
HAL Id: hal-04484793
https://hal.science/hal-04484793

Submitted on 4 Apr 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Significance-based estimation-of-distribution algorithms
Benjamin Doerr, Martin Krejca

To cite this version:
Benjamin Doerr, Martin Krejca. Significance-based estimation-of-distribution algo-
rithms. IEEE Transactions on Evolutionary Computation, 2020, 24 (6), pp.1483-1490.
�10.1109/TEVC.2019.2956633�. �hal-04484793�

https://hal.science/hal-04484793
https://hal.archives-ouvertes.fr

ar
X

iv
:1

80
7.

03
49

5v
3

 [
cs

.N
E

]
 2

2
D

ec
 2

02
0

Significance-based Estimation-of-Distribution Algorithms

Benjamin Doerr∗ and Martin S. Krejca†

Abstract

Estimation-of-distribution algorithms (EDAs) are randomized search heuristics
that create a probabilistic model of the solution space, which is updated iteratively,
based on the quality of the solutions sampled according to the model. As previous
works show, this iteration-based perspective can lead to erratic updates of the model,
in particular, to bit-frequencies approaching a random boundary value. In order to
overcome this problem, we propose a new EDA based on the classic compact genetic
algorithm (cGA) that takes into account a longer history of samples and updates
its model only with respect to information which it classifies as statistically signif-
icant. We prove that this significance-based compact genetic algorithm (sig-cGA)
optimizes the commonly regarded benchmark functions OneMax, LeadingOnes,
and BinVal all in quasilinear time, a result shown for no other EDA or evolutionary
algorithm so far. For the recently proposed scGA – an EDA that tries to prevent
erratic model updates by imposing a bias to the uniformly distributed model – we
prove that it optimizes OneMax only in a time exponential in its hypothetical pop-
ulation size. Similarly, we show that the convex search algorithm cannot optimize
OneMax in polynomial time.

1 Introduction

Estimation-of-distribution algorithms (EDAs; [40]) are nature-inspired heuristics, similar
to evolutionary algorithms (EAs). In contrast to EAs, which maintain an explicit set
of solutions, EDAs optimize a function by evolving a probabilistic model of the solution
space. Iteratively, an EDA uses its probabilistic model in order to generate samples and
make observations from them. It then updates its model based on these observations,
where an algorithm-specific parameter determines how strong the changes to the model
in each iteration are.

For an EDA to succeed in optimization, it is important that its model is changed
over time in a way that better solutions are sampled more frequently. However, due to
the randomness in sampling, the model should not be changed too drastically in a single
iteration in order to prevent wrong updates from having a long-lasting impact.

∗Laboratoire d’Informatique (LIX), École Polytechnique, Palaiseau, France
e-mail: doerr@lix.polytechnique.fr

†Hasso Plattner Institute, University of Potsdam, Potsdam, Germany
e-mail: martin.krejca@hpi.de

1

http://arxiv.org/abs/1807.03495v3
mailto:doerr@lix.polytechnique.fr
mailto:martin.krejca@hpi.de

The theoretical analysis of EDAs has recently gained momentum (see, e.g., the sur-
vey [31]) and has clearly shown that this trade-off between convergence speed and accu-
mulation of erratic updates can be delicate and non-trivial to understand. Among the
most relevant works, Sudholt and Witt [41] and Krejca and Witt [30] prove lower bounds
of the expected run times of three common EDAs on the benchmark function OneMax.
In simple words, these bounds show that if the update parameter for the model is too
large, the model converges too quickly and very likely to a wrong model; consequently, it
then takes a long time to find the optimum. On the other hand, if the parameter is too
small, then the model converges to the correct model but does so slowly. More formally,
Sudholt and Witt [41] prove a lower bound of Ω(K

√
n+ n log n) for the 2-MMASib and

the cGA, where 1/K is the step size of the algorithm, and Krejca and Witt [30] prove a
lower bound of Ω(λ

√
n + n log n) for the UMDA, where λ is the population size of the

algorithm. These results show that choosing the parameter with a value of ω(
√
n log n)

has no benefit. Further, it has been recently shown by Lengler et al. [34] that the run
time of the cGA on OneMax is Ω(K1/3n + n log n) for K = O(

√
n/(log n log log n)).

Together with the results from Sudholt and Witt [41], this implies a bimodal behavior
in the run time with respect to K if K = Ω(log n) ∩O(

√
n log n), showing that the run

time is sensitive to the parameter choice.
Friedrich et al. [25] also discuss the problem of how to choose the update strength.

They consider a class of EDAs optimizing functions over bit strings of length n that
all current theoretical results fall into, named n-Bernoulli-λ-EDA. The model of such
EDAs uses one variable per bit of a bit string, resulting in a probability vector τ of
length n called the frequency vector. In each iteration, a bit string x is sampled bit-wise
independently and independent of any other sample such that bit xi is 1 with probability
(frequency) τi and 0 otherwise.

Friedrich et al. [25] consider two different properties of such EDAs, namely balanced
and stable. Intuitively, a balanced EDA does not change a frequency τi in expectation
if the fitness function has no preference for 0s or 1s at position i. A stable EDA keeps
a frequency, in such a scenario, close to 1/2. Friedrich et al. [25] then prove that an n-
Bernoulli-λ-EDA cannot be both balanced and stable. They also prove that all commonly
theoretically analyzed EDAs are balanced. This means that the frequencies will always
move toward 0 or 1, even if there is no bias from the objective function.

Motivated by these results, Friedrich et al. [25] propose an EDA (called scGA) that
is stable (but not balanced) by introducing an artificial bias into the update process that
should counteract the bias of a balanced EDA. However, we prove that this approach
fails badly on the standard benchmark function OneMax (Thm. 4). We note that a
similar bias towards the middle frequency of 1/2 was proven for a binary differential
evolution algorithm by Zheng et al. [44]. Similar to the situation of the scGA, their run
time results (partially relying on mean-field assumptions) indicate that LeadingOnes is
optimized in a number of generations that is linear in the problem size n. This gives an
O(n log n) number of function evaluations when using a logarithmic population size (and
smaller population sizes are provably not successful). For OneMax, the results are less
conclusive, but they indicate a run time exponential in the population size can occur.

2

Table 1: Expected run times (number of fitness evaluations) of various algorithms until they first find an optimum for the two functions
OM (eq. (1)) and LO (eq. (2)). For optimal parameter settings, many algorithms have a run time of Θ(n log n) for OM and of Θ(n2) for
LO. We note that the

(

1 + (λ, λ)
)

GA has an o(n log n) run time on OM (and even linear run time with a dynamic parameter choice), but
we do not see why it should have a performance better than quadratic on LO.

Algorithm OM constraints LO constraints

(1 + 1) EA Θ(n log n) [23] none Θ(n2) [23] none
(µ+ 1) EA Θ(µn+ n log n) [42] µ = O

(

poly(n)
)

Θ(µn log n+ n2) [42] µ = O
(

poly(n)
)

(1 + λ) EA Θ
(

n log n+ λn log log λ
log λ

)

[14, 28]1 λ = O(n1−ε) Θ(n2 + λn) [28] λ = O
(

poly(n)
)

(µ+ λ) EA Θ
(

n logn
λ + n

λ/µ+
n log+ log+ λ/µ

log+ λ/µ

)

[4] log+ x := max{1, log x} Ω
(

n2 + λn
log(λ/n)

)

[5] –
(

1 + (λ, λ)
)

GA Θ
(

max
{

n logn
λ ,nλ log log λ

log λ

})

[9] p = λ
n , c = 1

λ unknown –

CSA Ω(nc) [Thm. 6] c > 0 O(n log n) [35] µ ≥ 8 ln
(

(4n+ 6)n
)

, restarts
UMDA/PBIL2 Ω(λ

√
n+ n log n) [30] µ = Θ(λ) O(nλ log λ+n2) [6, 32] λ = Ω(log n), µ = Θ(λ)

O(λn) [6, 43] µ = Ω(log n) ∩ O(
√
n), λ =

Ω(µ) or
µ = Ω(

√
n log n), µ = Θ(λ) or

µ = Ω(log n)∩ o(n), µ = Θ(λ)

cGA/2-MMASib Ω
(√

n
ρ + n log n

)

[41] 1
ρ = O

(

poly(n)
)

unknown –

O
(√

n
ρ

)

[41] 1
ρ = Ω(

√
n log n)∩O

(

poly(n)
)

1-ANT O(n2) [37]3 ρ = Ω(n−1+ε) O(n2 · (6e)1/(nρ)) [19] none

2Ω(min{n,1/(nρ)}) [19] none

MMAS∗ O
(n logn

ρ

)

[36] ρ = O(1) O
(

n2 + n logn
ρ

)

[36] ρ = O(1)

Ω
(

n2 + n
−ρ log(2ρ)

)

[36] ρ = 1/poly(n)

scGA Ω
(

min{2Θ(n), 2c/ρ}
)

[Thm. 4] 1/ρ=Ω(log n), a = Θ(ρ), d =
Θ(1), c > 0

O(n log n) [25] 1/ρ = Θ(log n), a = O(ρ),
d = Θ(1)

sig-cGA (Alg. 1) O(n log n) [Thm. 3] ε > 12 O(n log n) [Thm. 2] ε > 12

1Better run time bounds for the (1 + λ) EA are known if the mutation rate is (i) fitness-dependent [5], (ii) self-adjusting [11], or (iii) self-adaptive [21].
2The results shown for PBIL are the results of UMDA if not mentioned otherwise, since the latter is a special case of the former.
3For ρ ≥ (n− 2)/(3n − 2), the algorithm simulates the (1 + 1) EA and has a run time of Θ(n log n).

The results of Friedrich et al. [25], Sudholt and Witt [41], Krejca and Witt [30], and
Lengler et al. [34] draw the following picture: for a balanced EDA, there exists some
inherent noise in the update. Thus, if the parameter responsible for the update of the
probabilistic model is large and the speed of convergence high, the algorithm only uses a
few samples before it converges. During this time, the noise introduced by the balance-
property may not be overcome, resulting in the probabilistic model converging to an
incorrect one, as the algorithms are not stable. Hence, the parameter has to be chosen
sufficiently small in order to guarantee convergence to the correct model, resulting in a
slower optimization time.

As we shall argue in this work, the reason for this dilemma is that EDAs only use
information from a single iteration when performing an update. Thus, the decision of
whether and how a frequency should be changed has to be made on the spot, which may
result in harmful decisions.

To overcome these difficulties, we propose a conceptually new EDA that has some
access to the search history and updates the model only if there is sufficient reason.
The significance-based compact genetic algorithm (sig-cGA) stores for each position the
history of bits of good solutions so far. If it detects that either statistically significantly
more 1s than 0s or vice versa were sampled, it changes the corresponding frequency,
otherwise not. Thus, the sig-cGA only performs an update when it has proof that it
makes sense. This sets it apart from the other EDAs analyzed so far.

We prove that the sig-cGA is able to optimize LeadingOnes, OneMax, and BinVal

in O(n log n) function evaluations in expectation and with high probability (Thms. 2
and 3 and Cor. 2), which has not been proven before for any other EDA or classical EA
(for further details, see Table 1).

