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Abstract
The cryptogenography problem, introduced by Brody, Jakobsen, Scheder, and Winkler (ITCS
2014), is to collaboratively leak a piece of information known to only one member of a group
(i) without revealing who was the origin of this information and (ii) without any private commu-
nication, neither during the process nor before. Despite several deep structural results, even the
smallest case of leaking one bit of information present at one of two players is not well understood.
Brody et al. gave a 2-round protocol enabling the two players to succeed with probability 1/3
and showed the hardness result that no protocol can give a success probability of more than 3/8.

In this work, we show that neither bound is tight. Our new hardness result, obtained by
a different application of the concavity method used also in the previous work, states that a
success probability of better than 0.3672 is not possible. Using both theoretical and numerical
approaches, we improve the lower bound to 0.3384, that is, give a protocol leading to this success
probability. To ease the design of new protocols, we prove an equivalent formulation of the
cryptogenography problem as solitaire vector splitting game. Via an automated game tree search,
we find good strategies for this game. We then translate the splits that occurred in this strategy
into inequalities relating position values and use an LP solver to find an optimal solution for these
inequalities. This gives slightly better game values, but more importantly, also a more compact
representation of the protocol and a way to easily verify the claimed quality of the protocol.

Unfortunately, already the smallest protocol we found that beats the previous 1/3 success
probability takes up 16 rounds of communication. The protocol leading to the bound of 0.3384
even in a compact representation consists of 18248 game states. These numbers suggest that the
task of finding good protocols for the cryptogenography problem as well as understanding their
structure is harder than what the simple problem formulation suggests.
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1 Introduction

Motivated by a number of recent influential cases of whistle-blowing, Brody, Jakobsen, Scheder,
and Winkler [2] proposed the following cryptogenography problem as model for anonymous
information disclosure in public networks. We have k players (potential information leakers).

∗ An extended online version of this article can be accessed at [4].
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150:2 Improved Protocols and Hardness Results for the Two-Player Cryptogenography Problem

A random one of them holds a secret, namely a random bit. All other players only know
that they are not the secret holder. Now without any non-public communication, the players
aim at both making the secret public and hiding the identity of the secret holder. More
precisely, we are looking for a (fully public) communication protocol in which the players
as only form of communication broadcast bits, which may depend on public information
(including all previous communication), private knowledge (with respect to the secret), and
a private source of randomness. After this phase of communication, the protocol outputs
a single bit depending solely on all data sent in the communication phase. The complete
protocol (regulating the communication and the output function) and all communication is
public, and is monitored by an eavesdropper who aims at identifying the secret owner. We
say that a run of the protocol is a success for the players, if the protocol output is the secret
bit and the eavesdropper fails to identify the secret owner; otherwise it is a success for the
eavesdropper. Since everything is public, optimal strategies for the eavesdropper are easy to
find (see below). We shall therefore always assume that the eavesdropper plays an optimal
strategy. The players’ success probability (for a given protocol) then is the probability (taken
over the random decisions of the players and the random initial secret distribution) that
simultaneously (i) the protocol outputs the true secret and (ii) an optimal eavesdropper does
not blame the secret holder.

It is immediately clear that some positive (players’) success probability is easy to obtain.
A protocol without any communication and outputting a random bit achieves a success
probability of 1

2 −
1

2k (the eavesdropper has no strictly better alternative than guessing a
random player). Surprisingly, Brody et al. could show that the players, despite the complete
absence of private communication, can do better. For two players, they present a protocol
having a success probability of 1

3 (instead of the trivial 1
4 ). For k sufficiently large, they

present a protocol with success probability 0.5644. They also show two hardness results,
namely that a success probability of more than 3

4 cannot be obtained, regardless of the
number of players, and that 3

8 is an upper bound for the two-player case. While all these
results are easy to state, they build on deep analyses of the cryptogenography problem, in
particular, on clever reformulations of the problem in terms of certain convex combinations of
secret distributions (protocol design) and functions that are concave on a certain infinite set
of two-dimensional subspaces (“allowed planes”) of the set of secret distributions (hardness
results).

The starting point for our work is the incomplete understanding of the two-player case.
While the gap between upper and lower bound of 3

8 −
1
3 ≈ 0.04167 is small, our impression is

that the current-best protocol achieving the 1
3 success probability in two rounds together

with the abstract hardness result do not give us much understanding of the structure of
the cryptogenography problem. We therefore imagine that a better understanding of this
smallest-possible problem of leaking one bit from two players, ideally by determining an
optimal protocol (that is, matching a hardness result), could greatly improve the situation.

Our Results. We shall be partially successful in achieving these goals. On the positive side,
we find protocols with strictly larger success probability than 1

3 (namely 0.3384) and we
prove a stricter hardness result of 0.3672. Our new protocols look very different from the
2-round protocol given by Brody et al., in particular, they use infinite protocol trees (but
have an expected finite number of communication rounds). These findings motivate and give
new starting points for further research on the cryptogenography problem.

