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ABSTRACT
Microperforated plates (MPP) can add substantial damping in the low-frequency range. MPP are
known to dissipate energy through thermo-viscous interactions between shearing adjacent fluid
layers near the perforation solid walls. Under linear operating conditions, a previous work carried
out by the authors showed that the added damping reaches a maximum at a characteristic frequency
which solely depends on the perforation parameters. However, MPP is also suitable in environments
subject to high levels of mechanical excitation and, consequently, high fluid velocity within the
perforations. Two types of nonlinearities should then be considered: (1) an acoustic nonlinearity
induced by high fluid velocity, and (2) a nonlinearity induced by large structural displacements. This
work only explores the former. The acoustic nonlinearity is modelled by the Forchheimer resistivity
correction, a function of the fluid-solid relative velocity in the perforations, introduced into the
equations subsequently solved numerically. Experimental measurements using a laser vibrometer on
a perforated cantilever beam validate the proposed model. Results show that, under high excitation
levels and at the characteristic frequency, the maximum added damping can reach a maximum,
depending on the MPP parameters, at a critical value of the relative fluid-solid velocity.

1. INTRODUCTION

Microperforated plates (MPP) are mainly known for their advantageous acoustic properties and
much less for their vibratory properties. When coupled with an air cavity [1], they are efficient
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acoustic absorbers due to the coupling of reactive and resistive effects of viscothermal nature [2].
They also have the advantage of being able to be manufactured from a multitude of materials.

In a linear acoustic framework, the acoustic absorption of MPPs was studied using models
based on i) the work of Champoux and Stinson [3] and the Johnson-Champoux-Allard model
applied to perforated plates [4] as well as ii) Kirchhoff’s equations [1]. However, MPP are likely to be
implemented in hostile environments and it is important to note that these structures are sensitive
to the amplitude of excitation [5–7]. Extensions to a nonlinear acoustic regime were carried out
using Forchheimer’s law and demonstrated maximum acoustic absorption for a critical value of
fluid velocity [6].

A previous work by the authors demonstrated that MPPs are good potential candidates for
the passive damping of low-frequency vibrations [8]. MPP can dissipate vibrational energy by
thermo-viscous interactions taking place in the thermoviscous skin at the level of the solid wall
of the perforation. These mechanisms lead to added damping, which reaches a maximum at a
characteristic frequency of vibration. However, the above study was limited to small perturbations.
The present proceeding extends the analysis to a nonlinear framework involving Forchheimer’s
nonlinear acoustic law.

It is organized as follows: Section 2 briefly recalls the linear vibration model and extends it
to the nonlinear domain, proposing to use the Forchheimer law. Section 3 presents the analytical
results, while Section 4 presents the experimental ones.

2. THEORETICAL BACKGROUND

2.1. Linear model: governing equations

A microperforated plate of dimension Lx ×Ly ×h in the x y plan vibrating under linear operating
conditions is considered. The MPP is excited by a punctual driving for fext(x, t) where vector
x ≡ (x, y) are the spatial coordinates. The model developed for porous plates immersed in a fluid
of density ρf and of bulk modulus Kf [9] is adapted to the context of MPP using an alternative
form of Biot’s theory. A homogenization procedure is performed, leading to two coupled partial
differential equations (PDE) governing the solid motion ws(x, t) and the homogenized relative
fluid-solid motion w(x, t ) that verify [8]

h(ρẅs(x, t )+ρfẅ(x, t ))+D(φ)∇4ws(x, t ) = fext(x, t ), (1a)

ρfẅs(x, t )+ ρfα∞
φ

ẅ(x, t )+σ0ẇ(x, t )+Kf∇2ws(x, t ) = 0. (1b)

Equation (1a) captures the elastic response of the plate and Equation (1b) characterizes the dynamic
of a virtual homogenized fluid plate and captures the elastic coupling between the solid and the
surrounding fluid into the perforations. The bending coefficient D(φ) depends on the perforation
ratio φ and thus captures the influence of the perforations on the MPP stiffness:

