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WARPED KERNEL ESTIMATOR FOR I.I.D. PATHS OF DIFFUSION PROCESSES

NICOLAS MARIET AND AMELIE ROSIER®*

ABsTrACT. This paper deals with a nonparametric warped kernel estimator b of the drift function com-
puted from independent continuous observations of a diffusion process. A risk bound on b is established.
The paper also deals with an extension of the PCO bandwidth selection method for b. Finally, some
numerical experiments are provided.

MSC2020 subject classifications. 62G05 ; 62MO05.
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1. INTRODUCTION

Consider T' > 0 and the stochastic differential equation
¢ ¢
(1) X =x9 +/ b(Xs)ds +/ o(Xs)dWs ; t € [0,T],
0 0
where b,0 : R — R are two continuous functions and W = (W})¢(o,7] is a Brownian motion.

Since the 1980’s, the statistical inference for stochastic differential equations (SDE) has been widely
investigated by many authors in the parametric and in the nonparametric frameworks. Classically (see
Hoffman [22], Kessler [24], Kutoyants [26], Dalalyan [11], Comte et al. [7], etc.), the estimators of the
drift function are computed from one path of the stationary solution of Equation (1), which exists and is
unique under a restrictive dissipativity condition on b, and converge when T goes to infinity.

Let Z(.) be the It6 map for Equation (1) and, for N € N* copies W', ... , W of W, consider
Xt i=T(wg, W' ; Vi {1,...,N}.

The estimation of the drift function b from continuous-time and discrete-time observations of (X1, ..., X%)
is a functional data analysis problem already investigated in the parametric framework (see Ditlevsen and
De Gaetano [18], Overgaard et al. [29], Picchini, De Gaetano and Ditlevsen [30], Picchini and Ditlevsen
[31], Comte, Genon-Catalot and Samson [8], Delattre and Lavielle [14], Delattre, Genon-Catalot and
Samson [13], Dion and Genon-Catalot [17], Delattre, Genon-Catalot and Larédo [12], etc.) and more
recently in the nonparametric one (see Comte and Genon-Catalot [5, 6], Comte and Marie [10], Della
Maestra and Hoffmann [15], Marie and Rosier [27], Denis et al. [16]).

Key words and phrases. Diffusion processes ; Nonparametric drift estimation ; Warped Kernel estimator ; PCO method.
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Under the appropriate conditions on b and o recalled in Section 2, for every ¢t € (0,T], the distribu-
tion of X; has a density p;(zo,.) such that s — p,(xg, ) belongs to L!(]0,T]) for every z € R. Then, for
a given tg € [0, 7], one may define

T
f(zx) ::Tito/t pi(xo,x)dt and F(z / f(z

for every x € R. Clearly, f is a density function:

00 1 T oo
/ fz)dz = Tt / / pe(xo, x)dxdt = 1.
—00 to —00

Let K : R — R be a kernel (i.e. an integrable function such that [ K = 1), and consider Kj(z) :=
h=1K(h~'x) with h € (0,1]. Our paper deals with the warped kernel estimator

gN,h(x) = BN,}L(F;F(-T)) L E R

of the drift function b, where
N T

N 1 . ,
B (s z) = N(T —1y) Z; . Kn(z = ¢(X{))dX{

for every ¢ € C°(R) and z € R. From independent copies of X continuously observed on [0, T, /Z;Nyh is
a natural extension of the warped kernel estimator already well-studied in the nonparametric regression
framework (see Chagny [1]). The paper also deals with the adaptive estimator

by () == by ; (),

where 7 is selected via a penalized comparison to overfitting (PCO) type criterion. Finally, in practice,
the function F' is unknown and has to be replaced by the estimator

. 1 N T
F = 1yio. . dt
w () N(T —tp) ;/fo Xise

in the definition of BN,h. Precisely, ZN’h is approximated by

by (x) = By n(Fi Fn(x)).
Section 2 deals with a rlsk bound on the warped kernel estimator and Section 3 with a risk bound on

the adaptive estimator bN Section 4 deals with some numerical experiments on bN n- The proofs are
postponed to Section 5.

Notations and basic definitions:

e The space COQR) is equipped with the uniform (semi-)norm ||. |-
e For every p € N, CL(R) := N_{p € CP(R) : ¢) is bounded}.
o For every p > 1, LP(R, dx) is equipped with its usual norm ||.||,:

o0 1/p
o= ([ wtarar) " vo e Lr@.an)

— 00

e H? is the space of the processes (Yi)tejo, 1), adapted to the filtration generated by W, such that

T
/ E(Y)dt < co.
0

e For a given kernel §, the usual scalar product on L2(R, 6(z)dz) is denoted by (.,.)s, and the asso-
ciated norm by ||.||s. For every A, B € R such that A < B, the usual norm on L?([A, B], §(x)dz)
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2. RISK BOUND ON THE WARPED KERNEL ESTIMATOR

In the sequel, in order to ensure the existence and the uniqueness of the (strong) solution of Equation
(1), and to ensure that the distribution of X; has a regular enough density p;(xo,.) for every t € (0,T]
(see Remark 2.2), b and o fulfill the following assumption.