On the not so positive side, our work on better protocols indicates that good cryptogeno-
graphic protocols can be very complicated. The simplest protocol we found that beats the 1

3
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barrier already has a protocol tree of depth 16, that is, the two players need to communicate
for 16 rounds in the worst case. While we still manage to give a human-readable description
and performance proof for this protocol, it is not surprising that previous works not incorpo-
rating a computer-assisted search did not find such a protocol. Our best protocol, giving a
success probability of 0.3384, already uses 18248 non-equivalent states.

Technical contributions. To find the improved protocols, we use a number of theoretical
and experimental tools. We first reformulate the cryptogenography problem as a solitaire
vector splitting game over vectors in R2×k

≥0 . Both for human researchers and for automated
protocol searches, this reformulation seems to be easier to work with than the previous
reformulation via convex combinations of distributions lying in a common allowed plane [2].
It also proved to be beneficial for improving upon the hardness result.

Restrictions of the vector splitting game to a finite subset of R2×k
≥0 , e.g., {0, . . . , T}2×k,

can easily be solved via dynamic programming, giving (due to the restriction possibly sub-
optimal) cryptogenographic protocols. Unfortunately, for k = 2 even discretizations as fine
as T = 40 are not sufficient to find protocols beating the 1/3 barrier and memory usage
quickly becomes a bottleneck issue. However, exploiting the simple fact that the game values
are homogeneous (that is, multiplying a game position by a non-negative scalar changes the
game value by this factor), we can (partially) simulate a much finer discretization in a coarse
one. This extended dynamic programming approach easily gives cryptogenographic success
probabilities larger than 1/3. Reading off the corresponding protocols, due to the reuse of
the same position in different contexts, needs more care, but in the end gives without greater
difficulties also the improved protocols.

When a cryptogenographic protocol reuses a state a second time (with a non-trivial split
in between), then there is no reason to re-iterate this part of the protocol whenever this
position occurs. Such a protocol allows infinite paths, while still needing only an expected
finite number of rounds. Since the extended dynamic programming approach in finite time
cannot find such protocols, we use a linear programming based post-processing stage. We
translate each splitting operation used in the extended dynamic programming search into an
inequality relating game values. By exporting these into an LP-solver, we do not only obtain
better game values (possibly corresponding to cryptogenographic protocols with infinite
paths, for which we would get a compact representation by making the cycles explicit), but
also a way to easily certify these values using an optimality check for a linear program instead
of having to trust the ad-hoc dynamic programming implementation.

Related work. Despite a visible interest of the research community in the cryptogenography
problem, the only relevant follow-up work is Jakobsen’s paper [5], which analyses the
cryptogenography problem for the case that several of the players know the secret. This
allows to leak a much larger amount of information as made precise in [5]. Due to the
asymptotic nature of these results, unfortunately, they do not give new insight in the 2-player
case. Other work on anonymous broadcasting typically assumes bounded computational
power of the adversary (see, e.g., [6]); we refer to [3] for a survey on anonymous communication
in communication networks.

In [2], the cryptogenography problem was reformulated to the problem of finding the
point-wise minimal function f on the set of secret distributions that is point-wise not smaller
than some given function g and that is concave on an infinite set of 2-dimensional planes.
Such restricted notions of concavity (or, equivalently, convexity) seem to be less understood.
We found work by Matoušek [9] for a similar convexity problem, however, with only a finite
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number of one-dimensional directions in which convexity is required. We do not see how to
extend these results to our needs.

2 Finding Better Cryptogenography Protocols

This section is devoted to the design of stronger cryptogenographic protocols. In particular,
we demonstrate that a success probability of more than 1/3 can be achieved. We start by
making the cryptogenography problem precise (Section 2.1) and introduce an equivalent
formulation as solitaire vector splitting game (Section 2.2). We illustrate both formulations
using the best known protocol for the 2-player case (Section 2.3). In Section 2.4, we state
basic properties that simplify the analysis of protocols and aid our automated search for better
protocols, which is detailed in Section 2.6. In Section 2.5, we give a simple, human-readable
proof that 1/3 is not the optimal success probability by analyzing a protocol with success
probability 449

1334 ≈ 0.3341. We describe how to post-optimize and certify the results obtained
by the automated search using linear programming in Section 2.7 and summarize our findings
(in particular, the best lower bound we have found) in Section 2.8. Proofs and details that
had to be omitted due to space constraints can be found in an extended version of this
article [4].