We also observe that the analysis for LeadingOnes can easily be modified to also
show an O(n log n) run time for the binary value function BinVal, which is a linear
function with exponentially growing coefficients. This result is interesting in that it indi-
cates that the sig-cGA has asymptotically the same run time on BinVal and OneMax.
In contrast, for the classic cGA it is known [22] that the run times on OneMax and
BinVal differ significantly.

We then show that two previously regarded algorithms which solve LeadingOnes in
O(n log n) time behave poorly on OneMax. The run time of the scGA proposed in [25]
is Ω(2Θ(min{n,1/ρ})) (Thm. 4), where 1/ρ is an algorithm-specific parameter controlling
the strength of the model update and denotes the hypothetical population size of the
algorithm. For the convex search algorithm (CSA) proposed in [35], we prove that the
run time, even when adding suitable restart schemes, is asymptotically larger than any
polynomial (Thm. 6). These results, together with the large number of existing results,
suggest that none of the previously known algorithms performs exceptionally well on
both OneMax and LeadingOnes.

These results, the positive ones for the sig-cGA using a longer history of the search
process and the negative ones for other algorithms not exploiting a longer history, suggest
that a fruitful direction for the future development of the field of evolutionary compu-
tation (EC; not restricted to theory) is the search for algorithms that enrich the classic
generational approaches with mechanisms that profit from regarding more than one gen-
eration. We discuss this in more detail in the conclusions of this paper. We note that,
from a practical point of view, our algorithm not only showed a performance not seen so

4

far with other algorithms, it is also easier to use since, unlike with most other EDAs, the
delicate choice of the update strength is obsolete.

This paper extends our previous results on the sig-cGA [15] by proving an upper
bound of the sig-cGA on BinVal (Cor. 2) and a lower bound of the CSA on OneMax

(Thm. 6).

2 Preliminaries

In this paper, we consider the maximization of pseudo-Boolean functions f : {0, 1}n → R,
where n is a positive integer (fixed for the remainder of this work). We call f a fitness
function, an element x ∈ {0, 1}n an individual, and, for an i ∈ [n] := [1, n]∩N, we denote
the ith bit of x by xi. When talking about run time, we always mean the number of
fitness function evaluations of an algorithm until an optimum is sampled for the first
time.

In our analysis, we regard the two classic benchmark functions OneMax (OM) and
LeadingOnes (LO) defined by

OM(x) =
∑

i∈[n]
xi and (1)

LO(x) =
∑

i∈[n]

∏

j∈[i]
xj . (2)

Intuitively, OM returns the number of 1s of an individual, whereas LO returns the longest
sequence of consecutive 1s, starting from the left. Note that the all-1s bit string is the
unique global optimum for both functions.

In Table 1, we state the asymptotic run times of many algorithms on these two
functions. We note that (i) the black-box complexity of OM is Θ(n/ log n), see [2, 24],
and (ii) the black-box complexity of LO is Θ(n log log n), see [1], however, all black-
box algorithms witnessing these run times are highly artificial. Consequently, Θ(n log n)
appears to be the best run time to aim for these two problems.

For our calculations, we shall regularly use the following well-known variance-based
additive Chernoff bounds (see, e.g., the respective Chernoff bound in [8]).

Theorem 1 (Variance-based Additive Chernoff Bounds). Let X1, . . . ,Xn be independent
random variables such that, for all i ∈ [n], E[Xi] − 1 ≤ Xi ≤ E[Xi] + 1. Further, let
X =

∑n
i=1Xi and σ2 =

∑n
i=1Var[Xi] = Var[X]. Then, for all λ ≥ 0, abbreviating

m = min{λ2/σ2, λ},
Pr[X ≥ E[X] + λ] ≤ e−

1
3
m and Pr[X ≤ E[X] − λ] ≤ e−

1
3
m .

We say that an event A occurs with high probability (w.h.p.) if there is a c = Ω(1)
such that Pr[A] ≥ (1− n−c).

Last, we use the ◦ operator to denote string concatenation. For a bit string H ∈
{0, 1}∗, let |H| denote its length, ‖H‖0 its number of 0s, ‖H‖1 its number of 1s, and,
for a k ∈ [|H|], let H[k] denote the last k bits in H. In addition to that, ∅ denotes the
empty string.

5

Algorithm 1: The sig-cGA with parameter ε and significance function sigε
(eq. (3)) optimizing f

1 t← 0;

2 for i ∈ [n] do τ
(t)
i ← 1

2 and Hi ← ∅ ;
3 repeat

4 x, y ← offspring sampled with respect to τ (t);
5 x← winner of x and y with respect to f ;
6 for i ∈ [n] do

7 Hi ← Hi ◦ xi;
8 if sigε(τ

(t)
i ,Hi) = up then τ

(t+1)
i ← 1− 1/n;

9 else if sigε(τ
(t)
i ,Hi) = down then τ

(t+1)
i ← 1/n;

10 else τ
(t+1)
i ← τ

(t)
i ;

11 if τ
(t+1)
i 6= τ

(t)
i then Hi ← ∅;

12 t← t+ 1;

13 until termination criterion met;

3 The Significance-based Compact Genetic Algorithm

Before we present our algorithm sig-cGA in detail in Section 3.1, we provide more infor-
mation about the compact genetic algorithm (cGA [27]), which the sig-cGA as well as
the scGA are based on.

The cGA is a univariate EDA, that is, it assumes independence of the bits in the
search space. As such, it keeps a vector of probabilities (τi)i∈[n] (the frequency vector). In
each iteration, two individuals (offspring) are sampled in the following way with respect
to τ : for an individual x ∈ {0, 1}n, we have xi = 1 with probability τi, and xi = 0 with
probability 1− τi, independently of any τj with j 6= i.

After sampling, the frequency vector is updated with respect to a fitness-based rank-
ing of the offspring. The process of choosing how the offspring are ranked is called
selection. Let x and y denote both offspring of the cGA during an iteration. Given a fit-
ness function f , we rank x above y if f(x) > f(y) (as we maximize), and we rank y above
x if f(y) > f(x). If f(x) = f(y), we rank them randomly. The higher-ranked individual
is called the winner, the other individual the loser. Assume that x is the winner. The
cGA then changes a frequency τi then with respect to the difference xi − yi by a value
of ρ (where 1/ρ is usually referred to as population size). Hence, no update is performed
if the bit values are identical, and the frequency is moved to the bit value of the winner.
In order to prevent a frequency τi getting stuck at 0 or 1,4 the cGA usually caps its
frequency to the range [1/n, 1− 1/n], as is common practice. This way, a frequency can
get close to 0 or 1, but it is always possible to sample 0s and 1s.

4A frequency τi at one of these two values results in the offspring only having the same bit value at
position i. Thus, the cGA would not change τi anymore.

6

Consider a position i and any two individuals x and y that are identical except for
position i. Assume that xi > yi. If the probability that x is the winner of the selection
is higher than y being the winner, we speak of a bias in selection (for 1s) at position i.
Analogously, we speak of a bias for 0s if the probability that y wins is higher than the
probability that x wins. Usually, a fitness function introduces a bias into the selection
and thus into the update.

3.1 Detailed Description of the sig-cGA

Similar to the cGA, our new algorithm – the significance-based compact genetic algorithm
(sig-cGA; Alg. 1) – also samples two offspring each iteration. However, in contrast to
the cGA, it keeps a history of bit values for each position and only performs an update
when a statistical significance within a history occurs. This approach better aligns with
the intuitive reasoning that an update should only be performed if there is valid evidence
for a different frequency being better suited for sampling good individuals.

In more detail, for each bit position i ∈ [n], the sig-cGA keeps a history Hi ∈ {0, 1}∗
of all the bits sampled by the winner of each iteration since the last time τi changed – the
last bit denoting the latest entry. Observe that if there is no bias in selection at position
i, the bits sampled by τi follow a binomial law with |Hi| tries and a success probability of
τi. We call this our hypothesis. If we happen to find a sequence (starting from the latest
entry) in Hi that significantly deviates from the hypothesis, we update τi with respect
to the bit value that occurred significantly, and we reset the history. We only use the
following three frequency values:

• 1/2: starting value;

• 1/n: significance for 0s was detected;

• 1− 1/n: significance for 1s was detected.

We formalize significance by defining the threshold s to overcome. For all ε, µ ∈ R
+,

where µ is the expected value of our hypothesis and ε is an algorithm-specific parameter:

s(ε, µ) = εmax
{
√

µ lnn, ln n
}

.

Note that
√
µ basically describes the standard deviation of our hypothesis, and the

logarithmic factor increases this value such that a deviation does not happen w.h.p.
The maximum ensures that we consider at least logarithmically many samples before we
conclude that we found a significance, eliminating wrong updates due to small samples
sizes w.h.p. The parameter ε effectively turns into the exponent of the w.h.p. bounds.
Thus, a larger value of ε decreases the probability of detecting a false significance by a
polynomial amount. However, it also increases the number of samples necessary in order
to change a frequency. This results in a linear factor of ε in the run time. We provide
more details on how ε should be chosen at the end of this subsection (after Cor. 1).

We say, for an ε ∈ R
+, that a binomially distributed random variable X deviates

significantly from a hypothesis Y ∼ Bin(k, τ), where k ∈ N
+ and τ ∈ [0, 1], if there exists

a c = Ω(1) such that Pr
[

|X − E[Y]| ≤ s(ε,E[Y])
]

≤ n−c .

7

We now state our significance function sigε :
{

1
n ,

1
2 , 1 − 1

n

}

× {0, 1}∗ →
{up, stay,down}, which scans a history for a significance. However, it does not scan
the entire history but multiple subsequences of a history (always starting from the latest
entry). This is done in order to quickly notice a change from an insignificant history to
a significant one. Further, we only check in steps of powers of 2, as this is faster than
checking each subsequence and we can be off from any length of a subsequence by a
constant factor of at most 2. More formally, for all p ∈

{

1
n ,

1
2 , 1− 1

n

}

and all H ∈ {0, 1}∗,
we define, with ε being a parameter of the sig-cGA, recalling that H[k] denotes the last
k bits of H,

sigε(p,H) =

up if p ∈ { 1n , 12} ∧ ∃m ∈ N :

‖H[2m]‖1 ≥ 2mp+ s
(

ε, 2mp
)

,

down if p ∈ {12 , 1− 1
n} ∧ ∃m ∈ N :

‖H[2m]‖0 ≥ 2m(1− p) + s
(

ε, 2m(1− p)
)

,

stay else.

(3)

We stop at the first (minimum) length 2m that yields a significance. Thus, we check a
history H in each iteration at most log2 |H| times.

We now prove that the sig-cGA does not detect a significance at a position with no
bias in selection (i.e., a false significance) w.h.p.

Lemma 1. Consider the sig-cGA (Alg. 1) with ε ≥ 1. Further, consider a position i ∈ [n]
and an iteration such that the distribution X of 1s of Hi follows a binomial law with k
tries and success probability τi, i.e., there is no bias in selection at position i. Then τi
changes in this iteration with a probability of at most n−ε/3 log2 k.

