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GENERALIZED CARLESON EMBEDDINGS OF MUNTZ SPACES

MICKAEL LATOCCA AND VINCENT MUNNIER

ABsTRACT. This paper establishes Carleson embeddings of Miintz spaces M into weighted
Lebesgue spaces LP(dpu), where 1 is a Borel regular measure on [0, 1] satisfying u([1—¢]) <
8. In the case 8 > 1 we show that such measures are exactly the ones for which Carleson
embeddings L¥ — LP (dp) hold. The case 8 € (0,1) is more intricate but we character-
ize such measures p in terms of a summability condition on their moments. Our proof
relies on a generalization of LP estimates a la Gurariy-Macaev in the weighted LP spaces
setting, which we think can be of interest in other contexts.

1. INTRODUCTION

Let us consider M), the set of generalized polynomials defined on [0, 1] whose generalized
spectrum lies in A, that is:

K
MA = {f . [O, 1] —R: f(t) = Zakt)‘k,ak € C,K 2 O},
k=0
where A = (Ax)r>0 is an increasing sequence of positive real numbers. We further require
the summability condition >, i < 00, so that in view of the Miintz-Sasz theorem

[BE95, p. 172], My is not dense in C°([0,1]). In this paper we study some geometric
properties of the space MY, defined as the closure of M, in LP([0,1]). We refer to the
monograph [GLO05] for a detailed study of the properties of these spaces.

In the sequel, we will always assume that A = (A\g)xs0 is quasi-lacunary, that is, up to
enlarging this sequence, which we still call A, we can find a family of disjoint sets (Ek)x=0
such that A = Uy Ej, where £, = {\,, +1,...,\,,,, } and such that there exists N > 1

such that #FE, < N for all £ > 0; and there also exists ¢ > 1 such that ¢ < i\"’“jrll <N
N

for all k > 0. We write F}, = Span{t*, A € E,}, which is a vector space of dimension not
larger than N.

Roughly speaking, quasi-lacunary sequences are finite unions of lacunary sequences. We
also say that the sequence A is lacunary when there exists ¢ > 1 such that for all £ > 0
there holds )‘i—:l > q.

For any positive Borel regular measure p on [0, 1], we write LP(du) the associated LP

space with respect to the measure p.

1.1. Carleson Embeddings. Our concern is to find a suitable geometric condition on p
which characterize when the Carleson embeddings of the type 1,, : M{ < LP(du) holds,
for some values of ¢ to be specified, depending on the properties of .

Date: March 1, 2024.
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The following geometric condition will appear as very useful in the following: for any
£ > 0 we denote by M, the set of positive Borel measures p supported on [0, 1] which
satisfy

pl(1—e1]) S,

where the implicit constant depends only on p. In particular, M, is nothing but the set
of sublinear measures on [0,1]. For instance, the measure dvg_; := (1 — ¢)?~1dt belongs
to M_s. Note also that M s contains natural measures which are singular with respect
to the Lebesgue measure: one can take for instance the uniform measure supported on a
Cantor set of Hausdorff dimension f3.

The properties of the natural embedding 1,, (case ¢ = p) have already been studied in
the past years and several major results were obtained, which we summarize here. It
is important to keep in mind that the properties of the embedding ¢, , is linked to the
continuity properties of multiplication and composition operators acting on Miintz spaces.
This has been highlighted by Al Alam [Al 09], which raised the interest of characterization
of such Carleson embeddings in terms of geometric properties of pu. We also refer to
[AAL18, AGH"18] for results in this direction.

This task of studying the Carleson embeddings of Miintz spaces was first carried out
by Chalendar, Fricain and Timotin: in [CFT11] they study continuty and compactness
properties of 2;; when A is quasi-lacunary. In particular, they show that the continuity
of 211 is equivalent to p being sublinear.

Then, Noor and Timotin studied the Hilbertian case: in [NT13] they are able to prove
a similar characterization result when p = 2. Specifically, they prove that the continuity
of 255 is equivalent to p being sublinear. However, they assume A to be lacunary. They
leave open the question of whether their result could be generalized for p > 2. They also
raise the problem of the extension to the quasi-lacunary case. A part of these conjectures
were solved by Gaillard and Lefévre: in [GL18] they obtain that for all p € (1,00), the
continuity of ¢, , is equivalent to p being sublinear. They also work in the lacunary case.

The present article addresses the mentioned conjectures and further generalize to a wider
class of measures (and embeddings), by considering 5 > 0, and not only the case § = 1
which leads to a complete characterization in the non-singular case § > 1, and also gives
a complete characterization in the singular case 5 > 0. Our method is to follow the ideas
of [CFT11, NT13, GLO05]. A key step lies in obtaining a generalized Gurariy-Macaev
adapted to weighted LP spaces.

1.2. Main results. The main focus of this paper is the characterization of the measures
b

€ M,s in terms of Carleson embeddings M f — LP(dp). Our first result is a complete
characterization of this kind when § > 1, which will be referred to as the non-singular
case.

Theorem A (Non-singular case). Let p be a positive Borel measure on [0, 1] and let 5 > 1.
Let also A be a quasi-lacunary and subgeometric sequence with parameters q, N. Then the
following assertions are equivalent:

(i) The measure p belongs to Ms ;
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(ii) For any p > (3, the embedding M < LP(du) is continuous, that is for all f € My
we have

1Al 2oy < 1711 (1.1)

where the implicit constant does not depend on f, but only on p, 5 and also q, N.

In the case 0 < 8 < 1, which we refer to as the singular case, we prove the following
result.

Theorem B (Singular Case). Let p be a positive Borel measure on [0, 1] and let 8 € (0,1).
Let also A be a quasi-lacunary and subgeometric sequence with parameters q, N. Then the
following assertions are equivalent:

(i) The measure p satisfies

du(t) )ﬁ
dp < 4o0;
/[0,1] </[0,1] (1—pt) P

(ii) For any p > 1 the following continuous embedding holds: My < LP(du);
(iii) For any p > 1 the following summability condition holds:

= A =
S (/[ ]t” k du(t)) < +o0.
0,1

k>0

This result calls for several remarks.

Remark 1.1. As (A)g=o is a sub-geometric, (i) implies that [ P dp(t) = o(A),
which is easily seen to imply that u € Ms, see for instance the proof of Theorem A.
Therefore if the Carleson embedding (7) holds, we have p € M.

