
HAL Id: hal-04484791
https://hal.science/hal-04484791

Submitted on 4 Apr 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Working principles of binary differential evolution
Benjamin Doerr, Weijie Zheng

To cite this version:
Benjamin Doerr, Weijie Zheng. Working principles of binary differential evolution. Theoretical Com-
puter Science, 2020, 801, pp.1103-1110. �10.1145/3205455.3205623�. �hal-04484791�

https://hal.science/hal-04484791
https://hal.archives-ouvertes.fr

ar
X

iv
:1

81
2.

03
51

3v
1

 [
cs

.N
E

]
 9

 D
ec

 2
01

8

Working Principles of Binary Differential

Evolution∗

Benjamin Doerr

École Polytechnique, CNRS,
Laboratoire d’Informatique (LIX),

Palaiseau, France

Weijie Zheng†

Luoyanghe Village,

Huoshan Economic Development Zone,
Anhui, China

December 11, 2018

Abstract

We conduct a first fundamental analysis of the working principles of
binary differential evolution (BDE), an optimization heuristic for binary
decision variables that was derived by Gong and Tuson (2007) from the very
successful classic differential evolution (DE) for continuous optimization.
We show that unlike most other optimization paradigms, it is stable in
the sense that neutral bit values are sampled with probability close to 1/2
for a long time. This is generally a desirable property, however, it makes
it harder to find the optima for decision variables with small influence on
the objective function. This can result in an optimization time exponential
in the dimension when optimizing simple symmetric functions like OneMax.
On the positive side, BDE quickly detects and optimizes the most important
decision variables. For example, dominant bits converge to the optimal value

∗This is a significantly extended version of the 8-page conference paper [ZYD18]. All authors
of this version have contributed equally. The authors are given in alphabetical order as common
in theoretical computer science.

†Work done while affiliated with Department of Computer Science and Technology in Tsinghua
University and partially during a research stay at École Polytechnique’s computer science lab
(LIX).

1

http://arxiv.org/abs/1812.03513v1

in time logarithmic in the population size. This enables BDE to optimize
the most important bits very fast. Overall, our results indicate that BDE
is an interesting optimization paradigm having characteristics significantly
different from classic evolutionary algorithms or estimation-of-distribution
algorithms (EDAs).

On the technical side, we observe that the strong stochastic dependencies
in the random experiment describing a run of BDE prevent us from proving
all desired results with the mathematical rigor that was successfully used
in the analysis of other evolutionary algorithms. Inspired by mean-field
approaches in statistical physics we propose a more independent variant of
BDE, show experimentally its similarity to BDE, and prove some statements
rigorously only for the independent variant. Such a semi-rigorous approach
might be interesting for other problems in evolutionary computation where
purely mathematical methods failed so far.

1 Introduction

The family of differential evolution (DE) heuristics, first proposed by Storn and
Price in 1995 [SP97], has become one of the most successful branches of evolu-
tionary computation in continuous optimization and has been applied with great
success to many real world problems, see, e.g., the survey [DMS16].

However, compared to the abundance of results in continuous optimization,
DE for discrete search spaces is much less understood. The difficulties start with
how to implement the inherently continuous working principles of DE in discrete
search spaces. One approach is to embed the discrete optimization problem into a
continuous setting and then utilize continuous DE. For instance, Pampará, Engel-
brecht, and Franken [PEF06] employ angle modulation to generate binary strings
from floating-point individuals. Engelbrecht and Pampará [EP07] further use the
sigmoid value of the individual as the probability to generate the bit value, and
also propose a normalization mapping.

Much less effort has been put into the design of truly discrete DE algorithms.
Historically the first to do so, to the best of our knowledge, are Gong and Tu-
son [GT07]. They apply the rigorous forma analysis method to derive in a generic
way a DE variant for binary search spaces. Moraglio and Togelius as well as
Moraglio, Togelius and Silva [MT09, MTS13] define discrete versions of DE via
another generic approach, namely by requiring that certain geometric properties
of the operators should be maintained. They demonstrate the usefulness of this
approach not only for binary representations, but also for permutations and vec-
tors of permutations. Recently, Santucci, Baioletti and Milani [SBM16] propose
another differential mutation for permutation.

2

To the best of our knowledge, apart from the axiomatic definitions of the dif-
ferent binary DE algorithms, there are no theoretical analyses of these methods so
far. This contrasts the increasing theoretical understandings on other evolutionary
algorithms like simple mutation-based algorithms [DJW02], the compact Genetic
Algorithm (cGA) [Dro06], ant colony optimizers [Gut08, NW09], and the univari-
ate marginal distribution algorithm (UMDA) [CTCY10]. The lack of theoretical
work on binary DE could be caused by the relatively complicated dependencies
in the stochastic process of a run of a DE heuristic. There are two types of the
stochastic dependencies in DE, one from the reusing the same individuals when
generating the mutant, and the other from the selection operator. As we shall
see in this work, these dependencies lead to difficulties not seen in the analysis
of the other evolutionary algorithms, which often treat the different bit positions
independently (apart from the fitness-based selection).

Our results: Since a theoretical understanding of an evolutionary algorithm can
be very useful for its future use, this paper conducts a first fundamental analysis
of the working principles of the binary differential evolution (BDE) algorithm
proposed by Gong and Tuson [GT07]. We concentrate on this BDE, since it is the
historically first and because we feel that its derivation via forma analysis makes
it most likely that it inherits the true nature of DE from the continuous world.
However, we expect that our results in a similar manner hold for other variants of
BDE.

We show that the stochastic dependencies discussed above lead to a behavior
significantly different from what is observed with many other nature-inspired opti-
mization heuristics, in particular those, for which a solid theoretical understanding
exists. For example, many heuristics have the property that at any time any point
of the search space can be generated (possibly with a small probability). For BDE,
this is substantially different. We show that from the random initial population,
only an exponentially small fraction of all individuals can be generated in one it-
eration (see Theorem

thm:badcase1
1). In a similar vein, we present an objective function f and

a population P such that BDE from this population with probability 1 never finds
the optimum of f . Here P can be chosen exponentially large in the dimension and
for each bit position each value may occur exponentially often (Theorem

thm:badcase2
3).

Unlike most other optimization paradigms for bit-string representations, we
show that BDE is stable in the sense of Friedrich et al. [FKK16], that is, neutral
bit values are sampled with probability close to 1

2
for a long time. We prove that

BDE is stable when optimizing the Needle function, in which all bits are neutral
before the optimum is found. Here, precisely, we show that for a time exponential
in the population size all bit values are sampled with frequencies in [1

2
− ǫ, 1

2
+ ǫ],

where ǫ > 0 can be any small constant (Theorem
thm:stable
8).

3

The inherent dependencies in BDE prevent us from mathematically extending
this stability result to arbitrary neutral bits. Therefore, similar to the mean-field
approach in statistical physics, we analyze a simpler but similar model called iBDE
in which each bit position is treated independently when generating the mutant.
We experimentally show the similarity of the behavior between BDE and iBDE
in neutral bits and theoretically show the stability of iBDE (Theorem

thm:iBDENeutral
11). As a

contrast, extending and sharpening results from [FKK16] (partially also mentioned
without proof in [SW16]), we show that in the algorithms UMDA and cGA, the
sampling frequency of a neutral bit hits the absorbing boundaries 0 and 1 (or the
artificial boundaries 1

D
and 1 − 1

D
when these are used) in expected times Θ(µ)

and Θ(K2), see Section
sec:neutralothers
4.4.

