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A N T H R O P O L O G Y

Ochre-based compound adhesives at the Mousterian 
type-site document complex cognition and 
high investment
Patrick Schmidt1,2*, Radu Iovita3, Armelle Charrié-Duhaut4, Gunther Möller1,  
Abay Namen1,5, Ewa Dutkiewicz1,6

Ancient adhesives used in multicomponent tools may be among our best material evidences of cultural evolution 
and cognitive processes in early humans. African Homo sapiens is known to have made compound adhesives from 
naturally sticky substances and ochre, a technical behavior proposed to mark the advent of elaborate cognitive 
processes in our species. Foragers of the European Middle Paleolithic also used glues, but evidence of ochre-based 
compound adhesives is unknown. Here, we present evidence of this kind. Bitumen was mixed with high loads of 
goethite ochre to make compound adhesives at the type-site of the Mousterian, Le Moustier (France). Ochre loads 
were so high that they lowered the adhesive’s performance in classical hafting situations where stone implements 
are glued to handles. However, when used as handheld grips on cutting or scraping tools, a behavior known from 
Neanderthals, high-ochre adhesives present a real benefit, improving their solidity and rigidity. Our findings help 
understand the implications of Pleistocene adhesive making.

INTRODUCTION
In archaeology, evolutionary concepts like modern behaviors (1) or 
complex cognition (2) have been argued for based on tool (3) and raw 
material behaviors (4), the transformation of materials (5, 6), and 
composite technology or hafting (7, 8). Adhesives play an important 
role in arguments about the implications of hafting because, in some 
instances, Stone Age foragers used elaborate production techniques to 
make them (9–11). Adhesive making may therefore contain informa-
tion about innovative behavior, social learning, and cumulative cul-
ture (2, 5, 12). In the African Middle Stone Age (MSA) [~300 to 
30 thousand years (ka) ago], this debate was fueled by the finding that 
Homo sapiens combined naturally sticky materials with other ingredi-
ents, such as ochre (13, 14) or bone fragments and quartz (15), to 
produce adhesives with properties not otherwise available in nature 
(16, 17). Some researchers (18) argue that mixing substances follow-
ing specific recipes requires analogical reasoning and forward plan-
ning. If so, compound adhesives might be one of our best indicators of 
elaborate cognitive processes in human evolution. In Eurasia, Nean-
derthals also used naturally available adhesives, such as bitumen (19) 
or tree resins [in one case possibly mixed with beeswax (20)]. In some 
instances, they made tar by distilling birch bark (5, 21, 22). European 
H. sapiens also used adhesives from the late Aurignacian and Gravet-
tian (<33 ka) on (23–25), but their botanical origin and production 
techniques are not well understood [an exception is the use of bitu-
men in Eastern Europe (26)]. The implications of Neanderthal birch 
tar are still debated [compare (27, 28)], but what is certain is that 
Neanderthals made the effort to produce it, although other adhesive 

substances could simply have been collected in nature [see the discus-
sion in (9, 29, 30)]. Thus, similarly to the modern human record from 
Africa, the known European adhesive technology documents innova-
tive behavior and even cumulative cultural transmission of techniques 
(31, 32). In addition, from the Gravettian on and in later periods, 
there are indications that European H. sapiens made compound adhe-
sives using ochre (24, 25), a behavior similar to that of early H. sapiens 
in Africa. However, neither Neanderthals nor early H. sapiens present 
in Europe before 40 ka (33) have been shown to make ochre-based 
compound adhesives like those known from Africa (34). Therefore, 
the question whether early European adhesives from the Middle 
Paleolithic have the same cognitive implications as those made in the 
African MSA remains unanswered.

Here, we report on the discovery of such ochre-based multi-
component adhesives. For this, we analyze so far unstudied arti-
facts from the type-site of the Mousterian technocomplex (Le 
Moustier, France) that are curated at the Museum für Vor- und 
Frühgeschichte in Berlin (Germany). The Berlin Le Moustier 
collection was excavated at the upper terrace of Le Moustier shelter 
by Swiss archaeologist Otto Hauser in 1907. Because these artifacts 
have never been studied before and even remained individually 
packed and untouched since the 1960s, they allow unique preserva-
tion conditions for organic residues.

