, but a significant main effect of the clusters 
(F(10, 60) = 2.537, p = 0.013, ηp

2 = 0.297, achieved power = 0.99) and also a significant interaction between cluster 
and speed condition with a large effect size, F(10, 60) = 2.678, p = 0.009, ηp

2 = 0.309, achieved power = 0.99. More 
precisely, post-hoc Bonferroni tests showed that the quantity of exploration was significantly different between 
the two speed conditions only for cluster 2 (MD between low and high speed for cluster 2 = − 17.41%, 95% 
CI = [− 25.44; − 0.9.38]), cluster 6 (MD between low and high speed for cluster 6 = − 26.54%, 95% CI = [− 51.67; 
− 1.42]), cluster 8 (MD between low and high speed for cluster 8 = 13.73%, 95% CI = [0.76; 26.69]), cluster 9 (MD 
between low and high speed for cluster 9 = 9.46%, 95% CI = [4.56; 14.36]) and cluster 11 (MD between low and 
high speed for cluster 11 = 12.33%, 95% CI = [1.97; 22.71]) (Fig. 4A) (all ps < 0.045). All the other clusters were 
not differentially explored by both speeds.

On the other hand, Bonferroni post-hoc tests showed that the usage of the different clusters within each 
speed condition was not similar with a more equal usage of the clusters in the low-speed condition. Indeed, 
in high-speed condition, 12 significant differences can be identified between clusters’ quantity of exploration, 
whereas only 2 significant differences appeared in the clusters’ quantity of exploration in the low-speed condition 

−180
−150
−120
−90
−60
−30

0
30
60
90

120
150
180

100

Re
la

tiv
e 

Ph
as

e 
(°)

Cluster 1

5025  0 75
−180
−150
−120
−90
−60
−30

0
30
60
90

120
150
180

100

Re
la

tiv
e 

Ph
as

e 
(°)

Cluster 2

5025  0 75

−180
−150
−120
−90
−60
−30

0
30
60
90

120
150
180

100

Re
la

tiv
e 

Ph
as

e 
(°)

Cluster 3

5025  0 75

−180
−150
−120
−90
−60
−30

0
30
60
90

120
150
180

100

Re
la

tiv
e 

Ph
as

e 
(°)

Cluster 4

5025  0 75

−180
−150
−120
−90
−60
−30

0
30
60
90

120
150
180

100

Re
la

tiv
e 

Ph
as

e 
(°)

Cluster 5

5025  0 75

−180
−150
−120
−90
−60
−30

0
30
60
90

120
150
180

100

Re
la

tiv
e 

Ph
as

e 
(°)

Cluster 6

5025  0 75

−180
−150
−120
−90
−60
−30

0
30
60
90

120
150
180

100

Re
la

tiv
e 

Ph
as

e 
(°)

Cluster 7

5025  0 75

−180
−150
−120
−90
−60
−30

0
30
60
90

120
150
180

100

Re
la

tiv
e 

Ph
as

e 
(°)

Cluster 8

5025  0 75

−180
−150
−120
−90
−60
−30

0
30
60
90

120
150
180

100

Time (in Percentage of Cycle Duration)

Re
la

tiv
e 

Ph
as

e 
(°)

Cluster 9

5025  0 75

−180
−150
−120
−90
−60
−30

0
30
60
90

120
150
180

100

Time (in Percentage of Cycle Duration)

Re
la

tiv
e 

Ph
as

e 
(°)

Cluster 10

5025  0 75

−180
−150
−120
−90
−60
−30

0
30
60
90

120
150
180

100

Time (in Percentage of Cycle Duration)

Re
la

tiv
e 

Ph
as

e 
(°)

Cluster 11

5025  0 75

Figure 2.   Coordination profiles. Average coordination patterns for each of the 11 emerging clusters (the grey 
backgrounds represent the 10 other profiles as reference).



5

Vol.:(0123456789)

Scientific Reports |         (2023) 13:2009  | https://doi.org/10.1038/s41598-023-29238-z

www.nature.com/scientificreports/

(Fig. 4B). More precisely cluster 6 and cluster 2 were explored more than others in the high-speed condition 
whereas clusters 8, 9 and 10 appeared less explored. Conversely, in the low-speed condition, only two significant 
differences between the quantity of exploration of clusters appeared (Figs. 4 and 5 for the individual distribution 
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of exploration per cluster). The within-participant variability in exploration quantity between the clusters (i.e., 
standard deviation) is lower for low speed condition (mean SD = 15.61% ± 7.79) compared to higher speed 
condition (mean SD = 22.36% ± 6.69) (t(6) = − 2.591, p = 0.041, d = − 0.979), revealing a more equally distributed 
amount of exploration across the different clusters at low speeds and conversely a more selective exploration at 
faster speeds.