Proof. In order for τi to change, the number of 0s or 1s in X needs to deviate significantly
from the hypothesis, which follows the same distribution as X by assumption. We
are going to use Theorem 1 in order to show that, in such a scenario, X will deviate
significantly from its expected value only with a probability of at most n−ε/3 log2 k for
any number of trials at most k.

Let τ ′i = min{τi, 1− τi}. Note that, in order for τi to change, a significance of values
sampled with probability τ ′i needs to be sampled. That is, for τi = 1/2, either a significant
amount of 1s or 0s needs to occur; for τi = 1 − 1/n, a significant amount of 0s needs
to occur; and, for τi = 1/n, a significant amount of 1s needs to occur. Further, let X ′

denote the number of values we are looking for a significance within k′ ≤ k trials. That
is, if τi = 1/2, X ′ is either the number of 1s or 0s; if τi = 1 − 1/n, X ′ is the number of
0s; and if τi = 1/n, X ′ is the number of 1s.

Given the definition of τ ′i , we see that E[X ′] = k′τ ′i and Var[X ′] = k′τi(1− τi) ≤ k′τ ′i .
Since we want to apply Theorem 1, let λ = s(ε,E[X ′]) = s(ε, k′τ ′i) and σ2 = Var[X ′].

First, consider the case that λ = s(ε, k′τ ′i) = ε lnn, i.e., that (k′τ ′i lnn)
1/2 ≤ lnn,

which is equivalent to k′ ≤ (1/τ ′i) lnn. Note that λ2/σ2 ≥ ε2 lnn ≥ lnn, as ε ≥ 1. Thus,
min{λ2/σ2, λ} ≥ ε lnn.

8

Now consider the case λ = s(ε, k′τ ′i) = ε(k′τ ′i lnn)
1/2, i.e., that (k′τ ′i lnn)

1/2 ≥ lnn,
which is equivalent to k′ ≥ (1/τ ′i) lnn. We see that λ ≥ ε lnn and λ2/σ2 ≥ ε2 lnn.
Hence, as before, we get min{λ2/σ2, λ} ≥ ε lnn.

Combining both cases and applying Theorem 1, we get

Pr[X ′ ≥ k′τ ′i + s(ε, k′τ ′i)] = Pr[X ′ ≥ E[X ′] + λ]

≤ e
− 1

3
min

{

λ2

σ2 ,λ
}

≤ e−
ε
3
lnn = n− ε

3 .

That is, the probability of detecting a (false) significance during k′ trials is at most n−ε/3.
Since we look for a significance a total of at most log2 k times during an iteration, we
get by a union bound that the probability of detecting a significance within a history of
length k is at most n−ε/3 log2 k.

Lemma 1 bounds the probability of detecting a false significance within a single
iteration, assuming no bias in selection. The following corollary trivially bounds the
probability of detecting a false significance within any number of iterations.

Corollary 1. Consider the sig-cGA (Alg. 1) with ε ≥ 1 running for k iterations such
that, during each iteration, for each i ∈ [n], a 1 is added to Hi with probability τi. Then
at least one frequency changes during an interval of k′ ≤ k iterations with a probability
of at most k′n1−ε/3 log2 k.

Proof. For any i ∈ [n] during any of the k iterations, by Lemma 1, the probability that
τi changes is at most n−ε/3 log2 k. Via a union bound over all k′ relevant iterations and
all n frequencies, the statement follows.

Intuitively, this corollary states that ε should be chosen such that the term
k′n1−ε/3 log2 k represents the desired error probability, where k′ is the length of an in-
terval such that a frequency only drops with the error probability. Assuming that one
chooses k′ = Θ(nr) for some constant r > 0 and desires an error probability of at most
n−q for some constant q > 0 (ignoring constant factors and the logarithm), it makes
sense to choose ε ≥ 3(r + 1 + q).

3.2 Efficient Implementation of the sig-cGA

Recall that, in order to save on the computational cost of checking for a significance,
we only do so in historic data in lengths of powers of 2. By precomputing the number
of 1s in each such interval, checking a single history for a significance can be done in
time logarithmically in its length. Note that the update to this precomputed data can
also be done in logarithmic time, as each iteration only a single bit is added to the
history and thus the number of 1s can only differ by at most one per interval from one
iteration to the next. Consequently, the loop of the sig-cGA has a computational cost
of O(

∑n
i=1 log |Hi|). Since a history can never be longer than the run time T of the

sig-cGA, its total computational cost is O(nT log T). In comparison, many EAs have

9

an extra cost of O(n) per iteration. Thus, our significance-based approach is only more
costly by a factor of O(log T).

One drawback of the approach above is that the full history needs to be stored. Thus,
we describe a way of condensing a history to a size only logarithmic in the length of the
full history. This approach does not allow anymore to access the exact number of 1s
(or 0s) in all power-of-two length histories. However, for each ℓ ∈ [|Hi|], it yields the
number of 1s in some interval of length ℓ′ with ℓ ≤ ℓ′ < 2ℓ. For reasons of readability, we
nevertheless regard the original sig-cGA in the subsequent analyses, but it is quite evident
that the mildly different accessibility of the history in our condensed implementation does
not change our result.

For our condensed storage of the history, we have a list of blocks, each storing the
number of 1s in some discrete interval [t1..t2] of length equal to a power of two (including
1). When a new item has to be stored, we append a block of size 1 to the list. Then,
traversing the list starting with the newest element, we check if there are three consecutive
blocks of the same size, and if so, we merge the two oldest ones into a new block of twice
the size. By this, we always maintain a list of blocks such that, for a certain power 2k,
there are between one and two blocks of length 2j for all j ∈ [0..k − 1]. This structural
property implies both that we only have a logarithmic number of blocks (as we have
k = O(log |Hi|)) and that we can (in amortized constant time) access all historic intervals
consisting of full blocks, which in particular implies that we can access an interval with
length in [2j , 2j+1 − 1] for all j ∈ [0..k].

For the pseudocode of this approach, assume that a list element has a pointer to the
next list element (next), its previous element (prev), and stores an integer value (load).

Algorithm 2: The algorithm used by the sig-cGA in order to condense a his-
tory H, given a new bit value x. Let L be a list with elements of non-decreasing
load.

1 X ← a new list element with load x;
2 Append X to the head of L;
3 C ← head of L;
4 N ← C.next;
5 r ← 0;
6 while N is not null do

7 if C.load = N.load then r ← r + 1;
8 if r = 2 then

9 r ← 0;
10 X ← a new list element with load C.load+ N.load;
11 C.prev.next← X;
12 X.next← N.next;
13 N ← X;

14 C ← N ;
15 N ← N.next;

10

4 Run Time Results for LO and OM

We now prove our main results, that is, upper bounds of O(n log n) for the expected
run time of the sig-cGA on LO and OM. We also note that the optimization process
for the binary value function can be analyzed with arguments very similar to those for
the LO process. Consequently, we here have an O(n log n) run time as well. Further, we
consider the number of iterations T until the sig-cGA finds the optimal solution. Since
it generates two offspring each iteration, the number of fitness function evaluations is at
most 2T .

Note that the sig-cGA treats 1s and 0s symmetrically, that is, it is unbiased in the
sense of Lehre and Witt [33]. Hence, all results in this section hold for any type of
function as defined in eqs. (1) or (2) where, for any position i ∈ [n], a bit xi can be
flipped to 1− xi instead or swapped with another bit xj.

The following lemma states a useful bound for convex combinations. We use it in
order to bound the probability of an event that we decomposed into an event and its
complement.

Lemma 2. Let α, β, x, y ∈ R such that x ≤ y and α ≤ β. Then αx + (1 − α)y ≥
βx+ (1− β)y.

4.1 Analysis of LO

We show that the frequencies are set to 1 − 1/n sequentially from the most significant
bit position to the least significant, that is, from left to right. w.h.p., no frequency is
decreased until the optimization process is finished. Thus, a frequency τi will stay at 1/2
until all of the frequencies to its left are set to 1− 1/n. Then τi will become relevant for
selection, as all of the frequencies left to it will only sample 1s w.h.p. This results in a
significant surplus of 1s being saved at position i, and τi will be set to 1 − 1/n within
O(log n) iterations and remain there. Then frequency τi+1 becomes relevant for selection.
As we need to set n frequencies to 1− 1/n, we get a run time of O(n log n).

Theorem 2. Consider the sig-cGA (Alg. 1) with ε > 12 being a constant. Its run time
on LO is O(n log n) w.h.p. and in expectation.

Proof. We split this proof into two parts and start by showing that the run time is
O(n log n) w.h.p. Then we prove the expected run time.

Run time w.h.p. For the first part of the proof, we consider the first O(n log n)
iterations of the sig-cGA and condition on the event that no frequency decreases during
this time, i.e., no (false) significance of 0s is detected. Since, for any position i ∈ [n]
in LO, having a 1 is always at least as good as having a 0, a 1 is saved in Hi with
a probability of at least τi. Hence, by Corollary 1, no frequency decreases in the first
O(n log n) iterations with a probability of at least 1 − O(n2−ε/3 log2 n). As ε > 12, for
an ε′ > 2, this probability is at least 1 − O(n−ε′), which is w.h.p. In the following, we
condition on this event.

We now prove that the history of the leftmost position with a frequency at 1/2 saves 1s
significantly more often than 0s such that the frequency is set to 1− 1/n after O(log n)

11

iterations. For the second part of the proof, we use a similar argument, but the frequency
is at 1/n, and it takes O(n log n) steps to get to 1− 1/n. Since the calculations for both
scenarios are very similar, we combine them.

Consider a position i ∈ [n] and any of the first O(n log n) iterations such that τi ∈
{1/n, 1/2} and, for all positions j < i, τj = 1 − 1/n. Let O denote the event that we
save a 1 in Hi this iteration. We derive an upper bound on the probability to detect the
significance of 1s in Hi within O(log n) iterations by calculating a lower bound on the
probability of O. Note that the probability of O is the same for each iteration until τi
is increased, since we condition on no frequency dropping within the first O(n log n)
iterations.

In order to bound Pr[O], we consider the event A that the bit at position i of the
winning individual is not relevant for selection. That is, A denotes the event that at
least one of the two offspring during this iteration has a 0 at a position in [i− 1]. Thus,
if A occurs, a 1 is saved with probability τi ∈ {1/n, 1/2}. Otherwise, a 1 is saved if not
two 0s are sampled, which has a probability of 1− (1− τi)

2. Hence,

Pr[O] = Pr[A] · τi + Pr
[

A
]

·
(

1− (1− τi)
2
)

,

which is a convex combination of τi and 1− (1− τi)
2. By Lemma 2, decreasing Pr

[

A
]

(as
1 − (1 − τi)

2 = τi(2 − τi) ≥ τi) results in a lower bound of Pr[O]. Since A is equivalent
to both offspring having only 1s at positions in [i− 1], we see that

Pr
[

A
]

=
(

1− 1
n

)2(i−1)
,

due to our assumption that all frequencies left of position i are at 1− 1/n. As this term
is minimal for i = n, using the well-known inequality (1 − 1/n)n−1 ≥ e−1, we bound
Pr
[

A
]

≥ e−2. Further, noting that 1− (1− τi)
2 ≥ (3/2)τi for τi ∈ {1/n, 1/2}, we bound

Pr[O] ≥ (1− e−2) · τi + e−2 ·
(

1− (1− τi)
2
)

≥ (1− e−2) · τi + 3
2e

−2τi =
(

1 + 1
2e

−2
)

· τi .