Remark 1.2. On the other hand, p1 € M,s is not a sufficient condition for (#i7) to hold.
For instance, consider v3_; which belongs to M,s but satisfies

™ dvg_q (t :/ (1 =) Tdt = N7,
Jo a0 = [ k

so that the series in (7i7) diverges. Hence, by the equivalence in the theorem it proves
that L? does not embed into LP(dvs_q).

Remark 1.3. However, for any p > 1 and any ¢ > % the embedding M} — LP(dv,) is
continuous as soon as u € M_s. In order to see it, take . :=  — ¢, and use Lemma 2.7
to see that

/ tpAk d,u(t) S / tp)\k(l _ t)ﬁfl dt S )\;5’
[0,1] [0,1]
which yields
_Be =5
SN ([ du) T < oo,
k>0 [0,1]

and (777) implies the claimed result. Therefore we can see that the difficulty of this result
is carried by the limiting cases of the Carleson embeddings.
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In the following, we show what we can directly obtain using Holder’s inequality, which
indicates that the limiting cases are a more subtle matter of cancellation combined with
a precise multiscale analysis.

(1) We first treat the case: a > 0 and p > ¢q. If a < b_ 1, we have by Holder’s
q

inequality:

/[071] |f<t>|th = /[071} ‘f(t)‘%l _ f,‘)a;(l _ t)_a§ &t

aq

</[] 0P -1 dt>" ( [ dt) -

< ( /[071] FOP( = 0 dt)g .

Hence, in this case, we obtain || f||re < |f|lLe(ave)-

~

q
P

N

(2) Then, we treat the case: @ < 0 and ¢ > p. If a > b_ 1, we apply Holder’s
q
inequality to obtain:

<(f,, lromar)”.

which means || f{|ze(@va) S | fllg-

P
q

Q3

i)

Remark 1.4. The case du = dv, for a € (—1,0) gives an example of reverse Carleson

embedding MANLP(dv,) — L% Let us explain how this is obtained. Consider o € (—1,0)
and let us write 5 = 1 + «a. Observe that for any f,g € M, there holds

D1 =rgt)(1 =17 dt| < r(dy b
[o,uf( YL —=t)rg(t)(1—1) 1 fllzra @Hgllm,l(dy_%)

S I lr@va gl 250 (1:2)

[0,1]

FHg(t) dt\ _

where we have used Holder’s inequality and Theorem A as 2= > 1 and =2 > 0. We

] p—1
claim that it is possible to infer the bound
I, 5 < 11l zecave)- (1.3)
Let us briefly explain how to obtain this rigorously, and let us mention that even if # is

the Holder conjuguate exponent of %, we cannot use a standard duality argument: that
is a part of the difficulty. Nevertheless, as we shall see in the latter, Miintz spaces enjoy a
kind of interpolation property viewed as weighted ¢P spaces. We give some hints to how
to proceed but a similar argument is presented in details in the proof of (i7) = ().
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p
To prove (1.3) take f € MY and introduce the following functions with positive coeffi-
cients:

\u

p=8
Z”fk” ”)‘kt/\k and hy = Z”fk )‘kp t/\k

k>0 k>0

h
s ®

which are both Miintz polynomials, and satisfy (discarding non-diagonal terms)

Joy bt = Al A [ 2 17 (14)

k>0

where we have used Theorem C. Applying this theorem twice (the first time to hy =
5

> k=0 Tk Where 74(t) = kaH > )\k; t) also gives
L
bl 2, S S 1AMy S 117 (1.5)
k>0

We can now use (1.2) to f = hy and g = ho, so that in conjuction with (1.4) and (1.5)
we obtain (1.3) when f = hy. In order to conclude, remark that applying Theorem 2.1
Y

combined with Proposition 2.5, we see that any function f € M AE is pointwise bounded by
a function of the form A;. It remains to remark that thanks to Theorem C and Lemma 2.6
we have

1Pl S 2 el e M S il oavay < 1 1

k>0 k>0

One key estimate that we will use in the proof of Theorem B and Theorem A it the
following two-sided inequality, which is a generalization of the Gurariy-Macaev theorem
[GM66], which we recall in Section 2.

Theorem C (L” decoupling estimates). Let p € [1,00), a > —1 and dv, = (1 — z)* dx.
Then there exists two constants Cy,Cy > 0 such that for all f, € Fy there holds

1 1
P p
(Z 1F4ll7 0 (v ) < <Gy (Z kaH’ip(dya)) :
LP(dve) k>0

k>0
Remark 1.5. When a = 0 note that we recover the usual Gurariy-Macaev [GMG66].

> T

k>0

The proof of the upper-bound in Theorem C relies on the following multilinear estimate,
which we believe to be interesting on its own.

Theorem D (Multilinear estimate). Let A be a quasi-lacunary sequence. Let o > —1
and g € Mgyarr. Let also py,...,p, € (1,00) such that pil +...+ p% = 1. For any
je{l,...,n}, let f; € My. Then there holds

1

S H (Z HfzkHLPk(dua> :

k>0

/[0 y L Hf] du| S

where we have written f; =Y 1>o fjk, where fj € Fy, and where dv, = (1 — z)%dx.
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Remark 1.6. One can check that such an estimate is not an immediate consequence of
the Holder inequality. We will take advantage of lacunarity in the treatment of the
non-diagonal interactions. One of the major difficulty is that standard interpolation
techniques are not working directly because taking absolute value of powers of some
Miintz polynomials does not preserve its generalized spectrum. This key estimate will
only be applied to prove Carleson embeddings associated to the Lebesgue measure, in
order to answer open problems that were originally set in [CFT11, NT13]. Actually, more
general types of Carleson embeddings could be drawn from this multilinear estimate, but
it is not the purpose of this article.

Let us finish this introduction with the following result, whose proof could be obtained
by an analysis of the multilinear theorem. Therefore, this result is stated without proof.

This result is a generalization of Theorem A in the context of embedding in weighted
Lebesgue spaces and reads as follows.

Theorem E. Let p € [1,00), a > 0 and § > 1. Assume that A is a quasi-lacunary and
subgeometric Miintz sequence, then i € Mas if and only if the embedding holds true: for
any f € My there holds

e @ S 115,

with an implicit constant independent of f.

)

dVa—l)

1.3. Plan of the paper. In Section 2 we recall a very useful bound Theorem 2.1 which
is a pointwise bound for functions f; € Fj, which is sharp enough for our purposes.
We also state another very useful tool, namely some generalized Bernstein inequalities
Proposition 2.5. Equiped with these estimates, as well as Theorem C, we can proceed to
the proof of Theorem A and Theorem B in Section 3 and Section 4

Section 5 is devoted to the proof of Theorem C, which can be viewed as a major part of
our article. The non-singular case relies on the method of 7}, dilations, which builds on
previous works, and the singular case essentially is concerned with mapping this case to
the non-singular one via differentiation tricks and integration by parts.