RESULTS
We identified five lithic artifacts with traces of red and yellow colo-
rants on their ventral and dorsal sides (Fig. 1). Typologically (35), 
one is an atypical Levallois flake (no. Va 7136), one an end-notched 
flake (no. Va 7157.6), one a retouched flake (no. Va 7167.9), one a 
retouched Levallois blade (no. Va 7158.7), and one a side scraper (no. 
Va 7157.24). In all cases, red and yellow stains are restricted to one 
portion of the tools, forming a wall effect that effectively separates 
the portions of the tools with stains from the clean opposite portions 
(Fig. 1, but also see figs. S1 to S5). Four of the flakes also show traces 
of a black residue associated with red colorants (table S1; Fig. 1, C 
and H; and fig. S6). In one case, black residue appears as a visually 
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Fig. 1. Photographs, drawings, and details of Le Moustier artifacts nos. Va 7157.6 and Va 7158.7. (A) Photographs of dorsal and ventral surfaces of artifact Va 7157.6. 
(B) Drawing showing the distribution of residue remains on both sides of the artifact. The red box marks the frame of the detail shown in (C). (C) Detail of artifact no. Va 
7157.6 showing an adhesive protuberance. (D) Scanning electron micrograph of spherulites constituting the powder removed from artifact no. Va 7157.6. (E) Micrograph 
showing polish caused by abrasion in the presumed prehensile portion of the tool. (F) Photographs of dorsal and ventral surfaces of artifact no. Va 7158.7. (G) Drawing 
showing the repartition of residue remains on both sides of the artifact. (H) Detail of artifact no. Va 7158.7 showing adhesive residues. (I) Scanning electron micrograph of 
the residue removed from artifact no. Va 7158.7. Note the spherulites on top of the micrograph and air bubbles trapped in the solid adhesive mass. (J) Micrograph show-
ing invasive use wear polish in the presumed active edge of the tool. Drawings by D. Greinert.
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shiny, ~2.5-mm-long, and ~1-mm-high protuberance (Fig. 1C). The 
distribution of colorant stains and their association with black resi-
due are consistent with one portion of the pieces being covered by 
an adhesive containing red colorant. The opposite portion would 
then have acted as the active part of a composite tool. To test this 
hypothesis, we investigated the pieces for traces of wear. We found 
micro-fractures and localized polishes on the presumed active edges 
of four tools (Fig. 1J and figs. S1 to S5), documenting that they were 
used. Moreover, we found bright polish and striations under colorant 
stains, away from the edges, on dorsal and ventral faces of all five 
tools (Fig. 1E and figs. S1 and S3 to S5). Parts of the raised topogra-
phy (the ridges of previous removal scars) are abraded in these zones. 
Such polishes, which are typical of hafting wear (36–38), are found 
on relatively large areas across the entire surface of the presumed 
hafted portion of the tools but not outside of it, and not only at the 
limit of the residue. We interpret these observations as evidence that 
the tools were held in an adhesive that still allowed movement of 
the stone tools or that underwent plastic deformation, with the colo-
rant acting as an abrasive agent. The restriction of polished zones and 
striations to the presumed hafted parts rules out postdepositional 
processes as their cause (39). These findings support the hypothesis 
that the Le Moustier artifacts were part of composite tools. They were 
assembled by gluing them to shafts or handles using an adhesive, 
or alternatively, as Neanderthal archaeological examples show (22, 
27), the adhesive was molded onto the tools and functioned as the 
handle itself.