Assumption 2.1. The function b is Lipschitz continuous, o € Cﬂ) (R), o’ is Holder continuous and there
exists a > 0 such that

lo(z)] > a ; Yz € R.

Remark 2.2. By Menozzi et al. [28], Theorem 1.2, for any t € (0,T], the distribution of X; has a
continuously differentiable and sub-Gaussian density pi(zg,.) such that pi(ze,R) C (0,00), z € R —
0.p¢(wo, 2) is also sub-Gaussian and s € (0,T] > ps(xg, 2) belongs to L1 ([0,T],dt) for every z € R. First,
by this last point,

. T .
F() :[ f(z)dz = Tito/ F,(.)ds with F(.) ::[ ps(xo,2)dz ; Vs € (0,T]

to

is well-defined (even when to = 0). Moreover, Fy (and then F) is strictly increasing and one-to-one from R
into (0,1) because pi(xo,.) is continuous and p(xo, R) C (0,00). Finally, since pi(xo,.) is sub-Gaussian,
b and o belong to L2(R, f(2)dz).

The kernel K fulfills the following usual assumption.

Assumption 2.3. The kernel K is symmetric, continuous and belongs to L?(R, dx).

The following proposition deals with a risk bound on EN’;L.

Proposition 2.4. Consider A, B € R such that A < B. Under Assumptions 2.1 and 2.3,

C2.4

E(|[bx 5 — b2 < ||by — bl 24
(1on,n 7.48) <|bn =0l 45+ N

with
_ 1
b = 1 (00 P Y0P and - can =218 (1015 + 7= o1 )

Let us conclude this section with some remarks about Proposition 2.4:

e Note that the variance term in the risk bound on ZNJL stated in Proposition 2.4 is of same order
than in the nonparametric regression framework (see Chagny [1]).
o If b € L*(R,dx), then

b —= s (bo F~Y(F(.) = b.

h—0t

e Assume that K is a [—1, 1]-supported kernel, A, B € R and that h € (0,x(F(A) A (1 — F(B)))]
with x € (0,1). Then, for every = € [A, B,

-1,1] c |-

F(A) 1-F(B) F(z) 1—-F(x)
“h Tk }C[_ T h

and

F7H(h-+F(2)((-1,1]) € [F7H((1 = k)F(A)), F~ (5 + (1 = k) F(B))] =: La,p.F-
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Moreover, since f(R) C (0,00), there exists f1 > 0 such that f(z) > f1 for every z € I4 g r. So,

B 1 2
Ion =00 = | ( / Kh@—F(x))(boF—l)(y)dy—b(a:)) f(@)da
B[ r(1—F(x))/h 2
- / [ / K(y)b(F-1<hy+F<x>>>dy—b<x>] f(@)da
2

= [ ([ Ko+ m) o Ea) s

A -1

2
1
<h2||b||%ip< s ))
ABF
Ib
x/ K(y)yz/ f(z)dzdy < ch®  with ¢ = | |L1p/ K(y)y’dy.
-1 A

Therefore, the bias term in the risk bound on 3N7h stated in Proposition 2.4 is of order h2, as in
the nonparametric regression framework (see Chagny [1]).

3. A PCO TYPE BANDWIDTH SELECTION METHOD

This section deals with an extension of the PCO method to the warped kernel estimator studied in
this paper. The PCO based adaptive warped kernel estimator offers theoretical guarantees: a risk bound
is established in this section.

In this section, consider an additional kernel § and assume that K, § and o fulfill the following technical
assumption.

Assumption 3.1. The kernels K and § are compactly supported and continuously differentiable on R,
0(I) C (0,00) for every compact subset I of supp(d)°, and o is bounded.

For instance, the kernel

1 1 . ' 1
p:xER'_)ceXp<_1—1‘2>1[1’1](x) with cp:/ exp(—l_y2>dy

p -1
satisfies the conditions on both K and § in Assumption 3.1. In the sequel, for the sake of simplicity,
supp(K) = [—1,1] and supp(d) = [-A, A] with A > 0. Now, let Hy be a finite subset of [hg, Ag], where

Aoi= n(F(-A) A (L= F(A)), re(O,1), hoe(0A) and —2 <1

NhE
Finally, consider
(2) h € arg min {|[by n — by n, 13 + pen(h)}
heEHN
with
. A 7 7 3 .
pen(h) i= —— to T 10ENE Z< F(XY) — F(.)dX?, ) Ky (F(XE) — F(.))dXS>6 ;Vh € Hy.

The followmg theorem deals with a risk bound on the adaptive estimator
BN(x) = /b\N,E(I) ;xeR.