As a second positive property, we show that BDE can quickly detect and op-
timize the most important decision variables. For instance, we prove rigorously
that a dominant bit converges to the optimal value in time logarithmic in the pop-
ulation size (Theorem

thm:domiTime
19). We theoretically discuss the runtime of BDE for the

LeadingOnes function under the assumption that the frequency of the ones in the
population does not drop below a small constant fraction for a sufficiently long
time. In this case, BDE finds the optimum of the D-dimensional LeadingOnes
function in O(D) iterations (Theorem

thm:BDEforLOwAssumption
22). Similar to the discussion for neutral

bits, we mathematically verify that this assumption holds for iBDE and experimen-
tally show the similarity of BDE and iBDE in this respect. Analogous results hold
for the optimization of the BinaryValue function (Theorem

thm:BDEforBVwAssumption
24 and Lemma

lem:BVassumiBDE
25).

Although stability is generally a desirable property (see [FKK16, DK18a] for
examples how stable EDAs can outperform common EDAs, which are all unstable),
stability can make it hard to find the optimal values of decision variables with small
influence on the objective function. We take the OneMax function as an example,
and prove that the expected runtime is at least exponential in the dimension
when we initialize the population by setting each bit to 1 with probability 0.6
(Theorem

thm:rtlargeprob
27). Note that such random individuals are actually better (in terms of

fitness) than the usual random individuals having ones with probability 0.5.
This result could indicate that generally BDE has difficulties with objective

functions in which each bit position has only a small influence on the fitness. Such
a behavior was previously observed [DK18b] for some algorithms which optimize
dominant bits very fast, e.g., the CSA and the sc-GA. Our experimental analysis
(in Section

sec:onemaxexp
6.2) of the BDE optimizing OneMax is not fully conclusive, but indi-

cates that the runtime of BDE on OneMax is super-polynomial. At the same time,
we observe that for reasonable problem sizes BDE with the parameters suggested
in the literature still optimizes OneMax in a reasonable time. However, we also
observe that BDE profits almost not at all from larger population sizes (as long
as the population size is large enough to prevent premature convergence).

4

The organization of the remainder of the paper is as follows. In Section 2, we
give a brief introduction to BDE as proposed by Gong and Tuson [GT07]. The
stochastic dependencies and the proposed mean-field approaches are discussed in
Section 3. Section 4 analyzes the behavior of neutral bits, whereas dominant bits
are discussed in Section 5. Section 6 discusses possible negative consequences from
stability for easy objective function. Section 7 concludes our work.

2 Binary Differential Evolution

This paper discusses the optimization behavior of Binary Differential Evolution
(BDE) as proposed by Gong and Tuson [GT07]. We concentrate on the variant
DE/res/bin [GT07]. This BDE algorithm with binomial crossover is shown in Algo-
rithm

alg:originalBDE
1. Throughout this paper, we consider the maximization of a D-dimensional

pseudo-Boolean function f : {0, 1}D → R. If not indicated differently, the initial
population P 0 consists of N randomly generated individuals.

In the main optimization loop, for each individual Xg
i of the parent population,

a mutant V g
i is generated as follows. Three mutually different indices r1, r2 and r3

are picked randomly from {1, . . . , N}\{i}. The individual Xg
r1

is called the base
vector. The individuals Xg

r2
and Xg

r3
together with the random numbers mrandj

determine whether the j-th bit of Xg
r1

is flipped (V g
i,j = 1−Xg

i,j) or not.
Then a crossover between the mutant V g

i and its parent Xg
i determines the trial

vector Ug
i . Among the two crossover operators commonly used in DE, exponential

crossover and binomial crossover, we only discuss binomial crossover as this is
closer to what is commonly used in discrete evolutionary optimization. Also, the
experimental results conducted in [GT07] suggest that binomial crossover leads to
better results on the typical benchmark problems of the theory community. The
binomial crossover of DE is a biased uniform crossover such that, for each bit
position j ∈ {1, . . . , D} independently, the trial Ug

i inherits the j-th bit from V g
i

with probability C, otherwise we have Ug
i,j = Xg

i,j.
Traditionally, in DE one ensures that the trial vector inherits at least one bit

position from the mutant vector. For this, a random index ridx ∈ {1, . . . , D} is
chosen and Ug

i is defined by

Ug
i,j =

V g
i,j, if crandj ≤ C or j = ridx

Xg
i,j , otherwise,

that is, we enforce the bit position ridx to be taken from the mutant. In this
first theoretical analysis of BDE, we omit this mechanism. The main reason is
that it adds another technicality, but one which most likely does not change a
lot. Note that the probability that (without this mechanism) no bit is taken from

5

Algorithm 1 originalBDE

1: Generate the random initial population P 0 = {X0
i , i = 1, . . . , N}

2: for g = 0, 1, 2, . . . do

3: for i = 1, 2, . . . , N do

%% Mutation

4: Generate mutually different r1, r2, r3 from {1, . . . , N}\{i} uniformly at random
5: Generate a random number mrandj ∈ [0, 1] for each j ∈ {1, . . . , D}
6: Define the mutant V g

i via

for j ∈ {1, . . . , D}, V g
i,j =

{

1−Xg
r1,j, if Xg

r2,j 6= Xg
r3,j and mrandj < F ;

Xg
r1,j, otherwise.

%% Binomial Crossover

7: Generate a random number crandj ∈ [0, 1] for each j ∈ {1, . . . , D}
8: Define the trial Ug

i via

for j ∈ {1, . . . , D}, Ug
i,j =

{

V g
i,j, if crandj ≤ C;

Xg
i,j , otherwise.

%% Selection

9: Select Xg+1
i via

Xg+1
i =

{

Xg
i , if Xg

i has the better fitness;

Ug
i , if Ug

i ’s fitness is better or as good as Xg
i ’s.

10: end for

11: end foralg:originalBDE

the mutant, is (1− C)D, that is, exponentially small in D. Therefore, it is highly
unlikely that during a polynomial runtime of the algorithm such an event happens.
Hence throughout the paper, to make the analysis simpler, we omit this additional
technicality.

The final step of BDE is an offspring-parent selection. If the trial vector Ug
i is at

least as good (in terms of fitness) as its parent Xg
i , then it replaces the parent, that

is, we have Xg+1
i = Ug

i . Otherwise, the parent Xg
i will enter the next generation

as Xg+1
i .

6

3 Stochastic Dependencies and Mean-Field Ap-

proaches

In this section, we demonstrate that the additional stochastic dependencies present
in the random process describing a run of BDE lead to a significantly different be-
havior than what is observed in other evolutionary approaches. Inspired by mean-
field approaches in statistical physics, we then propose a BDE variant with fewer
dependencies. We shall see later in this work that it gives good approximations
for the true BDE process.

3.1 Stochastic Dependencies

From the description of BDE in the previous section, we observe a large number
of the stochastic dependencies in BDE. In the mutation operator, three other in-
dividuals are used to generate the mutant. For this reason, the bits of the mutant
are far from being independent. As we shall see, this has drastic consequences
on which offspring can be generated in one generation and on the convergence
behavior of BDE. The second type of dependencies stems from the selection op-
erator. Selection always is a cause for dependencies, since it does not regard bits
independently, but their combined influence on the fitness. For BDE, things are
made worse by the parent-offspring selection mechanism which does not enable a
competition between all parents and offspring.

