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ABSTRACT
It is known that fluid-saturated microperforated plates (MPP) dissipate energy and are substantially
damped through thermoviscous dissipation taking place in the thermoviscous skin on the solid wall
of the perforations. The aim of this work is to explore the acoustic radiation of a microperforated
periodic cell to investigate the intercellular coupling and the complexity of near-field radiation, and
to derive a criterion related to the near-field far-field transition. A numerical modeling using the
finite element method is developed to solve the elastic and thermo-visco-acoustic (TVA) multiphysics
problem. The TVA calculates explicitly the thermoviscous losses on the acoustic wave in the periodic
cell studied. Numerical results show that the distance of the near-far field transition is significant at
low frequencies, passing through a minimum for a frequency depending on perforation parameters
(diameter and ratio) before increasing again as a frequency function. The radiated acoustic power and
radiation efficiency are compared with those derived from the theoretical MPP vibration model. It is
found that the microperforations and resulting added damping, around a characteristic frequency,
reduce the acoustic radiation efficiency of the MPP compared to the corresponding non-perforated
plate.

1. INTRODUCTION

Microperforated plates (MPP) dissipates energy through the coupling of reactive and resistive effects
of a viscothermal nature [1]. These mechanisms are widely used to improve acoustic absorption,
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but also have an influence on the dynamic behavior of the MPP. However, few research studies have
focused on the influence of viscous dissipation on MPP dynamics. Studies have focused mainly on
i) the influence of vibration on the acoustic response of the plate [2–4], ii) acoustic radiation [2–4]
and iii) acoustic transmission [4, 5].

A previous work by the authors [6] proposed to use MPP to reduce the contribution of low-
frequency modes of vibration in the response. Due to the thermoviscous interactions occurring in
the thermoviscous skin on the solid wall of the perforations, these systems dissipate vibratory energy
efficiently. The dissipation mechanism reaches a maximum at a given characteristic frequency, and
increases in significance the more this frequency is in the low-frequency range. For MPP whose
perforation diameter is of the order of the boundary layer thickness, the motion of the solid part
of the MPP will drive the fluid into the microperforations. During motion of the plate in a fluid
environment, it radiates acoustic waves, which are the source of structure-borne noise. In the
case of an MPP, two elements are radiated: i) the fluid in the perforations, ii) the solid part of the
MPP. The added damping exhibited by MPP can have an influence on the acoustic radiation of the
structure.

The vibration of fluid-saturated porous plate was already explored [7] by using the classical
approach of radiated plate [8]. However, it is now established that MPP can be identified with
equivalent porous plates [9].

This contribution propose therefore to investigate the influence of the added damping on
the acoustic radiation of an MPP saturated by lightweight fluid. It is organized as follows. First in
Section 2 the equations of motion for a microperforated plate moved by a light fluid are established.
Section 3 details the implemented finite element model and Section 4 discusses the results.

2. THEORETICAL BACKGROUND

2.1. Equations of motion of the fluid-saturated microperforated plate

The investigated structure is a cantilever rectangular microperforated plate (MPP) of dimension
Lx ×Ly ×h oriented in the (x, y)-plane immersed into a fluid domain. The MPP is placed in a
rectangular opening in a rigid, immobile wall separating two fluid media. The plate can be excited
mechanically by a driving external force fext(x, t), acoustically by a pressure difference ∆P (x, t)
between the plane z =−h/2 and z =+h/2, or acoustically and mechanically through a combination
of the two external excitations. The point x ≡ (x, y) defines the transverse coordinates. Using an
alternative form of Biot’s theory, the model developed in the framework of porous plates in [10] is
adapted to the considered MPP. An ad hoc homogenization procedure is performed, leading to two
coupled partial differential equations (PDEs) that govern the dynamics of a structural plate and a
virtual fluid plate [6]:

h(ρẅs(x, t )+ρfẅ(x, t ))+D(φ)∇4ws(x, t ) = fext(x, t ), (1a)

ρfhẅs(x, t )+ hρfα∞
φ

ẅ(x, t )+hσẇ(x, t )+hαMf∇2ws(x, t ) =∆P (x, t ), (1b)

where ws(x, t ) is the solid motion displacement and w(x, t ) corresponds to the relative fluid-solid
motion displacement. Obtained by identifying the MPP with a porous plate [9], they account for the
vibratory behavior of the MPP. The pressure difference ∆P corresponds to the boundary conditions
applied to the fluid at z =−h/2 and z = h/2. For a purely mechanical excitation, the term ∆P (x, t ) is
set to zero. For a purely acoustic excitation, at the surface of the plate, the total pressure exciting the
plate is the blocked pressure. Thus, the external loading in Equation (1a) corresponds to the blocked
pressure 2P with P the incident pressure [11], while that applied to Equation (1b) corresponds to
φP [10]. In the remainder, only a purely mechanical excitation is considered.