In Section 6 we prove Theorem D. The main idea is to reduce the statement to a continuity
bound on a multilinear operator, which can be tackled using a very simple tool: Schur’s
test. It is also at this stage that we can exploit the quasi-lacunary assumption on A.

Acknowledgments. V.M. thanks Loic Gaillard and Pascal Lefevre for fruitful conversa-
tions during early stages of the project.

2. PRELIMINARIES

2.1. Notation. We use the notation A < B when there is a constant C' > 0 such that
A < CB and that C' depends ony on parameter that we do not track the dependence on.
When A < B < A we write A ~ B.

In some summations in Section 6 we also write i < j (resp. i ~ j). Their meaning is the
following: it means that ¢ < j — R (resp. —R < i — j < R) for some integer R > 0.
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2.2. Useful properties of Miintz polynomials. A simple idea to estimate f = > ;5 fx
is to start with estimating the terms f; € Fj. In this direction, a very useful inequality,
which we shall use on many occasions is the following:

Theorem 2.1 ([GLO05], Corollary 8.1.2 ). Let A be a quasi-lacunary sequence. Let k > 0.
Then for any f € Fy and for all x € [0, 1], there holds

A k+1

f(@)] S 2™ 5 || flloe,

where the implicit constant depends only on q, N, but not on k, nor f.

Note that this allows us to essentially bound any function f € M, by a lacunary poly-
nomial with coefficients carrying the L* norms of the fi. A useful consequence is the
following

Corollary 2.2. There exists A > 0 and n > 0 such that for any k > 0, and any f € F}
satisfying ALl < n then if zy is such that | f(z0)| = ||f ||, then

17
1/l
< Zo
F

1-A

Proof. Let f € Iy and argue by contradiction, assuming that o < 1 — A||||J{,||||°° . We start

by an application of Theorem 2.1, which yields b
Any, +1

F@)] S ™5 [ fle < Ca~ 5| f(a0)

for all z € [0,1]. Evaluating in o and using the bound on xy we infer

Ang +1

SEhe s 1o '

Since f € F}, by an application of Proposition 2.4 we can bound

Ng+1—Nk

1 Nl S ( > )\nw‘) | fllzee < C(q, N)Anpsi |l fll oo
=1

therefore
/\"k+1
CA N
1< (1 - ) < Cexp(—CA),
)‘nk+1
which for A large enough is a contradiction. O

We recall the following, which will be generalized by Theorem C.

Theorem 2.3 (Gurariy-Macaev inequalities [GM66]). Let p € [1,00) and A be a quasi-
lacunary sequence. Then there exists constants Cy,Cy > 0 such that there holds for all

fk; € Fk:
p
Sl < | Al < X 1A
k>0 k>0 k>0

where the implicit constant only depends on p,q and N.
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2.3. Bernstein inequalities. We recall the following classical Newman’s inequality in
the context of Miintz polynomials:

Proposition 2.4 (Newman’s inequality [GL05|, Proposition 8.2.2). For any f € My
there holds

k=0

1Nl S (Z Ak) [alr

whenever f =Y -0 axpt™ and Y0 i < 00, and where the implicit constant is numerical.

This allows for trading derivatives. In order to move from an L? estimate to an L? estimate,
the classical tool is the Bernstein inequality. In our context, that is working in weighted
spaces, we state the main result of this section:

Proposition 2.5 (Generalized Berstein estimates). Let 5 > 0, p € M,s and o« > —1.
There exists kg > 0 such that for all k > ko, for all fi, € F), and for any p,q > 1 there
holds

I fell 2o awy S A2 fll Lo (1—a)oda),
with 0 = 1+ch — %, and where the implicit constant only depends on p,q, o, B and also on
q,N.

The core of the proof is to prove the following estimate.

Lemma 2.6. For k> 1, we have for any f € F,
1+ (1+04)

[/l

||f||LP((lfm)“d:v) 2, min —  1ia Hf”oo )

/[l

where the implied only depends on p,a and also on q, N.

Proof of Lemma 2.6. We consider two different cases: the flat case, namely when [’ is
very small, and the non-flat case. In this proof we write M = ||f||z~. Let ¢ > 0 and
ko = ko(e) such that for all k& > ko, f attains its maximum at the point zo € [1 — ¢, 1].
This could be seen from Theorem 2.1. In the following we only consider § < e.

Flat case. Let us assume that |||~ < % for some §. Then, observe that the triangle
inequality and the mean-value theorem imply that for any = € [1 — ¢, 1] there holds

[f (@) = |f (o) = [f(z) = fwo)| 2 M — |[f'[| o]z — o]
2M—%|x—xo| >0

where we have used the assumption on f’. Next, we integrate:

Wiy > [ 1F@FO 2> [ (= Ee—al) (1 -0y ar

o ) ZBO*E

2/:0 (M—%)p(l—x)adx

0—

o

[ 15

o

- 2_”Mp/ (1 —2)*de =: 27PMP As o (z0).
To—

N[>
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Observe that As, is a continuous positive function therefore

U5 e = inf Asa(zg) >0,
Y zo€[l—e,1]

so that finally
1 1oy 2 27 @50l Sl ee
which end the proof in this case.

Non-flat case. Assume ||f'||p~ > 5, and let A, given by Corollary 2.2, and up to di-
minishing § we can assume that [ — A= f’]|\|4 ,1] € [1 —¢,1]. Note that again we can
write

|f(@)| = [f (o)l — | f(x) = flzo)| =2 M + || f']| o= (20 — 2) 2 0,

for any = € [zg — #, xo] so that
Zo
Wy = [ O 1 a0 = @) (1= )" da
O I oo
Mp+a+1 yo+1 Mp-‘,—oz—l—l
=TT fy (=0 Ay = g Bln),
where in the last step we have used the change of variable y = %(1 — z) and have

introduced yo = Lz ”L°° (1—x) € [0, 5%] Remark that ||fll%(l—aco) < Aso that yo €
[0, A]. Note that the function B is positive and continuous, therefore infy cjo 4 B(z0) =
bap > 0 and this concludes the proof in this case. O

In order to use the fact that u € M,s, we will use the following integration by parts
inequality, which can be seen as a mean of reducing integrals with respect to du into
explicit weighted Lebesgue estimates.