Looking at individual dynamics of exploration (see online appendix B for the full dynamics of every partici-
pant), participants with low level of exploration exhibited two distinct dynamics. On one hand some participants 
exhibited a very strong pattern that remained all over the practice time (i.e., very high probably of appearance 
during the 16 sessions) (e.g., participant 7 in slow speed condition). On the other hand, some participants 
exhibited a lack of (even temporary) stability, showing random-like fluctuations of their behaviour all over the 
16 sessions (e.g., participant 6 in slow speed condition). Indeed, those two dynamics made the degree 1 and 
degree3 DMM very similar, therefore leading to a very low level of exploration.

Relationship between number of emerging patterns, quantity of exploration, performance 
improvement and learning rate.  Following our hypothesis, participants who had lower number of dif-
ferent coordination patterns visited were more likely to show a low range of exploration (Pearson’s r = 0.492, 
p = 0.037, Fig. 6). However, exhibiting a large number of different coordination patterns during learning was 
not correlated with a greater improvement in performance between first and last session (Pearson’s r = 0.256, 
p = 0.811), neither a higher quantity of exploration during learning was correlated with a higher improvement 
in performance between first and last session (Spearman’s rho = − 0.052, p = 0.43). Similarly, no significant cor-
relation appeared between the number of different visited patterns and learning rate (Spearman’s rho = − 0.212, 
p = 0.77) nor between the quantity of exploration and the learning rate (Pearson’s r = 0.234, p = 0.21).

Discussion
The aim of this paper was to quantify and identify different exploratory strategies during motor learning and 
investigate whether a more restrictive set of task constraints can limit the expression of potential exploratory 
behaviours during the process of motor learning.

On the basis of Drifting Markov Modeling on the individual learning dynamics, we propose a definition 
of exploratory activity in learning based on the nonlinear evolution of the probabilities of transiting towards 
specific coordination patterns, with successive increase and decrease of those probabilities of transition. In this 
regard, the degree three DMM highlighted those appearance and disappearance of coordination patterns in 
the dynamics of learning (Fig. 3). At some points during the learning process, coordination patterns strongly 
appeared through high probability of transiting towards those specific patterns, whereas later on those patterns 
totally disappeared for other coordination patterns to appear. In this regard, the process of learning involved the 
emergence of three different but intertwined dynamics: i) coordination patterns that disappeared early in practice 
(i.e. initial behaviors that were abandoned early during practice), ii) coordination patterns that appeared with 
practice (i.e. a coordination pattern that appeared with practice and that was stabilized in the latest sessions), 
iii) coordination patterns that were explored (i.e. coordination patterns that showed high or even the highest 
probability of transition at some point of the learning process, but that totally disappeared later on).

The coordination patterns that successively appeared and disappeared represent an exploratory dynamics, 
reflected by a temporary visit of a specific coordination patterns in order to gather functional information8. Those 
explored coordination patterns are strongly anchored for a period of time (i.e., with the highest probability to 
transit towards them), but still are not the final destination of the learner, which fits the definition of a local 
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strategy1. This exploration dynamics, as an information gathering process is more than merely a global trial to 
trial variability of the behavior during practice as proposed previously19,30. Indeed, a global ratio between the 
transition of coordination patterns between trials and the repetition of similar coordination patterns between 
trial (e.g., the exploration/exploitation ratio19,30) does not account for this exploratory dynamics during learning 
as it does not account for the order or sequencing of the transitions.

In the present study, we propose that the quantity of exploration that occurs during learning resides in the 
evolution of the probabilities of transiting from any previous pattern towards another specific one. In other words, 
during learning, the learner could on one hand show, trial after trial or session after session, a linear increase 
in the probability of transiting towards the to-be-learned pattern expressed through a linear DMM modeling. 