Theorem 3.2. Under Assumptions 2.1, 2.3 and 3.1, iftg > 0, then there exist two deterministic constants
€3.2.1,¢3.2.2 > 0, not depending on N, such that for every ¥ € (0,1) and A > 0, with probability larger
than 1 — C3,2,1"HN|€_>\,

(1+ M)

||bN—b||5 (1+9) mln ~

[bry = BII3 +
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Theorem 3.2 allows to establish a risk bound on our adaptive warped estimator for the usual norm
|-ll2,4,5 on L?([A, B],dx), where A, B € R satisfy —A < A < B < A. First, since §(I) C (0,00) for every
compact subset I of supp(4)° = (—A, A), there exists dp > 0 such that d(z) > ¢ for every x € [A, B].
Then, for any 9 € (0,1) and X > 0, with probability larger than 1 — ¢3.9.1|Hy|e ™2,

~ 1 ~
[on — ng,A,B < 6*0||bN —bll3

<(;[ﬂ+ﬂ%g£JA “*APH.

2
o, — 013+ 05

Moreover, since supp(d) = [-A, A] and f(R) C (0, 00), there exists f1 > 0 such that f(z) > f1 for every
x € supp(d), and then

¢ 1+ N)3
(14 0) min (s — 0l + 222 [|bh0 b|§+(’}

N

1V 16]oo %22 (1+A)°
AR (1+9) mm HbNh—be —aat == on, — b”?",fA,A"’T -
Therefore, with probability larger than 1 — C3_271|’HN|€_ ,

~ 1\/ ||6Hoo C322 (1+>\)3
by — b||2 < —— (149 b —b b b2 —_—
[on —bll2,4.5 So(LA 1) (1+9) mln llbn,n ”f —ant = | Ibng = bllF—a A+ N

and, by Proposition 2.4, there exist two constants c¢1,co > 0, not dependlng on N, such that

~ 1
E . 2 < . 2, L
(i Vv =08, s ) < e pmin {024 i p and oy =003, s < ot

N
4. NUMERICAL EXPERIMENTS

First of all, recall that since the function F' is unknown in practice, ?)\Mh(a:) is approximated by

N T
~ A . ~ 1
braa) = BB (@) with Pi(a) = s 30 [ Lt
i=1 710

A discrete-time approximate version of this estimator is computed on datasets generated by two different
SDEs. In each case, the bandwidth of our estimator is selected via the PCO method introduced in
Subsection 3. The first model is the so-called Langevin equation, and the second one is a nonlinear SDE
with a multiplicative noise:

t
1. Xt:SC()*/ X;dS+01Wf,t€ [O,T]
0

t t
2. Xy =2 — / (X +sin(4X5))ds + 0.1/ (2 + cos(Xy))dWs ; t € [0,T].
0 0
The models and the estimator are implemented by taking N = 100, n =50, T =5, zg = 2, to = 0 and

K = § = p, where p is the kernel introduced in Subsection 3. For Model 1, the estimator of the drift
function is computed for the bandwidths set

Hi:={0.02k ; k=1,...,10},
and for Model 2, it is computed for the bandwidths set

Ho :={0.01k ; k=1,...,10}.
For each of the previous models, on Figures 1 and 2 respectively, the true drift function (in red) and the
PCO adaptive estimator (in blue) are plotted on the left-hand side, and the beam of proposals is plotted
in green on the right-hand side. On Figure 1, one can see that the drift function is well estimated by the
PCO adaptive estimator, with a MSE equal to 7.12 - 10~* compared to a MSE equal to 5.11 - 10~ for
the oracle estimator. On Figure 2, one can see that the drift function of Model 2 is still well estimated

by our PCO adaptive estimator. However, note that there is a degradation of the MSE, which is equal
to 7.47 - 1073 for the adaptative estimator and equal to 4.99 - 1073 for the oracle estimator. This is
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probably related to both the nonlinearity of the drift function and the multiplicative noise. In some
cases, especially for Model 2, when the bandwidth is too small, the estimation degrades, but the PCO
method selects a higher value of i which performs better. Finally, for each model, Table 1 gathers the

o o
c 7 c 7
o~ o~
o P
T T
< <
o T S
T T
a a
© ©
S o -
T T
@ @
S P
T T
o \\ o
< > <
1 1
T T T T T T T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
X X

F1Gure 1. PCO adaptative estimator for Model 1 (Langevin equation), h = 0.04 and
horacte = 0.02.