Chemical and structural analysis
We first conducted energy-dispersive x-ray spectroscopy (EDX; 
using a scanning electron microscope) on powders scraped from the 
surface of two of the pieces (acc. nos. Va 7157.6 and Va 7158.7; 
Fig. 1, D and F, and figs. S9 and S10). The powders consist of ~5- 
to 10-μm-large spherulites that yield an EDX signal of iron and oxy-
gen. Parts of the powders contain agglomerates held together by 
a substance between the spherulites that show no discernible struc-
ture but air bubbles (Fig. 1I). The EDX spectrum of the agglomer-
ated parts shows sulfur and carbon in addition to iron and oxygen. 
To investigate what the spherulites and the adhesive itself are made 
of, we removed 1 mg of a protuberance where the adhesive is still 
intact (on acc. no. Va 7157.6, Fig. 1C) and analyzed it by transmis-
sion infrared (IR) spectroscopy. The spectral signature of the adhe-
sive is consistent with an organic phase mixed with an inorganic 
filler (Fig. 2). The inorganic phase causes the strongest absorption 
bands of the IR spectrum. Two relatively sharp bands of the ẟ(OH) 
and γ(OH) vibrations of α-FeO(OH) (goethite) are observed at 
890 and 800 cm−1 (40). The low-frequency envelope <700 cm−1 
is consistent with Fe-O vibrations in α-FeO(OH) (41). Thus, the in-
organic filler of the Le Moustier artifact is unambiguously goethite 
ochre. The organic fraction of the adhesive causes weak but sharp 
bands between 3000 and 2800 cm−1 that indicate symmetrical 
and asymmetrical ν(CH2) and ν(CH3) vibrations. The region between 
1500 and 1000 cm−1 gives insight into the nature of this organic 
phase. The compound adhesive spectrum presents a weak band 
at 1458 cm−1 assigned to symmetrical δ(CH2) and asymmetrical 
δ(CH3) vibrations of the aliphatic group. This broad band is known 
from the asphaltene fraction of crude oil or bitumen (42). There 
are also a ν(CO) band at 1125 cm−1 and a ν(S=O) band of the sulf-
oxide group at 1021 cm−1. The assignment of the 1021-cm−1 band to 
sulfoxide is strengthened by the finding of sulfur using EDX. Both 

bands (1125 and 1021 cm−1) are also commonly present in the IR 
spectrum of asphaltene (42, 43). Sulfur typically accounts for less 
than 0.1% of natural tree resins and ambers (44), supporting the 
attribution of the Le Moustier spectrum to asphaltene/bitumen. The 
interpretation of the region between 1430 and 1330 cm−1, where a 
symmetrical δ(CH3) vibration would be expected in asphaltene, is 
not straightforward. This is so because, in some goethite specimens, 
a hydroxyl bending vibration causes a weak band at 1401 cm−1 (45) 
overlying this asphaltene δ(CH3) vibration. The Le Moustier spec-
trum also presents a weak but sharp KNO3 band, either resulting 
from impurities of the KBr used for pelleting (46) or created by 
grinding the sample together with KBr powder during sample prep-
aration. Thus, the organic fraction of the sample cannot be observed 
in this wave number region (the shape of the broad band observed 
near 1403 cm−1 is most likely the result of the convolution of the 
goethite hydroxyl band and that of the potassium nitrate contami-
nation). Nonetheless, the organic region of the Le Moustier IR spec-
trum can be best explained by the insoluble fraction of bitumen 
(asphaltene). This interpretation is strengthened by the absence of a 
C═O band in the spectrum. Strong C═O bands between 1750 and 
1700 cm−1 are characteristic of different esters, acids, and aldehydes. 
They would be prominent in the spectra of plant-derived adhesives 
like resins and their tars (47, 48), including birch tar (21, 49). The 
absence of such C═O bands in our adhesive spectrum and the find-
ing of sulfoxide, which is absent in plant-derived resins and tars, 
make a botanical origin highly unlikely (fig. S7). To corroborate our 
finding that the Le Moustier residue is made from bitumen, we at-
tempted to conduct gas chromatography–mass spectrometry (GC-
MS) on the organic extractable fraction of the 1-mg sample used for 
IR spectroscopy. The attempt failed, not yielding a signal above the 
method’s detection limit (also see fig. S8). This is not in contradic-
tion with our results obtained by IR. Bitumen is mainly constituted 
of asphaltenes and contains a soluble fraction of less than 3%, which 
would potentially be visible in GC-MS (50, 51). Such low soluble 
content calls for larger GC-MS samples, which are not available on 
the Le Moustier artifacts. What is certain is that, if the residue con-
sisted of birch tar or tree resin, both substantially more soluble, we 
would have found a specific di- or triterpenoid signature (52, 53). 
We did not observe plant-derived terpenoids.