0

25

50

75

100

0

25

50

75

100

Ex
pl

or
at

io
n 

le
ve

l (
%

)

0

25

50

75

100

10 111 2 3 4 5 6 7 8 9 10 111 2 3 4 5 6 7 8 9

Participant 1 Participant 2

0

25

50

75

100

0

25

50

75

100

  
Ex

pl
or

at
io

n 
le

ve
l (

%
)

Participant 4 Participant 5

0

25

50

75

100

0

25

50

75

100

 
 E

xp
lo

ra
tio

n 
le

ve
l (

%
)

Participant 6 Participant 7

 
 E

xp
lo

ra
tio

n 
le

ve
l (

%
)

Participant 8

High Speed
Low Speed

High Speed
Low Speed

High Speed
Low Speed

High Speed
Low Speed

High Speed
Low Speed

High Speed
Low Speed

High Speed
Low Speed

10 111 2 3 4 5 6 7 8 910 111 2 3 4 5 6 7 8 9

10 111 2 3 4 5 6 7 8 9 10 111 2 3 4 5 6 7 8 9

10 111 2 3 4 5 6 7 8 9

Clusters

Clusters

** **

** **

** ** **

**

**

Figure 5.   Exploration quantity. Individual quantities of exploration for each participant and each pattern in 
both low and high-speed conditions (*indicates a pattern that was never visited by this learner).
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On the other hand, the learner could show fluctuations in the probabilities of appearance of a specific behavior 
during the process of learning. Eventually, the Euclidean distance between a degree one DMM modeling (i.e., 
a linear evolution of the behavior) and the degree three DMM modeling (i.e., representing the potential three 
different dynamics) represents the quantity of exploration that occurred during learning. In that sense, the 
level of exploration of a coordination pattern is, therefore, not anymore represented by the recurrence of this 
pattern during learning, but by the fluctuations of the probabilities of transition towards this specific pattern in 
reference to what those probabilities are in a linear learning model. Motor exploration is, therefore, quantified 
as the amount of divergence of the behavior from a linear appearance/disappearance of coordination patterns.

Looking at the individual level of exploration, the individual nature of the exploratory process appears. Par-
ticipants who showed a high amount of exploration are the participants who exhibited a temporary stability of 
one specific coordination pattern followed by its disappearance (e.g., participants 1, 2, 5, 8). On the other side, 
participants who showed a low level of exploration are the ones who exhibited either i) a resistance to change 
an initial single pattern (e.g., participant 7) or ii) a lack of temporary stability during practice (e.g., participant 4 
and 6). For instance, participant 7 showed in the low-speed condition a very strong stability of the coordination 
pattern 4 with few visits of coordination pattern 9 all along the practice time but without any period of stability 
of this pattern 9. During practice for this learner, the probability of transiting towards the coordination pattern 
4 was very high and kept high during the entire practice period, leading to a linear modeling of those transitions 
toward coordination pattern 4 even when the DMM modeling of degree 3 allowed for fluctuations. Both degree 
1 and degree 3 models, therefore, appeared very similar and the distance between both models was very small, 
showing a low-level exploration. The low level of exploration of this participant can be explained by his difficulty 
to leave his initial intrinsic behavior to search for new movement solutions31. On the other hand, searching for 
a new movement solution was potentially not necessary for this participant, as he might have improved super-
ficial parameters like limb speed or acceleration that were sufficient to effectively meet the task requirement21.

Focusing on participant 6 on the other side, the low level of exhibited exploration was due to the lack of tem-
porary stability of coordination patterns. This lack of temporary stability was highlighted by the absence of a high 
probability of emergence of one single pattern at some point during learning (i.e., no pattern with a probability 
of emergence higher than 0.30. Despite the fact that all the 11 different patterns were visited by this learner, the 
dynamics of those visits appeared evenly distributed and organized in time (Fig. 3F). Therefore, for each of the 
11 patterns, the probabilities of transiting toward a specific coordination pattern remained the same during all 
the practice, showing a linear modeling of those transitions even if the degree 3 models allowed for fluctuations. 
Again, both degree 1 and degree 3 models, therefore, appeared to be very similar. In this situation, it appears 
that it is not difficult to leave an initial intrinsic behavior that limits the level of exploration, but rather the lack 
of temporary stability that inhibited the learner to effectively explore a new movement solution.