0.0
1
s
0.0
1

-0.8
L
=2
/
-0.8
L

-1.2
1
-1.2
1

-1.4
-1.4

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

FiGURE 2. PCO adaptative estimator for Model 2, h = 0.05 and Roracle = 0.07.

mean MSE of 100 PCO estimations of the drift function as well as the mean MSE of the corresponding
100 oracle estimations. The mean MSEs are globally low, but higher for Model 2 with a nonlinear drift
function than for Model 1 with a linear one. However, regardless of the complexity of the model, one
can notice that for both models, the mean MSE of the PCO estimations remains relatively close to the
mean MSE of the corresponding oracle estimations. This means that our PCO method performs well in
practice.
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] | PCO | Oracle |

Model 1 [8.30-10"%[6.28- 101
Model 2 | 5.86-1073 [ 4.77- 1073

TABLE 1. Mean MSEs of 100 PCO adaptive estimations compared to the oracle estimations.

5. PROOFS

5.1. Proof of Proposition 2.4. For the sake of readability, without loss of generality, Proposition 2.4
is proved for ty = 0. First of all,

oo

N B
E(By — b2 4 5) < /A o) )z + [ o) (o)

— 00

where b(z) (resp. v(z)) is the bias (resp. the variance) term ofBNyh(x) for every « € [A, B] (resp. z € R).
On the one hand, let us find a suitable bound on the f-weighted integrated variance of our warped kernel
estimator. For any = € R, since X', ..., X" are independent copies of X,

N T 2]
v(z) = var (A}TZ/O Kn(F(X}) ())dX) ~72E (/ Kn(F(Xy) - (x))dXt>

T 27
( / Kn(F(X,) — F(x))b(X,) ) (/ Kn(F(X,) — <>>o<Xt>dwt>

In the right-hand side of the previous inequality, Jensen’s inequality on the first term and the isometry
property for Itd’s integral on the second one give

) T T
o(z) < 7/ E[K,(F(X;) — F(x))?b(X,)?]dt + NT2/ E[Kh(F(X;) — F(2))20(X,)?)dt
/ Kn(F(2) — F(x))?b(2)*f dz+—/ Kn(F(2) — F(x))*0(2)%f(2)dz.

Since K is symmetric, K € L*(R,dz), b,o € L*(R, f(x)dz) and F is one-to-one from R into (0,1) (see
Assumption 2.3 and Remark 2.2),

[ s < 3 [ KaFe) - F@)? |2+ o2 £ wss

h -2 / e + o] 1)

2 -1 dy
X F(R)Kh(F(Z)—y) f(F (y))iF,(F,l(y))

-z / ‘: W + ;0@2} £(2) / T ayas

—F(z)/h
20105 (o2 o L2
< : )

On the other hand, let us find a suitable bound on the [A, B]- f-weighted integrated squared-bias of BN, h-
For every x € [A, B], since X!,..., XV are independent copies of X, and since Itd’s integral restricted to

dz
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H? is a martingale-valued map,

1 T i i 1 T
b(o) +a) = B| 5753 [ Kn(POXD) = Fa)axi| = 7B ( [ Ku(P(X) = Fa)ax,
1 2_T T
— L lE ( Kn(F(X,) - F<x>>b<xt>dt> B ( | mapex) - F<x>>a<xt>dwt>]
0 0

T

= 7 | BU(FX) - P)ex)ar

= [ Ku(FE) - F@)he)f )z

1

=/ Kn(y — F(@)b(F~ (y))dy = [Kn* ((bo F~1)1o,1))(F(x))-

Moreover, since b € L?(R, f(z)dz) by Remark 2.2,

o0

I[Ew * ((bo F=)10)I(F()Fap < / [Kn o+ (b0 F~1)1(0,0))(F(2))*f (x)dx

— 00

1
:/O [+ (bo FY10.0))] () 2dy

1
<RI [0 )y = IR < .
Therefore,
B
/A b(x)? f(z)dz = [|[Kn + ((bo F~H)1o0)I(F () = bllF 4,5
This concludes the proof.
5.2. Proof of Theorem 3.2. The proof of Theorem 3.2 relies on the following technical results.
Proposition 5.1. Under Assumptions 2.1, 2.8 and 3.1,
1
T —to
where (z,h, ) — @ (p, ) is the map from R x (0,00) x C°([0,T];R) into R defined by

@(T) T — F(z
Do) = [ [ ) = pyas - g [ (FELEEE) 0(¢(t))2f(<p(t))dt]

T
/ Kj(F(Xy) — F(x)dX; = (X, 2) ; Ve € R, Vh > 0,
to

for every x € R, h > 0 and ¢ € C%([to, T];R). Moreover,
(1) There exists a constant ¢5.11 > 0 such that, for every h € (0, Ag] and p € C°([to, T|;R),

C5.1,1
LACI R

(2) There exists a constant ¢51,2 > 0 such that, for every h,h' € (0, Ag],
E((@n(X',.), P (X2,))3) < c512m(R)

with
m(h') = E([|®n (X, )]13)-
(3) There exists a constant ¢5.1.3 > 0 such that, for every h € (0, Ag] and ¢ € L*(R, dx),
E((®n(X,.),¢)3) < es.1,3]l0ll5-
(4) If to > 0, then there exists a deterministic constant ¢51.4 > 0 such that, for every h,h’ € Hy,