Given our bound on the probability of O, we now bound the probability to detect a
significance of 1s in Hi within k iterations. To this end, let X ∼ Bin

(

k, (1 + e−2/2)τi
)

,
and note that X is stochastically dominated by the process of saving 1s at position i.
We bound the probability that we do not detect a significance of 1s within k iterations:

Pr[X < kτi + s(ε, kτi)]

≤ Pr
[

X ≤ E[X]−
(

k
2e

−2τi − s(ε, kτi)
)]

.

Note that the minuend is positive for k > (4/τi)e
4ε2 lnn > lnn, which holds due to our

assumption ε > 12. Let c = (4/τi)e
4ε2, and assume k ≥ 8c ln n. Thus, (k/2)e−2τi −

s(ε, kτi) ≥ (k/4)e−2τi =: λ and Var[X] = k(1 + e−2/2)τi
(

1 − (1 + e−2/2)τi
)

≥ λ. By

12

Theorem 1, noting that λ2/Var[X] ≤ λ and using Var[X] ≤ 2kτi, we bound

Pr[X < kτi + s(ε, kτi)] ≤ Pr
[

X ≤ E[X]− k
4e

−2τi
]

≤ e
− 1

3
· λ2

Var[X] ≤ e
− 1

3
· k

2e−4τ2i
16·2kτi = e−

1
3
· ke

−4τi
32

≤ n− 1
3
· ce

−4τi
4 = n− ε2

3 .

Hence, τi is set to 1− 1/n after (4/τi)e
4ε2 lnn = O

(

(1/τi) log n
)

iterations with a proba-

bility of at least 1−n−ε2/3. By applying a union bound over all n different possibilities for
index i, we see that each frequency (once all frequencies at positions [i−1] are at 1−1/n)
is set to 1−1/n within O

(

(1/τi) log n
)

with a probability of at least 1−n1−ε2/3 ≥ 1−n−47,
since ε > 12, which is w.h.p.

Overall, we assume that no frequency decreases during the first O(n log n) iterations
w.h.p., and we showed that each frequency (at 1/2) is set to 1 − 1/n within O(log n)
iterations w.h.p. once all frequencies to its left are at 1 − 1/n. Thus, since there are n
frequencies, all frequencies are at 1−1/n after O(n log n) iterations w.h.p. The probability
to sample the optimum is now (1−1/n)n ≥ 1/(2e) = Ω(1). Hence, waiting an additional
O(log n) iterations, the optimum is sampled w.h.p. This concludes the first part of this
proof.

Expected run time. Since we showed above that the sig-cGA optimizes LO in
O(n log n) iterations w.h.p., we are left to bound its run time in the event that at least
one frequency decreases within the first O(n log n) iterations. As we discussed at the
beginning of the first part of this proof, this only happens with a probability of O(n−ε′),
for ε′ > 2.

Consider an interval of length t′. By Corollary 1, during the first t iterations, no
frequency decreases for t′ iterations with a probability of at least 1 − t′n1−ε/3 log2 t.
Assume t ≤ n2n and t′ = Θ(n2 log n). Then no frequency decreases for t′ iterations
w.h.p., since ε > 12.

By using the result calculated in the first part, we see that a leftmost frequency τi
at 1/n is increased during O

(

(1/τi) log n
)

= O(n log n) iterations w.h.p. Thus, in overall,
the sig-cGA finds the optimum during an interval of length t′ = Θ(n2 log n) w.h.p., as n
frequencies need to be increased to 1−1/n. We pessimistically assume that the optimum
is only found with a probability of at least 1/2 during t′ iterations. Hence, the expected
run time in this case is 2t′ = Θ(t′).

Last, we assume that we did not find the optimum during n2n iterations, which only
happens with a probability of at most 2−n2n/t′ . Then, the expected run time is at most nn

by pessimistically assuming that all frequencies are at 1/n.
We conclude the proof by combining all of the three different regimes we just dis-

cussed, we see that we can bound the expected run time by

O(n log n) +O(n−ε′) · O(t′) + 2−n2n/t′ · nn = O(n log n) .

The proof of Theorem 2 shows that the sig-cGA rapidly makes progress when opti-
mizing LO. In fact, after O(i log n) iterations, with i ∈ [n], the sig-cGA finds a solution

13

with fitness i w.h.p. (if i is large) and in expectation. Thus, in the fixed-budget perspec-
tive introduced by Jansen and Zarges [29], the sig-cGA performs very well on LO. For
comparison, for the (1 + 1) EA, it is known that the time to reach a fitness of i is Θ(in)
in expectation and (again, when i is sufficiently large) w.h.p., see [12].

The reason that the sig-cGA optimizes LO so quickly is that the probability of saving
a 1 at position i is increased by a constant factor once all frequencies at positions less
than i are at 1−1/n. This boost is a result of position i being the most relevant position
for selection, assuming that all bits at positions less than i are 1.

Binary Value A very similar boost in relevance occurs when considering the func-
tion BinVal (BV), which returns the bit value of a bit string. Formally, BV is defined as

BV(x) =
n
∑

i=1

2n−ixi .

Note that the most significant bit is the leftmost.
BV imposes a lexicographic order from left to right on a bit string x, since a bit xi

has a greater weight than the sum of all weights at positions greater than i. This is
similar to LO. The main difference is that, for BV, a position i can also be relevant for
selection when bits at positions less than i are 0. More formally, for LO, position i is
only relevant for selection when all of the bits at positions less than i are 1, whereas
position i is relevant for selection for BV when all the bits at positions less than i are the
same. With this insight, we adapt the proof of Theorem 2 for BV.

Corollary 2. Consider the sig-cGA (Alg. 1) with ε > 12 being a constant. Its run time
on BV is O(n log n) w.h.p. and in expectation.

4.2 Analysis of OM

In order to analyze how likely it is that two individuals sampled from the sig-cGA have
the same OM value, we use the following estimate, whose proof can be found, e.g., in [20].

Lemma 3. For c ∈ Θ(1), ℓ ∈ N
+, let k ∈ [ℓ/2 ± c

√
ℓ] and let X ∼ Bin(1/2, ℓ). Then

Pr[X = k] = Ω
(

1√
ℓ

)

.

For the proof of the run time of the sig-cGA on OM, we show that, during each of the
first O(n log n) iterations, each position can become relevant for selection with a decent
probability of Ω(1/

√
n). In contrast to LO, there is no sudden change in the probability

that 1s are saved. Thus, it takes O(n log n) iterations to set a frequency to 1 − 1/n.
However, this is done for all frequencies in parallel. Thus, the overall run time remains
O(n log n).

Theorem 3. Consider the sig-cGA (Alg. 1) with ε > 12 being a constant. Its run time
on OM is O(n log n) w.h.p. and in expectation.

14

Proof. We first show that the run time holds w.h.p. Then we prove the expected run
time.

Run time w.h.p. We consider the first O(n log n) iterations and condition on the
event that no frequency decreases during that time. This can be argued in the same way
as at the beginning in the proof of Theorem 2.

We now show that a single frequency (starting at 1/2) is increased to 1− 1/n within
the first O(n log n) iterations w.h.p. as long as the other frequencies are at 1/2 or at
1 − 1/n. Hence, all frequencies are increased during that time w.h.p. when applying a
union bound.

Similar to the proof of Theorem 2, when proving the expected run time, we use that,
if all frequencies start at 1/n, they are set to 1−1/n w.h.p. within O(n2 log n) iterations
in parallel. Thus, we combine both cases in the following argumentation.

Let s ∈ {1/2, 1/n} denote the starting value of a frequency that we consider, and
let ℓ ∈ [n] denote the number of frequencies not at 1 − 1/n during an arbitrary single
iteration. Further, let i ∈ [n] be a position in that iteration such that τi = s. We prove
that Hi saves 1s more likely by a factor of 1+Θ(1/

√
ℓ) when compared to the hypothesis.

This results in τi being increased to 1− 1/n within O
(

(ℓ/s) log n
)

iterations.
We determine the bias in saving a 1 by making the following observation: ignoring

position i, if the absolute difference in the number of 1s of both offspring is greater than
one, then bit i is not relevant for determining which offspring is selected. However, if the
difference in the number of 1s (except position i) of both offspring is at most 1, having
a 1 at position i makes it more likely for an individual to be selected. We now formalize
this idea. To this end, let O denote the event that Hi saves a 1, and let A denote the
event that the difference of both offspring (except position i) is greater than 1. Note that
in the case of A, the probability to save a 1 is τi.

We now consider the case of A, that is, the absolute difference in the number of 1s
of both offspring (excluding position i) is at most one. If it is zero, then Hi saves
a 1 if none of the offspring has a 0 at position i. Thus, the respective probability is
1 − (1 − τi)

2 = 2τi − τ2i . In the case of the numbers of 1 differing by exactly one, a 1
is saved if the winner (with respect to all bits but bit i) has a 1 at position i (which it
has with a probability of τi), or if the winner has a 0 at position i, the loser has a 1, and
the loser wins the tie-breaking. The probability of this event is (1/2)τi(1− τi) ≥ (1/4)τi.
All in all, the probability to save a 1 conditional on A is at least τi + (1/4)τi = (5/4)τi,
since (5/4)τi ≤ 2τi − τ2i for τi ∈ {1/2, 1/n}.

Taking both cases together, we bound

Pr[O] ≥ Pr[A] · τi + Pr
[

A
]

· 5
4
τi .

By Lemma 2, we lower bound this term even further by calculating a lower bound for
Pr
[

A
]

. We first show that the frequencies at 1−1/n and 1/n sample the same bits in both
offspring with at least a constant probability. For the n − ℓ positions with frequencies
at 1 − 1/n, both offspring have a 1 at the respective positions with a probability of
(1−1/n)2(n−ℓ) ≥ e−2, since n− ℓ ≤ n−1. Analogously, for all positions with frequencies
at 1/n (but τi), both offspring have a 0 at position i also with a probability of at least

15

(1 − 1/n)2(n−1) ≥ e−2. Hence, both offspring have the same bits at all positions with
frequencies not at 1/2 with a probability of at least e−4.

We now consider the number of 1s of an offspring at the remaining ℓ′ ≤ ℓ − 1 (for
ℓ ≥ 2) positions (except i) with frequencies at 1/2. We call this number Y . Note that
the expected value of Y is ℓ′/2. By Lemma 3, for a k ∈ [ℓ′/2 ±

√

ℓ′/2], the probability
that Y = k is Ω(1/

√
ℓ′). Thus, the probability that both offspring have the same number

of 1s at the ℓ′ positions we consider is d/
√
ℓ′, for a constant d > 0, since there are

√
ℓ′

possible values of k and the probability that both offspring have k bits as 1 is Ω(1/ℓ′).
Factoring in the probability of all remaining n − ℓ′ positions to sample the same values
in both offspring and for a sufficiently small constant d′ > 0, we bound

Pr[O] ≥
(

1− e−4 d√
ℓ′

)

· τi + e−4 d√
ℓ′
· 5
4
τi

≥
(

1 +
d′√
ℓ

)

τi .