Based on this definition of exploration during learning, the evolution of an initial intrinsic behavior does 
not occur due to bistability as previously proposed32 but rather through metastability (with temporary stability/
instability) (Fig. 3E)33,34. In a metastable region, "there is attractiveness but, strictly speaking, no attractor"35, 
p172). The presence of a metastable regime during learning may let individuals circumvent the limits of their 
behavioral dynamics; that is, escape from the initial stability of their intrinsic patterns and explore different 
coordination patterns with a relative stability36. In this way, learners can freely access to different coordination 
patterns in order to gather information and determine their relevance. Moreover, our results show that during 

Pearson’s r = .492, p = .037

Figure 6.   Relationship between emerging patterns and exploration. Significant correlation between the number 
of different patterns visited and the amount of exploration, the higher the number of different patterns the 
higher the amount of exploration.
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learning, learners can exhibit a new pattern, then return to their original pattern (sometimes for an entire ses-
sion), then proceed to explore other new patterns. In this context, the relatively stable patterns plays a key role as 
a "bridgehead"37 (p. 391), a refuge coordination patterns from which it is possible to explore and stabilize a new 
patterns. Exploratory activity during motor learning, therefore, appears to be a cooperation between stability 
and flexibility38. By looking at the probability of transitions between patterns rather than the actual state, the 
DMM modeling identified this metastability within the learning dynamics, as a subtle blend between period of 
stability and flexibility between patterns34.

Interestingly, due to the high resistance of the water, the level of constraints acting on the learner during 
underwater locomotion is easy to manipulate. Swimming faster (e.g., from 70% of individual maximal speed 
to 90% of individual maximal speed), therefore, consists in performing the same task but in a much more con-
strained environment (i.e., the water resistance being proportional to the speed squared). From the comparison 
of the level of exploration exhibited between the two speed conditions, no main difference in the quantity of 
exploration appeared. However, the effect of increased level of constraint in the task appeared only on specific 
patterns of coordination. More precisely, an increase in speed led to a decrease in the exploration of patterns 8, 
9 and 11, accompanied by an increase in the exploration of patterns 2 and 6. Interestingly, by looking at the dif-
ference in the level of exploration between each patterns within each speed, it has to be noted that although at 
low speed only the patterns 1 and 6 showed a different level of exploration (mean difference = 13.87% ± 5.15) as 
well as the patterns 2 and 10 (mean difference = 14.22% ± 4.41), at high speed twelve differences appeared in the 
level of exploration between the different patterns, with coordination pattern 6 being more explored than some 
others and coordination patterns 3, 8, 9 and 11 being less explored than some others.

The level of exploration between the different patterns, therefore, appeared more evenly distributed in low-
speed condition than in high-speed condition. Although mechanically in the high-speed condition, it was still 
possible for the participants to exhibit a coordination between 0 and 360° (i.e., the physical limit was similar in 
both conditions)39, increasing the level of constraint led to a more selective exploration by the learner. Indeed, 
the global level of exploration was not different between low- and high-speed conditions but some coordination 
patterns were specifically less explored at high speed compared to low speed to make room for a higher explo-
ration for the other patterns. The effect of the constraint level appears, therefore, more qualitative (i.e., in the 
selection of patterns that can be explored) than quantitative (i.e., in the global amount of exploration)40. When 
the level of constraint is low, the nature of the patterns explored is wider and individual degeneracy can freely 
express (i.e., the capacity to exhibit multiple different solutions to achieve a similar task), whereas the increase 
in the level of constraint really impairs the appearance of some coordination patterns therefore restricting the 
exploration to fewer coordination patterns21. Few patterns then appeared to channel all the exploration around 
them in highly constrained environments.

From this point, modifying the level and nature of interacting constraint in the task appears to be a useful 
tool in order to channel the exploration of the learner without decreasing this exploration41. Theoretically, if 
the constraints are managed in the way that the learner’s initial coordination pattern is not a functional motor 
solution anymore, playing with the constraints can channel the learner to explore new motor solutions (i.e., to 
destabilize the initial behavior31) as well as guide him towards specific new solutions to explore42. This later point 
was supported by the participant 7 (see online appendix B), who showed a very limited amount of exploration in 
the low-speed condition, both in quantity and in its nature (i.e., a limited number of different patterns explored). 
Indeed, for this participant, the increase in the level of constraint in the task acted like a perturbation that pushed 
him out of his initial patterns and allowed him to explore more varied movement solutions.