D(φ) = EC (φ)h3

12(1−ν2)
with C (φ) = (1−φ)2

1+ (2−3ν)φ
, (2)

where E is Young’s modulus of the non-perforated plate and ν is Poisson’s ratio which is assumed to
be independent of φ. The airflow resistivity and the tortuosity are written in terms of d as

σ0(d ,φ) = 32µf

φd 2
and α∞(d ,φ) = 1+ 2ϵ(d ,φ)

h
(3)

where µf is the constant fluid dynamic viscosity and ϵ(d ,φ) = 0.24
p
πd 2(1 − 1.14

√
φ) [4] is a

correction factor used to reflect the fluid radiation inside the perforations, the distortion of the fluid
flow at the perforation orifices and the interactions between flows in the vicinity of perforation
orifices. In [8], it was shown that for a mechanically excited MPP, substantial added damping can be



Proceedings of INTER-NOISE 2024

achieved in the low-frequency range. This added damping reaches a maximum at the d-dependent
characteristic frequency

fc(d) = 32µf

2πα∞ρfd 2
. (4)

The perforation diameter d can then be adjusted to induce maximum damping on a resonance
frequency of a plate fi by forcing fi to coincide with fc. In the remainder, this concept of added
damping is extending to the nonlinear framework by using the Forchheimer law [6, 7].

2.2. Nonlinear MPP model: governing equations

The linear model developed above is only valid for small displacements. If the transverse
displacement of the solid increases, the fluid velocity in the microperforations becomes sufficiently
high for the resistance and inertia effects occurring in the microperforations to become significant.
They are modeled using Forchheimer’s law applied to the relative fluid-solid velocity, such as

σ(ẇ(x),ε) =σ0(1+ε|ẇ(x)|) (5)

where ε is the Forchheimer parameter obtained by experimental measurement using a high airflow
resistivimeter. Inserting Equation (5) into Equation (1) yields the updated system of PDEs

h(ρẅs(x, t )+ρfẅ(x, t ))+D(φ)∇4ws(x, t ) = fext(x, t ), (6a)

ρfẅs(x, t )+ ρfα∞
φ

ẅ(x, t )+σ0ẇ(x, t )(1+|ẇ(x, t )|)+Kf∇2ws(x, t ) = 0. (6b)

In the experimental setup presented in Section 4, the MPP is subject to a base excitation. It is
also proposed in the following to adapt Equation (6) in the case where a harmonic acceleration is
imposed at a point of the structure. The total solid and the relative fluid-solid displacement are
therefore decomposed into

w(x, t ) = wr(x, t )+we(t ) and ws(x, t ) = wsr (x, t )+we(t ) (7)

where we(t ) is the harmonic base acceleration with ẅe(t ) = γe exp( jωt ) with γe, the amplitude of
the base acceleration and ω, the corresponding angular forcing frequency. The relative motion of
the solid with respect to the base is denoted, wsr (x, t) while the displacement relative to the base
motion of the fluid-solid relative displacement writes wr(x, t ). Injecting Equation (7) in Equation (6)
leads to

hρẅsr +hρfẅr +D(φ)∇4wsr =−ẅe(hρ−φhρf), (8a)

ρfẅsr+
ρfα∞
φ

ẅr+σ0(ẇr−φẇe)+σ0ε(ẇr−φẇe)|ẇr −φẇe|+Kf∇2wsr =−ẅe(ρf −ρfα∞). (8b)

The relative plate motion as well as the relative virtual fluid plate motion are decomposed using the
normal modes of the plate without perforation,Ψi (x), that is

wsr (x, t ) =
N∑
i

w sr
i (t )Ψi (x), and wr(x, t ) =

N∑
i

w r
i (t )Ψi (x) (9)

where i is the index of the considering mode and N is the number of dof in the discretization. After
space semi-discretization, the system of nonlinear PDE is solved numerically using the harmonic
balance method. Details about the numerical resolution procedure are provided in [10].
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3. THEORETICAL RESULTS