Lemma 2.7 (Integration by parts [CFT11], Lemma 2.2). Assume that u is a positive
Borel measure supported on [0,1]. Let p : R, — R, be an increasing C function satisfying
p(0) = 0. Assume that there holds p([1 — €]) < p(e) for all e € (0,1]. Then the following
identity holds:

gdu S [ g(2)p'(1—z)da.
[0,1] [0,1]

Proof of Proposition 2.5. Using Lemma 2.7 with p(z) = z” and also using Theorem 2.1
we can write

Jo P S [ 1F@PQ =) de

ny, +1)p )\ ]_
S Il /[ @ = s (P ) @)

where B stands for the Beta function. Expressing in terms of Gamma functions and using
the Stirling formula I'(z 4+ 1) ~ Ce*2""3 we find that

(M + 1)p _F((*"k“’ +1)TE)
B( N ’5>_F(“—"@Vﬂ+1+ﬁ)NA"’f

(2.2)
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as k — oo, where the implicit constant only depends on p,n, 3. Therefore, it remains to
explain that

117 < Nt 1) (2.3)

In order to obtain such an inequality, we remark that if k& > kg given by Proposition 2.4,
either we have || f||ze(.) = ||f|| which is enough as A,, — oo; or we have

1+1+a
N
11l £
Combined with Proposition 2.4 this yields
1+a
TP < [ fllzs@alLf It < [/l 2awa) At 1

which finishes the proof in this case. To deal with the cases k < kg one can use equivalence
of norms in finite-dimensional spaces which is not an issue since the rank ky only depends
on the constant of block lacunarity, which is always bounded from above. 0

Remark 2.8. This can be slightly generalized to family of weights given by w, () =
(1 — 2)% log(1 — x)|® whenever a > —1 and 3 > 0, as one can carry the same estimates
as in (2.1), the only difference is that instead of using the asymptotic bound for the Beta
function, one should differentiate the asymptotic relationship (2.2) § times (when f is an
integer, and interpolate using Holder’s inequality when [ is not). This differentiation of
asymptotic relationships is justified by the convexity of the previous integral viewed as a
function of 5. Then for any u € M and any & > —1, 5 >0, k> 1 and ant f;, € Fy,
there holds

Wi+ta,B

I fll 2o gany S A, log(An, )" || fi Loy yda)

where the implied constant only depends on p, ¢, o, &, 3, 5 and A and where § =
5

(+a8) 14«
q p

(which may be negative) and n = é (which may be negative as well).

3. THE NON-SINGULAR CASE: PROOF OF THEOREM A

We are now ready now to prove the characterization of generalized Carleson embedding
for any measure g in M, s when 8 > 1. One could use Theorem C to directly obtain
weighted Carleson embeddings, and this is given in the introduction with no proof. We
chose here to only use Theorem 2.3 and interpolation techniques to highlight that Miintz
spaces enjoy an interesting interpolation property. We will denote for convenience the
sequence (An, k=0 by (Ak)g0-

Let us start by proving (ii) = (i). Remark that as (1 —¢)* e we have

E—
1

pi—e1)= [ an<ce [

1—¢ 1—¢

D 1 D 117
(1—6)?du§/1 t?dMS/O te du,
—€&

and observe that if we set ¢ = A\, ' and evaluate (1.1) with f(¢) = t* we obtain

B8
W= XL S [ P dun s ( P dt) <A
[0,1] [0,1]
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The conclusion now follows from the subgeometricity of (Ag)g=o and the fact that pu is
positive: for any € > 0 we chose k > 0 such that )‘l;il <e < )\,;1, therefore

p(1 = 1) < (=N SN S,
which proves that y € Ms.

In order to prove (i) = (i7), we distinguish between the integer and non-integer /3 cases.

Case p = B = n is a natural integer. Let f =350 fr € My with fi € Fj,. We start with
an application of Theorem 2.1 and Lemma 2.7, which gives

n i TN, .
00 S 5 Wil Wfillos [ 57 (0= 0 a
i1yenyin >0 [0,1]
Aip +oo 4+ Ny, 1 i
sy B( PR T
B1yeenyin =0 j=1
< Aiy -
S X o T e
21,0500 =0 Zn_] 1

where we have used Proposition 2.5, the definition of the beta function and its asymptotics.

By the arithmetic and geometric means inequality, we observe that /\); +' /\/\n < 1 so that

it follows
n n
1A S > TN e =TT D2 I e S 1A
i1yoin=0 j=1 j=1i;>0

where the last inequality stems for an application of Theorem 2.3.

Case p =3 € (n,n + 1), not an integer. As we proceed with an interpolation technique,
let us write § = nf + (n + 1)(1 — ) for some 0 € (0,1). As before, we start with an
application of Theorem 2.1 and Lemma 2.7 which give

B
/[0’1]|f|6d,u</ (Z ||fk||Loot N ) (1_t)5—1dt'

k>0

Then we rewrite

B n (%
(kZ ||fk||Lootik#) (1-1t)” ((kz ||fk||L°°t ) (1— t)nl)

) n+1
% (Zka kN) (1 -t

k>0

1-6

and apply Holder’s inequality to obtain

no (n+1)(1-0)

>l f

k>0

> Il

k>0

/ 1P dp S

L™ (vp—1) Lt (vy)
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We now apply the integral case (in both cases: p = =n and p = =n+ 1) to obtain
which assumes that we also change the sequence A and yields

Jo M1 S AU AU < A

In order to deal with the p > 3 case, we exploit the lacunary property of A, which will be
exemplified first in the case p = 2¢5.

Case p = 2°3, £ > 0. Let us assume that the result has been obtained for p = 23 (the
previous step serves as an initialization step of this induction proof). Let us prove the
result for p = 241 3. Again, we rely on Theorem 2.1 and Lemma 2.7 to write

Jo P s [ (Z I

k>0

2115
Apt1
(:E: Hj% N ) )
k=0 L%

where we have used the induction hypothesis on & = 2¢3. We now use now some classical

trick that we learned from lacunary Fourier theory: consider the two functions hi, hso

defined for all ¢ € [0,1) by

28

2
A’%H) (1—t)dt

ZkaHLoot % and ha(t ZkaHLoo

k>1 k=0

An application of Theorem 2.3 immediately provides

Y3 _ Z
P15~ D2 fellZ Nt~ (Al N = Ml (3.1)

k>0 k>0
which allows us to write that

B
28 9 z+1
Jo P S I S el < (z Il )

k>0

B
0+1 (41
S Al | SIA . S ||f||2 F =P
e LB LB
where we have used Proposition 2.5 and Theorem 2.3 in the last line to conclude.