Interestingly, this restricted nature of the exploratory process seemed to impact the individual rate of learning. 
Indeed, if we refer to the increase in performance with practice, although a higher frequency in high-speed con-
dition as already been explained in the literature21,39, all the participants in the present case showed an increase 
in performance with practice in both speed conditions. Although a larger improvement of performance was 
observed in low swimming speed condition, the rate of learning appeared similar between both speed conditions. 
In fact, considering the inter-individual differences in the rate of learning, it appears that the low-speed condi-
tion allowed all the learners to improve their performance at a more similar rate than the high-speed condition.

This result supports the idea that having a large stability region for exploration allows each individual to find 
its own functional movement solution in the task. This is also supported by the positive correlation between 
the number of visited patterns and the quantity of exploration, showing that proposing more possibility for 
exploration to the learner indeed allows more exploration to happen. In fact, even if some patterns are only little 
explored, it seems beneficial for the learner to still be able to explore them as they may rapidly gather informa-
tion from their exploration. The initial flexibility of a learner could therefore form the basis for an effective 
exploration during learning, as recently highlighted by Sidarta et al.30. Narrowing the region of exploration by 
limiting the potential patterns that can be visited during learning can impact the individual dynamics of the 
performance because the individually necessary information therefore cannot be gathered through an effective 
exploration43. Exploring coordination patterns that do not provide relevant information to the learner to refine 
the perception-action coupling can, therefore, be less effective in realizing an optimal balance in the use of 
constraints for a sufficient learning44.

A major limitation of this study resides in the absence of a transfer test, as higher exploration during learning 
is currently expected to impact adaptability or transfer capacity of learners in addition to performance in the 
training task itself. In other words, a coordination learned through higher exploration may not be more efficient 
in the present task but more easily transferred to a new but similar task, which could be the major benefit of high 
exploration during motor learning. Related to this point, the concurrent practice in both high and low speed 
condition for every learner is also a limitation. Although the practice in different level of constraint was required, 
the organization of practice in each condition was controlled and regular to avoid impacting the dynamics of 
learning. Nevertheless, some transfer of learning may have happened between both speed condition which is 
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difficult to avoid but was limited by the different coordination patterns required to perform in each condition. 
On another point, the rather limited sample size in this experiment limits the possibility to identify optimal 
search strategies if they exist. While capturing the entire dynamics of learning (i.e., recording every trial/cycle) 
is time consuming but informative, the highly individual nature of observed learning pathways makes it dif-
ficult to find regularities in the search strategies between learners unless potentially a very large sample size can 
be investigated. Using sensors and automatic processing of the data to capture coordination could help in this 
regard to increase sample size.

Conclusion
In this study, we investigated motor learning by identifying three different dynamics of coordination patterns 
that appeared across practice, through exploration as a metastable regime, i.e., a balance between stability and 
variability rather than merely transitions between successive patterns. Those exploratory dynamics appeared 
highly individual both in terms of quantity of exploration and in the nature of the patterns that were explored. 
Our results showed that a more restrictive set of task constraints applied on the coordination and control solution 
space did not impair the global quantity of exploration, but rather limited its nature by restraining the different 
patterns that an individual deeply explore. At the same time, restraining the nature of the different patterns that 
learners can explore during learning did not impair the learning rate but rather increased the inter-individual 
differences in this learning rate, showing that more space for exploration can better respect the need for an 
individual dynamic of exploration. Although modifying constraints during learning can help learners to escape 
from their initial intrinsic behaviour as well as guide them in their exploration, maintaining enough room for 
a diversity of coordination patterns to emerge seems key to foster effective exploration of individual movement 
solutions.

Methods
Participants.  Initially eight males, all novices in breaststroke swimming, voluntarily participated in this 
study (mean age = 18.4 years, standard deviation (SD) = 0.7 years). A power calculation for a repeated measures 
design with 1 group of participants, 4 measurements (2 different conditions at 2 different time of learning), an 
alpha threshold of 0.05, a target power of 0.8 and a medium to large effect size (ηp

2 = 0.19) provided a sample size 
of 8 participants. A medium to large effect size was expected due to the large number of learning sessions in this 
protocol37. Each participant signed an informed consent form after receiving oral and written descriptions of 
the procedures, which were approved by the university ethics committee. Participant 3 was not able to compete 
all the protocols, leaving 7 participants for analysis. The two exclusion criteria were principally related to the 
validity of subject’s initial breaststroke technique. Importantly, they had to be able to: (a) perform a symmetrical 
leg kick; and (b) perform leg and arm movements at the same frequency. The swimmers were characterized as 
being in the first stage of learning (i.e., coordination stage), during which learners still have to establish the basic 
coordination of the key components of the behaviour45,46. All participants had the same goal of learning without 
any information on how to perform.