2.1 The Cryptogenography Problem

Let us fix an arbitrary number k of players called 1, . . . , k for simplicity. We write [k] :=
{1, . . . , k} for the set of players. We assume that a random one of the them, the “secret
owner” J ∈ [k], initially has a secret, namely a random bit X ∈ {0, 1}. The task of the
players is, using public communication only, to make this random bit public without revealing
the identity of the secret owner. More precisely, we assume that the players, before looking
at the secret distribution, (publicly) decide on a communication protocol π. This is again
public, that is, all bits sent are broadcast to all players, and they may depend only on
previous communication, the private knowledge of the sender (whether he is the secret
owner or not, and if so, the secret), and private random numbers of the sender. At the
end of the communication phase, the protocol specifies an output bit Y (depending on all
communication).

The aspect of not disclosing the identity of the secret owner is modeled by an adversary,
who knows the protocol (because it was discussed in public) and who gets to see all commu-
nication (and consequently also knows the protocol output Y ). The adversary, based on all
this data, blames one player K. The players win this game if the protocol outputs the true
secret (that is, Y = X) and the adversary does not blame the secret owner (that is, K 6= J),
otherwise the adversary wins. It is easy to see what the best strategy for the adversary is
(given the protocol and the communication), so the interesting part of the cryptogenography
problem is finding strategies that maximize the probability that the players win assuming
that the adversary plays optimally. We call this the (players’) success probability of the
protocol.

While the game starts with a uniform secret distribution, it will be useful to regard
arbitrary secret distributions. In general, a secret distribution is a distribution D over
{0, 1}× [k], where Dij is the probability that player j ∈ [k] is the secret owner and the secret
is i ∈ {0, 1}. Modulo a trivial isomorphism, D is just a vector in R2×k

≥0 with ‖D‖1 = 1. We
denote by ∆ = ∆k the set of all these distributions (this was denoted by ∆({0, 1} × [k])
in [2]).
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Brody et al. [2] observe that any cryptogenographic protocol can be viewed as successive
rounds of one-bit communication, where in each step some (a priori) secret distribution
probabilistically leads to one of two follow-up (a posteriori) distributions (depending on
the bit transmitted) such that the a priori distribution is a convex combination of these
and a certain proportionality condition is fulfilled (all three distributions lie in the same
“allowed plane”). Conversely, whenever the initial distribution can be written as such a
convex combination of certain distributions, then there is a round of a cryptogenographic
protocol leading to these two distributions (with certain probabilities). Consequently, the
problem of finding a good cryptogenographic protocol is equivalent to iteratively rewriting
the initial equidistribution as certain convex combinations of other secret distributions in
such a way that the success probability, which can be expressed in terms of this rewriting
tree, is large.

2.2 The Solitaire Vector Splitting Game
Instead of directly using the “convex combination” formulation of Brody et al., we propose a
slightly different reformulation as solitaire vector splitting game. This formulation seems to
ease finding good cryptogenographic protocols (lower bounds for the success probability),
both for human researchers and via automated search (Section 2.5). The main advantage of
our formulation is that it takes as positions all 2k-dimensional vectors with non-negative
entries, whereas the cryptogenographic protocols are only defined on distributions over
{0, 1} × [k]. In this way, we avoid arguing about probabilities and convex combinations and
instead simply split a vector (resembling a secret distribution) into a sum of two other vectors.
Furthermore, a simple monotonicity property (Proposition 2.5) eases the analyses. Still,
there is an easy translation between the two formulations, so that we can re-use whatever
results were found in [2].

For reasons of space, we do not repeat in detail the “convex combination” formulation
and its equivalence to cryptogenographic protocols (the latter alone takes around two pages
in [2]). We focus instead on the formal introduction of the vector splitting game (and argue
that its equivalent to the “convex combination” formulation in Lemma 2.6) and refer to [2, 4]
for a more detailed exposition.

I Definition 2.1. Let D ∈ R2×k
≥0 . We say that (D0, D1) is a j-allowed split of D if

D = D0 + D1 and D0 (and thus also D1) is proportional to D on {0, 1} × ([k] \ {j}),
that is, there is a λ ∈ [0, 1] such that (D0)|{0,1}×([k]\{j}) = λD|{0,1}×([k]\{j}). We call
(D0, D1) an allowed split of D if it is a j-allowed split of D for some j ∈ [k].

The objective of the vector splitting game is to recursively apply allowed splits to a given
vector D ∈ R2×k

≥0 with the target of maximizing the sum of the

p(D′) := max
x∈{0,1}

( ∑
j∈[k]

D′x,j −max
j∈[k]

D′x,j

)

values of the resulting vectors (note that when D′ is a distribution, then p(D′) is the 0-bit
success probability of D′; for more details, the reader is referred to [2, 4]). More precisely,
an n-round play of the vector splitting game is described by a binary tree of height at most
n, where the nodes are labeled with game positions in R2×k

≥0 . The root is labeled with the
initial position D. For each non-leaf v, the labels of the two children form an allowed split of
the label of v. The payoff of such a play is

∑
D′ p(D′), where D′ runs over all leaves of the

game tree. The aim is to maximize the payoff. Right from this definition, it is clear that
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150:6 Improved Protocols and Hardness Results for the Two-Player Cryptogenography Problem

the maximum payoff achievable in an n-round game started in position D, the value of this
game, is succn(D) as defined below.