To gain information on the association of bitumen and goethite, 
we analyzed the adhesive protuberance on piece no. Va 7157.6 visu-
ally with a stereomicroscope. It is mostly opaque and black, but one 
portion, where it is broken, gives insight into its interior. Evenly 
distributed goethite spherulites can be seen there (Fig. 3D). To 
observe the inner structure of the Le Moustier residue, we recorded 
a micro–computed tomography (microCT) scan of the protuber-
ance. On CT images, it shows no discernible goethite inclusions, as 
expected at the 11.5-μm resolution of our scan. Trapped air bubbles 
can be seen in the adhesive mass (Fig. 3, A to C). Around the bub-
bles, the adhesive’s structure appears mostly homogeneous with a 
few zones, where goethite distribution seems to be slightly lower. 
This is consistent with goethite being homogeneously mixed with 
bitumen. The adhesive mass has an overall brightness (organic part 
and ochre filler together) of 1539 Hounsfield units (HU). Assuming 
a roughly linear relationship between gray values in HU and density 
in our CT scans (54, 55), the overall density of the adhesive can 
be calculated from its brightness value compared to the brightness 
value of the adjacent flint (1391 HU, for a known flint density of 
2.58 g/cm3) as 2.85 g/cm3. Assuming a density of 1.01 g/cm3 of 
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bitumen (56) and a density of 4.3 g/cm3 of α-FeO(OH) (57), the 
adhesive’s overall density of 2.85 g/cm3 implies that the compound 
adhesive was mixed from 55 and 45 wt % bitumen.

Experimental testing of the ochre-bitumen mixture
The proportion of filler to plastic component of the Le Moustier 
residue appears to be high in view of previous experiments conducted 
with inert filling loads in adhesive mixtures. Several experimental 
studies conducted on adhesives of different compositions show that 
ochre loading agents are beneficial if they account for 28% (16), 7.5 

to 33% (58), or 10 to 30% (59, 60) of the compound adhesives. A few 
experimental studies report data on two-component adhesives con-
taining larger parts of inorganic filler than plastic material (2, 17), 
but these studies investigated ochre mixed with Vachellia gum. To 
understand the usefulness of 55% goethite ochre in bitumen, we 
conducted lap-shear tests to measure adhesive strength (61), using 
naturally available bitumen (from the Massif Central region, France) 
and pure goethite ochre (from the Lessini Mountains, Italy). Natural 
bitumen can be collected in bituminous lakes as viscous liquid or 
as hardened air-dried mass on rock walls from where it seeps out 

Fig. 2. Transmission IR spectra of the Le Moustier adhesive (removed from artifact no. Va 7157.6) compared to reference spectra of known substances. The 
0.3 g–weighing KBr pellets contained 1 mg of sample. (A) Comparison with a bitumen reference spectrum. (B) Comparison with a Goethite [α-FeO(OH)] reference spec-
trum. Note that the wave number region below ~1000 cm−1 of the Le Moustier spectrum can be explained by goethite being mixed with the adhesive. The wave number 
regions 3000 to 2500 cm−1 and 1800 to 1000 cm−1 are best explained by the insoluble fraction of bitumen (asphaltene). Note the absence of a C═O band between 1750 
and 1700 cm−1 in the Le Moustier spectrum, which would be characteristic for plant-derived adhesives.
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(fig. S11). The viscosity of fresh bitumen is too low for laboratory 
strength testing. We therefore conducted a cooking experiment 
attempting to increase its adhesive strength (62). A subsample 
was removed every 20 min of cooking, half of which was mixed with 
55 wt % ground goethite powder. Lap-shear tests were then con-
ducted with the pure bitumen and the bitumen and ochre samples of 
each cooking step (all values reported in table S2). The maximum 
strength of pure bitumen adhesives was very low (Fig. 4), with 
τu < 0.01 MPa (i.e., no strength signal could be measured, and 
the laps slid apart with no measurable resistance; we therefore con-
ducted only a single test with these samples). Cooking for longer 
produced no change in pure bitumen, i.e., all τu values remained 
<0.01 MPa. Compound adhesives yielded strength values greater 
than those of pure bitumen (Fig. 4A). Cooking for 80 min and more 
resulted in a two- to threefold increase of strength in compound 
adhesives as compared to pure bitumen: Bitumen cooked for 80 
min + 55 wt % ochre had τu = 0.021 ± 0.01 MPa; bitumen cooked 
for 100 min + 55 wt % ochre had τu = 0.022 ± 0.01 MPa (Fig. 4B), 
as determined from five consecutive tests with these samples. After 
107 min of cooking, we had to stop the experiment because the 
mass hardened almost instantaneously, becoming a tough solid 
with no adhesive properties, which could not be used for bonding 
together laps. The overcooked bitumen had no adhesive properties 
even when we tried to soften it with a Bunsen burner. We conducted 
a second lap-shear experiment with air-dried bitumen. Pure air-dried 
bitumen yielded a significantly higher maximum strength with 
τu = 1.49 +1.07 −0.81 (as determined by 10 tests). Mixing in 55 wt % 
goethite ochre reduced the air-dried bitumen’s maximum strength, 
resulting in τu = 0.55 +0.53 −0.47 (as determined by nine tests; 
one test failed). Thus, making compound adhesives from air-dried 
bitumen and 55 wt % ochre has a negative effect, worsening the 
bitumen’s strength by a factor of 3 (Fig. 4C). When mixed with fresh 