General goal of learning and practice sessions.  All participants participated in 16 learning sessions. 
The entire program lasted 8  weeks, with 2 sessions per week. All participants performed at a different time 
during the day/week, in order to avoid any interaction between participants during the protocol. During each 
session, in a 25 m indoor pool, participants had to complete 10 × 25 m at sub-maximal speeds (5 trials at 70% of 
their personal maximal speed (i.e., a comfortable speed, low constraining environment of practice) and 5 trials at 
90% of their personal maximal speed (i.e., a high speed, highly constraining environment of practice) (Fig. 7.2). 
Those sub-maximal speeds were defined during the first session after a familiarization practice of 100 m swim in 
breaststroke and, thereafter, corresponded to the working speed throughout the entire learning process (i.e., the 
speed was constant during all the practice sessions). Each session lasted approximatively 35 min per participant 
and included a 10 min of warm-up (out of water active joints mobilisation and muscular stretching followed by 
50 m front crawl swimming) followed by the 10 trials with a start every 2 min 30 s (a trial lasted 30 s followed by 
a 2 min rest period). Participants were asked to avoid practicing breaststroke during the entire experiment (from 
the first learning session to the retention test), except during the experimental sessions.

For all the participants, the general goal of learning was to decrease their stroke rate (i.e., number of cycles per 
second, in Hz) while maintaining the same sub-maximal speed—therefore, increasing their efficiency47. Learners 
were informed of this general goal at the beginning of each session. The basic rules of breaststroke swimming 
were provided to the participants (as a reminder) during the first session, and only if necessary, thereafter. The 
speed was self-paced by the learner during the trials based on a target time of competing 25 m. The average 
speed of performing each trial was measured at the end of each trial and the trial was validated if the actual 
average speed was within the target speed ± 5% of that speed. If learners failed to follow the rules or the targeted 
speed, they were stopped by the experimenter and had to perform the trial again. After each trial, learners were 
informed of their mean stroke rate values (i.e., informed of their performance in the task). No other information 
was given to the learners during the 16 sessions.

Data collection.  During every sessions, participants were equipped with inertial sensors including 3-D 
accelerometers, 3-D magnetometers and 3-D gyroscopes (MotionPod3, Movea, Grenoble, France)48 (Fig. 7.1). 
The acquisition frequency of the sensors was 100 Hz. Four motion sensors were positioned on the left side of the 
swimmers, respectively on the forearm (posterior surface of the proximal portion), the arm (posterior surface of 
the distal portion), the thigh (anterior surface of the distal portion), and the leg (anterior surface of the proximal 
portion), in order to have the sensors in direct contact with a bony part of the limb. At the beginning of each 
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session, the position of the motion sensors was placed on a black marker, which defined the location of the sen-
sor from the last session. Swimsuit was also worn on the two limbs where sensors were placed in order to limit 
resistances due to the presence of the sensors. Once the swimmer was ‘suited-up’, he entered the second lane in 
the pool (i.e., at least 2 m far from the wall to avoid any magnetic disturbance) and performed the 10 trials. Once 
the trials were completed, the data were uploaded and synchronized a posteriori with Matlab r2015a (version 
8.5.0, The MathWorks Inc., Natick, MA, USA).

Processing of behavioural data.  Thereafter, elbow and knee angles were computed for each trial by cal-
culating the relative angle between two sensors. Time series representing knee and elbow angles were then com-
puted. These time series were filtered with a low-pass Fourier filter (cut-off frequency 8 Hz24) and partitioned 
cycle per cycle (i.e., one cycle beginning with a maximal knee flexion and finishing with the next maximal knee 
flexion). The first cycle as well as the last cycle were removed to account for acceleration of swimming speed due 
to push-off the wall or deceleration when approaching the wall. For each trial, knee and elbow angular positions 
for 3 to 17 cycles were normalized between 0 and 1 and used for characterizing the inter-limb coordination of 
the swimmer (Fig. 7.3).