I Definition 2.2. For all n ∈ N and for all D ∈ R2×k
≥0 , we recursively define

(i) succ0(D) := max
x∈{0,1}

( ∑
j∈[k]

Dx,j −max
j∈[k]

Dx,j

)
;

(ii) succn(D) := max
(D0,D1)

(
succn−1(D0) + succn−1(D1)

)
, if n ≥ 1. Here the maximum is

taken over all allowed splits (D0, D1) of D.

For an example of an admissible game, we refer to Figure 1 in Section 2.3.
It is easy to see that the game values are non-decreasing in the number of rounds, but

bounded. The limiting value is thus well-defined.

I Lemma 2.3. Let D ∈ R2×k
≥0 and n ∈ N. Then succn(D) ≤ ‖D‖1 and succn+1(D) ≥

succn(D). Consequently, succ(D) := limn→∞ succn(D) is well-defined and is equal to
supn∈N succn(D).

I Proposition 2.4 (scalability). Let D ∈ R2×k
≥0 and λ ≥ 0. Then succn(λD) = λ succn(D)

for all n ∈ N. Consequently, succ(λD) = λ succ(D).

I Proposition 2.5 (monotonicity). Let D,E ∈ R2×k
≥0 with E ≥ D (component-wise). Then

succn(E) ≥ succn(D) for all n ∈ N. Consequently, succ(E) ≥ succ(D).

From the previous definitions and observations, we derive that the game values for games
starting with a distribution D, that is, ‖D‖1 = 1, and the success probabilities of the optimal
cryptogenographic protocols for D, are equal.

I Lemma 2.6. Let D ∈ R2×k
≥0 with ‖D‖1 = 1. Then for all n ∈ N, our definitions of

succn coincide with the ones of Brody et al., which are the success probabilities of the best
n-round cryptogenographic protocols for the distribution D. Consequently, also the definition
of succ(D) coincides.

2.3 Example: The Best-so-far 2-Player Protocol
We now turn to the case of two players. We use this subsection to describe the best known
protocol for two players in the different languages. We also use this mini-example to sketch
the approaches used in the following subsections to design superior protocols.

For two players, we usually write a game position D = (D01, D11, D02, D12) ∈ R2×2
≥0

as D = (a, b, c, d). The 0-round game value (equaling the success probability of the 0-bit
protocol) then is

succ0(D) = max{min{a, c},min{b, d}}.

As a warmup, let us describe the best known 2-player protocol TwoBit in the two
languages. In the language of Brody et al., the first player can send a (randomized) bit that
transforms the initial distribution ( 1

4 ,
1
4 ,

1
4 ,

1
4 ) with probability 1

2 each into the distributions
( 1

3 ,
1
3 ,

1
6 ,

1
6 ) and ( 1

6 ,
1
6 ,

1
3 ,

1
3 ). In the first case, the second player can send a bit leading to

each of the distributions ( 1
3 ,

1
3 ,

1
3 , 0) and ( 1

3 ,
1
3 , 0,

1
3 ) with probability 1

2 , both having a 0-bit
success probability of 1

3 . In the second possible result of the first move, the first player can
lead to an analogous situation. Consequently, after two rounds of the protocol we end up
with four equally likely distributions all having a 0-bit success probability of 1

3 . Hence the
protocol TwoBit has a success probability of 1

3 .
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(3, 3, 3, 3)

(2, 2, 1, 1) (1, 1, 2, 2)

(1, 1, 1, 0) (1, 1, 0, 1) (1, 0, 1, 1) (0, 1, 1, 1)

Figure 1 Game tree corresponding to TwoBit.

In the language of the splitting games, we can forget about the probabilities and simply
split up the initial distribution. Using the scaling invariance, to ease reading we scaled
up all numbers by a factor of 12. Figure 1 shows the game tree corresponding to the
TwoBit protocol. It shows that succ2(3, 3, 3, 3) ≥ 4, proving again the existence of a
cryptogenographic protocol for the distribution ( 1

4 ,
1
4 ,

1
4 ,

1
4 ) = 1

12 (3, 3, 3, 3) with success
probability 4

12 = 1
3 .

Note that each allowed split (D0, D1) of D implies the inequality succ(D) ≥ succ(D0) +
succ(D1), which follows from clause (ii) of Definition 2.2 and taking the limit n→∞. Hence
the game tree giving the 1

3 lower bound for the success probability equivalently gives the
following proof via inequalities.

succ(3, 3, 3, 3) ≥ succ(2, 2, 1, 1) + succ(1, 1, 2, 2),
succ(2, 2, 1, 1) = succ(1, 1, 2, 2) ≥ succ(1, 0, 1, 1) + succ(0, 1, 1, 1),
succ(1, 0, 1, 1) = succ(0, 1, 1, 1) ≥ succ0(0, 1, 1, 1) = 1.