It is quite likely that BDE rather profits from these dependencies as they might
favor the creation and survival of building blocks (in the mutation step) and favor
diversity (in the selection step). From the view-point of gaining a rigorous under-
standing of the working principles of BDE, these dependencies create significant
challenges, unfortunately. In the remainder of this section, we prove three results
which show that and how the dependencies lead to a behavior significantly dif-
ferent from that of many other evolutionary algorithms, in particular those, for
which a substantial theoretical understanding exists.

3.1.1 Reachable Offspring

We say that an individual X is reachable from a parent population P if X can
be generated with positive (possibly very small) probability from the parent pop-
ulation. In many evolutionary algorithms, each search point X is reachable from
any population. This is immediate for all algorithms which use standard bit mu-
tation (flipping each bit independently with some probability like 1/D). For most
distribution-based heuristics like estimation-of-distribution-algorithms (EDAs) or
ant colony optimizers (ACOs), again any search point can be generated as long

7

as none of the frequencies or pheromone values (usually initialized at 1
2
) has con-

verged to 0 or 1. When, as often done, these methods are used with artificial
boundaries, preventing the frequencies or pheromone values from leaving an inter-
val like [1

D
, 1− 1

D
], then at all times any search point is reachable.

We now show that BDE is substantially different in this respect. It is clear
that once a bit value has converged, that is, in all individuals of the population the
value of this bit is identical, then in all future individuals this bit will have this
same value (and consequently, not all individual are reachable). However, also
long before this convergence, in fact, already right after the initialization, with
high probability, the vast majority of the individuals cannot be reached in one
generation. The following result shows that for a given target search point X∗,
with very high probability, starting from the initial random population, this X∗

and all search points in Hamming distance at most εD, ε < 1
8
, cannot be reached

in one generation.

Theorem 1. Consider using BDE with population size N to optimize a D-
dimensional function f . Let X∗ be any target search point and c ∈ (0, 1

8
). Then

with probability at least 1−N4 exp(−2c2D), BDE can generate no search point X
with Hamming distance H(X, X∗) ≤ (1

8
− c)D from the random initial population.

thm:badcase1

Note that the upper bound N4 exp(−2c2D) for the probability of being able to
generate some search point X with H(X, X∗) ≤ (1

8
− c)D is exponentially small

in D unless we work with an exponentially large population.

Proof of Theorem
thm:badcase1
1. Let X∗ ∈ {0, 1}D. Let (i, r1, r2, r3) be four mutually exclusive

indices from {1, . . . , N} and let Xi, Xr1
, Xr2

, Xr3
be the corresponding individuals

from the random initial population P 0. For all j ∈ {1, . . . , D} let Yj be the
indicator random variable for the event

(Xi,j 6= X∗
j) ∧ (Xr1,j = Xi,j) ∧ (Xr2,j = Xr3,j).

Note that by the definition of BDE, the event Yj = 1 implies that any mutant
V arising from Xr1

, Xr2
, Xr3

has Vj = Xi,j. Consequently, any trial vector U
generated from these individuals has Uj = Xi,j. Hence regardless of the result
of the parent-offspring selection, the individual X1

i of the next generation will be
different from X∗ in the j-th bit position.

We now estimate the number Y :=
∑D

j=1 Yj of bit positions in which
any offspring from Xi, Xr1

, Xr2
, Xr3

necessarily differs from X∗. Since the
Xi, Xr1

, Xr2
, Xr3

are independently generated random individuals, we have Pr[Yj =
1] = 1

8
and thus E[Y] = 1

8
D. Since further the bit-positions of random individ-

ual are also independent, the Yj, j ∈ {1, . . . , D}, are mutually independent as

8

well. Consequently, the classic additive Chernoff bound (see, e.g., Theorem 1.11
in [Doe11]), shows that

Pr[Y ≤ (1
8
− c)D] ≤ exp(−2c2D). (1) eq:Yi

Let A(i, r1, r2, r3) represent the event that for the given choice (i, r1, r2, r3), the
corresponding individuals Xi, Xr1

, Xr2
, Xr3

are able to generate some offspring X1
i

with H(X1
i , X∗) < (1

8
− c)D. From (

eq:Yi
1), we have

Pr[A(i, r1, r2, r3)] = Pr[Y ≤ (1
8
− c)D] ≤ exp(−2c2D).

The event that some individual X with Hamming distance H(X, X∗) ≤
(1

8
− c)D can be generated from the initial population is the union of the events

A(i, r1, r2, r3) over all choices of (i, r1, r2, r3). Hence the probability that some in-
dividual X with Hamming distance H(X, X∗) ≤ (1

8
− c)D can be generated from

the initial population, is at most

Pr[∃(i, r1, r2, r3) : A(i, r1, r2, r3)]

= Pr

[

⋃

(i,r1,r2,r3)

A(i, r1, r2, r3)

]

≤
∑

(i,r1,r2,r3)

Pr[A(i, r1, r2, r3)]

≤ N(N − 1)(N − 2)(N − 3) exp(−2c2D).

The same argument as above leads to a global view on the problem, namely
that the expected number of reachable individuals is very small (compared to the
size 2D of the search space). Recall here that reachable does not mean that the
individual is generated or it is likely to be generated, it just means that there is a
theoretical chance that it shows up as offspring. Hence the following result shows
that for the vast majority of individuals it is a priori clear that they cannot show
up as offspring of the initial population.

Theorem 2. The expected number of individuals which are reachable from the
random initial population is at most N4(7

8
)D · 2D = N41.75D.

Proof. Let (i, r1, r2, r3) be four mutually exclusive indices from {1, . . . , N} and let
Xi, Xr1

, Xr2
, Xr3

be the corresponding individuals from the random initial popu-
lation P 0. We compute the expected number of different offspring which could
be generated from the fixed indices (i, r1, r2, r3). For all j ∈ {1, . . . , D}, let the

9

random variable Wj be Wj = 1 if all possible offspring U satisfy Uj = Xi,j, and let
Wj = 2 otherwise. It is easy to see that

Pr[Wj = 1] = Pr[(Xr1,j = Xi,j) ∧ (Xr2,j = Xr3,j)] = 1
4

and thus E[Wj] = 7
4
. Now the number of different individuals that can be generated

from Xi, Xr1
, Xr2

, Xr3
is Z =

∏D
j=1 Wj . Since the Wj are independent, we have

E[Z] = (7
4
)D. Via a union bound over the choices of (i, r1, r2, r3), we obtain that

the expected number of reachable individuals is at most N4(7
4
)D = N41.75D.

Our two results on reachability only show that from the initial population
very few individuals can be reached. Due to the complicated randomized process
describing a run of BDE, we cannot show such a result for all iterations of BDE.
We would suspect, though, that in a typical run of BDE on a typical optimization
problem this phenomenon exists throughout the run and rather becomes stronger
due to loss of diversity.

3.1.2 Convergence

The fact that not all search points can be generated at all times implies that the
classic convergence proofs fail for BDE. We now show that not only the classic
proofs fail, but that indeed BDE does not necessarily converge, and this even
when the initial population is large and highly diverse (in the sense that at all
bit positions all bit values occur frequently). This result again demonstrates that
the stochastic dependencies inherent in the search process lead to an optimiza-
tion behavior substantially different from what is observed in classic evolutionary
algorithms.