The nature of the behaviour was derived from the arm-leg coordination and was assessed by the Continuous 
Relative Phase (CRP) between knee and elbow angles. The CRP was computed based on elbow and knee angles 
in the same way as previous experiments24,39, which has been shown to be an effective parameter to quantify the 
nature of swimmer’s behaviour. A typical in-phase behaviour (i.e., a relative phase value close to 0°) represents 
an inefficient swimming technique consisting in simultaneous arm propulsion and leg recovery, and conversely 
an effective coordination pattern has been characterized by a more complex coordination within a single cycle, 
with fluctuations of relative phase between anti-phase (i.e. a value of − 180°) to in-phase coordination mode to 
anti-phase (see24 for a precise description of an effective coordination pattern).

Processing of performance data.  During each trial, the instantaneous stroke frequency (Hz) was 
recorded for each cycle from the cycle duration (measured with the motion sensors) following the equation f = 1 
/ cycle duration (s). Therefore, changes in performance were defined by the decrease in stroke frequency cycle 
after cycle. The average frequency value per session was computed for each individual and modelled with an 
exponential function49. The exponential function used to fit the movement performance over sessions is shown 
in Eq. 1:

where t is the practice time (session number), c represents the asymptotic performance, a represents the initial 
performance (when t = 0, exp(-b*t) = 1 and a + c represents the performance level before practice), finally b 
represents the learning rate. From this model, the higher is the value of b, the faster is the learning rate (i.e., 
representing an early rapid increase in performance followed by a later slow increase). The quality of the fitting 
is presented by r2 and Root Mean Square Error (RMSE)50.

Profiling motor coordination.  An unsupervised cluster analysis procedure was used in order to differ-
entiate the patterns of coordination exhibited by the learners19. The time series of CRP from the cycles of all the 
seven participants in both speed conditions were used to compute the cluster analysis (i.e., all the cycles, all the 
sessions, all the participants). Such a cluster analysis allows partitioning the entire set of cycles into meaningful 
sub-groups or clusters, whereas the “real” number of groups is unknown a priori. The Fisher-EM algorithm has 
been used for the present experiment51,52. The Fisher-EM algorithm is an iterative cluster algorithm that projects 

(1)f(t) = a ∗ exp(−b ∗ t) + c

Figure 7.   Experimental design. Overview of the experimental design followed by the 10 participants through 3 
main steps: 1) material, 2) task, and 3) measurements.
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the data in a new subspace at each iteration in such way that emerging clusters maximize the Fisher informa-
tion (i.e., maximize the inter-cluster distance while minimizing the intra-cluster distance). The final number of 
emerging clusters (n) was selected based on the Bayesian Information Criterion (BIC) for model selection53 with 
the first value of the plateau representing the model that best represents the data (also known as the “elbow” 
method). The ordering of the clusters (from 1 to n clusters) is done randomly by the algorithm based on a ran-
dom initiation.

Quantifying motor exploration.  From the clustering, each trial was labelled with a specific exhibited 
coordination profile. The time series of those exhibited coordination were re-constructed putting one cycle after 
the previous one in the chronological order they were performed, representing the successive behaviours that 
were exhibited by a learner18,30. Those time series of labelled behaviours were thereafter modelled using Drifting 
Markov Models (DMM)54. DMM have been used in the genome literature and are a relevant tool for modelling 
how qualitative patterns are organized in time. Specifically, modelling DNA sequences with stochastic models 
and developing statistical methods to analyse the DNA sequencing have been challenging questions for statisti-
cians, and the most popular model in this domain is the Markov model on the nucleotides (i.e., the modelling 
of a c g t nucleotides).

Although a traditional Markov model gives a broad overview of the main transitions occurring between the 
different patterns within the whole time-series of patterns (i.e. a transition matrix), Vergne54 developed a DMM 
that varies the transition matrix between the different patterns on the basis of a predetermined polynomial 
model with a degree n that is set by the experimenter. In other words, this modelling is meant to provide the 
evolution in time of the original transition matrix (e.g., the change in time in the probability of the transitions 
converging towards a specific pattern). Eventually, using the DMM to model the evolution of the transitions 
between patterns provides a modelling that accounts for the probability of appearance of any potential patterns 
as learning operates. DMM are applied individually on the time series of clusters of each participant (i.e., only 
on the clusters individually exhibited by each participant), for modelling the probability of appearance of one 
pattern of coordination regarding the previous pattern.