Case p > (. Assume that p is not of the form 24 and chose ¢ > 0 such that ¢ := 2‘8 <
p < 2713 =: 7 and write p = (1 — 0)q + Or for some 6 € (0, 1).
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We start with an application of Theorem 2.1 in order to write

p
At
W S [ Wellet™5 ) ant)
0.1 \ =0
p
A+l
= [ A Ut A =00 | dace)
0.1] \ k>0
p
a+s )(1 9) ARt
= Jou > el Ty A ”Lb(d,,(S t1=07x ) dp(?),
) k>0

where we have used Proposition 2.4 for some a,b > 1, 7,6 > —1. We now apply the
Holder inequality in the inner sums followed by another application of Holder’s inequality
in the integrals so that:

P p(14+7) pxk-u pO48) , a,+1\ 7(1-0)
1 Wi S [ (zufkuza(dm ) (S Il ™ 55) )
[0,1] k>0 k>0
ré q(1-0)
+7) pAk-ﬁ- pOEY)  p Ap+1
ST AR S il e 65 (32
k>0 Lr(d“) k>0 Lq(dﬂ)

Applying the induction hypothesis for » (resp. ¢) to the functions g = Y- gx where

P p(1+7) )\k+1 P P(1b+5) p Al )
91(8) = [ fell Zaaw, )Mk tr7N, (vesp. gi(t) = [ fell Zoqaugy e 17N ), we obtain
p p(A+Y) A +1 0 P(1+5) Ap 41 a(1=9)
12 2A4Y) p AR+l P pAg
LAy S 22 M fellfeqy e =t F ) ||fk||Lb @)t
k>0 15 ||k=0 LB
(1?) 1 r<1+6> —1\ (1-0)8
S (Sl ) (z T )
k>0 k>0
where we have used Theorem 2.3. Note that by an application of Proposition 2.5 we have
lgw) _ % %(ﬁ 1+'Y) p(IZV) %
A v P LY Ve A

therefore we have obtained

p
b
[FAVEES (Z /% "%) S,

k>0

as claimed, where we have again used Theorem 2.3.

4. THE SINGULAR CASE: PROOF OF THEOREM B

A key idea in the proof of Theorem B is to estimate the derivative f’. In order to do so,
let us relate the LP(du) norm of f to a quantity involving f’. This type of integration
trick emerges from the study of Hardy-Bloch spaces of analytic functions on the unit disk.
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Lemma 4.1. Let p > 1. Let p be a Borel reqular measure supported on [0,1]. Then, for
any f € ME such that f(0) =0, we have

/[o,l]| DI du(?) NP/ / "(pt)|| f(pt)[P~ dpu(t) dp.

Proof. Let us start with the case p = 1. Using f(0) = 0, the triangle inequality and
changes of variables, we obtain

/[0’1] )| dp(t) //If ) dpdp(t)

S Areolddut < [ 171 dpdu(o

When p > 1 we start by observing that |(|f|?) (¢)] < |f/(t)||f(t)[P~ which allows us to
apply the p = 1 case to | f|P an obtain

S P u(e) S 7oLt dut) dp =
[0,1]

A useful result, which we will refer to as the kernel estimate is the following.

Lemma 4.2 ([GL18], Lemma 2.10). Let a > 0 and assume that I' is quasi-geometric.
Then there exists C,Cy > 0 such that for all t € ]0,1) there holds

Ci(l =) <Y At < Co(1—t)

k>1

For our purpose we need a pointwise estimate, based on the Berstein inequality for Miintz
sequences, which we state as follows.

Lemma 4.3. Let A be a quasi-lacunary sequence. For any f € My and any p,t,0 € (0,1)
there holds

>l |L°°PN( 9,

k>0

£00] 5 7=

where the implicit constant does not depend on p and t, but does depend on A (more
precisely on N,q) and 0.

Proof. Let us start with an application of Theorem 2.1 and Lemma 2.6 to the f; (therefore
one has to replace \,, with A,, — 1 in Theorem 2.1):

2k v
(W) <IN filleeu™ S0 M frlloeAeu™
k>0 k>0

We then use a crude bound:

1F (et S kaHLoo)\k(Pt)Wk Sup Ak( Pt Z | frll zos (

k>0 k>0

>\

(A—0)Ap

(1—
< M) ™ Sl fellzmp

k>0 k>0
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Using the kernel estimate yields

[ (pt)] S Z | fell o™

PN
— N
so that the conclusion follows from the fact that 1 — u¥ ~ 1 — u as u — 1. O

Proof of Theorem B. (i) = (4i) Since f(0) = 0 for k > 2, up to removing the first term,
we can assume f(0) = 0, for all £ > 0 and f(0) = 0 Let p,t € (0,1) and also 6 € (0,1).
In the following we apply Lemma 4.1, and we use Lemma 4.3 to bound |f’(pt)| as well as
the bound

PO S S L llmp™

k>0

obtained by an application of Theorem 2.1. Therefore we can write:

17 o S [ 1 DI o) ) dp

A+
< o N
N/MQ (E A fellzoep

) S 1 fell e w’“d’“‘—@dp

k>0 k>0 1—pt
p
g2 dp(?)
§/ Frlloop™ 0% </ ) d
0.1 (,g) Il 0.1] (1= pt)
Using the Holder inequality we therefore obtain
(1-0)k dpu(?) (1-0)2k ’
1 Wy S |22 1 illcr / G| S5 Miler ,
k0 L% 01 (L= Ph) =5 )~ [li50 L%

where we have used (¢) in the last line. Now, observe that an application of Proposition 2.4
followed by Theorem 2.3 implies

1 Zp ey S I, Mnkp1 0%

P B
(anknp " ;,3) SR,

LB k>0

where the last lines stems for another application of Theorem C.

(ii) = (i) since the closure Ey of E) := Span{t},so for the L% norm is a closed

subspace of M/, it follows from (#i) that E, embedds continuously in L?(du). Note that
since Theorem C implies

Zak)\,ﬁt k ~ Z lag|?,

D
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we infer that we can identify E, with ¢5. Using ¢! < (P we can write:

Z ak)\ t)\k

k>0

B
—1
du(t) (§:|ak|5)‘k )

k>0
8
ya
S DS fanl?
k>0

where we have used (i) and Proposition 2.4. Note that this holds for all (ag)k=0 € 05 ie.