bitumen, 55 wt % ochre increases its strength by a factor of 3. None-
theless, our values measured on fresh bitumen are very low if com-
pared to lap-shear data reported on other archaeological adhesives 
[which fall in the range of τu = 0.1 to 1.5 MPa (9, 62–64)]. We there-
fore attempted to identify other possible performance gains of a 
high ochre load in bitumen. It is known from Neanderthal birch tar 
finds (5, 32) that adhesives were used as handles directly attached to 
stone tools (as opposed to being used for hafting stone tools to 
wooden handles or shafts). We therefore molded handles of fresh 
bitumen to stone tools (Fig. 4F, also see fig. S12). When manipulated, 
such pure bitumen grips are sticky to the touch and part of the bitu-
men is removed, leaving sticky stains on the hand, which are diffi-
cult to remove (Fig. 4E). When mixed in 55 wt % goethite ochre 
(Fig. 4G), bitumen grips feel more solid and are not sticky to the 
touch. When handling such a grip, no bitumen sticks to the manipu-
lator’s hands (Fig. 4F). Thus, mixing high ochre loads in fresh bitu-
men presents an advantage for such composite tools. This type of 
tool use is supported by paleoanthropological data, as both Nean-
derthals and Middle Paleolithic H. sapiens are known to have habitu-
ally engaged in hand movements that involve precision gripping (65, 
66). These findings, and the observation that bright polishes and 
abrasion can be found across the colored part of the tools, make it 
most likely that the five stone tools were used in such adhesive grips 
rather than hafted to a rigid handle.

DISCUSSION
The Le Moustier artifacts show that the European Middle Paleolithic 
adhesive technology was based on very similar processes as that in 
Africa. In both contexts, early humans deliberately produced some 
of their adhesives by distillation, from Podocarpus conifers in Africa 
(9) and birch bark in Europe (21, 22). Both also mixed some of their 

Fig. 3. Inner structure of the adhesive protuberance on artifact no. Va 7157.6. (A to C) MicroCT scans through the long axis of the protuberance. Mark the air bubbles 
trapped in the adhesive. Around air bubbles, the adhesive appears homogeneous, indicating that goethite is evenly distributed. (D) Stereo-micrograph showing goethite 
spherulites in the compound adhesive. (E) Iso-surface recorded by the microCT scanner, showing the outer shape of the adhesive protuberance.
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glues with ochre to make compound adhesives (14, 67). However, 
what do these behaviors actually imply in terms of cognition or 
cultural processes? Pioneering work on adhesive technology by 
Wadley et al. (2, 17) suggests that compound adhesives have differ-
ent implications than single-component [“simple” (34)] glues. This 
is because specific recipes must be followed, demanding multitasking 
and the use of abstraction and recursion (18). Others have approached 

the meaning of archaeological artifacts by quantitative interpreta-
tions of the steps needed for their production and their process 
complexity (68). There is a variety of methods for interpreting such 
stepwise complexity. In the case of adhesive technology, they range 
from graphical representations of compound adhesive production 
sequences (69) to computer-aided networks that correlate the steps 
and materials needed for adhesive making (70). Such approaches 