3.1. MPP forced response

The response of a cantilever microperforated beam of dimension 280mm×30mm×1mm, subjected
to a base excitation at the point (0,Ly /2), is explored in this section using the previous proposed
model. To facilitate comparison between theory and experiment presented in Section 4, the plate
is chosen to be longer (along x) than wider (along y). Accordingly, modeshapes along y do not
participate in the low-frequency range. The perforation diameter and ratio are set to d = 2.8mm
andφ= 10%, respectively. The Forchheimer parameter ε= 1.42sm−1 was experimentally measured.
Figure 1 represent the frequency response

FX =
∣∣∣wsr (xm ,Ly /2)

γe

∣∣∣ (10)

predicted by the model for the MPP at point (xm ,Ly /2) = (260,15) mm for four values of γe. The
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Figure 1: Relative displacement normalized by the base acceleration as a function of the
dimensionless angular frequency: ( ) γe = 0.1mms−2, ( ) γe = 35mms−2, ( ) γe = 135mms−2

and ( ) γe = 200mms−2.

angular forcing frequency ω is normalized with respect to the first natural frequency ω1 of the MPP.
From Figure 1, two important effects are observed as the amplitude of excitation γe increases: i) the
stiffness of the system is reduced and ii) damping is effectively increased for the considered MPP.
Indeed, the maximum amplitude of displacement decreases and passes through a minimum before
increasing with γe.

3.2. Sensitivity of MPP vibratory response to nonlinear damping

As previously mentioned, the additional damping in MPP, influenced by viscous dissipation, is
determined by the airflow resistivity. In a nonlinear acoustic context, it was noted that the maximum
of the absorption coefficient passes though a maximum when the nonlinear normalized resistance

RNL(d , ẇ(x, y, t )) = RL(d)(1+ε|ẇ(x, y, t )|), with RL(d) = hσ0(φ,d)

ρfc0φ2
, (11)

is equal to 1 [6]. The same observations are valid for a vibrating MPP operating under a nonlinear
acoustic condition, and the maximum added damping is reached at RNL(d , ẇ(x, y, t)) = 1. Since
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RNL(d , ẇ(x, y, t )) is an increasing linear function of ẇ(x, y, t ) three cases are defined from the value
of RL(d), resistance in the normalized linear domain:

RL < 1 the maximum added damping increases with relative fluid-solid velocity until it reaches its
maximum, for RNL(d , ẇ(x, y, t )) = 1, then decreases with the relative fluid-solid velocity.

RL = 1 the maximum added damping is already at its maximum in the linear regime, so the maximum
damping will decrease with the relative fluid-solid velocity.

RL > 1 the maximum added damping will decrease with the relative fluid-solid velocity without ever
passing its maximum in the nonlinear regime.

In Figure 1, the perforation diameter and perforation ratio are chosen so that RL < 1. Analytical
results can be analyzed using nonlinear normalized resistance. Thus, in Figure 1, RNL(d , ẇ(x, y, t )) is
less than 1 for γe = 0.1mms−2, greater than 1 for γe = 135mms−2 and 200 mms−2 and equal to 1 for
γe = 35mms−2. The last case represents the limit case for which nonlinear dissipative mechanisms
are maximized. The corresponding relative fluid-solid velocity is noted critical relative velocity and
reads

Vc =
I (3)

1

I (4)
1

ωρfα∞−σ0φ

σ0φε
, (12)

where V is the amplitude of the relative fluid-solid velocity and I (3)
1 and I (4)

1 are spatial integrals
related to the beam functions in the spatial projection of the coupled equations for the first linear
plate mode. Equation (12) is obtained by solving

∂η1(ω,V ,ε)