Before stating and showing this result, we note that the random initial popula-
tion with probability 1− (1− 2−N+1)D ≤ D2−N+1 contains a bit position in which
all individuals have the same bit value (“converged bit”), which could be a trivial
reason for non-convergence. However, as the above estimate shows, for N mildly
larger than log2 D the initial population with high probability contains both zeros
and ones in each bit position, so this problem is easy to avoid (and it would also
be easy to detect).

Theorem 3. There is a fitness function f : {0, 1}D → R and an initial population
P 0 without converged bits such that BDE in an arbitrary long runtime does not
find the optimum of f . The initial population P 0 can be chosen of size exponential
in D and with all bit values appearing exponentially often at all positions.thm:badcase2

Proof. Consider a function f : {0, 1}D → R such that

• the global optima (maxima) all are search points X with ‖X‖1 ≥ 0.8D, and

10

• for all search points X1 with ‖X1‖1 ∈ {0.2D, . . . , 0.8D − 1} and X2 with
‖X2‖1 < 0.2D, we have f(X1) < f(X2).

We say a population has the property A when all individuals X in the population
satisfy ‖X‖1 < 0.2D.

Let (i, r1, r2, r3) denote 4 mutually different indices from {1, . . . , N} and let
Xg

i , Xg
r1

, Xg
r2

, Xg
r3

be the corresponding individuals from a population P g with prop-
erty A. Consider

Zg = {j ∈ {1, . . . , D} | Xg
i,j = Xg

r1,j = Xg
r2,j = Xg

r3,j = 0}.
By the definition of BDE, any mutant V g

i arising from Xg
r1

, Xg
r2

, Xg
r3

has V g
i,j = 0 for

all j ∈ Zg. Consequently, any trial vector Ug
i generated from Xg

i and such a mutant
has Ug

i,j = 0 for j ∈ Zg. Since Xg
i , Xg

r1
, Xg

r2
and Xg

r3
are from P g with property

A, we have ‖Xg
i ‖1 < 0.2D, ‖Xg

r1
‖1 < 0.2D, ‖Xg

r2
‖1 < 0.2D, and ‖Xg

r3
‖1 < 0.2D.

Hence,

|Zg| > D − 0.2D − 0.2D − 0.2D − 0.2D = 0.2D.

Hence there are at least 0.2D zeros in Ug
i , that is, we have ‖Ug

i ‖1 < 0.8D.
From this, we immediately conclude that BDE cannot generate any X with

‖X‖1 ≥ 0.8D from P g. Moreover, we also observe that P g+1 has property A.
Since ‖Ug

i ‖1 < 0.8D and ‖Xg
i ‖1 < 0.2D, we have f(Ug

i) ≥ f(Xg
i) only when

‖Ug
i ‖1 < 0.2D. Hence the successor Xg+1

i of Xg
i in the next population in any case

has ‖Xg+1
i ‖1 < 0.2D.

Hence the next generation P g+1 has the property A as well. By induction, we
obtain that when starting with a population having property A, we always keep a
population with this property, which hence does not contain an optimal solution.

It remains to show that there are initial populations with property A that do
not have any bit converged. However, this is trivial – we may just take the set of
all X with ‖X‖1 < 0.2D. This population has size

(

D
<0.2D

)

= exp(Θ(D)) and has a

fraction of 1
5
−o(1) of ones in each bit position. However, also an initial population

composed of D random strings having a 1 at each position with probability 1
10

has
property A with probability 1− exp(−Θ(D)).

Clearly, the construction used in the proof above is artificial. However, it
points out that BDE does not necessarily converge, and, more importantly, that
non-convergence can be determined already by a population that has no converged
bits.

This also shows that it is a non-trivial problem to detect if a run of BDE has
entered a state from which it cannot generate the whole search space anymore.
Note that this question is trivial for most EDAs and ACO algorithms since any
search point can be generated if and only if there are no converged frequencies or
pheromone values, a criterion that is easy to check.

11

3.2 Mean-Field Approaches and Independent BDE
(iDBE)

In statistical physics often the situation arises that the stochastic interactions
between different particles are too hard to grasp mathematically. A common
solution, called mean-field theory, is to disregard some of the dependencies and to
conduct a mathematical analysis of the simplified model. The results obtained in
the simplified model, naturally, are not immediately valid for the original model,
but they can point into the right direction and they can be made plausible by
arguing, possibly supported by experiments, that the simplification does not lead
to a significant discrepancy of the two models.

Since the dependencies caused by the mutation operator of BDE impose signif-
icant difficulties for the mathematical analysis of BDE, we shall resort to a similar
approach in some of the following analyses. To this aim, we propose a variant
of BDE, called independent BDE (iBDE), which generates the bits of a mutant
independently, but is otherwise identical to BDE. More precisely, when generating
a mutant Vi, for each bit position j independently, we select mutually different
(and different from Xi) individuals Xr1,j, Xr2,j, Xr3,j to generate Vi,j. See Alg.

alg:iBDE
2

for the precise pseudocode.
Whenever in the following sections we resort to analyzing iBDE, we shall also

argue for the similarity between iBDE and the original BDE in the particular
respect regarded. Note that iBDE and BDE do differ in some respects. For
example, the reachability and convergence results shown in this section naturally
are not valid for iBDE. When the current population has no converged bits, then
any individual can be generated.

4 Stability, Behavior of Neutral Bits
sec:neutral

When a bit-position has no influence on the fitness, then it would make sense
that its sampling frequency in EDAs or ACOs stays close to 1

2
for a long time.

A property trying to grasp this idea was called stable by Friedrich, Kötzing, and
Krejca [FKK16]. Unfortunately, as shown in [FKK16], all classic EDAs and ACOs
are not stable. The recent works of Witt [Wit17] and Lengler, Sudholt, and
Witt [LSW18] show that instability, more precisely, the early and unmotivated
move of frequencies to boundary values can lead to a considerable performance
loss when optimizing the OneMax function.

In this section, we demonstrate that BDE is more stable than the classic EDAs
and ACO algorithms. To this aim, we both show stability results for BDE and
iBDE and we show improved instability results for the EDA called UMDA and

12

Algorithm 2 iBDE

1: Generate the random initial population P 0 = {X0
i , i = 1, . . . , N}

2: for g = 0, 1, 2, . . . do

3: for i = 1, 2, . . . , N do

%% Modified Mutation

4: for j = 1, 2, . . . , D do

5: Generate mutually different r1, r2, r3 from {1, . . . , N}\{i} uniformly at ran-
dom

6: Generate a random number mrandj ∈ [0, 1]
7: Generate the j-th bit position value of the mutant V g

i via

V g
i,j =

{

1−Xg
r1,j, if Xg

r2,j 6= Xg
r3,j and mrandj < F ;

Xg
r1,j, otherwise.

8: end for

%% Binomial Crossover

9: Generate a random number crandj ∈ [0, 1] for each j ∈ {1, . . . , D}
10: Define the trial Ug

i via

for j ∈ {1, . . . , D}, Ug
i,j =

{

V g
i,j, if crandj ≤ C;

Xg
i,j , otherwise.