Fig. 4. Experiments investigating the benefit of goethite ochre in bitumen-based adhesives. (A and B) Stress/strain diagrams of uncooked and cooked (100 min) 
fresh bitumen samples with and without ochre. (C) Stress/strain diagrams of air-dried bitumen with and without ochre. (D and E) Composite tool consisting of a stone tool 
and a grip made from fresh bitumen. (F and G) Composite tool consisting of a stone tool and a grip made from fresh bitumen and 55 wt % goethite ochre.
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apparently allow comparisons among processes but depend on the 
scientist’s initial choice of steps. Because very different production 
pathways may produce the same finished products and because the 
actions of Pleistocene hominins do not fossilize, there is no mecha-
nism to verify whether the chosen steps really took place. Therefore, 
we cannot decide whether the Le Moustier compound adhesives 
document more or less complex technology than other adhesives, 
such as birch tar. An alternative approach (12) proposes that adhe-
sive making may have implications for human evolution if it relied 
on cultural transmission, was more difficult to execute, and/or was 
more costly than other techniques. In this sense, the Le Moustier 
adhesives document the willingness to invest more time and raw 
materials than other contemporaneous tool-making behaviors—i.e., 
their cost was likely higher. This is so because bitumen, flint, and 
pure goethite ochre do not occur at the same outcrops but must be 
gathered and transported to produce the composite tool. The Aqui-
taine basin, where the site of Le Moustier lies, contains abundant 
bitumen sources (71) and extensive flint outcrops (72), and goethite 
ochre is naturally available (73). However, the precise origin of the 
materials used for the Le Moustier multicomponent tools is not 
likely within close range of each other. The most prominent outcrop 
of pure goethite, the Grès de Thiviers (73), lies in a relatively close 
range to Le Moustier about 50 km to its north, but the closest Aqui-
taine oil fields, where bitumen outcrops can be found, lie more than 
200 km to its south (74), roughly at equidistance to the petroleum 
sources of the Massif Central in central France. Thus, gathering the 
raw materials used for the Le Moustier compound adhesives was 
substantially more time- and effort-intensive than, for example, the 
collection of birch bark for tar making. In other words, compound 
adhesives were more expensive to their makers than adhesives like 
birch tar. The cost associated with these compound adhesives was 
higher than many other objects made in the European Middle 
Paleolithic, and their use likely implied cognitive processes, such as 
forward-planning and imagination (18), which were not required 
for many other Middle Paleolithic tools. Unfortunately, the context 
of Le Moustier allows reasonable doubts as to whether the authors of 
these pieces were Neanderthals. This is so because there are no 
radiometric dates available for our assemblage and direct dating of 
the lower shelter at Le Moustier [56 to 40 ka (75)], which is adjacent 
to the upper shelter from where our adhesives were excavated, 
situates the site at the end of the Neanderthal presence in Europe. At 
this time (76), and even before (33, 77), H. sapiens incursions into 
southern Europe make it possible that Neanderthals and H. sapiens 
were present at the same sites.

So, what are the implications if these ochre-based compound 
adhesives were made by Middle Paleolithic H. sapiens? It is known 
from the African MSA record that very similar ochre-based com-
pound adhesives were used (67). If anatomically modern humans 
brought this knowledge with them during their Out-of-Africa 
migration, its presence at Le Moustier would document a remark-
ably long technological continuity. In this case, the knowledge and 
skill to produce moldable materials with specific properties that are 
not available in single-component adhesives might have provided 
an advantage over the adhesive technology present in Europe at this 
time. Such a scenario would gain support from a recent proposal 
that contemporaneous H. sapiens at Mandrin Cave used a micro-
lithic technology that relied on hafting (78). If future studies would 
find an association of the Le Moustier artifacts with early H. sapiens 
incursions [also see (79)], they might become an important argument 

in the debate surrounding the latter’s technological superiority over 
more archaic humans [see, for example, (80–82)].