The splitting game and the inequality view will in the following be used to design stronger
protocols (better lower bounds for the optimal success probability). We shall compute good
game trees by computing lower bounds for the game values of a discrete set of positions
via repeatedly trying allowed splits. For example, the above game tree for the starting
position (3, 3, 3, 3) could have easily be found by recursively computing the game values for
all positions in {0, 1, 2, 3}4.

It turns out that such an automated search leads to better results when we also allow
scaling moves (referring to Proposition 2.4). For example, in the above mini-example of
computing optimal game values for all positions {0, 1, 2, 3}4, we could try to exploit the
fact that succ(1, 1, 1, 1) = 1

3 succ(3, 3, 3, 3). Such scaling moves are a cheap way of working
in {0, 1, 2, 3}4 while trying to gain the power of working in {0, 1, . . . , 9}4, which would be
computationally more costly, especially with regard to memory usage. Scaling moves may
lead to repeated visits of the same position, resulting in cyclic structures. Here translating
the allowed splits used in the tree into the inequality formulation and then using an LP-solver
is an interesting approach (detailed in Section 2.7). It allows to post-optimize the game trees
found, in particular, by solving cyclic dependencies. This leads to slightly better game values
and compacter representations of game trees.

2.4 Useful Facts
For some positions of the vector splitting game, the true value is easy to determine. We do
this here to later ease the presentation of the protocols.

ICALP 2016



150:8 Improved Protocols and Hardness Results for the Two-Player Cryptogenography Problem

I Proposition 2.7. We have succ(a, b, c, d) ≤ min{a, c}+ min{b, d}.

I Proposition 2.8. Let D = (a, b, c, 0). Then succ(D) = succ0(D) = min{a, c}.

I Proposition 2.9. If D = (a, b, c, d) is such that a+ b ≤ min{c, d}, then succ(D) = a+ b.

2.5 Small Protocols Beating the 1/3 Barrier
We now present a sequence of protocols showing that there are cryptogenographic protocols
having a success probability strictly larger than 1

3 . These protocols are still relatively simple,
so we also obtain a human-readable proof of the following result.

I Theorem 2.10. succ( 1
4 ,

1
4 ,

1
4 ,

1
4 ) ≥ 449

1334 ≈ 0.3341.

Proof. To be able to give a readable mathematical proof, we argue via inequalities for game
values succ(·). We later discuss how the corresponding protocols (game trees) look like.

We first observe the following inequalities, always stemming from allowed splits (the
underlined entries are proportional). Whenever Proposition 2.8 or 2.9 determine a value, we
exploit this without further notice.

succ(12, 12, 12, 12) ≥ succ(7, 7, 6, 4) + succ(5, 5, 6, 8),
succ(5, 5, 6, 8) ≥ succ(2, 2, 0, 2) + succ(3, 3, 6, 6) = 2 + 6 = 8.

This proves succ(12, 12, 12, 12) ≥ 8 + succ(7, 7, 6, 4). To analyze succ(7, 7, 6, 4), we use the
allowed split

succ(7, 7, 6, 4) ≥ succ(4, 5, 3, 2) + succ(3, 2, 3, 2) (1)

and regard the two positions (4, 5, 3, 2) and (3, 2, 3, 2) separately in some detail.

Claim 1: The value of (4, 5, 3, 2) satisfies succ(4, 5, 3, 2) ≥ 55
12 . By scaling, we have

succ(4, 5, 3, 2) = 1
2 succ(8, 10, 6, 4). We present the allowed splits

succ(8, 10, 6, 4) ≥ succ(4, 5, 2, 4) + succ(4, 5, 4, 0) = succ(4, 5, 2, 4) + 4,
succ(4, 5, 2, 4) ≥ succ(1, 2, 1, 2) + succ(3, 3, 1, 2) = succ(1, 2, 1, 2) + 3,

hence succ(8, 10, 6, 4) ≥ succ(1, 2, 1, 2) + 7. To bound the latter term, we use the scaling
succ(1, 2, 1, 2) = 1

6 succ(6, 12, 6, 12) and consider the allowed splits

succ(6, 12, 6, 12) ≥ succ(5, 10, 3, 9) + succ(1, 2, 3, 3) = succ(5, 10, 3, 9) + 3,
succ(5, 10, 3, 9) ≥ succ(0, 6, 2, 6) + succ(5, 4, 1, 3) = 6 + 4 = 10.

Thus succ(6, 12, 6, 12) ≥ 13 and succ(1, 2, 1, 2) ≥ 13
6 . This shows succ(4, 5, 3, 2) ≥

1
2 (succ(1, 2, 1, 2) + 7) ≥ 55

12 .