%% Selection

11: Select Xg+1
i via

Xg+1
i =

{

Xg
i , if Xg

i has the better fitness

Ug
i , if Ug

i has the not worse fitness

12: end for

13: end foralg:iBDE

the compact genetic algorithm (cGA). We start by making precise what we mean
by stability.

4.1 Stability of EDAs and BDE

Let f : {0, 1}D → R be an objective function to be optimized. We say that
i ∈ {1, . . . , D} is a neutral bit-position if for all x, y ∈ {0, 1}n with xj = yj for
all j ∈ {1, . . . , D} \ {i} we have f(x) = f(y). In other words, the fitness of a
search point does not depend on the value of the i-th bit. We note that such a
bit-position was called f -independent in [FKK16]. The following formal definition
of stability was given in [FKK16].

13

Definition 4 ([FKK16]). An n-Bernoulli-λ-EDA A is stable if, for all f -

independent positions i of A, the limit distribution of frequency p
(t)
i , as t → ∞,

exists and is symmetric around 1
2
, taking its maximum at 1

2
, and is strictly mono-

tonically decreasing from 1
2

toward the borders.

Since the main aspect of instability is that frequencies without good reason
approach too fast the boundaries, we propose an alternative definition based on
the time until a frequency leaves a constant-length region around the middle value
1
2
. We define this property formally for BDE and use analogous notions for other

algorithms.

Definition 5. A BDE with population size N is stable if there is a constant
δ ∈ (0, 1

2
) such that for any objective function f and any f -independent position j,

the frequency p
(g)
j := 1

N

∑N
i=1 Xg

i,j with high probability remains in [1
2
− δ, 1

2
+ δ] for

a super-polynomial (in N) number of iterations.

4.2 Stability of BDE When Optimizing the Needle Func-
tion

As our first argument for the stability of BDE, we prove rigorously that when
optimizing the Needle function via BDE, then the bit frequencies stay close to
1
2

for a time exponentially long in the population size N . This result stands in
sharp contrast to our later results showing, e.g., that the expected time until a
neutral bit hits one of the boundary values in a run of the cGA is O(K2) iterations
(where K is the hypothetical population size of the cGA) and is O(µ2) iterations
for UMDA.

We recall that the D-dimensional Needle function is the fitness function f :
{0, 1}D → {0, 1} defined by f(X) = 1 if and only if X = (1, . . . , 1). Hence up to
the hitting time of the optimum, all bits behave neutrally.

To not obscure the main proof by two lengthy calculations, we formulate their
results as separate lemmas before the main proof. These might, nevertheless,
be results of independent interest as they compute the dynamics of a single bit
subject to mutation and crossover. Since this analysis does not consider selection,
it is independent of the fitness function and thus applies to all fitness functions.
The main finding in the following lemma (see also Figure

fig:hx
1) is that there is a

strong drift towards the middle value of an equal number of zeros and ones. This
is the main reason for the fact that bits without a clear fitness-signal stay close to
this undecided situation in BDE, unlike for many other algorithms.

Lemma 6. Consider one iteration of BDE with population size N optimizing some
D-dimensional function. Let Yg denote the number of ones in a certain bit position

14

among all individuals of the population of generation g. Let Ỹg denote the number
of ones in this position in the trial population {Ug

1 , . . . , Ug
N}. Then

E[Ỹg | Yg] =
4FCY 3

g − 6FCNY 2
g + ((2FC + 1)N2 − 3N + 2)Yg

(N − 1)(N − 2)
.

lem:expectation

Proof. Without loss of generality, let the certain bit be the first bit. For a given
parent Xg

i , we recall that Ug
i is generated via a bit-wise recombination of Xg

i and
V g

i . We determine the distribution of Ug
i,1 in the two cases that Xg

i,1 = 1 and
Xg

i,1 = 0.
When Xg

i,1 = 0, in order to have Ug
i,1 = 1, Ug

i,1 must stem from V g
i,1 and V g

i,1

must be 1. This happens in exactly the following three cases.

• Xg
r1,1 = 1, Xg

r2,1 = Xg
r3,1, crand1 ≤ C.

• Xg
r1,1 = 1, Xg

r2,1 6= Xg
r3,1, mrand1 ≥ F, crand1 ≤ C.

• Xg
r1,1 = 0, Xg

r2,1 6= Xg
r3,1, mrand1 < F, crand1 ≤ C.

Hence, recalling that Yg represents the number of ones in the first bit among all
individuals of the generation g, we obtain

Pr[Ug
i,1 = 1 | Xg

i,1 = 0]

=
Yg((Yg − 1)(Yg − 2) + (N − Yg − 1)(N − Yg − 2))

(N − 1)(N − 2)(N − 3)
C

+
Yg(N − Yg − 1)(Yg − 1)

(N − 1)(N − 2)(N − 3)
2(1− F)C

+
(N − Yg − 1)Yg(N − Yg − 2)

(N − 1)(N − 2)(N − 3)
2FC.

(2) eq:on0

Similarly, for Xg
i,1 = 1, the possible cases are the following.

• Xg
r1,1 = 1, Xg

r2,1 = Xg
r3,1.

• Xg
r1,1 = 1, Xg

r2,1 6= Xg
r3,1, mrand1 ≥ F .

• Xg
r1,1 = 1, Xg

r2,1 6= Xg
r3,1, mrand1 < F, crand1 > C.

• Xg
r1,1 = 0, Xg

r2,1 = Xg
r3,1, crand1 > C.

• Xg
r1,1 = 0, Xg

r2,1 6= Xg
r3,1, mrand1 < F .

• Xg
r1,1 = 0, Xg

r2,1 6= Xg
r3,1, mrand1 ≥ F, crand1 > C.

15

Thus we have

Pr[Ug
i,1 = 1 | Xg

i,1 = 1]

=
(Yg − 1)((N − Yg)(N − Yg − 1) + (Yg − 2)(Yg − 3))

(N − 1)(N − 2)(N − 3)

+
(Yg − 1)(Yg − 2)(N − Yg)

(N − 1)(N − 2)(N − 3)
2(1− F + F (1− C))

+
(N − Yg)((N − Yg − 1)(N − Yg − 2) + (Yg − 1)(Yg − 2))

(N − 1)(N − 2)(N − 3)
(1− C)

+
(N − Yg)(N − Yg − 1)(Yg − 1)

(N − 1)(N − 2)(N − 3)
2(F + (1− F)(1− C)).

(3) eq:on1

Based on the conditional probabilities (
eq:on0
2) and (

eq:on1
3), since Ỹg =

∑N
i=1 Ug

i,1, we
obtain

E[Ỹg | Yg]

= (N − Yg) Pr[Ug
i,1 = 1 | Xg

i,1 = 0] + Yg Pr[Ug
i,1 = 1 | Xg

i,1 = 1]

=
(N − Yg)(N − Yg − 1)Yg(N − Yg − 2)

(N − 1)(N − 2)(N − 3)
(2FC + C + 1− C)

+
(N − Yg)(N − Yg − 1)Yg(Yg − 1)

(N − 1)(N − 2)(N − 3)
(2(1− F)C + 1 + 2(1− C + FC))

+
(N − Yg)Yg(Yg − 1)(Yg − 2)

(N − 1)(N − 2)(N − 3)
(C + 2(1− FC) + 1− C)

+
Yg(Yg − 1)(Yg − 2)(Yg − 3)

(N − 1)(N − 2)(N − 3)

=
(N − Yg)(N − Yg − 1)Yg(N − Yg − 2)

(N − 1)(N − 2)(N − 3)
(2FC + 1)

+ 3
(N − Yg)(N − Yg − 1)Yg(Yg − 1)

(N − 1)(N − 2)(N − 3)
+

Yg(Yg − 1)(Yg − 2)(Yg − 3)

(N − 1)(N − 2)(N − 3)

+
(N − Yg)Yg(Yg − 1)(Yg − 2)

(N − 1)(N − 2)(N − 3)
(3− 2FC)

=
4FCY 3

g − 6FCNY 2
g + ((2FC + 1)N2 − 3N + 2)Yg

(N − 1)(N − 2)
.