/ S larlP AP dp(t) < /

[0.1] ;=0

all (lax|?)k=0 € f%, therefore by the duality characterization of £ = (whose dual exponent
if ) it follows that (A} fig 1y " dpa(t))ks0 € (7% namely

= =
>N ( / P du(t)) < o0,
k>0 [0,1]

which is (777).

(7ii) = (i) Let p € (0,1) and p > 1 such that (74) holds. Observe that in the following
application of Lemma 4.2, the implicit constant does not depend on p,

/[0,1] (f A_L<?t) Rp /[071] <ZA (tp ”A’“> du(t) ZA P / }t’”’fdu(t),

k>0 7
where we have used Fubini’s theorem in the last step. Hence, using Proposition 2.4 in the
variable p yields

dpu(t) >ﬁ S 5
dp~S AP </ | t>
/[0,1] </[0,1] (1 —pt) P ; k [0,1] uit)
B8 =3
SN ([ ) < oo,
k [071}

where we have used the assumption. O

Remark 4.4. Note that if (éi7) is true for one particular p > 1 then the summability
condition (77) is also satisfied for any p > 1. This is because of the subgeometricity of the
sequence (A, ) and as we can observe: condition (4) is not sensitive on the integrability
parameter p > 1.

5. THE DECOUPLING ESTIMATES: PROOF OF THEOREM C

5.1. The non-singular case. To prove Theorem C we will use the so-called method of
T, dilations in order to obtain the lower bound. We write T}, : f(-) — f(p-) and denote
by [|T,|| the norm of this operator on the Banach space £ on which it acts.

Proposition 5.1 ([GLO05], Proposition 6.3.3). Let E be a Banach space and assume that
SUD e (po.1] ||l < +00 for some py € (0,1), and [|t* ||z = 1. Then, there holds:

1fxlle < el flls,
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where the constant ¢ depends only on A and the ||T,||. Actually, if n(y) = 4y(1 —y) one
has

o < 2NN sup Ty [V (14 1T, )
O n n

where M > 0 satisfies N Y~y (n(QQL’“)Mn(qu)M> <L

[\

Our first task is to adapt the proof of the [GL05, Corollary 6.3.4]. More precisely, we
state the following.

Proposition 5.2. Let o« > 0 and p > 1. Let (tg)r=0 be a positive increasing sequence,
such that ty, — 1. Under the hypothesis of Proposition 5.1 there holds:

(Z/ Ife(O)P(L = 8)° dt) <1 o

k>0

Proof. We use the following norm on the space LP(dv,), defined by

Tt
17l = (Zw w \upl—wdt)

§>0 €[2=G+1) 2-4] /Ttr—1

We start by estimating ||T,| ¢, for any p € [27+D 274 for some £ > 0,

1T, =527 sw [l o

§>0 re[2=0+D 2-5] /Tt

1 . thk: t [e%
==-> 27 sup / IF()P (1 _ _) dt
pj 0 TE[2*(J'+1) 2-7] pTtR_1 p

< L1 RO P( = ) dt
< sup / - )
po‘“ j= 2J re[2-G+1) 2-4] P71

WV

where we have used p € (0,1) and a > 0 in the last line. Note that we can change variable
7/ = p7 so that,

2z+1 T/tk o 2
Tl < 2 s [ 1OPO =0 < () e

j>0 re[2- 0+ 2-3] /T tk—1

2 l
Hence, we have obtained ||T,||z, < (T) " for any p € [27+D) 274 We can therefore
p «
apply Proposition 5.1 which provides us with C' > 0 such that:

(/t:k | felP(1— 1) dt)% < W fellze < cellflle,

Let us also introduce 7;(k) € [270U*+Y 277] such that

Tt 75 k)t
swp [ ol rar= [0 p@pa - otar

re2-U+D) 2-i] Y Ttk—1 5 (k)te—1
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Finally, we may bound

+o00 [eS) i (Rt
> [* ra - czufuﬁk_ Z;JZ/T] -

k>0
< — HP(1—t)*dt
?;wéuwu )
S I e wa): 0

Proof of Theorem C: the lower bound. Let b € [0, 1] and bound

1
/b @1 =) dt < [1fillo (T = 0)* < (1= 0N fell Do v

On the other hand for any a € [0, 1], by Theorem 2.1 and Proposition 2.4 we have

L1 - o<1l [ 5 @07 S € s A fillfnan.

Therefore, we can choose two positive and increasing sequences (uy)g>0, (U )r=0 such that
up < vy, but also that 1 — u; and 1 — v behave like an inverse power of \,, and satisfy

Uk 1 1
[ OO =0t < 1l and [ ROFQ =107 < 1l
Vg
We infer that
o . 1
L IR@OPO =07 > 2 el (5.1
U

Since A is quasi-lacunary, we let L > 0 such that for any k£ > 0 we have vp_j < ug,r, and
bound

Lo n@ra-omar< [T n@pa-omas [T a@ra -

Therefore, because there may only be finitely many overlaps, Proposition 5.2 and (5.1)
yield
p

t

> T

k

TS oY ITADECEDETES

k=0 k>0

LP(va)

Proof of Theorem C: the upper bound. This part heavily relies on Theorem D. Remark
that by applying Theorem D with py =py=---=p,=nand fy =---= f, = f whenn
is an integer, we obtain the bound

S 10 S 3 el

k>0

which is the claimed result. The proof in the general case will follow from a suitable use
of Holder’s inequality, mimicking the proof of duality of L? spaces. Let 2 < g < r be two
integers such that p € (¢, ), that is we can write p = 0r + (1 — 0)q for some 0 < 0 < 1.
We write f = > ;50 fx, where f € F;,. Now, we start with an application of Theorem 2.1,
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and proceed as in the proof of Theorem A, so that continuing from (3.2) applied with
a=0b=pandy=0§ =« we obtain

r6 q(1-6)
D 1+ EM (1+O‘ P A+l
ANy |22 Wl oy ™ £ > IIfklle(dya ta™N
k=0 Lr(dp) IIk=0 La(dp)
(1-06)
ay —(a+1 ay —(a+1
< zmmmmyﬁaf>)(zwwmwﬁﬁa<>)
k>0 k>0
S el o v
k>0
where we have used the result in L"(du) and L(du). O

5.2. The singular case. Our goal is to find a way of treating the case —1 < a < 0 by
applying the non-singular case. It turns out that an effective way of doing so is to replace
Vo With v,y (at least), as a+ 1 > 0. More precisely, we have the following.