Claim 2: We have succ(3, 2, 3, 2) ≥ 5
3 + 2

9 succ(7, 7, 6, 4). By scaling, we obtain
succ(3, 2, 3, 2) = 1

3 succ(9, 6, 9, 6) and compute

succ(9, 6, 9, 6) ≥ succ(6, 3, 6, 4) + succ(3, 3, 3, 2),
succ(6, 3, 6, 4) ≥ succ(3, 0, 3, 2) + succ(3, 3, 3, 2) = 3 + succ(3, 3, 3, 2),

and hence succ(9, 6, 9, 6) ≥ 3 + 2 succ(3, 3, 3, 2). To bound the latter term, we scale
succ(3, 3, 3, 2) = 1

3 succ(9, 9, 9, 6) and present the allowed splits

succ(9, 9, 9, 6) ≥ succ(7, 7, 6, 4) + succ(2, 2, 3, 2),
succ(2, 2, 3, 2) ≥ succ(1, 1, 1, 0) + succ(1, 1, 2, 2) = 1 + 2 = 3.

Thus succ(3, 3, 3, 2) ≥ 1 + 1
3 succ(7, 7, 6, 4), implying succ(3, 2, 3, 2) ≥ 5

3 + 2
9 succ(7, 7, 6, 4).
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(12, 12, 12, 12)

(7, 7, 6, 4) (5, 5, 6, 8)

(4, 5, 3, 2) (3, 2, 3, 2) (2, 2, 0, 2)(3, 3, 6, 6)

(3, 0, 3, 3)(0, 3, 3, 3)

(2, 2, 0, 2)

(8, 10, 6, 4)

· 2

(9, 6, 9, 6)

· 3

(4, 5, 2, 4)(4, 5, 4, 0)

(1, 2, 1, 2)(3, 3, 1, 2)

(6, 12, 6, 12)

· 6

(1, 1, 1, 0)

(1, 1, 1, 0)

(1, 1, 1, 0)

(5, 10, 3, 9)(1, 2, 3, 3)

(0, 6, 2, 6) (5, 4, 1, 3)(1, 0, 1, 1) (0, 2, 2, 2)

(1, 0, 1, 1)(1, 0, 0, 0) (4, 4, 1, 3)

(3, 3, 0, 3)

(6, 3, 6, 4)

(3, 3, 3, 2) (3, 0, 3, 2)

(9, 9, 9, 6)

· 3

(7, 7, 6, 4) (2, 2, 3, 2)

(1, 1, 2, 2)

(0, 1, 1, 1)

Figure 2 Game tree representation of the protocols of Theorem 2.10.

Putting things together. Claims 1 and 2 together with (1) give

succ(7, 7, 6, 4) ≥ 75
12 + 2

9 succ(7, 7, 6, 4).

By solving this elementary equation, we obtain succ(7, 7, 6, 4) ≥ 225
28 , and it follows that

succ(12, 12, 12, 12) ≥ 225
28 + 8 = 449

28 = 16 + 1
28 . Scaling leads to the claim of the theorem

succ( 1
4 ,

1
4 ,

1
4 ,

1
4 ) ≥ 1

3 + 1
1344 = 449

1344 = 0.33407738 . . . . J

When translating the inequalities into a game tree (see Figure 2 for the result), we first
observe that in Claim 2 we obtained two different nodes labeled with the position (3, 3, 3, 2).
Since there is no reason to treat them differently, we can identify these two nodes and thus
obtain a more compact representation of the game tree. This is the reason why the node
labeled (3, 3, 3, 2) in Figure 2 has two incoming edges.

Interestingly, such identifications can lead to cycles. If we translate the equations for
position (7, 7, 6, 4) and its children into a graph, then we observe that the node for (7, 7, 6, 4)
has a descendant also labeled (7, 7, 6, 4) (this is what led to the inequality succ(7, 7, 6, 4) ≥
75
12 + 2

9 succ(7, 7, 6, 4)). By transforming this inequality to succ(7, 7, 6, 4) ≥ 225
28 , we obtain

a statement that is true, but that does not anymore refer to an actual (finite) game
tree. However, there is a sequence of game trees with values converging to the value we
determined. These trees are obtained from recursively applying the above splitting procedure
for (7, 7, 6, 4) a certain number ` of times and then using the 0-round tree for the lowest node

ICALP 2016
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Table 1 Lower bounds s(T, . . . , T )/(4T ) on succ( 1
4 , 1

4 , 1
4 , 1

4 ) stemming from the automated search
(line 1). Given are also the number of iterations until the automated search procedure converged,
i.e., stopped finding improvements using allowed splits or scalings, and the number of game positions
and constraints that had an influence on the value of s(T, . . . , T ).