Recall that we assumed ℓ ≥ 2 for this bound. For ℓ = 1, i.e., ℓ′ = 0, we have n − 1
positions with frequencies at 1−1/n or 1/n. Thus, Pr

[

A
]

≥ e−4, as we discussed before.

Consequently, we bound Pr[O] ≥ (1 − e−2) · τi + e−2 · (5/4)τi ≥ (1 + d′/
√
ℓ)τi if we

choose d′ sufficiently small. Overall, we use (1 + d′/
√
ℓ)τi as a lower bound for Pr[O].

Analogous to the proof of Theorem 2, we now consider the probability to detect a
significance of 1s in Hi within k iterations. To this end, let X ∼ Bin

(

k, (1 + d′/
√
ℓ)τi
)

and note that X is stochastically dominated by the process of saving 1s at position i.
We bound the probability to not detect a significance of 1s as follows:

Pr[X < kτi + s(ε, kτi)]

≤ Pr

[

X ≤ E[X]−
(

kd′√
ℓ
τi − s(ε, kτi)

)]

.

Let k ≥ 4(ε2/d′2)(ℓ/τi) lnn. Then (kd′/
√
ℓ)τi − s(ε, kτi) ≥

(

kd′/(2
√
ℓ)
)

τi =: λ. Further
note that Var[X] = kτi(1−τi) ≥ λ if d′ is sufficiently small, which implies λ2/Var[X] ≤ λ.
By Theorem 1 with Var[X] ≤ kτi, we see that

Pr[X < kτi + s(ε, kτi)] ≤ Pr

[

X ≤ E[X]− kd′

2
√
ℓ
τi

]

≤ e
− 1

3
· 4k

2d′2τ2i
4ℓkτi = e−

1
3
· kd′2

ℓ
τi ≤ e−

4
3
ε2 lnn = n− 4

3
ε2 .

Hence, τi is increased to 1 − 1/n within 4(ε2/d′2)(ℓ/τi) lnn = O
(

(ℓ/τi) log n
)

iterations

with a probability of at least 1−n−4ε2/3. By applying a union bound over all n frequencies,
each frequency reaches 1− 1/n within O

(

(ℓ/τi) log n
)

iterations with a probability of at

least 1− n1−4ε2/3 ≥ 1− n−191, as ε > 12, which is w.h.p.
Since we assume that no frequency drops within the first O(n log n) iterations w.h.p.

and since all frequencies start at 1/2, all of them reach 1− 1/n within that time w.h.p.

16

Then, the optimum is sampled during a single iteration with a probability of at least
(1 − 1/n)n ≥ 1/(2e) = Ω(1). Thus, the optimum is sampled after O(log n) additional
iterations w.h.p.

Expected run time. This part follows the same arguments as outlined in the
respective part in the proof of Theorem 2. Different from there, assuming that a frequency
is at 1/n, it now takes O(n2 log n) iterations to be increased to 1 − 1/n w.h.p., as we
proved above. However, since ε > 12, a union bound over all n frequency again results
in all frequencies being increased during O(n2 log n) iterations w.h.p. The rest remains
the same, which concludes this proof.

OM vs. LO. While the sig-cGA has the same asymptotic run time on LO and OM

(w.h.p. and in expectation), the reasons differ. For LO, the frequencies are increased
consecutively to 1 − 1/n, where each frequency only needs O(log n) iterations, which is
also the asymptotic minimum number of iterations to do so. This speed results from
the sudden boost in probability once a position i becomes relevant, that is, its preceding
frequencies are all at 1−1/n and thus sample only 1s with at least a constant probability.
Given that both offspring have only 1s at positions in [i−1], it suffices that position i has
at least one 1, which is quite likely. In contrast, the probability that the bias in selection
is also detected at positions after i declines exponentially in the distance to i, making
the bias negligible. This fact is also exploited by Friedrich et al. [25] in the analysis (and
design) of the scGA, which is why it has the same run time on LO.

For OM, the impact of the bias in selection depends on the number ℓ of other fre-
quencies that are not at 1− 1/n. In order for a position i to detect the bias, the number
of 1s in these positions has to almost be identical in both offspring, i.e., it can differ by
at most one. This then adds a bias of roughly 1/

√
ℓ for saving a 1 in Hi. Since ℓ is large

for a long time (for example, ℓ = n at the beginning), this bias remains small during that
period. However, this bias is there constantly for each position. Thus, all frequencies
can be optimized in parallel, whereas for LO this is done sequentially.

OM vs. BV. BV is often considered one extremal case of the class of linear functions,
as its weights impose a lexicographic order on the bit positions. The other extreme is
OM, where all weights are identical and basically no order among the positions exists.
Our results show that the sig-cGA optimizes both functions in O(n log n). It remains an
open question whether the sig-cGA is capable of optimizing any linear function in that
time, a feat that the (1+1) EA, a classical EA, is known to be capable of [23]. Contrary
to that, it was proven for the cGA (an EDA) that it performs worse on BV than on
OM [22]. Thus, a uniform performance on the class of linear functions would be a great
feat for an EDA.

We would like to note that the result of Droste [22] considered the cGA without
frequency borders, that is, the frequencies could reach values of 0. Once this is the case,
the algorithm is stuck (as it only samples 0 at this position) and the optimization fails. It
is unknown up to date whether the cGA still performs worse on BV when the frequencies
are bound to the interval [1/n, 1 − 1/n]. However, the main idea of Droste’s proof that
frequencies drop very low remains. Thus, if sufficiently many frequencies were to drop
to 1/n, the cGA would still perform badly on BV. Note that this is exactly the problem

17

that the sig-cGA circumvents with its update rule, resulting in its run time of O(n log n).
The only other known EDA run time result for BV was recently proven by Lehre

and Nguyen [32]. They show that the PBIL optimizes BV with O(n2) fitness function
evaluations in expectation (considering best parameter choices).

5 Run Time Analysis for the scGA

Another variant of the cGA [27] that is able to optimize LO in O(n log n) w.h.p. is the
stable compact genetic algorithm (scGA; Alg. 3) introduced by Friedrich et al. [25] with
the intent to provide an EDA that optimizes LO in o(n2). The update procedure of the
scGA is very similar to that of the cGA, that is, a frequency at position i is changed by
a value of ρ with respect to the difference of the bits at i of the winner and the loser.
However, an update toward 1/2 is stronger by an additive term of a, where a ∈ O(ρ) is
an additional parameter.

Different from many other EDAs, the scGA does not have a margin and explicitly
makes use of the frequency values 0 and 1. In fact, the scGA has another parameter
d ∈ (1/2, 1), which indicates a value that is sufficient in order to set a frequency to 1.
The value 1− d is used symmetrically in order to set a frequency to 0. Thus, the scGA
fixes frequencies once they leave the interval (1− d, d).

Theorem 4. Let α ∈ (0, 1] be a constant. Consider the scGA with ρ = O(1/ log n),
a = αρ, and 1/2 < d ≤ 5/6 with d = Θ(1). Its run time on OM is Ω

(

min{2Θ(n), 2c/ρ}
)

in expectation and w.h.p. for a constant c > 0.

Before we prove the theorem, we mention two other theorems that we are going to use
in the proof. The first bounds the probability of a randomly sampled bit string having
s ∈ {0} ∪ [n] 1s. We use it in order to bound the probability of both offspring having
the same number of 1s. Note that the values 1/6 and 5/6 in the lemma are somewhat
arbitrary and can be exchanged for any constant in (0, 1/2) and (1/2, 1), respectively.

Lemma 4 ([41]). Let S denote the sum of n independent Poisson trials with probabilities
τ1, . . . , τn such that, for all i ∈ [n], 1/6 ≤ τi ≤ 5/6. Then, for all s ∈ {0} ∪ [n],

Pr[S = s] = O

(

1√
n

)

.

The next theorem provides an upper bound on the probability of a random process
stopping after a certain time. We use it in order to show that it is unlikely for a frequency
of the scGA when optimizing OM to get to 1 within a certain number of iterations.

Theorem 5 (Negative Drift; [38, 39]). Let (Xt)t∈N be real-valued random variables de-
scribing a stochastic process over some state space, with X0 ≥ b. Suppose there exist
an interval [a, b] ⊆ R, two constants δ, ε > 0, and, possibly depending on ℓ := b − a, a
function r(ℓ) satisfying 1 ≤ r(ℓ) = o

(

ℓ/ log(ℓ)
)

such that, for all t ∈ N, the following two
conditions hold:

18

Algorithm 3: The scGA [25] with parameters ρ, a, and d optimizing f

1 t← 0;

2 for i ∈ [n] do τ
(t)
i ← 1

2 ;
3 repeat

4 x, y ← offspring sampled with respect to τ (t);
5 (x, y)← winner/loser of x and y with respect to f ;
6 for i ∈ [n] do

7 if xi > yi then

8 if τ
(t)
i ≤ 1

2 then τ
(t+1)
i ← τ

(t)
i + ρ+ a;

9 else if 1
2 < τ

(t)
i < d then τ (t+1) ← τ

(t)
i + ρ;

10 else τ
(t+1)
i ← 1;

11 else if xi < yi then

12 if τ
(t)
i ≥ 1

2 then τ
(t+1)
i ← τ

(t)
i − ρ− a;

13 else if 1− d < τ
(t)
i < 1

2 then τ
(t+1)
i ← τ

(t)
i − ρ;

14 else τ
(t+1)
i ← 0;

15 else τ
(t+1)
i ← τ

(t)
i ;

16 t← t+ 1;

17 until termination criterion met;

1. E[Xt+1 −Xt | Xt ∧ a < Xt < b] ≥ ε and,

2. for all j ∈ N, Pr[|Xt+1 −Xt| ≥ j | Xt ∧Xt > a] ≤ r(ℓ)
(1+δ)j

.

Then there is a constant c > 0 such that, for T := min{t ∈ N | Xt ≤ a}, it holds that

Pr
[

T ≤ 2
cℓ

r(ℓ)

]

= 2
−Ω

(

ℓ
r(ℓ)

)

.

We now prove our result.

Proof of Theorem 4. We only show that the run time is in Ω
(

min{2Θ(n), 2c/ρ}
)

w.h.p.
The statement for the expected run time follows by lower-bounding the terms that occur
with a probability of o(1) with 0.

We first prove the bound of Ω
(

2c/ρ
)

. We do so by showing that each frequency will
stay in the non-empty interval (1 − d, d) ⊂ [1/6, 5/6] w.h.p. Although OM introduces
a bias into updating a frequency, it is too tiny in order to compensate the strong drift
toward 1/2 in the update.

We lower-bound the expected time it takes the scGA to optimize OM by upper-
bounding the probability it takes a single frequency to leave the interval (1−d, d). Thus,
we condition during the entire proof implicitly on the event that all frequencies are in

19

the interval (1−d, d). Note that, in this scenario, the probability to sample the optimum
during an iteration is at most (5/6)n, which is exponentially small, even for a polynomial
number of iterations.