Lemma 5.3. Let p > 1. Then, for any f € My such that f(0) =0, we have

v S [ ST Ay,
Jo MF A S [ 7P v,

Proof. In the case p = 1, we use the mean-value theorem, the triangle inequality and
Fubini’s theorem to write:

1 1
[ Afldv. = wdu| dvo(t) < [ [ dv@f @ldu So [ 1] v
[0,1] 0 Ju [0,1]

where in the last step we computed the integral.

The general case p > 1 follows from a suitable use of Holder’s inequality: observe that for
almost every t € (0,1) there holds (|f[?)' (t) < p|f'(t)||f(t)|P~*. Therefore from the p = 1
case followed with Holder’s inequality we obtain:

[orave s [ AP dva = [ 1F10= LA 1
[0,1] [0,1] [0,1]

1—
< P dvas, | ([ AfPdv.)
N(Aﬂf|um)(mﬂm ")

which gives the result. U

B =

Proof of Theorem C in the case o € (—1,0). We claim that the proof boils down to prov-
ing

[P dve s [ 1F1P v, (5.2)
[0,1] [0,1]

Indeed, remark that since a +p > a+ 1 > 0, we can apply the case a > 0 to f’ to write

Jog M s 3 el

k>0
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and the conclusion follows from || fi||Lr(dva.,) = || fellLr(dve), uniformly in k&, which can be
obtained by applying Lemma 5.3, Theorem 2.1 and Proposition 2.4:

( +t)**tPdt

SN N il S Il

1y S W sy S [ 1A

Next, remark that the upper bound of (5.2) is the content of Lemma 5.3, so that it
remains to obtain the lower bound. We present an argument based on the use of the
dilation operators T),. Let us write dyuy, := ¢**dt, and observe that for any f € M, and
any p > 1, p € (0,1) there holds

| 1F et < om0 [ prdgy,
[0,1] [0,1]

that is, the dilation operator T}, is such that
A+l

I Tolloamy < p” 7 (5.3)

This estimate is key in proving the following useful estimate.
Lemma 5.4. For any k > 0 there holds

1 fellzr @ S 1L e (5.4)
where the implicit constant depends only on p, q, N and the constant M defined in Proposition 5.1.

Remark 5.5. Note that a direct application of Proposition 5.1 does not yield the uniform
estimate (5.4).

Proof. The two aforementioned estimates must be combined to produce an uniform bound,
which is one the key argument of the following proof. It is actually a careful examination
of that of [GL05, Proposition 6.3.2] and that of Proposition 5.1. To start with, at the end
of the proof of [GLO05, Proposition 6.3.2], just before taking the supremum in the last line,
one obtains the estimate

lowt™ e < AT M A+ T - P11 £,

where f = 3,50 a,t™ and A = (),),>0 is a lacunary sequence. In our case, incorporating
the bound (5.3) it follows that for f = Y-y, 1M we have

o, ™[, < 1Nl (5.5)

with an implicit constant independent of k. In order to obtain (5.4) one can proceed
as in Step a of the proof of [GLO5, Proposition 6.3.3] and prove on induction that the
bound (5.5) holds for the a;t* where i € {A,, +1,..., A\, }. (with the notation of
[GLO5, Proposition 6.3.3], we have b = 1 in the estimate). The proof now follows from a
repetition of Step b of the proof of [GL05, Proposition 6.3.3]. d

With this lemma, we can proceed to the proof of the lower bound. Let o € (—1,0)
and p > 1. Then for any f € M,, we can start by applying the kernel estimate from
Lemma 4.2 and the bound (5.4) combined with equivalence of norms in finite dimension
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for the low values of k (since k can always be assumed satisfying k& > ko given by the
Lemma 2.6), so that:

/[0,1] FOPQ =72 Z A /[0 1] |f(t)|ptkk dt 2 Z )\];oz/ 1] |fk(t)|ptk’“ dt

k>0 ) k>0 [o,

DI A O
k>0 Evs

where we take A > 1 as in Corollary 2.2, so that || fx||z~ is attamed at some point

tr € [1— /\%, 1]. Let § > 0 to be chosen later and apply the mean value theorem as well

as Proposition 2.4 for t € [ty — /\‘S—k, tr + )\%]:
[fe@] 2 |fe(te)l = 18— el fill oo = [ felle = COllfellzoe 2 M1 falloe,

which holds as soon as we take ¢ such that 0C < 1, which can be done uniformly in % in
view of Proposition 2.4. Importantly, observe that for some small ¢ > 0, independent of

k, we have

A ) 0

[tk — C)\Izl,tk] C [1 — )\—k, 1] N [tk — )\— J e + )\k]

so that
/[ Pz N — At 2 A
0,1

and therefore

Wy 2 SN
k

A s
[1*E71]ﬂ[tkfm7tk+

5 [Pt 25 AN fallf
Ak

k=0
2 2 il (5:6)

k>0
where we have used Proposition 2.5 in the last inequality. In order to conclude, we use

Lemma 5.3 on the f; and the case o + p > 0 of the theorem, which has already been
obtained. Therefore

1A ey R 22 NN @varyy R 1 b vy
k>0

which ends the proof of (5.2) and that Theorem C. O

Remark 5.6. The estimate (5.6) is actually enough to imply the lowed bound of Theorem C,
therefore the last lines of this proof are not necessary. However we decided to show the
upper and lower bound in (5.2) which show the difficulty of a Bloch-type characterisation
for Miintz-spaces, see [Lefl8].

6. THE MULTILINEAR ESTIMATE: PROOF OF THEOREM D

In this section we first provide the proof of Theorem D in the bilinear case, as some
estimates will serve as the base case of an induction which will allow us to obtain the
proof in the general case. Also, the bilinear case already contains the essential ideas. In
the following, we write Ay instead of )\, for simplicity.