∂V
= 0, (13)

where η1(ω,V ,ε) is the added nonlinear loss factor, achieved by adapting the linear loss factor to a
nonlinear setting using Equation (5), yielding

η1(ω,V ,ε) =−hωI (2)
1 I (3)

1

D I (1)
1

· Kfφ
2ρfσ0(I (3)

1 +εV I (4)
1 )

(α∞ρfωI (3)
1 )2 + (σ0(I (3)

1 +εV I (4)
1 ))2

. (14)

4. EXPERIMENT

4.1. Experimental set-up

The experimental set-up used to validate the proposed model is presented in Figure 2. An aluminum

x
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Shaker
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Figure 2: Experimental MPP set-up with the excitation point xe and observation point xg . The
aluminum MPP has dimension 560mm×30mm×1mm.

MPP of dimension Lx = 280mm, Ly = 30mm and h = 1mm is excited at the point xe and a laser
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vibrometer measures the structure velocity at the point xg . The perforation parameters are set to
d = 2.8mm and φ= 10%. In order to reproduce cantilever beam conditions, the MPP is excited at
its center by a normal displacement imposed on the z axis [11]. In this configuration, only the even
modes of a free beam are participating. The amplitude of the base acceleration γe, which acts as a
reference force, is maintained constant regardless of ω and the frequency response

FV =
∣∣∣ ẇsr (xm ,Ly /2)

ẇsr (xe,Ly /2)

∣∣∣, (15)

is archived.

4.2. Results

The structure is excited by a harmonic base acceleration, ẅe(t ) = γe cos2π fe, sweeping the forcing
frequency fe around the first MPP resonance f1 with a frequency step of 0.1 Hz. In Figure 3, the
normalized velocity Vs/Ve is plotted as a function of fe/ f1, where f1 = 9.28Hz is the first natural
resonance frequency of the MPP, for four values of base acceleration: γe = 10, 45, 60 and 80mms−2.
The velocities Vs and Ve correspond respectively to the end beam velocity and the base velocity,
both measured with the laser vibrometer. Comparisons between the experimental measurement
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Figure 3: Microperforated plate velocity normalized by base velocity around the first plate
resonance f1 for four base acceleration: ( ) γe = 10mms−2; ( ) γe = 45mms−2; ( ) γe = 60mms−2;
( ) γe = 80mms−2. Experimental results shown as markers and corresponding analytical results as
solid lines. Experimental results obtained through the set-up presented in Figure 2 and solving
Equation (8) with ε= 1.42sm−1.

points and the analytical responses obtained by solving Equation (8) validated the accuracy of
the proposed model. In addition, the maximum of the normalized velocity amplitude passes
through a minimum that corresponds to the maximum of the added damping. Three steps can be
distinguished as excitation amplitude increases : 1) the maximum response amplitude decrease
i.e. the added damping increase, 2) the maximum response amplitude passes to a minimum i.e.
the added damping is maximum and the relative fluid-solid velocity is equal to the critical relative
fluid-solid velocity given in Equation (12), 3) the maximum of response amplitude increase i.e. the
added damping increase.
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5. CONCLUSION

This paper investigated the vibratory response of a fluid-saturated microperforated plate (MPP)
within a nonlinear acoustic framework. As an extension of the vibration MPP model exposed in [8],
an analytical model using Forchheimer’s law is proposed and takes the form of two PDEs with
an added damping term capturing the resistivity effect induced by acoustic nonlinearities. The
analytical model is validated by experimental measurements. This added damping in a nonlinear
acoustic context is related to the fluid-structure coupling and therefore to the fluid velocity in the
perforations. The results show that the maximum of added damping obtained for f ≈ fc(d) can
reach a maximum at a critical relative velocity achieved when the normalized nonlinear resistance
of the MPP is equal to 1. In order to obtain the maximum added damping in a nonlinear acoustic
regime, MPP with a normalized linear resistance of less than 1 is recommended.
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