In Equation (1a), the fluid-solid mixture density is described by ρ = (1−φ)ρs +φρf where
ρs and ρf are respectively the solid and the fluid density with φ, the perforation ratio. In order
to consider the influence of the microperforations in the MPP stiffness, the bending stiffness
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coefficient reads

D(φ) = EC (φ)h3

12(1−ν2)
with C (φ) = (1−φ)2

1+ (2−3ν)φ
(2)

where E and ν are respectively Young’s modulus and Poisson’s ratio of the non-perforated plate.
The parameters α and Mf are the elastic coefficients defined by Biot [12]. Equation (1a) represents
the elastic response of the homogeneous solid plate while Equation (1b) describes the relative fluid-
solid motion. Elastic interactions are quantified by the α-dependent term. Inertial interactions are
described by the acceleration terms. In this model, all Johnson-Champoux-Allard (JCA) parameters
defined for a porous medium can be translated to an MPP as being functions ofφ and d . Accordingly,
resistivity and tortuosity are defined by

σ0(φ,d) = 32µf

φd 2
and α∞(φ,d) = 1+ 2ϵ(φ,d)

h
(3)

where µf is the fluid dynamic viscosity and ϵ(φ,d) = 0.24
p
πd 2(1−1.14

√
φ) [9] is an end correction

factor used to consider the fluid radiation inside the perforations and the distortion of the fluid flow
at the perforation orifices. Details about the analytical resolution are given in [6]. For an MPP, the
added damping is maximal at the characteristic frequency [6]

fc(d) = 32µf

2πα∞ρfd 2
(4)

where d can be adjusted to induce maximum added damping at the resonance frequency by forcing
fc(d) to coincide with a resonance frequency of the MPP.

2.2. Radiation impedance

The acoustic radiation of a vibrating MPP immersed in a fluid domain is considered in this section.
In addition to the fluid in the perforations, it is then necessary to consider the external fluid loading
on the structure and the resulting fluid-structure interaction. Since the MPP appears as a continuous
medium at the wavelength scale, the results of classical plate theory can be applied. Fluid loading is
introduced into the equations of motion by the addition of a coupling term, dependent on ws(x, t ).
This acoustic source involves the acoustic radiation impedance and is expressed as

qi (x, t ) =− jω
∞∑

k=1
Zi k (ω)(1−φ)w s

k (t )Ψk (x), (5)

where the radiation matrix impedance given by

Zi k (ω) = jωρf

∫
S

∫
S1

Ψi (x)G(x,x1)Ψk (x1)dS1dS with k = (p, q), (6)

is associated with the contribution of the surface elements S1 and S. Equation (6) involves the
position vector of a transmitting element x and a receiving element x1. In Equation (6), the Green
function is defined for a half-space as

G(x,x1) = exp(− jω∥x−x1∥)

2πc0 ∥x−x1∥
. (7)

The operator ∥·∥ refers to the norm between x and x1 and c0 is the fluid celerity. When the distance
∥x−x1∥ tends towards zero, Green’s function becomes singular. To deal with this singularity and
ensure numerical convergence of the integral, a quadruple Riemann sum is performed to obtain an
approximation of Equation (6).
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2.3. Vibroacoustic indicators

The three main vibroacoustic indicators are calculated in this work: (1) the radiated sound power
that corresponds to the sound energy radiated by the baffled microperforated plate; (2) the mean
square velocity that leads to the global dynamic behaviour of the MPP; (3) the radiation efficiency
the expresses the part of the vibration energy that is transformed into sound. Radiated sound power
is defined as the integration of sound intensity over the surface of the plate over a period of time,
that is

W (ω) = ω

2π

∫ 2π
ω

0

∫
S

P (x, t )ẇtot(x, t )dSdt (8)

where wtot(x, t) = ws(x, t)+w(x, t) is displacement field in the vicinity of the plate surface. The
function P (x, t ) is the surface acoustic pressure given by

P (x, t ) =−ρfω
2
∫

S1

wtot(x1, t )G(x,x1)dS1. (9)

The mean square velocity is the space-time average of the squared velocity of the plate

V 2(ω) = ω

2πLxLy

∫ 2π
ω

0

∫
S
|ẇtot(x, t )|2dSdt . (10)

From radiated sound power and the mean square velocity derives the acoustic radiation efficiency

s(ω) = W (ω)

ρfc0V 2(ω)LxLy
. (11)

3. FINITE ELEMENT MODELING

In order to validate the model proposed in Section 2, an MPP embedded in a fluid medium is
considered as schematized in Figure 1. The losses occurring in the thermal and viscous boundary
layers near the walls are considered by solving the equations of the thermoviscous problem
(the linearized Navier-Stokes equations). These equations are implemented in the COMSOL
Multiphysics software package in the Thermovisous Acoustics module (TVA) [13].