Consider an index i ∈ [n] with τi ∈ (1 − d, d). We only upper-bound the probability
it takes τi to reach d. Note that the probability of τi reaching 1 − d is at most that
large, as OM introduces a bias for 1s into the selection process. Hence, we could argue
optimistically for τi reaching 1− d as we do for τi reaching d by swapping 1s for 0s and
considering 1− τi instead.

Let T denote the first point in time t such that τ
(t)
i ≥ d. We want to apply Theorem 5

and show that it is unlikely for τi to reach d within 2c/ρ iterations. Hence, we define the
following potential function g : [0, 1]→ R:

g(τi) =
1

ρ
(1− τi) ,

which we will use for our frequencies. Note that, at the beginning, τi is at 1/2, i.e.,
g(1/2) = 1/(2ρ). We stop once τi ≥ d, i.e., g(τi) ≤ (1 − d)/ρ. Thus, we consider an
interval of length ℓ := 1/(2ρ)−(1−d)/ρ = (2d−1)/ρ = Θ(1/ρ), as d > 1/2 is a constant.

We now argue how an update to τi is performed in order to estimate its expected
value after an update, which is necessary in order to apply Theorem 5. Consider, similar
to the proof of Theorem 3, that the bits of both offspring x and y for all positions but
position i have been determined. If the difference of the number of 1s of both offspring
is at least 2, i.e., ‖x− y‖1−xi+ yi ≥ 2, then the outcome of neither xi nor yi can change
the outcome of the selection process. Thus, τi increases with probability τi(1 − τi), as
the winner offspring needs to sample a 1 and the loser a 0. Analogously, in this case, the
probability that τi decreases is τi(1− τi), too.

If the difference of the number of 1s of both offspring is one, then, in order to increase
τi, the winner (with respect to all bits but bit i) needs to sample a 1 and the loser a 0,
or the winner needs to sample a 0, the loser a 1, and the loser wins. The first case has a
probability of τi(1− τi), the second of (1/2)τi(1− τi), due to the uniform selection when
the offspring have equal fitness. In order to decrease τi, the winner needs to sample a 0,
the loser a 1, and the winner has to win, which has a probability of (1/2)τi(1− τi).

If the difference of the number of 1s of both offspring is zero, then τi is increased if
any offspring samples a 1 and the other samples a 0. This has probability 2τi(1− τi). In
this case, it is not possible that τi is decreased.

In order to estimate the probabilities of when τi increases or decreases, we need to
estimate the probabilities that the number of 1s of both offspring differ by at least two,
differ by exactly one, and differ by exactly zero. Let p1 denote the probability that this
difference is one, and let p0 denote the probability that the difference is zero. We now
bound these probabilities.

Assume that offspring x has k 1s, where k ∈ {0} ∪ [n− 1], since we assume that bit i
has not been sampled yet. For p0, y needs to sample k 1s as well, and for p1, y needs to
sample k− 1 or k+ 1 1s (such that the result is still in {0} ∪ [n− 1]). Due to Lemma 4,
the probability for y to have this many 1s is O(1/

√
n), as we assume that all frequencies

20

are in the interval (1− d, d) ⊂ [1/6, 5/6]. Hence, by the law of total probability, we get

p0 = O
(

1√
n

)

and p1 = O
(

1√
n

)

.

In the following, let γ > 0 be a constant such that p0 ≤ γ/
√
n and p1 ≤ γ/

√
n.

We now consider the drift of g(τi) in any iteration t such that 1/2 < τ
(t)
i < d, i.e.,

we show that condition (1) of Theorem 5 holds. Let τ = τ
(t)
i and τ ′ = τ

(t+1)
i . Note that

conditioning on g(τ) is the same as conditioning on τ , as g is injective. If τ increases, it
changes by ρ, and if it decreases, it changes by ρ+ a.

E

[

g(τ ′)− g(τ)

∣

∣

∣

∣

g(τ) ∧ 1− d

ρ
< g(τ) <

1

2ρ

]

= 1
ρE
[

τ − τ ′ | τ ∧ 1
2 < τ < d

]

= 1
ρ

(

(ρ+ a)
(

(1− p0 − p1)τ(1− τ) + p1 · 12τ(1− τ)
)

− ρ
(

(1− p0 − p1)τ(1 − τ) + p1 · 32τ(1− τ)

+ p0 · 2τ(1− τ)
)

)

= 1
ρτ(1− τ)

(

(ρ+ a)
(

1− p0 − 1
2p1
)

− ρ
(

1 + p0 +
1
2p1
))

= 1
ρτ(1− τ)

(

ρ(−2p0 − p1) + a
(

1− p0 − 1
2p1
))

.

For the negative terms with factor a, by using that a ≤ ρ and by applying the bounds
on p0 and p1, we get

E

[

g(τ ′)− g(τ)

∣

∣

∣

∣

g(τ) ∧ 1− d

ρ
< g(τ) <

1

2ρ

]

≥ 1

ρ
τ(1− τ)

(

a− 3p0ρ− 3
2p1ρ

)

≥ 1

ρ
τ(1− τ)

(

a− 5
γ√
n
ρ

)

.

Due to a = αρ, there is a sufficiently small constant β > 0 such that a− 5γρ/
√
n ≥ βρ.

Thus, we get

E

[

g(τ ′)− g(τ)

∣

∣

∣

∣

g(τ) ∧ 1− d

ρ
< g(τ) <

1

2ρ

]

≥ βτ(1 − τ)

≥ β 1
6 · 56 ,

which is constant.
We now show that condition (2) of Theorem 5 holds. For this, we define r(ℓ) = 2 and

δ =
√
2−1 > 0. Note that 1 ≤ r(ℓ) = o

(

ℓ/ log(ℓ)
)

= o
(

1/(ρ log(1/ρ))
)

holds, as ρ = o(1).
Since τ can change by at most ρ + a ≤ 2ρ during a single update, g(τ) can change by
at most 2. Thus, we only need to bound Pr[|g(τ ′) − g(τ)| ≥ j | g(τ) ∧ g(τ) > (1 − d)ρ]

21

for j ∈ {0, 1, 2}. For all of these three cases, r(ℓ)/
(

(1 + δ)j
)

≥ 1. Thus, condition (2)
trivially holds for all j ∈ N.

Overall, by applying Theorem 5 and recalling that ℓ = Θ(1/ρ), there are constant
c, c′, c′′ > 0 such that

Pr

[

T ≤ 2
c′ℓ
r(ℓ)

]

= Pr
[

T ≤ 2
c
ρ

]

≤ 2−Ω
(

1
ρ

)

≤ n−c′′ .

Thus, w.h.p., τi does not reach b within 2c/ρ iterations, given that all frequencies are
in (1 − d, d). As discussed before, the probability of τi reaching 1 − d has at most the
same probability. Note that conditioning on never sampling the optimum during any of
these t iterations increases these probabilities only by a factor of 1 − t(5/6)n, which is
constant if t = o(2Θ(n)). Otherwise, we choose 2Θ(n) as run time bound. This concludes
the proof.

6 Run Time Analysis for the Convex Search Algorithm

The following convex search algorithm was proposed by Moraglio [35]. Its sole parameter
is a population size µ ∈ N. The algorithm starts with a first population of µ random
individuals x(1,1), . . . , x(1,µ) ∈ {0, 1}n. In each iteration t = 1, 2, . . . , the algorithm gen-
erates from the current “parent” population x(t,1), . . . , x(t,µ) a new “offspring” population
x(t+1,1), . . . , x(t+1,µ) as follows.

• If the parent population contains only copies of a single individual, the algorithm
stops and outputs this solution.

• If all individuals of the parent population have the same fitness, the offspring
population is the parent population.

• Otherwise, the individuals with lowest fitness value are removed from the parent
population (giving the “reduced parent population”) and the offspring population
is obtained by µ times independently sampling from the convex hull of the reduced

parent population. In other words, for all i ∈ [n] and j ∈ [µ] independently, x
(t+1,j)
i

is chosen randomly from {0, 1} if the reduced parent populations contains both
an individual having a 0 at the i-th position and an individual having a 1 at this
position. If all individuals of the reduced parent population have the same value

b ∈ {0, 1} in the i-th position, then x
(t+1,j)
i := b.

The convex search algorithm with µ ≥ 8 log2(4n
2+n) and a suitable restart strategy

was shown to optimize the LO problem in expected time O(n log n) [35]. We now show
that its performance on the OM problem is not very attractive, namely it is asymp-
totically larger than any polynomial even when employing a suitable restart strategy.
We suspect that much stronger lower bounds hold, but given the only moderate gen-
eral interest in this algorithm so far, we restrict ourselves to this super-polynomial lower
bound.

22

Theorem 6. Let c > 0. Regardless of the population size, a run of the convex search
algorithm on OM with probability at least 1−O(n−c)

• either reaches a state from which the optimum cannot be found,

• or within nc iterations does not fix any bit-position.

Consequently, at least Ω(nc) iterations are necessary to find the optimum.

While the result may seem natural, proving it is made difficult by the dependen-
cies inflicted from restricting the parent population to all but the lower fitness level.
We remove these dependencies by suitable pessimistic estimates (e.g., estimating that
a position does not become fixed to 1 when at least ∆ zeros are sampled), by suitable
domination arguments (cf. [7]), and by first regarding an artificial process in which bits
can only be fixed to 1.

Proof of Theorem 6. Since we are aiming at an asymptotic statement, we assume in the
following that n is sufficiently large.

To ease the following proof, we first argue that only the case µ = Θ(log n) is inter-
esting. If µ ≤ 1

2 log2 n, then with probability

1− (1− 2−µ)n ≥ 1− exp(−2−µn) ≥ 1− exp(−n1/2),

at least one of the bit-positions of the initial population is already converged to zero.
Let now µ ≥ K log2 n for a sufficiently large constant K (which may depend on the
constant c). We show that a random population with probability n−2c fixes no bit (that
is, the next population is again fully random). By elementary properties of the binomial
distribution, with probability at least 1− (2/3)µ, the lowest fitness value of the random
population is below n/2. Since the probability of having a fitness of at least n/2 is at
least 1

2 , the additive Chernoff bound ([8, Theorem 10.7]) gives that with probability at
least 1− exp(−µ/8), the number µ+ of individuals having a fitness of at least n/2 is at
least µ/4.

We now condition on µ+ ≥ µ/4 and that there is an individual with fitness less than
n/2 (and recall that this event happens with probability at least 1−(2/3)µ−exp(−µ/8)).
We first note that in this case the µ+ individuals with fitness n/2 or more surely belong
to the reduced population, which defines the next population. For each of these µ+

individuals and for each of their bit-positions, the probability to have a one is between
1/2 and 3/4, since these individuals are random individuals conditional on having at least
n/2 ones. Since these individuals are stochastically independent, the probability that a
bit-position in all these µ+ individuals has the value 0 is at most (1/2)µ

+ ≤ (1/2)µ/4 and
the probability is at most (3/4)µ

+ ≤ (3/4)µ/4 for the event that they are all one.
In summary, we obtain that the probability that a bit-position becomes fixed is at

most (2/3)µ + exp(−µ/8) + (1− (2/3)µ − exp(−µ/8))n((1/2)µ/4 + (3/4)µ/4). By taking
the constant K in the lower bound for µ sufficiently large, this probability is at most
n−2c. Hence a union bound over nc iterations shows that within this time frame, with
probability 1− n−c no bit-position becomes fixed.