[(Pn(X,.),bn)s| < c514  aus.
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Lemma 5.2. Consider
(3) Unr (N) =3 (@n(XT,.) = b, @ (X7 ) = b)s 3 Vh I € Hiy.
i
Under Assumptions 2.1, 2.3 and 3.1, there exists a deterministic constant ¢5.o > 0, not depending on N,
such that for every 0 € (0,1) and X\ > 0, with probability larger than 1 — 5.4|H e,

3
wup (U@ m()) _ esa1+2)
hera N2 N ON

{ |Up.n(N)|  Om(h) } < c5.2(1 4+ /\)3.

and sup

heHn N2 N [ ON

Lemma 5.3. Consider
N
1 i
Va(N) = ; @4 (X",.) —bu|3 ; VR € Hu.
Under Assumptions 2.1, 2.8 and 3.1, there exists a deterministic constant ¢5.3 > 0, not depending on N,
such that for every 0 € (0,1) and X > 0, with probability larger than 1 — 2|H y|e™?,

1 om(h) s.3(1+A)

Lemma 5.4. Consider

o~

(4) Wh,h/(N) = <bN,h — by, by — b>5 ; Vh,h, € Hn.

Under Assumptions 2.1, 2.8 and 3.1, there exists a deterministic constant c5.4 > 0, not depending on N,
such that for every 0 € (0,1) and X\ > 0, with probability larger than 1 — 2|H x|e™?,

c5.4(1+ A)?
sup {|Whno (N)| = 01bn, — blI3} < MT’
heHN
c5.a(1+N)2
sup {|Who,n(N)| = 0]1bn — blI3} < 54(971\7)
heH N
5.a(1+N)2
and  sup {|[Wun(N)| —0]by, — b[|3} < 54(97N)'
heH N

The proof of Proposition 5.1, which is specific to our warped kernel estimator of b, is postponed to
Subsubsection 5.2.2. By using our Proposition 5.1 instead of Marie and Rosier [27], Lemma 3, the proofs
of Lemmas 5.2, 5.3 and 5.4 remain the same as those of Marie and Rosier [27], Lemmas 4, 5 and 6
respectively.

5.2.1. Steps of the proof. The proof of Theorem 3.2.(1) is dissected in four steps.

Step 1. This first step provides a suitable decomposition of ”BN,E — b||3. First,
657 = BlIZ = by 7 — Do I3 + 1o, — DI — 2B .o — Dy 72 ON.o — D)s-
Then, by (2), for any h € Hy,
x5 = blIF < [bwn = bvno 13 + pen(h) — pen(h)
+[bw o — BlIF = 2(bN.no — by 71> O.ho — D)
< [lbxn — blI3 + pen(h) — pen(h) — 2(bx.n — by 5, bx.ny — b)s
(5) = [l = blI5 = ¥ () +vw (h)

where

n(h) = 2(bxp — b, b.py — b)s — pen(h).
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Let’s complete the decomposition of ||3N 5 — bl|3 by writing

Yy (h) =21, N (h) + P2, n(h) + Y3 n(h)),

)dX? / K, (F
U

+

where
1 NoJoT
P = e </to e

N2

F('))dXiabh> +

)

T
WMW:‘&(XKTLMKKM“X*

=1
T

+ZK T fﬁ@@@—ﬂ»&@m&)

Y3 n(h) == Whng(N) + Wi n(N) + (br — b, bp, — b)s.

Un,ho (N

- F())

)

1

213

N

Step 2. This step deals with bounds on E(¢; ny(h)) and ]E(z/)JN(ﬁ)) for j =1,2,3.
e By Lemma 5.2, for any A > 0 and @ € (0, 1), with probability larger than 1 — 5.4|H|e™?,

c52(14+N)3
+ 5.2 )

L fmlh) | e2( A)3 om(h)

dXx?

S

)

en(h) =

and  |¢1n(h)] <

e On the one hand, for any h,h’ € Hy, consider

W}LN(h” X N ON N

1 N

Wy n(h,h) = NZ@h(X@.),bh%.
i=1

By Proposition 5.1.(4),
N

1
|W2n (B < N Z

=1

/oo By (X, )b (2)5(2)da| <

On the other hand, since
1brL—a,a)lloe < (1K1 ]Iblloo, 14,

X 05.1,4

ON

a.S.

and |01l < [|bho Li—a,a]llool1dll < (K 1l|blloo, 4, r

by Inequality (11),
[{bns bro)sl < [10n 11— a,a)lloollbrodl < IE[IZ]0]15

An Rt

N2

1
+ —= <bh0, bh>5 and

Then, there exists a deterministic constant ¢; > 0, not depending on N and h, such that

c ~
on(h)] < = and [y n(R)| < S [ n (B)] <
'eEHN

N

e By Lemma 5.4 and Cauchy-Schwarz’s inequality, with probability larger that 1 — |Hx|e™*

0 8c5.4(1 4+ \)?
s (W] < 5116 = bI3 + l1bm, — bI3) + =25

1 /0\'? 1
+2 X o7 (2> 1bn = blls % 5775
0 ) 0 1 )
<O 0 1 B .
X 2||bh b||5+ (4+9> ||bhg b||5+ QN

and
~ 0 0 1
a1 < 5 =3+ (5 + ) on, = ol +

a
N

a.s.