T 15 20 25 30
Automated search 0.3369432925 0.3376146092 0.3379027186 0.3381689066
Iterations 119 129 141 146
Constraints 535 1756 4217 13958
Game Positions 394 1326 2956 9646

labeled (7, 7, 6, 4). The value of this game tree is 8 +
∑`−1

i=0( 2
9 )i 75

12 + ( 2
9 )` succ0(7, 7, 6, 4) =

8+ 75
12

1−( 2
9 )`

1− 2
9

+6 · ( 2
9 )` = 449

28 −
57
28 ( 2

9 )`. Hence for ` ≥ 3, this is more than 16 (which represents
a success probability of 1

3 ), corresponding to a game tree of height1 4 + 4` ≥ 16.

2.6 Automated Search
The vector splitting game formulation allows to search for good cryptogenographic protocols
as follows. We try to determine the game values of all positions from a discrete set D :=
{0, . . . , T}2×k by repeatedly applying allowed splits. More precisely, we store a function
s : D → R that gives a lower bound on the game value succ(D) of each position D ∈ D. We
initialize this function with s ≡ succ0 and then in order of ascending ‖D‖1 try all allowed
splits D = D0 +D1 and update s(D)← s(D0) + s(D1) in case we find that s(D) was smaller.

Recall that for any secret distributionD, the game value succ(D) is the supremum success
probability of cryptogenographic protocols for D. Hence, e.g., the value s(T, . . . , T )/(2Tk) ≤
succ(1/(2k), . . . , 1/(2k)) is a lower bound for this success probability. As we will discuss
later, by keeping track of the update operations performed, we can not only compute such a
lower bound, but also concrete protocols.

Since even for k = 2, the size of the position space D and the number of allowed splits
increase quickly with T , only moderate choices of T are computationally feasible, limiting
the power of this approach drastically. However, using the scaling invariance λsucc(D) =
succ(λD), we can introduce a scaling step: we iteratively optimize using allowed splits2,
then backpropagate the computed values (updating, e.g., s(1, 1, 1, 1)← (1/T ) · s(T, T, T, T ))
to repeat the process. Surprisingly, this simple modification is sufficient to find protocols
that are better than the previous best protocol TwoBit. For a more precise description of
the algorithm, see the extended version of this article [4].

The success probabilities of the protocols computed following the above approach, using
different values for T , are given in the first line of Table 1. Further results exploiting the
post-optimization are given in Table 2 in Section 2.8.

2.7 Post-Optimization via Linear Programming
When letting the automated search also keep track of at what time which update operation
was performed, this data can be used to extract strategies for the splitting game (and

1 Note that the height refers to the number of transmitted bits and thus does not include the number of
(virtual) scaling moves.

2 In fact, we use relaxed splits, in which some coordinate in the resulting distributions may additionally
be rounded down – this slightly increases the set of admissible splits. For details, see [4].
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Table 2 Lower bounds s(T, . . . , T )/(4T ) on succ( 1
4 , 1

4 , 1
4 , 1

4 ) stemming from the automated search
only (line 1) and from the LP solution of the linear system extracted from the automated search
data (line 2), when the number of iterations is restricted to 20.

T 30 35 40 45 50
Autom. search 0.3381086510 0.3381937725 0.3383218072 0.3383946540 0.3384414508
LP solution 0.3381527322 0.3382301900 0.3383547901 0.3384303130 0.3384736461
Iterations 20 20 20 20 20
Constraints 5373 8882 12410 18659 24483
Game states 4126 6789 9396 13992 18248

cryptogenographic protocols). Some care has to be taken to only extract those intermediate
positions that had an influence on the final game value for the position we are interested in.

While this approach does deliver good cryptogenographic protocols, manually verifying
the correctness of the updates or analyzing the structure of the underlying protocol quickly
becomes a difficult task, as the size of the protocol grows rapidly. Fortunately, it is possible
to output a compact, machine-verifiable certificate for the lower bound obtained by the
automated search that might even prove a better lower bound than computed: Each update
step in the automated search corresponds to a valid inequality of the form succ(D) ≥
succ(D0) + succ(D1), succ(D) ≥ succ0(D) or λ · succ(D) = succ(λ ·D). We can extract
the (sparse) set ineq(T, T, T, T ) of those inequalities that lead to the computed lower bound
on succ(T, T, T, T ).

Consider replacing each occurrence of succ(D′) in the set of inequalities ineq(T, T, T, T )
found by the automated search by a variable sD′ . We obtain a system of linear inequalities S
that has the feasible solution sD′ = succ(D′) (for every occurring vector D′). Hence in
particular, the optimal solution of the linear program of minimizing sD subject to S is a
lower bound on succ(D). It is easy to see that this solution is at least as good as the
solution stemming from the automated search alone. It can, however, even be better, in
particular when a game strategy yields cyclic visits to certain positions. Table 2 contains,
for different values of T , the success probabilities found by automated search (run with a
bounded iteration number of 20) and by this above linear programming approach. The table
also contains the number of linear inequalities (and game positions) that were extracted from
the automated search run. We observe that consistently the LP-based solution is minimally
better. We also observe that the number of constraints is still moderate, posing no difficulties
for ordinary LP solvers (which stands in stark contrast to feeding all allowed splits and
scalings over the complete discretization to the LP solver, which quickly becomes infeasible).