(4) eq:drift

To gain a better understanding of the quantity E[Ỹg | Yg] just computed, let
us define (for implicitly given F and C) the function HN : [0, N]→ [0, N] by

HN(z) =
4FCz3 − 6FCNz2 + ((2FC + 1)N2 − 3N + 2)z

(N − 1)(N − 2)
,

16

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

h
(x

)
N = 50, F = C = 0.9
N = 10, F = C = 0.9

Figure 1: A visualization of h(x) := H(Nx)/N , that is, the expected ratio of
ones in a position of the trial population when the parent population has a ratio
of x ones in this position. For N not too small, this function is monotonically
increasing. However, for x ∈ (0, 1

2
), it is strictly larger than x and for x ∈ (1

2
, 1) it

is strictly smaller than x as visible from the comparison with the dotted straight
line depicting the identity function. In the absence of a strong fitness signal, this
leads to a drift of the ratio to 1

2
, which is the reason for the stability results we

prove in this section.fig:hx

so that E[Ỹg | Yg] = HN(Yg). Going from absolute numbers to relative numbers,

we also define h(x) = HN (Nx)
N

for all x ∈ [0, 1]. Figure
fig:hx
1 visualizes this function for

two sets of parameter values.
In the following Lemma

lem:mono
7, we show that E[Ỹg | Yg] is a monotonically increasing

function with respect to Yg when N is at least some constant (depending on F
and C).

Lemma 7. Let F, C ∈ [0, 1], FC < 1, and N ∈ [3
1−F C

,∞) ∩ N. Then HN(z) is
monotonically increasing.lem:mono

Proof. Let g(z) = 4az3 − 6aNz2 + ((2a + 1)N2 − 3N + 2)z, where a = FC. It is
easy to see that g(z) and HN(z) have the same monotonicity. We have

g′(z) = 12az2 − 12aNz + (2a + 1)N2 − 3N + 2,

g′′(z) = 24az − 12aN.

Since a > 0, we have g′′(z) ≤ 0 for z ≤ N
2

and g′′(z) ≥ 0 for z ≥ N
2

. Hence g′(z)
has a unique minimum at z = N

2
. Therefore,

g′(z) ≥ g′(N
2

) = (1− a)N2 − 3N + 2.

17

Since N ≥ 3
1−a

, we have

(1− a)N2 − 3N + 2 ≥ 3N − 3N + 2 = 2.

Hence g′(z) is positive and thus g(z) and HN(z) are monotonically increasing.

We are now in the position to prove that BDE is stable when optimizing the
Needle function, that is, that the frequencies of the ones in all bit positions stay
close to 0.5 for a long time. The precise statement in Theorem

thm:stable
8 is formulated for

a single bit position, but it is clear that a simple union bound implies that also all
bit positions stay close to 0.5 for a time exponential in N (if D is sub-exponential
in N).

thm:stable Theorem 8. Consider using BDE with population size N ≥ max{ 3
1−F C

, 15625 ln 2
288(F C)2 }

to optimize the D-dimensional Needle function. Let Yg denote the number of ones
in a certain bit position among all individuals of generation g. There is a constant
c > 0, depending on F and C only, such that

Pr[∀g ∈ {0, . . . , T} : Yg ∈ [0.4N, 0.6N]] ≥ 1− 2(T + 1) exp(−cN)

for all T ∈ N.

Proof. We first consider the behavior of Yg+1 when Yg ∈ [0.4N, 0.6N]. Without
loss of generality, let the certain bit be the first bit. Then Yg+1 =

∑N
i=1 Xg+1

i,1 .
By the definition of the Needle function, for a given parent Xg

i 6= (1, . . . , 1),
we have f(Ug

i) ≥ 0 = f(Xg
i) regardless of the value of the trial vector Ug

i . Hence,
due to the parent-offspring selection, we have Xg+1

i := Ug
i and thus E[Yg+1 | Yg] =

E[Ỹg | Yg] = RN(Yg), where Ỹg =
∑N

i=1 Ug
i,1 defined in Lemma

lem:expectation
6.

From Lemma
lem:mono
7, we know that 4FCY 3

g −6FCNY 2
g +((2FC +1)N2−3N +2)Yg

and thus E[Yg+1 | Yg] are monotonically increasing with respect to Yg. For Yg =
0.4N , we have

4FCY 3
g − 6FCNY 2

g + ((2FC + 1)N2 − 3N + 2)Yg

= (2
5

+ 12
125

FC)N3 − 6
5
N2 + 4

5
N

= 2
5
N(N − 1)(N − 2) + 12

125
FCN3

≥ (2
5

+ 12
125

FC)N(N − 1)(N − 2),

(5) eq:2_5N

and for Yg = 0.6N , we have

4FCY 3
g − 6FCNY 2

g + ((2FC + 1)N2 − 3N + 2)Yg

= (3
5
− 12

125
FC)N3 − 9

5
N2 + 6

5
N

= 3
5
N(N − 1)(N − 2)− 12

125
FCN3

≤ (3
5
− 12

125
FC)N(N − 1)(N − 2).

(6) eq:3_5N

18

From (
eq:2_5N
5) and (

eq:3_5N
6), we conclude

(2
5

+ 12
125

FC)N ≤ E[Yg+1 | Yg ∈ [0.4N, 0.6N]] ≤ (3
5
− 12

125
FC)N.

For i = 1, 2, . . . , N , let Zg
i be the random vector that contains all random

variables generated in iteration i of the inner loop, that is,

Zg
i = (mrand1, . . . , mrandD, crand1, . . . , crandD, r1, r2, r3),

where each element is the one used in iteration i (for reasons of readability, we
suppressed an extra index i in the definition of the algorithm). It is easy to
see that Zg

1 , Zg
2 , . . . , Zg

N are independent. Given the current population P g, Yg+1

can be considered as a function of Zg = (Zg
1 , . . . , Zg

N), denoted by Yg+1 = s(Zg).
Obviously, Xg+1

i depends only on Zg
i . Since Xg+1

i contributes at most one to Yg+1,
we see that for Zg, Z̃g that differ only in the Zg

i part, we have |s(Zg)− s(Z̃g)| ≤ 1.
Applying Azuma’s inequality (Theorem 1.15 in [Doe11]), we compute

Pr[Yg+1 ≥ 0.6N | Yg ∈ [0.4N, 0.6N]]

≤ Pr
[

Yg+1 ≥ E[Yg+1 | Yg ∈ [0.4N, 0.6N]] + 12
125

FCN | Yg ∈ [0.4N, 0.6N]
]

≤ exp(−cN)

and

Pr[Yg+1 ≤ 0.4N | Yg ∈ [0.4N, 0.6N]]