9\ 1/2
(3) 1o bl

8cs.4(1 + A)2

ON

8C5,4(1 + )\)2

i

Un,ho (N

)

)



WARPED KERNEL ESTIMATOR FOR I.I.D. PATHS OF DIFFUSION PROCESSES 11

Step 3. Let us establish that there exist two deterministic constants ¢y, ¢ > 0, not depending on N and
6, such that with probability larger than 1 — ¢|Hy|e™?,

~ m(h o1+ )3
sup { B~ 01 - 1+ 0) (100 —oi + 252 ) < 202N

heHN ON

and X
m(h) 1 ~ Cg(l +/\)

su bp — bl + —~ — ——||b ,bz}g.

sup {10l + ) T - bR < R

On the one hand, note that

A m(h
1o = BIIF — (1 +6) <||bh — b2+ z(v)>

can be written

~ 1+0)m(h
= b2 = L) 0) — 0 — b2
where W, (N) := Wj, 1, (N) (see (4)). Moreover, for any h € Hy,

. Ui(N) | V(M)
— 2:
(6) [ — 3 = =5 + 25

with Up(N) = Upn(N) (see (3)). So, with probability larger than 1 — ¢|Hx|e™?,
(1 + H)m(h) } < 2(C5,2 + C5,3)(1 + /\)3

sup { I = vl ~ 5 =

heHN
by Lemmas 5.2 and 5.3, and then

m(h))} (L))

sup {|bN,hb§(1+e) (bhb||§+ ~ N

heHnN

by Lemma 5.4. On the other hand, for any h € Hy,
on = b1 = [[bwn = BlI3 — I[oarn — bull — 2Wh(N).
Then,
(1= 0) (1o = 83+ 57 ) = B = I < 205, = B, = bl + () — 5
where
A0 =l — ol - 2.

By Equality (6),

) - ‘Uh<N> L V) m(n) ’ |

N2 N N
By Lemmas 5.3 and 5.2, there exist two deterministic constants cg,¢3 > 0, not depending N and 6, such
that with probability larger than 1 — ¢3|H y|e™?,

LUt

By Lemma 5.4, with probability larger than 1 — 2|Hx|e™?,

des 4 (1 + )2
sup WL (V)] — 0lbn — b|2y < el £AT

heHN ON
Therefore, with probability larger than 1 — ¢o|H x|e ™2,
m(h) 1~ ea(1+4A)>3
b — bl + —~ — ——|lbyn — D)3 P < .
sup {0 + T - s -0l < R
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Step 4. By Step 2, there exist two deterministic constants ¢4, ¢4 > 0, not depending on N, 8, h and hy,
such that with probability larger than 1 — t4|Hx|e™?,

h o 2 1+ )3
o] <0 (1o = o3+ 2 )+ (5 7 ) oms = 3+ 220

and

N 2 ON

Then, by Step 3, there exist two deterministic constants ¢5,¢5 > 0, not depending on N, 8, h and hy,
such that with probability larger than 1 — t5|Hx|e ™,

7 m(h 0 2 (1 4+ NP
Y (h)] <6 <Ilbz — b5+ ”) + ( + 9> b, — b2 + SLEEA

0~ o 2 11\ (143
< v 2 v o4 2 Lo
o] < gl = o3+ (5 + 5 ) om0l s (5 + 125 ) 55

and

- o - 6 2 11 \(1+A?
< Y e v =z 2 Lo .

By the decomposition (5), there exist two deterministic constants cg,¢s > 0, not depending on N, 6, h
and hg, such that with probability larger than 1 — tg|Hy|e ™,

by 5 = BlIS < Nlbavn = Bl + [ (B)] + 9o (B)]

6 ~ 0 -
< (1 725) a0l + 515 - o1
[T 6 (1+N)°

This concludes the proof.

5.2.2. Proof of Proposition 5.1. For the sake of readability, Proposition 5.1.(1,2,3) are proved for ¢y = 0
without loss of generality. However, the condition tg > 0 is required in order to prove Proposition 5.1.(4)
because f’ is involved. First of all, for any x € R and h > 0, by Itd’s formula,

Xz 1 F(X,) - F(x)

T T
Kn(F(2) — F@)ds = [ Ku(P(X) - F(a)dX+ 1 K'( . )f(Xt>d<X>t.