Hence the advantage of our approach of extracting the constraints from the automated
search stage is that it generates a much sparser sets of constraints that still are sufficiently
meaningful. After solving the LP, we can further sparsify this set of inequalities by deleting
all inequalities that are not tight in the optimal solution of the LP, since these cannot
correspond to the best splits found for the corresponding vector D, yielding a smaller set of
relevant inequalities, which might help to analyze the structure of strong protocols.

2.8 Our Best Protocol
We report the best protocol we found using the approach outlined in the previous sections.

I Theorem 2.11. In the 2-player cryptogenography problem, succ( 1
4 ,

1
4 ,

1
4 ,

1
4 ) ≥ 0.3384736.

Proof. On http://people.mpi-inf.mpg.de/~marvin/verify.html, we provide a linear
program based on feasible inequalities on the discretization D with T = 50. To verify the

ICALP 2016
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result, one only has to (1) check validity of each inequality, i.e., checking whether each
constraints encodes a feasible scaling, allowed split or zero-bit success probability and (2)
solve the linear program. Since we represent the distributions D = (a, b, c, d) using a normal
form a ≥ b, c, d (to break symmetries), checking validity of each splitting constraint is not
completely trivial, but easy. We provide a simple checker program to verify validity of the
constraints. The LP is output in a format compatible with the LP solver lp_solve3. J

3 A Stronger Hardness Result

In this section, we prove that any 2-player cryptogenographic protocol has a success probability
of at most 0.3672. This improves over the previous 0.375 bound of [2].

I Theorem 3.1. We have succ( 1
4 ,

1
4 ,

1
4 ,

1
4 ) ≤ 47

128 = 0.367188.

To prove the result, we apply the concavity method used by Brody et al. [2] which
consists in finding a function s that (i) is lower bounded by succ0 for all distributions
and (ii) satisfies a certain concavity condition. Similar concavity arguments have been
applied before in information complexity and information theory (see, e.g., [1, 7, 8]). We
first relax the lower bound requirement to hold only for six particular simple distributions
(namely (1, 0, 0, 0), . . . , (0, 0, 0, 1), ( 1

2 , 0,
1
2 , 0) and (0, 1

2 , 0,
1
2 )) instead of all distributions. This

simplifies the search for a suitable stronger candidate function satisfying (i) - it remains to
verify condition (ii) for the thus found candidate function.

More specifically, we adapt the upper bound function of Brody et al. [2] to

s(a, b, c, d) := 1− f(a, b, c, d)
4 ,

f(a, b, c, d) := a2 + b2 + c2 + d2 − 6(ac+ bd) + 8abcd.

In fact, we have changed their upper bound function by introducing an additional term of
8abcd, which attains a value of zero on the distributions ( 1

2 , 0,
1
2 , 0), (1, 0, 0, 0), etc., thus not

affecting the zero-bit success probability condition of the concavity method. Due to space
constraints, we defer the quite technical verification of the concavity condition to [4].

Since this function attains the value of s( 1
4 ,

1
4 ,

1
4 ,

1
4 ) = 47

128 at the uniform distribution, we
obtain the stronger upper bound of succ( 1

4 ,
1
4 ,

1
4 ,

1
4 ) ≤ 47

128 of Theorem 3.1.

4 Conclusion

Despite the fundamental understanding of the cryptogenography problem obtained by Brody
et al. [2], determining the success probability even of the 2-player case remains an intriguing
open problem. The previous best protocol with success probability 1/3, while surprising
and unexpected at first, is natural and very symmetric (in particular when viewed in the
vector splitting game formulation). We disprove the hope that it is an optimal protocol
by exhibiting less intuitive and less symmetric protocols having success probabilities up to
0.3384. Concerning hardness results, our upper bound of 0.3671875 shows that also the
previous upper bound of 3/8 was not the final answer. These findings add to the impression
that the cryptography problem offers a more complex nature than its simple description
might suggest and that understanding the structure of good protocols is highly non-trivial.

3 http://lpsolve.sourceforge.net

http://lpsolve.sourceforge.net
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We are optimistic that our methods support a further development of improved protocols
and bounds. (1) Trivially, investing more computational power or optimizing the automated
search might lead to finding better protocols. (2) Our improved protocols might motivate to
(manually) find infinite protocol families exploiting implicit properties and structure of these
protocols. (3) Our reformulations, e.g., as vector splitting game, might ease further searches
for better protocols and for better candidate functions for a hardness proof.
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