Let a > —1, and write =1+ a > 0.
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6.1. The bilinear case. Let f,g € M, which we write f = >2;-0 fi and g = > 4150 9k
where fi, g € Fj,. We start with an application of Theorem 2.1 followed by Lemma 2.7
and Proposition 2.5:

AgFAj+2
S Pl S illgslla [ o™ dute)
§,5>0 1}
1+cx 1+a A+ 42 51
S X Millo@nlgill @ A7 [ @7 (12t de
1,720 [0,1]
14a 1+la 8
AN A7
$ 3 Il 5 = X Wlsealslme® ()]
i.5>0 A A i,7>0 j

where in the last step we have used the estimate of the Beta function, the fact that
% + ]% =1, 1+ a = § and where ®(z) = 1=%5. One can recast the previous inequalities as

. ol dn S AT(F), G

with I = (|| fill L(ava) Jiz0, G = (9]l 1o (av) )20, and T' = (T5)iz0 defined by

8
A\ 7
Ti(x) = ZCI)Z-]»:UZ- where ®;; = @ ((}\—Z> ) .

720 J

We claim that T is continuous " — ¢" for any r € [1,00]. Let us postpone the proof of
this fact. Once this is obtained, then Hoélder’s inequality and the continuity of 7" yield

/[O . [f9ldp S (T(F), G)eay SNTE)el|Glor S 1Fel|Gla,

and the conclusion follows from the fact that

1% = > N fill o ave)-

120

To prove the continuity of T, let us remark that by the Riesz-Thorin complex interpolation
theorem, it is enough to show the continuity ¢* — ¢! and ¢~ — ¢, which in view of
Schur’s test, is a consequence of the following bounds:
sup »_ P;; +sup > Py; < 0. (6.1)
320 >0 i20 ;>0
These two estimates are similar, therefore let us only estimate >-; ®;; uniformly on ¢. Let
us write
Sy = Y+ Y b+ by A4 B
Jj=0 J>t Jrei J<i
First, as @ is a bounded function, so is B uniformly in . To estimate A, observe that
the quasi-lacunary property of A means that (Ag)gso0, With Mgy = gA for all & > 0.
Combined with the fact that ®(x) < x for any x > 0 we obtain

() g

7> 720
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independently on 7. For C it is similar: this time we use ®(z) < = and Apy1 < ¢y,
obtained from the lacunary property of A, so that

)\j (p—pl)ﬁ 2Np(i—j)
Z‘I)ij<2 v qu(”_lw <1
1 j<i

j<i j<i
independently on 1.

6.2. The general case. We write f; = Y ;>0 fir Where f;, € F,. Using the same
estimates as in the proof of the bilinear case, we arrive at

B B
/) I Hf]

n )\ipl )\ann
SO0 Tl e (dua)ﬁ
)\2‘1 4 )\’Ln

i1,ein 20 5=1

B B
Ai \ ™ Aipoy \ 7"
5 E: HHfZZJ”Ldea) (<A1> 7..-,<)\'1> )7
11y..00n 20 j=1 in in

where (I)n—1(2’1, ey Zpe1) = ﬁ For simplicity, let us just write this numer as
1
@' Note that ®; = ® defined in the bilinear case. Again, we can write

~ n 1 F17"'7Fn71)7Fn>22(N)7 (62)

/ N Hfg

where Fj = (|| fi; || ,»i; )Jiz0, and T;,_1 is the (n — 1)-linear operator defined by
(T(Xla s 7Xn—1))in = Z (I)Zh 7Zn)(lc ik
115eenyin—120

Note also that 77 = T defined in the bilinear case. One can readily see from (6.2) that
Theorem D follows from the continuity of 7}, as an operator ]2 Leri — ¢Pn and that
from Schur’s test, this is in turn a consequence of the bounds

sup > Lt < o0, (6.3)

i =0 ;

115050 —120

and o
sup > Dl < o0 (6.4)

11500in—120 5 >0

We start by explaining how one can obtain (6.3). We proceed by induction on n > 1. The
bilinear cases serves as the basis step. Assume that the result has been obtained for any
k <n —1, let us prove it for n — 1. We use the same strategy as in the bilinear case by

writing
Z (I)zl, sin Z (I)ll, ,zn Z (I)zl, ,zn Z (I)Zl, -2

81 yenestn—120 81 yeensin—120 11 4eenytn—120 81 yeensbn—120
in >ln—1 In—1~n in<Kin—1

= A1(in) + Az(in) + As(iyn).

The term As(i,) is easily estimated, as one observes that on a neighbrhood of z,, 1 = 1,
there holds uniformly on (1, ..., 2, o) that:

(I)n,1<.]71,...737n,1) ~ (I)n,2<.]717...737n,2), (65)
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from which
As(in) S Z (I)“72’Zn 2iin1 S

~Y n—

11, 0yin—220

uniformly in 4, thanks to the induction hypothesis.
In order to handle A;(,) we rely on the fact that for any z1,..., 2,1 > 0 there holds
(I)n,1<21, ey anl) < anlq)nfg(zl, e ey ang), (66)
so that
8 8
)\i L ) i )\Z P
Al(’ln>§ Z Z ( n—l) @1727n 27n< Z < n—l) gl
11,eensin—2201n_1<in )\Z" n—1<Kin in

where we have used the induction hypothesis and explicit bounds detailed in the bilinear
case.

In order to handle A3(i,) we observe that by interpolating the two straightforward bounds

n— 1 n—
b, q(v1,...,70-1) < L1 2 lpn - and @, _1(x1,...,Tn 1) < T1... Ty 0T, 1" ", we have
for any 6 € (0, 1) to be chosen later:

Iail 4+ ta
T1...Tp-2 1—pp_10 e
q)n—l(xlv"'axn—l) < <1+le)1 _i_._._zxin:;)lfexn}{n ! 5 ¢n—1($1,---,$n—2) Tp_ 17 (6 7)

where 6 = p,_10 — 1. We claim that we can choose 6 such that § > 0 and also that
pi(1—60) > 1foralli € {1,...,n—2}. This can be done by choosing 6 > max{z%, 1—1%,2' =
1,...,n— 1}. With this choice (which is independent of i,,) we obtain

Mpi ) My}
Ag(in) S 30 X (—) DY (T) <1,

i1yeensin—2201p_1 >0 in I 1>in_1 in

where in the last line we have used that one can actually also run the induction for the
function ®,,_, at the previous step, as the important conditions are met: the function
satisfies (6.6), (6.5) and will also satisfy (6.7) because p;(1 — ) > 1.

Let us finish the proof by explaining how to derive (6. 4) This time we write
Sl = Y @t Y et Y el
in>0 in>in—1 inRin—_1 in<in—1
= By(i1,...,in_1) + Bo(i1, ..., in_1) + B3(i1, .., 0n_1)-
Using (6.5) (resp. (6.6) and (6.7)) we can estimate
Bo(in, .. yin1) S > @by <

Gy R — 1
B

A/L bn 7 7 7
Bl(Zl,,'ln,l) SJ Z (%) @711;2771 2,tn < 1’

Z‘n>>in—1

in
and
VI
Bi(ir, .. in1) S ) (T) o, S
in<Kin—1
where we have used the induction in both cases (and variant of the induction for the last
one).

in
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