Zo

So,
/0 Kn(F(X)) — F2)dX, = | Kn(F(z) — F(a))d=

Zo

T — x
~5m K (F(X)hF()) o(X0)2f(X,)dt = TP}, (X, ).

(1) Consider ¢ € C°([0,T];R). For any x € [-A, A] and h € (0, Ag],

(7) —1,1] [_F:A), - g(A)] c [_ Ff)7 1 —5@)]

and, since supp(K) = [—1, 1] and supp(d) = [-A, A],

oo [ pe(D) 2 s [ pA-F(@)/h dy
/. M@ Kh(F(Z)‘F(WZ] wirs [ VFW KO =Ty + F@)

- /AA (/ KO s ) SO

Moreover, since h < Ag and F~! is increasing,

(8) F (- +F@)([~1,1]) € [F (1~ 0)F(~A)), P~ (s + (1~ R)F(A))] = Iap.
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So, there exists f; > 0 such that f(z) > f1 for every z € Ia r because f(R) C (0,00), and then

oo [ pe(T) 2
/ [/ K, (F(z) — F(x))dz} 0(x)dx
—oo | J(0)

<p [ ([ e |d) < LR

The same way, there exists fo > 0 such that f(z) > fo for every z € [-A, A], and then

/‘: K (F(go(t»h - F<x>)2 () — /A K (F(so(t))h - F<x>)2 ()

—A
_ h/[F(A)_F(“’(t)Wh K'(y 2 0(F ' (hy + F(e(t)))) dy
[F(=A)—F(o(t)]/h FE=(hy + F(p(1))))
< K310l
f2

for every t € [0, T]. Thus,

T2 @0 (0, I3 < 2/

2 T o0 — F(z)\?
< WL T [ oot sotor [ xe (FAL TN soyoar

— 00

2K17 T2||0||4 I 319 ]lo0
SR 2f2h?
(2) For any h,h’ € (0, Ag],
E(@n(X",.), 2w (X?,))3)

_lg ( /Z ( /OTKh<F<X3> )(/ Ky (F(X2) - >>dX2> 5(a )dx>2]

2
< o (B(A3 ) + E(BE 1))

with

App :7/ (/ Kn(F th> (/ K ( ))dX2> §(z)dx

and

B [ ( / Kh<F<X3>—F<x>>b<X3>dt> ( / m«F(XE)—F(@)dXE) b(x)da.

Bound on IE(A2 /). Since (X1, W) and X? are independent,

E(A} /) / / (/ Ky (F th></ Ky (F )(th)thlﬂ
E (/0 K (F(X?) - )(/ K (F(X?) - ))dX2>]5( )6(y)dady.
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On the one hand, for every z,y € R, by the isometry property of It6’s integral and the definition
of f,

(/ Kn(F dW1> (/ Ku(F y))o (th)dwgﬂ

T
- / E(K)(F(X}) — F(2))Kn(F(X}) — F(y))o(X})?)dt

= T/_DO Kp(F(z) — F(z))Kp(F(z) — F(y)>0(2’)2f(z)dz.
Then,

E(A2,) = / / / Kn(F D)En(F(2) - F(y)o(2)f(2)

T
xE K/ K (F(X?) —F(x))de> (/ K (F(X}) —F(y))dX,?)] 6(x)0(y)dxdydz
0 0
o] A T 2
- T/_oo o(2)2f(2)E [(/_A Kn(F(z) —F(:c))a(x)/o K (F(X}) —F(m))dedx) ] dz.

On the other hand, note that for any z € R,

1EKn(F(2) — FO)Lam (Ol = / Kn(F ¥))ldy
(F(A)=F(z))/h dy 1K |1
9 = B
®) /<F(A>F<z))/h KO E Ty + 7o) S R

and, for every = € R,

/_ F)EW(F(2) — F(a))|dz = / K (2 — F@))ldz < K]

Then, since

|Kn(F(2) — F(z))|
[ En(F(2) = F())1-a,a1 ()l
is a density function, by Jensen’s inequality,

E(A2,) < T /OO o (2P £ () En(F(2) — FOLaa Ol

/ K (F [( / K (F 2)>dX2>2] dud
< TRl * g, [( [ st - ))dx>

< TlolZ 28]l com ()
f2
Bound on E(B,ah,). First, note that for every x € [-A, A], by (7) and (8),

€[-AAl —

dx

0o (1-F(x))/h
[ K (F(2) — F(2))[b(2)2f(2)dz = / K (2)B(F (hz + F(x)))*dz

F(x)/

(10) = [ I 0+ F @) < I
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Then, since

) |Kn(F(X(w)) — F(z))]
€[-AA— | Kn(F(Xi(w)) = F()1—a,a1()lh

is a density function for every (¢,w) € [0,T] x Q, by Jensen’s inequality and Inequality (9),