≤ Pr
[

Yg+1 ≤ E[Yg+1 | Yg ∈ [0.4N, 0.6N]]− 12
125

FCN | Yg ∈ [0.4N, 0.6N]
]

≤ exp(−cN),

where c = 288
15625

(FC)2. This shows

Pr[Yg+1 ∈ [0.4N, 0.6N] | Yg ∈ [0.4N, 0.6N]] ≥ 1− 2 exp(−cN). (7) eq:ind

Since E[Y0] = 0.5N , by a simple Chernoff inequality (Theorem 1.11 in [Doe11]),
we have

Pr[Y0 ≥ 0.6N] ≤ exp(−c0N),

Pr[Y0 ≤ 0.4N] ≤ exp(−c0N)

for c0 = 1
50

and consequently

Pr[Y0 ∈ [0.4N, 0.6N]] ≥ 1− 2 exp(−c0N). (8) eq:base

With (
eq:ind
7) and (

eq:base
8), a simple induction gives

Pr[∀g ∈ {0, . . . , T} : Yg ∈ [0.4N, 0.6N]]

19

= Pr
[

YT ∈ [0.4N, 0.6N] | ∀g ∈ {0, . . . , T − 1} : Yg ∈ [0.4N, 0.6N]
]

· Pr[∀g ∈ {0, . . . , T − 1} : Yg ∈ [0.4N, 0.6N]]

≥ (1− 2 exp(−cN))(1− 2 exp(−c0N))(1− 2 exp(−cN))T −1

= (1− 2 exp(−c0N))(1− 2 exp(−cN))T ≥ (1− 2 exp(−cN))T +1,

where we use the fact that c0 > c. Since N ≥ 15625 ln 2
288(F C)2 , we have −2 exp(−cN) ≥ −1.

Using Bernoulli’s inequality, we obtain

Pr[∀g ∈ {0, . . . , T} : Yg ∈ [0.4N, 0.6N]] ≥ 1− 2(T + 1) exp(−cN).

4.3 The Behavior of an Arbitrary Neutral Bit
sec:Anyneutral

In the previous subsection, we proved rigorously that BDE is very stable when
optimizing the Needle function. We are not able to show a similar stability result
for neutral bits of an arbitrary function. The reasons are the stochastic dependen-
cies both from the mutation operator and the selection. Note that for the Needle
function, we did not have these difficulties because the trial population always
survives (until the optimum is found).

To also have a result for the stability with respect to arbitrary neutral bits, we
now resort to our mean-field approach, that is, we argue with experimental data
for the fact that neutral bits behave similarly in iBDE and BDE and then prove
that frequencies of neutral bits in a run of iBDE stay in the middle region for an
exponential (in N) time.

4.3.1 Experimental Comparison of the Behavior of Neutral Bits in
BDE and iBDE

To experimentally argue for the fact that BDE and iBDE have a similar behavior in
neutral bits, we regard the classic LeadingOnes benchmark function f : {0, 1}n →
Z defined first in [Rud97] by

f(X) =

0, X = (0, ..., 0)

max{j ∈ {1, . . . , D} | ∏j
i=1 Xi = 1}, otherwise

(9) eq:LO1

for all X = (X1, . . . , XD) ∈ {0, 1}D. The last bit position of the LeadingOnes
function is a neutral bit until the optimum is found. However, selection plays an
important role in the optimization of LeadingOnes, so it appears that this example
is of a nature very different from the Needle function.

20

In our experiments we use the setting D = 1000, N = 1000, F = 0.2, and
C = 0.3 (for both BDE and iBDE). For each algorithm, 100 independent runs
are conducted. Among these 100 independent runs, the minimum, maximum, and
10%, 50%, 90% quantiles of the frequencies of ones in the last bit (which is neutral
longest) are plotted in Figure

fig:NeutralQuantiles
2. Also depicted in this figure is the minimum

frequency of ones among all bit positions and all runs. For one randomly picked
run, Figure

fig:BDEandiBDEonNeutral
3 shows the frequency of ones in the last bit over time.

These two visualizations indicate that the frequency of ones in bit positions that
are still neutral oscillates in a small corridor around 0.5 without that significant
differences between the two algorithms are visible. Consequently, it appears rea-
sonable that a behavior proven for neutral bits in a run of iBDE via mathematical
means (such as Theorem

thm:iBDENeutral
11) is valid for BDE as well.

To have all experimental results on the LeadingOnes function in one subsection,
we now present some more results which will be used in Section

sec:dominant
5. Table

tbl:LOruntime
1 gives

the minimum, average and maximum runtimes among the 100 independent runs.
Figure

fig:BDEandiBDEfitonLOmBW
4 plots the average fitness over time.

21

0 500 1000 1500 2000 2500
Generation

0

0.2

0.4

0.6

0.8

1

F
re

qu
en

cy

min of last bit frequency
10% quantile of last bit frequency
50% quantile of last bit frequency
90% quantile of last bit frequency
max of last bit frequency
minimum frequency over all bits

0 500 1000 1500 2000 2500
Generation

0

0.2

0.4

0.6

0.8

1

F
re

qu
en

cy

min of last bit frequency
10% quantile of last bit frequency
50% quantile of last bit frequency
90% quantile of last bit frequency
max of last bit frequency
minimum frequency over all bits

Figure 2: The minimum, maximum, and 10%, 50%, 90% quantiles of the frequency
of ones in the last bit position among 100 runs of BDE (top) and iBDE (bottom)
optimizing the LeadingOnes function (D = 1000, N = 1000, F = 0.2, C = 0.3).
Also depicted are the minimum frequency of ones in all bit positions and all runs.fig:NeutralQuantiles

0 500 1000 1500 2000 2500
Generation

0

0.2

0.4

0.6

0.8

1

F
re

qu
en

cy

BDE
iBDE

Figure 3: The frequency of ones in the last bit position for exemplary runs of BDE
and iBDE on the LeadingOnes function (D = 1000, N = 1000, F = 0.2, C = 0.3).fig:BDEandiBDEonNeutral

22

Table 1: The runtimes of BDE and iBDE optimizing the LeadingOnes function in
100 independent runs (D = 1000, N = 1000, F = 0.2, C = 0.3).

tbl:LOruntime
minimum average maximum

BDE 2359 2387 2404
iBDE 2467 2497 2515

0 500 1000 1500 2000 2500
Generation

100

200

300

400

500

600

700

800

900

1000

F
itn

es
s

va
lu

e

BDE
iBDE

Figure 4: Average fitness over time for BDE and iBDE optimizing the LeadingOnes
function (D = 1000, N = 1000, F = 0.2, C = 0.3, 100 independent runs).fig:BDEandiBDEfitonLOmBW

4.3.2 Theoretical Analysis of the Behavior of a Neutral Bit for iBDE

We now mathematically analyze the behavior of a neutral bit for iBDE. Naturally,
this part has some similarity with the analysis of BDE on the Needle function. A
crucial additional difficulty to overcome in the proof of the main result in Theo-
rem

thm:iBDENeutral
11 is that, unlike for the Needle function, we cannot anymore assume that

always the offspring wins the parent-offspring selection. We solve this problem
by first fixing an inheritance pattern (which describes whether the parent or the
offspring bit-value survives, note that this depends only on the non-neutral bits)
and then analyzing the random process of the neutral bit conditional on this in-
heritance pattern.