Alternatively, what are the implications if these compound adhe-
sives were made by Neanderthals? It has recently been shown 
that Neanderthal birch tar making relied on the cumulative cultural 
transmission of techniques (32). This was proposed to be one of the 
core criteria for understanding ancient adhesives as proxies of evolu-
tionary processes (12). Another proposed core criterion is the will-
ingness to invest elevated costs in the production of tools (12). If 
Neanderthals were the authors, the Le Moustier artifacts would con-
stitute the second indication that their adhesive technology can be 
regarded as highly relevant for studying their cultural evolution. 
Another implication would result from ochre being used instead of 
other fillers. It is known that ochre has properties that lend it to its 
use in both utilitarian and symbolic contexts (17, 83, 84), and some 
authors argue that its use is never entirely utilitarian (85, 86). Follow-
ing that argument, if Neanderthals made the Le Moustier compound 
adhesives and they used the ochre for both its utilitarian and symbolic 
purposes, the evidence presented here would add weight to argu-
ments in favor of the Neanderthal capacity for symbolic behavior 
(87–89). In any case, the use of ochre as filler would appear to be 
present in African H. sapiens and Neanderthals, both showing 
almost identical adhesive technologies in all aspects (the only differ-
ence being the types of raw materials used).

This obviously gives rise to the question: Is it possible that Nean-
derthals made the compound adhesives but that these similarities are 
the result of acculturation? This might be a likely scenario if contem-
poraneous H. sapiens in this region were known to produce com-
pound adhesives from bitumen and ochre. There are adhesive finds 
associated with the late Aurignacian of the greater region (23, 24), 
but these are of unknown composition and either are single-component 
(23) or contain no ochre [a quartz IR spectrum is presented as evi-
dence of ochre in (24)]. They also postdate the Le Moustier assem-
blage. Thus, the still fragmentary adhesive find record does not allow 
us to decide whether acculturation is a likely scenario or not. The 
roughly contemporaneous find of one artifact containing an adhe-
sive admixture based on coniferous resin and beeswax at Fossellone 
in Italy (20) most likely cannot shed light on this question either (the 
authorship of the Fossellone and Sant’Agostino adhesives may also 
be regarded as ambiguous; no ocher was reported; only 1 of 15 arti-
facts was proposed to be a compound adhesive; this was based on 
long-chain fatty acids and alcohols, and the typical wax esters were 
not reported).

In conclusion, the Berlin Le Moustier artifacts are the oldest 
compound adhesives that have been found in a European context. 
We found that high proportions of ochre make bitumen more rigid 
and prevent it from sticking to the hand. This suggests that the 
adhesives were used as handles directly attached to stone tools 
rather than for hafting stone tools to handles. This is in continuity 
with the behavior known from the European Middle Paleolithic 
(birch tar handles). Our findings also highlight the importance of 
the Middle Paleolithic adhesive technology for our understanding 
of the economy and technology of the foragers of this period. They 
invested time and effort in making compound adhesives and had 
the cognitive capacities needed. This technology provided new 
materials with specific and desirable material properties. This 
capacity and the willingness to invest in tools that represented an 
elevated cost documents the complexity of late Middle Paleolithic 
hominin behavior.
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METHODS
IR spectra were recorded from KBr pellets by direct transmission 
(in a vacuum chamber), using a Bruker VERTEX 80v spectrometer, 
spectral acquisition between 1800 and 400 cm−1, and a resolution of 
2 cm−1. The ~0.3-g pellet contained 1 mg of sample.

CT scans were recorded with a Nikon XT H 320 CT scanner in 
Tübingen, selecting a resolution of about 11.5 μm (XrayA = 215 mA 
and ErayV = 215 kV). The reconstructed volumetric data (.vol) were 
sliced, and the ISO surface of the pieces was generated using the 
VGSTUDIO MAX version 3.5.1 software.

Lap-shear tests were performed in uniaxial tension and with a 
speed of 1 mm/min, using a universal testing machine (Instron 
4502). All tests were performed at 21°C. Aluminum Laps (100 mm 
× 25.4 mm) were mounted in kardanic suspended tensile grips to 
minimize the bending moment on the samples. Contact zones 
(12.7 mm × 25.4 mm, 322.6 mm2) were abraded with 100 grit sand 
paper. Tests result in stress/strain diagrams, plotting apparent shear 
stress τ in megapascal (as obtained from the force applied by the 
testing machine/bonded area) over strain in percent.
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