23

In the remainder we thus assume that µ = Θ(log n) with implicit constants depending
on the constant c only.

We first regard the artificial random process which equals a true run of the CSA on
OM except that for all bits i ∈ [n] where the reduced parent population contains only
individuals with bit-value 0 we still sample the offspring bits randomly from {0, 1}. In
other words, we prevent the algorithm from letting a bit-value converge to the wrong
value of 0.

Let ∆ = ⌈2 + 2c + 2 µ
log2 n

⌉ and t =
⌊

2µ

4(2µ)∆

⌋

. We call a bit-position i ∈ [n] at

time s ∈ [t] unsafe if the population at time s contains at least µ − ∆ ones in this

bit-position, that is, if
∑µ

j=1 x
(s,j)
i ≥ µ − ∆, and if this bit-position was determined

by sampling random bit-values (that is, not by setting all bit-values to one because the
previous reduced population was converged to 1 in this position). Let Xis be the indicator
random variable for this event.

We easily see that

Pr[Xis = 1] = Pr[Bin(µ, 12) ≥ µ−∆] ≤ 2−(µ−∆)

(

µ

µ−∆

)

≤ 2−µ(2µ)∆ ,

where the estimate for the binomial distribution is well-known (see [26, Lemma 3] or [8,
Lemma 10.37]).

Regarding the correlation of the Xis, we see that either Xis is a fresh random sample
independent from all Xi′s′ with s′ < s and i′ ∈ [n] or, namely if the reduced parent
population in iteration s has the i-th bit converged, Xis = 0 with probability one.
Consequently, the number X :=

∑t
s=1

∑n
i=1 Xis of unsafe bit-positions in the time frame

[t] is dominated by a sum of nt independent Bernoulli random variables with success
probability 2−µ(2µ)∆, see [13, Lemma 11] or [8, Lemma 10.22].

For these reasons, we have E[X] ≤ 1
4n and Pr[X ≥ 1

2n] ≤ exp(−1
8n) by the additive

Chernoff bound.
We now argue that having at least ∆ zeros in some bit-position is often enough

sufficient for the position not being fixed to 1. For each s ∈ [t], let Bs be the following
event.

• If in the sampling process of the s-th population at least n
2 bit-positions are not

already fixed (“fat s-th population”), then Bs is the event that there is a fitness
value z ∈ [0..n] such that at least ∆ individuals of the s-th population have fitness
exactly z.

• Otherwise (“thin s-th population”) let the event Bs be true with probability p :=
n1−∆/2(2µ)∆ independent of all other random decisions of the algorithm.

Since a random variable with binomial distribution with parameters n and 1
2 attains each

value in [0..n] with probability at most 2/
√
n, this follows from elementary estimates of

binomial coefficient, see, e.g., [8, Lemma 4.9], a union bound over the n + 1 possible

24

values of z and a similar estimate as above shows

Pr[Bs] ≤ (n+ 1)

(

µ

∆

)

2∆n−∆/2 ≤ n1−∆/2(2µ)∆ = p

also in the first case, where the last estimate exploits that ∆ ≥ 2.
Denote by B =

∧t
s=1Bs the event that none of the Bs comes true. By a simple union

bound,
Pr[(X ≤ n

2) ∧B] ≥ 1− exp(−n
8)− tp ≥ 1− exp(−n

8)− 1
4n

−c.

A simple induction shows that the event “(X ≤ n
2) ∧ B” implies that in each iteration

s ∈ [2..t] at most those bit-positions which have been unsafe before can be converged
to one. For s = 2 this follows from the fact that all positions of the initial population
are sampled randomly; consequently, the event B2 means that all fitness values occurred
less than ∆ times. This, however, implies that only a bit-position i which was unsafe in
the first iteration (that is, Xi1 = 1) can be converged in the second population. Since
the total number of unsafe positions is at most n/2, also the second population is fat,
that is, contains at least n/2 random bits. Repeating the previous arguments, we obtain
that at most bit-positions which where unsafe at least once can be converged to one, and
further, that all populations up to time t are fat.

Conditioning on the event “(X ≤ n
2) ∧B”, we now regard the difference between the

artificial process and a true run of the CSA. We have just seen that during the run of
the artificial process, at least tn/2 times a bit-position was sampled randomly (without
becoming unsafe). The number of ones in such a bit-position is described by a random
variable (Z | Z ≤ µ − ∆), where Z follows a binomal law with parameters µ and 1

2 .
In particular, with probability at least 2−µ, this number is zero. Note that when a bit-
position is sampled with zero ones, then the true process differs from the artificial process
and the run of the CSA reaches a state from which it cannot generate the optimum of
OM. The probability that none of the at least tn/2 safe samplings of variables leads to
this negative event is at most

(1− 2−µ)tn/2 ≤ exp

(

−2−µtn

2

)

≤ exp

(

−2−µn

2

2µ

2 · 4(2µ)∆
)

= exp

(

− n

16(2µ)∆

)

.

In summary, we see that with probability at least

(

1− exp(−n
8)− 1

4n
−c
)

(

1− exp

(

− n

16(2µ)∆

))

= 1−O(n−c),

the run of the true CAS fixes a position to zero.

25

7 Conclusions

We introduced the novel EDA sig-cGA, which optimizes both OM and LO in O(n log n)
w.h.p. and in expectation. This is the first result of this kind for an EDA or even an
EA. These run times are a result of the update process of the sig-cGA: it only updates
its probabilistic model if it finds a significance in the history of its samples. In contrast,
common EDAs or EAs that are analyzed theoretically do not store the entire history of
their samples; EAs keep some samples as their population, and EDAs learn from samples
iteratively and store the gained information implicitly in their model.

Since storing the entire history of samples demands a lot of memory if the sig-cGA
runs longer, we proposed a method that stores the history compactly while maintaining
its important information. We want to note that this method can be improved even
further. Currently, the sig-cGA saves new data in each iteration, even if no information
is gained. In order to further reduce the memory demands of the sig-cGA, it should
save a bit only if it is different from that of the competing offspring, that is, if there
actually was a bias in both offspring at that position. Note that this is more similar to
how the cGA updates its frequencies. However, if a frequency of the sig-cGA is at 1/2,
the number of samples that can contain important information (that is the pairs (0, 1)
and (1, 0)) is, in expectation, only half the number of all samples. Thus, the memory is
only reduced by roughly a factor of 2.

All in all, the approach of the sig-cGA to reduce run times for a slight increase in
memory appears to pay off very well. In this first work, as often in the theory of evo-
lutionary algorithms, we only regarded the two unimodal benchmark functions OM and
LO. Since it has been observed, e.g., recently in [16], that insights derived from such
analyses can lead to wrong conclusions for more difficult functions, an interesting next
step would be to analyze the performance of the sig-cGA on objective functions that
have true local optima or that have larger plateaus of equal fitness. Two benchmark
functions have been suggested in this context, namely jump functions [23] having an
easy to reach local optimum with a scalable basin of attraction and plateau functions [3]
having a plateau of scalable diameter around the optimum. We are vaguely optimistic
that our sig-cGA has a good performance on these as well. We expect that the sig-cGA,
as when optimizing OM, quickly fixes a large number of bits to the correct value and
then, different from classic EAs, profits from the fact that the missing bits are sampled
with uniform distribution, leading to a much more efficient exploration of the small sub-
hypercube formed by these undecided bits. Needless to say, transforming this speculation
into a formal proof would be a significant step forward to understanding the sig-cGA.

From a broader perspective, our work shows that by taking into account a longer
history and only updating the model when the history justifies it, the performance of
a classic EDA can be improved and its usability can be increased (since the difficult
choice of the model update strength is now obsolete). An interesting question from this
viewpoint would be to what extent similar ideas can be applied to other well-known
EDAs.

From a very broad perspective, our work suggests that generally EC could profit from

26

enriching the iterative evolutionary process with mechanisms that collect and exploit
information over several iterations. So far, such learning-based concepts are rarely used
in EC. The only theoretical works in this direction propose a history-based choice of the
mutation strength [10] and analyze hyperheuristics that stick to a chosen subheuristic
until its performance over the last τ iterations, τ a parameter of the algorithms, appears
insufficient (see, e.g., [17] and the references therein).

References

[1] Peyman Afshani, Manindra Agrawal, Benjamin Doerr, Carola Doerr, Kasper Green
Larsen, and Kurt Mehlhorn. 2019. The query complexity of find-
ing a hidden permutation. Discrete Applied Mathematics (2019), 28–50.
https://doi.org/10.1016/j.dam.2019.01.007

[2] Gautham Anil and R. Paul Wiegand. 2009. Black-box search by
elimination of fitness functions. In Proc. of FOGA’09. ACM, 67–78.
https://doi.org/10.1145/1527125.1527135

[3] Denis Antipov and Benjamin Doerr. 2018. Precise runtime
analysis for plateaus. In Proc. of PPSN’18. Springer, 117–128.
https://doi.org/10.1007/978-3-319-99259-4_10

[4] Denis Antipov, Benjamin Doerr, Jiefeng Fang, and Tangi Hetet. 2018. A tight
runtime analysis for the (µ + λ) EA. In Proc. of GECCO’18. ACM, 1459–1466.
https://doi.org/10.1145/3205455.3205627

[5] Golnaz Badkobeh, Per Kristian Lehre, and Dirk Sudholt. 2014. Unbiased Black-
Box Complexity of Parallel Search. In Proc. of PPSN’14. Springer, 892–901.
https://doi.org/10.1007/978-3-319-10762-2_88

[6] Duc-Cuong Dang, Per Kristian Lehre, and Phan Trung Hai Nguyen. 2019. Level-
Based Analysis of the Univariate Marginal Distribution Algorithm. Algorithmica
81, 2 (2019), 668–702. https://doi.org/10.1007/s00453-018-0507-5

[7] Benjamin Doerr. 2019. Analyzing randomized search heuristics via stochas-
tic domination. Theoretical Computer Science 773 (2019), 115–137.
https://doi.org/10.1016/j.tcs.2018.09.024

[8] Benjamin Doerr. 2020. Probabilistic Tools for the Analysis of Ran-
domized Optimization Heuristics. In [18]. 1–87. Also available at
https://arxiv.org/abs/1801.06733.

[9] Benjamin Doerr and Carola Doerr. 2018. Optimal Static and Self-Adjusting Pa-
rameter Choices for the (1+(λ, λ)) Genetic Algorithm. Algorithmica 80, 5 (2018),
1658–1709.