z

x

y
Fluid domain

fext(x0, y0, t)

Z0 = ρfc0

Z0 = ρfc0

Clamped

Figure 1: MPP of dimension 131mm×30.7mm×1mm clamped at x = 0 and mechanically excited at
abscissa x0. The diameter of the perforations d = 1mm is chosen to maximize the damping added
to the first MPP mode, and the perforation ratio is φ= 10%. The far field is modeled by applying an
impedance Z0 on both sides of the fluid domain. The fluid in the perforations is modeled using the
TVA approach to account for visco-thermal losses.
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The mechanical parameters of the MPP are listed in Table 1. The finite-size MPP is enclosed
in a baffle that separates two external air environments, enabling the acoustic load on both surfaces
(at z =−h/2 and z = h/2) of the MPP to be considered. A pointwise forcing fext(x, y, t ) of amplitude
Fext = 1N is applied at the point (x0, y0) = (115.65mm,30.7mm). In Figure 1, the far field is modelled

Microperforated plate

Lx (mm) 131

Ly (mm) 30.7

h (mm) 1.0

φ (%) 10

d (mm) 1

Fluid and solid mechanical parameters

ρs (kgm−3) 7850

ρf (kgm−3) 1.213

E (GPa) 203

ν 0.3

ηs 10−4

Table 1: Numerical values implemented in the finite element modeling.

by applying the impedance Z0 = ρ0c0 at z =±700mm. As the analytical model is homogenized, the
radiated sound pressure is calculated by EF far from the perforations at z = 700mm, to compare the
numerical and theoretical predictions. In fact, local radiation close to the perforations develops
into a cylindrical wave at medium distance and then becomes flat in the far field.

The TVA interface is governed by the equation of continuity, the equation of conservation
of momentum and the equation of conservation of energy. These equations are solved, between
10 Hz and 90 Hz with a frequency step of 5 Hz, in conjunction with the bending equations governing
the dynamics of the solid part of the MPP. Around the fist MPP resonance f1 ≈ 48Hz, a frequency
refinement with a step size of 0.5 Hz is performed. Analytical and numerical results are presented
in Section 4.

4. RESULTS AND DISCUSSIONS

In Figure 2, the analytical acoustic radiation efficiency obtained from Equation (11) is presented.
The MPP is compared to the reference non-perforated plate.
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Figure 2: Radiation efficiency as a function of the forcing frequency obtained via Equation (11):
( ) MPP described in Table 1, ( ) reference non-perforated plate.

The perforation diameters are chosen to induce maximum added damping around the
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first vibration mode of the MPP. Figure 2 shows that the acoustic radiation efficiency decreases
substantially between microperforated and nonperforated plates. The presence of perforations on
the structure reduces its density, rigidity and thus its radiating surface. Moreover, in Figure 2, the
reduction in acoustic radiation efficiency is greater in the low-frequency range for the MPP than for
the reference plate without perforation. This is because the damping added by the perforations,
which is a low frequency effect acting around the characteristic frequency and reduces the amplitude
of displacement of the structure. The result is a reduction in acoustic radiation. The result is a
reduction in acoustic radiation in the low-frequency range. The added damping effect has no
influence in the high-frequency range, thus the reduction in radiation efficiency is due exclusively
to the reduction in radiating surface.

The finite element modeling presented in Section 3 is used to validate the analytical model.
Only the first MPP resonance is considered here in order to observe the influence of dissipative
effects, which are maximal around f1. The radiated sound power is obtained using both methods
(analytical from Equation (8) and finite element) and is presented in Figure 3.

40 45 50 55 60
−50

−40

−30

−20

−10

0

f = ω/2π (Hz)

10
lo

g 1
0(

W
(ω

))
(d

B
)

Figure 3: Radiated acoustic power obtained as : ( ) finite element method; ( ) analytical approach
via Equation (8). The parameters of the cantilevered MPP considered are given in Table 1.

Comparisons between analytical results and those provided by the finite element method
validate the analytical model.

5. CONCLUSION

This paper suggested to apply classical plate acoustic radiation theory in order to explore the
MPP acoustic radiation. Homogeneous fluid and solid vibration fields were calculated from the
analytical model proposed in [6]. It was shown analytically that under mechanical and acoustic
excitation, microperforations significantly reduce the structural acoustic radiation efficiency around
the characteristic frequency. In fact, the reduction in acoustic radiation is due to i) the reduction in
radiating surface induced by the microperforations and ii) the reduction in vibration amplitude
due to the added damping resulting from visco-thermal dissipation in the perforations around
the characteristic frequency. Numerical modeling using the finite element method was also
implemented to solve the multiphysics elastic and thermo-visco-acoustic (TVA) problem, validating
the proposed model.
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