( / / Kn(F / K (F ))dX2dxdt>]
7K N Bl )
< 7k / | R = PO _
x8(z)’E (/TKh/(F(Xf)—F(x))dX§> dxdt
O -
K| [ 2 — F@)lb(2)* ()
= TR [ (] i) - PP ez )

x6(z)’E </ K (F(X?) - ))dX2> da

T2Hb||oo1MHKH 18l10c - )]
/ 5z < /0 K (F(X2) F(m))dXs> do

T4|bl13

E(B},) =E

oo,In F

1] om(R)

\

f2

(3) For any h € (0,Ag] and ¢ € L?(R, dz),

< A (B(C}) +E(D})

with

Cp = / / Kn(F(X,) — F(z))o(X:)dW,dz

and

Dy, = / / Kn(F(X,) — F(z))b(X,)dtda.

15
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Bound on E(C?). By the isometry property of Itd’s integral and Jensen’s inequality,

Bt = [ [ earewi@iw / E(Kn(F(X2) — F(@)Kn(F(X2) — F(y))o(X))dtdzdy

= T/_OO /_OO p()p(y)d(x)d(y)
x 700 (F(z) = F(x
o0 A - 9
= T[m (/A Kp(F(z) — F(:Z:))ga(x)é(x)d;g> o (2)2f(2)dz

<7 / T EAFG) - FOLan Ol

A
x (/ |Kn(F(2) = F(z ))Iw(x)%(fv)zdw) 0(2)*f(2)dz

< THKH ||0||2 / (/ HOKW(F (x))|dz> o(2)25(x)2dz by Inequality (9)
THKH ||<7||2 ollllell§
S f2

Bound on E(D?). By Jensen’s inequality, and Inequalities (9) and (10),

A

E(Dj) < T/O B lb(Xt)QlKh(F(Xt) —F(-))l[—A,A](-)Ih/_A | Kn(F(Xe) = F(2))|p(x)?0(x)*d | dt

2 A ')
< T'f” /. ( 2GS —F<x>>|b<z>2f<z>dz) o(2)?5(x)2de
T NS
\ f2 .

(4) Since X is a semi-martingale, since the map
(t,w, ) — Kp(F(X(w)) = F(x))ba (2)1—a,a)(2)

is measurable and bounded for any h,h’ € H, and since
A / d(z)dr is a finite measure,
A

by the stochastic Fubini theorem, the change of variable formula and It6’s formula,

(T = to)(Pn(X,.),bn)s = (T —to) /_oo & (X, )by (2)8(z)dx
T )
- /t [ Kn(F(Xy) — F(2)by (2)8(x)dzdX,  a.s.

T
- / K+ [(d/£) 0 F~) Lo | (F(X,))dX,
\ o

= 1/)h’h/(z)dz —_ =

5 e (Xe)o (Xy)?dt
Xty to

where

Ui () = [Kn o+ (0w 8/ f) 0 F7H)10,0)]I(F ()
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On the one hand,
(Vo /f) o Pt

K # [((bred/f) o F~1)11))
Kh * [l[F(—A),F(A)]/(f ] Fﬁl) X (bh/(;//f + b/ ,5/f - bh/(Sf//fz) o Fﬁl}.
Moreover, for every x € R, by (8),

bmo»nAﬁuxn::\nAﬁux>/ﬂak%«y—zwxnuboFwlmnMyMy

(11) < 1K sup [(bo F~H) 1o (A'y + F(2)| < [Kl1lblloo,ra x
(z,y)€[—A,A]x[-1,1]

and
mwmﬂmn—@AA /'mW ﬂ»wwﬂmwmm‘
b o F~1 } 1K1 110" || oo, 1
< ||IK su —1 hy+ F(x ‘ < BT AR
| Hl(ac,y)e[—A,IA)]x[—l,l] [fOFl o | Wy @) f1

Then, since f and f’ are bounded by Remark 2.2,

/ / !
o lloe < I oo || Kn 1|1 (||5 llool1br 11— A Al lloo N 16| 0 167, 11— A, A] [l oo N [16]]oc ||.f ||oo\|b2h 1[—A,A]||oo)
fa P fa I3
< [ fllo K17 <||5'|oo|b||oo,1A,F N 01100 /16"l o0, 74, N |5||oo||f’||ooz)||b||oo,1A,F) =
fa p) ifa I3
On the other hand, by Inequality (11), by (7) and by (8),
i bp/ o _
|tz = [~ /Kh >(})w%m@m
= K (x — by
/0 /_OO n( ())bn ( ’f )
1 A
dydzx
< — g
(1- F(y))/h dx
= | K116/ co. F/ / K(x dy
K|[1]0]] 0o, K|[3]b]l o
h -A “1 i

This concludes the proof because

o T -
(T*to)|<¢h(X,-),bh/>5\</ (¥ (2)lde + —5— “ o, [Phn oo aus.
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