27

https://doi.org/10.1016/j.dam.2019.01.007
https://doi.org/10.1145/1527125.1527135
https://doi.org/10.1007/978-3-319-99259-4_10
https://doi.org/10.1145/3205455.3205627
https://doi.org/10.1007/978-3-319-10762-2_88
https://doi.org/10.1007/s00453-018-0507-5
https://doi.org/10.1016/j.tcs.2018.09.024
https://arxiv.org/abs/1801.06733

[10] Benjamin Doerr, Carola Doerr, and Jing Yang. 2016. k-bit mutation with self-
adjusting k outperforms standard bit mutation. In Proc. of PPSN’16. Springer,
824–834. https://doi.org/10.1007/978-3-319-45823-6_77

[11] Benjamin Doerr, Christian Gießen, Carsten Witt, and Jing Yang. 2019. The (1+λ)
Evolutionary Algorithm with Self-Adjusting Mutation Rate. Algorithmica 81, 2
(2019), 593–631. https://doi.org/10.1007/s00453-018-0502-x

[12] Benjamin Doerr, Thomas Jansen, Carsten Witt, and Christine Zarges. 2013. A
method to derive fixed budget results from expected optimisation times. In Proc. of
GECCO’13. ACM, 1581–1588. https://doi.org/10.1145/2463372.2463565

[13] Benjamin Doerr and Daniel Johannsen. 2010. Edge-based representation beats
vertex-based representation in shortest path problems. In Proc. of GECCO’10.
ACM, 759–766. https://doi.org/10.1145/1830483.1830618

[14] Benjamin Doerr and Marvin Künnemann. 2015. Optimizing linear func-
tions with the (1+λ) evolutionary algorithm – different asymptotic runtimes
for different instances. Theoretical Computer Science 561 (2015), 3–23.
https://doi.org/10.1016/j.tcs.2014.03.015

[15] Benjamin Doerr and Martin S. Krejca. 2018. Significance-based estimation-
of-distribution algorithms. In Proc. of GECCO’18. ACM, 1483–1490.
https://doi.org/10.1145/3205455.3205553

[16] Benjamin Doerr, Huu Phuoc Le, Régis Makhmara, and Ta Duy Nguyen.
2017. Fast genetic algorithms. In Proc. of GECCO’17. ACM, 777–784.
https://doi.org/10.1145/3205455.3205563

[17] Benjamin Doerr, Andrei Lissovoi, Pietro S. Oliveto, and John Alasdair
Warwicker. 2018. On the runtime analysis of selection hyper-heuristics
with adaptive learning periods. In Proc. of GECCO’18. ACM, 1015–1022.
https://doi.org/10.1145/3205455.3205611

[18] Benjamin Doerr and Frank Neumann. 2020. Theory of Evolutionary
Computation—Recent Developments in Discrete Optimization. Springer.
https://doi.org/10.1007/978-3-030-29414-4

[19] Benjamin Doerr, Frank Neumann, Dirk Sudholt, and Carsten Witt. 2011. Runtime
analysis of the 1-ANT ant colony optimizer. Theoretical Computer Science 412, 17
(2011), 1629–1644.

[20] Benjamin Doerr and Carola Winzen. 2014. Ranking-based black-box complexity.
Algorithmica 68 (2014), 571–609. https://doi.org/10.1007/s00453-012-9684-9

[21] Benjamin Doerr, Carsten Witt, and Jing Yang. 2018. Runtime analysis
for self-adaptive mutation rates. In Proc. of GECCO’18. ACM, 1475–1482.
https://doi.org/10.1145/3205455.3205569

28

https://doi.org/10.1007/978-3-319-45823-6_77
https://doi.org/10.1007/s00453-018-0502-x
https://doi.org/10.1145/2463372.2463565
https://doi.org/10.1145/1830483.1830618
https://doi.org/10.1016/j.tcs.2014.03.015
https://doi.org/10.1145/3205455.3205553
https://doi.org/10.1145/3205455.3205563
https://doi.org/10.1145/3205455.3205611
https://doi.org/10.1007/978-3-030-29414-4
https://doi.org/10.1007/s00453-012-9684-9
https://doi.org/10.1145/3205455.3205569

[22] Stefan Droste. 2006. A rigorous analysis of the compact genetic al-
gorithm for linear functions. Natural Computing 5, 3 (2006), 257–283.
https://doi.org/10.1007/s11047-006-9001-0

[23] Stefan Droste, Thomas Jansen, and Ingo Wegener. 2002. On the analysis of the
(1+1) evolutionary algorithm. Theoretical Computer Science 276, 1–2 (2002), 51–
81. https://doi.org/10.1016/S0304-3975(01)00182-7

[24] Stefan Droste, Thomas Jansen, and Ingo Wegener. 2006. Upper and lower bounds
for randomized search heuristics in black-box optimization. Theory of Computing
Systems 39 (2006), 525–544. https://doi.org/10.1007/s00224-004-1177-z

[25] Tobias Friedrich, Timo Kötzing, and Martin S. Krejca. 2016. EDAs can-
not be balanced and stable. In Proc. of GECCO’16. ACM, 1139–1146.
https://doi.org/10.1145/2908812.2908895

[26] Christian Gießen and Carsten Witt. 2017. The interplay of population size and
mutation probability in the (1 + λ) EA on OneMax. Algorithmica 78 (2017), 587–
609. https://doi.org/10.1007/s00453-016-0214-z

[27] Georges R. Harik, Fernando G. Lobo, and David E. Goldberg. 1999. The compact
genetic algorithm. IEEE Transactions on Evolutionary Computation 3, 4 (1999),
287–297.

[28] Thomas Jansen, Kenneth A. De Jong, and Ingo Wegener. 2005. On the choice of
the offspring population size in evolutionary algorithms. Evolutionary Computation
13 (2005), 413–440. https://doi.org/10.1162/106365605774666921

[29] Thomas Jansen and Christine Zarges. 2014. Performance analysis of randomised
search heuristics operating with a fixed budget. Theoretical Computer Science 545
(2014), 39–58. https://doi.org/10.1016/j.tcs.2013.06.007

[30] Martin S. Krejca and Carsten Witt. 2017. Lower bounds on the run time of the
univariate marginal distribution algorithm on OneMax. In Proc. of FOGA’17. ACM,
65–79. https://doi.org/10.1145/3040718.3040724

[31] Martin S. Krejca and Carsten Witt. 2020. Theory of Estimation-of-Distribution
Algorithms. In [18]. 405–442. Also available at http://arxiv.org/abs/1806.05392.

[32] Per Kristian Lehre and Phan Trung Hai Nguyen. 2018. Level-based analysis of the
population-based incremental learning algorithm. In Proc. of PPSN’18. Springer,
105–116. https://doi.org/10.1007/978-3-319-99259-4_9

[33] Per Kristian Lehre and Carsten Witt. 2012. Black-box search
by unbiased variation. Algorithmica 64, 4 (2012), 623–642.
https://doi.org/10.1007/s00453-012-9616-8

29

https://doi.org/10.1007/s11047-006-9001-0
https://doi.org/10.1016/S0304-3975(01)00182-7
https://doi.org/10.1007/s00224-004-1177-z
https://doi.org/10.1145/2908812.2908895
https://doi.org/10.1007/s00453-016-0214-z
https://doi.org/10.1162/106365605774666921
https://doi.org/10.1016/j.tcs.2013.06.007
https://doi.org/10.1145/3040718.3040724
http://arxiv.org/abs/1806.05392
https://doi.org/10.1007/978-3-319-99259-4_9
https://doi.org/10.1007/s00453-012-9616-8

[34] Johannes Lengler, Dirk Sudholt, and Carsten Witt. 2018. Medium step sizes are
harmful for the compact genetic algorithm. In Proc. of GECCO’18. ACM, 1499–
1506. https://doi.org/10.1145/3205455.3205576

[35] Alberto Moraglio and Dirk Sudholt. 2017. Principled design and runtime analysis
of abstract convex evolutionary search. Evolutionary Computation 25, 2 (2017),
205–236. https://doi.org/10.1162/EVCO_a_00169

[36] Frank Neumann, Dirk Sudholt, and Carsten Witt. 2009. Analysis of different MMAS
ACO algorithms on unimodal functions and plateaus. Swarm Intelligence 3, 1 (2009),
35–68. https://doi.org/10.1007/s11721-008-0023-3

[37] Frank Neumann and Carsten Witt. 2009. Runtime analysis of a sim-
ple ant colony optimization algorithm. Algorithmica 54, 2 (2009), 243–255.
https://doi.org/10.1007/s00453-007-9134-2

[38] Pietro S. Oliveto and Carsten Witt. 2011. Simplified drift analysis for proving
lower bounds in evolutionary computation. Algorithmica 59, 3 (2011), 369–386.
https://doi.org/10.1007/s00453-010-9387-z

[39] Pietro S. Oliveto and Carsten Witt. 2012. Erratum: simplified drift analysis for
proving lower bounds in evolutionary computation. CoRR abs/1211.7184 (2012).
http://arxiv.org/abs/1211.7184

[40] Martin Pelikan, Mark Hauschild, and Fernando G. Lobo. 2015. Estimation of dis-
tribution algorithms. In Springer Handbook of Computational Intelligence. 899–928.
https://doi.org/10.1007/978-3-662-43505-2_45

[41] Dirk Sudholt and Carsten Witt. 2019. On the Choice of the Update Strength in
Estimation-of-Distribution Algorithms and Ant Colony Optimization. Algorithmica
81, 4 (2019), 1450–1489. https://doi.org/10.1007/s00453-018-0480-z

[42] Carsten Witt. 2006. Runtime analysis of the (µ + 1) EA on sim-
ple pseudo-Boolean functions. Evolutionary Computation 14 (2006), 65–86.
https://doi.org/10.1162/evco.2006.14.1.65

[43] Carsten Witt. 2019. Upper Bounds on the Running Time of the Univariate
Marginal Distribution Algorithm on OneMax. Algorithmica 81, 2 (2019), 632–667.
https://doi.org/10.1007/s00453-018-0463-0

[44] Weijie Zheng, Guangwen Yang, and Benjamin Doerr. 2018. Working princi-
ples of binary differential evolution. In Proc. of GECCO’18. ACM, 1103–1110.
https://doi.org/10.1145/3205455.3205623

30

https://doi.org/10.1145/3205455.3205576
https://doi.org/10.1162/EVCO_a_00169
https://doi.org/10.1007/s11721-008-0023-3
https://doi.org/10.1007/s00453-007-9134-2
https://doi.org/10.1007/s00453-010-9387-z
http://arxiv.org/abs/1211.7184
https://doi.org/10.1007/978-3-662-43505-2_45
https://doi.org/10.1007/s00453-018-0480-z
https://doi.org/10.1162/evco.2006.14.1.65
https://doi.org/10.1007/s00453-018-0463-0
https://doi.org/10.1145/3205455.3205623

	1 Introduction
	2 Preliminaries
	3 The Significance-based Compact Genetic Algorithm
	3.1 Detailed Description of the sig/cGA
	3.2 Efficient Implementation of the sig/cGA

	4 Run Time Results for LO and OM
	4.1 Analysis of LO
	4.2 Analysis of OM

	5 Run Time Analysis for the scGA
	6 Run Time Analysis for the Convex Search Algorithm
	7 Conclusions