The order of the Markov chain was set to one (i.e., only one previous cycle was considered for the transition), 
however, two models with different degrees were applied for the modelling of the evolution of the transitions 
between patterns of coordination. On one hand, a model of degree one was applied, representing a linear trend of 
the transition matrix. Indeed, a linear trend represents linear increase or decrease of the probability of transition 
from one coordination toward the final to-be-learned coordination. In other words, with such a linear model, 
each time a learner practices, he increases the probability of appearance of the to-be-learned coordination.

A model of degree three was applied on the time series. This model, based on the use of the BIC and Akaike 
Information Criteria (AIC) for model selection53, represented the model that best fitted the actual data and was 
considered as representing the actual fluctuations that occurred during learning (see Online Appendix Afor 
the BIC and AIC values for all possible models). Eventually, the average Euclidean distance between those two 
models (i.e., degree 1 and degree 3) was computed for each coordination pattern for each learner. This distance 
between the degree one model (i.e., linear modelling of the probabilities of transition) and the degree three model 
(i.e., the actual evolution of the probabilities) therefore quantify the nature of the exploration. A large distance 
between the linear and the degree three model reflects the presence of high exploration of a specific pattern at 
some point during learning (or specific patterns successively), in other words strong anchor points in the learning 
dynamics. A small distance between both models represents an absence of anchor points in the learning dynam-
ics and a more linear appearance/disappearance of the coordination patterns (i.e., the probability of appearing/
disappearing of the pattern evolving linearly).

Summary of dependent variables.  With reference to the performance indicator, both the decrease in 
stroke frequency between the first session and the last session as well as the rate of learning (i.e., value of b from 
the exponential models) were considered. In regard of the analysis of motor exploration, after the clustering and 
the DMM application, the quantity of exploration in percentage (i.e., the distance between two models) for each 
cluster is considered per participant and speed condition. The standard deviation (SD) of the quantity of explora-
tion both within participants and within speed conditions is presented in order to reflect the within individual 
and within speed amount of variability of the exploratory processes.

Statistical analysis.  With reference to the analysis of the increase of performance between the first session 
and the last session, after normality and homogeneity of variance were checked, a two-way ANOVA (within-
subject effects: session time [first; last] * speed condition [low; high]) was performed on the stroke frequency 
values between the time of testing and the two speeds of swim. Concerning the rate of learning (i.e., the value of 
b from the exponential models) and the variability in exploration, a paired sample t-test was performed to com-
pare the rate of learning and the SD of the quantity of exploration between the two speed conditions. When the 
difference was significant, Cohen’s d was computed as a measure of the size of the effect, with d = 0.2 representing 
a small effect, d = 0.5 representing a medium effect and d = 0.8 representing a large effect55.

With regard to the motor exploration quantity, a two-way ANOVA was performed (within-subject effects: 
cluster [1–11] * speed condition [low; high]) in order to investigate any difference in the quantity of exploration 
of a specific cluster and any difference due to the speed condition. When necessary, the p values were corrected 
for possible deviation from sphericity using the Greenhouse-Geisser correction when the mean epsilon was 
lower than 0.75. Otherwise, the Hyun-Feld procedure was used. When a significant effect appeared, post-hoc 
test using Bonferroni correction were used. Partial eta squared (ηp

2) was calculated as an indicator of effect size, 
considering that ηp

2 = 0.02 represents a small effect, ηp
2 = 0.13 represents a medium effect and ηp

2 = 0.26 represents 
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a large effect55. As one participant dropped out during the experiment, achieved power was also calculated and 
informed when necessary for the tests.

Concerning the relationship between the emerging number of patterns, average individual quantity of explo-
ration and performance improvement and rate, Pearson correlations were used when the assumption of normality 
was met, otherwise Spearman’s rho correlation was computed. All tests were performed using JASP Statistics 
V0.13.1 (July 2020—www.​jasp-​stats.​org), with a level of statistical significance fixed at p =  < 0.05.

Data availability
Data supporting the results reported in the article can be found in National Institute of Education data repository: 
https://​resea​rchda​ta.​nie.​edu.​sg/​datas​et.​xhtml?​persi​stent​Id=​doi:​10.​25340/​R4/​1UBOTA.
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