Before the main analysis, we extract some computations as lemmas to make the
core arguments more concise. Lemma

lem:mutprob
9 computes the probability for a particular

mutant bit have the value 1. This result is true regardless of the neutrality of the
bit.

Lemma 9. Consider an iteration of iBDE or BDE with population size N ≥ 4.
Let i ∈ {1, . . . , N} and j ∈ {1, . . . , D}. Let Y −

g denote the number of ones in the
j-th bit position among all individuals of generation g except the i-th individual.

23

Then the probability for generating value 1 in the j-th position of the i-th mutant
is

4F (Y −
g)3 − 6F (N − 1)(Y −

g)2 + ((2F + 1)N2 − (5 + 4F)N + 2F + 6)Y −
g

(N − 1)(N − 2)(N − 3)
.

lem:mutprob

Proof. By definition of the mutation operator, we have V g
i,j = 1 if and only if one

of the following cases holds.

• Xg
r1,j = 1, Xg

r2,j = Xg
r3,j.

• Xg
r1,j = 1, Xg

r2,j 6= Xg
r3,j, mrandj ≥ F .

• Xg
r1,j = 0, Xg

r2,j 6= Xg
r3,j, mrandj < F .

Hence, recalling that Y −
g denotes the number of ones in the j-th bit position among

the population P g except Xg
i , we obtain

Pr[V g
i,j = 1 | P g]

=
Y −

g ((Y −
g − 1)(Y −

g − 2) + (N − 1− Y −
g)(N − 2− Y −

g))

(N − 1)(N − 2)(N − 3)

+
Y −

g (Y −
g − 1)(N − 1− Y −

g)2(1− F)

(N − 1)(N − 2)(N − 3)
+

(N − 1− Y −
g)Y −

g (N − 2− Y −
g)2F

(N − 1)(N − 2)(N − 3)

=
4F (Y −

g)3 − 6F (N − 1)(Y −
g)2 + ((2F + 1)N2 − (5 + 4F)N + 2F + 6)Y −

g

(N − 1)(N − 2)(N − 3)
.

To gain a better understanding of the probability computed above, let us define
(for implicitly given F) the function RN : [0, N − 1]→ [0,∞) by

RN (y) =
4Fy3 − 6F (N − 1)y2 + ((2F + 1)N2 − (5 + 4F)N + 2F + 6)y

(N − 1)(N − 2)(N − 3)
,

so that the probability we just computed is RN (Y −
g). Going from absolute numbers

of ones to relative numbers, we also define r(x) = RN(x(N − 1)) for all x ∈ [0, 1].
Figure

fig:rx
5 visualizes this function for two sets of parameter values.

In the following Lemma
lem:mutprobin
10, we collect a few useful properties of RN , in partic-

ular, that RN when N is at least some constant (depending on F).

Lemma 10. Let F ∈ (0, 1) and N ∈ [5−2F
1−F

, +∞) ∩ N. Then the following state-
ments hold.

24

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

r(
x
)

N = 60, F = 0.9
N = 10, F = 0.9

Figure 5: A visualization of r(x) := RN(x(N − 1)), that is, the probability for
generating the value 1 in the j-th position of the mutant. For N not too small,
this function is monotonically increasing.fig:rx

• RN(y) is monotonically increasing.

• RN(12
25

(N − 1)) > 12
25

. When N ≥ 625
24F

, RN(13
25

N) < 13
25

.

• When N > 3125−1224F
625−612F

, we have RN (8
25

(N − 1)) < 12
25

and RN(17
25

N) > 13
25

.
lem:mutprobin

Proof. Let g(y) = 4Fy3 − 6F (N − 1)y2 + ((2F + 1)N2 − (5 + 4F)N + 2F + 6)y.
It is easy to see that g(y) and RN (y) have the same monotonicity. We have

g′(y) = 12Fy2 − 12F (N − 1)y + (2F + 1)N2 − (5 + 4F)N + 2F + 6,

g′′(y) = 24Fy − 12F (N − 1).

Since F > 0, we have g′′(y) ≤ 0 for y ≤ N−1
2

and g′′(y) ≥ 0 for y ≥ N−1
2

. Hence
g′(y) has a unique minimum at N−1

2
. Therefore,

g′(y) ≥ g′(N−1
2

)

= 12F (N−1)2

4
− 12F (N − 1)N−1

2
+ (2F + 1)N2 − (5 + 4F)N + 2F + 6

= (1− F)N2 + (2F − 5)N + 6− F.

Since F < 1 and N ≥ 5−2F
1−F

, we have

(1− F)N2 + (2F − 5)N + 6− F ≥ (5− 2F)N + (2F − 5)N + 6− F

25

= 6− F > 0.

Hence g′(y) is positive and thus g(y) and RN(y) are monotonically increasing.
Since

RN(12
25

(N − 1))

= 1
(N−1)(N−2)(N−3)

(4F (12
25

(N − 1))3 − 6F (N − 1)(12
25

(N − 1))2

+ ((2F + 1)N2 − (5 + 4F)N + 2F + 6)12
25

(N − 1))

= 12
25

+ 312F (N−1)2

253(N−2)(N−3)
,

we have RN(12
25

(N − 1)) > 12
25

.
We compute

RN (13
25

N)

= 1
(N−1)(N−2)(N−3)

(4F (13
25

N)3 − 6F (N − 1)(13
25

N)2

+ ((2F + 1)N2 − (5 + 4F)N + 2F + 6)13
25

N)

= 13
25

+
− 312

15625
FN3 + (13

25
− 286

625
F)N2 + (−13

5
+ 26

25
F)N + 78

25

(N − 1)(N − 2)(N − 3)

≤ 13
25

+
− 312

15625
FN3 + 13

25
N2 − 39

25
N + 78

25

(N − 1)(N − 2)(N − 3)
,

since N ≥ 625
24F

> 2, we have − 312
15625

FN + 13
25
≤ 0 and −39

25
N + 78

25
< 0, thus

RN (13
25

N) < 13
25

.
We compute

RN(8
25

(N − 1))

= 1
(N−1)(N−2)(N−3)

(4F (8
25

(N − 1))3 − 6F (N − 1)(8
25

(N − 1))2

+ ((2F + 1)N2 − (5 + 4F)N + 2F + 6) 8
25

(N − 1))

= 12
25

+ (2448F −2500)N2+(12500−4896F)N−15000+2448F
253(N−2)(N−3)

<12
25

+ (2448F −2500)N2+(12500−4896F)N
253(N−2)(N−3)

,

and

RN(17
25

(N − 1))

= 1
(N−1)(N−2)(N−3)

(4F (17
25

(N − 1))3 − 6F (N − 1)(17
25

(N − 1))2

+ ((2F + 1)N2 − (5 + 4F)N + 2F + 6)17
25

(N − 1))

= 13
25

+ (2500−2448F)N2+(4896F −12500)N+15000−2448F
253(N−2)(N−3)

26

>13
25

+ (2500−2448F)N2+(4896F −12500)N
253(N−2)(N−3)

.

Since F < 1 and N > 3125−1224F
625−612F

= 12500−4896F
2500−2448F

, we have (2448F − 2500)N2 +

(12500−4896F)N ≤ 0, showing that RN(8
25

(N−1)) < 12
25

and RN(17
25

(N−1)) > 13
25

.
Since RN (y) monotonically increases, we have RN(17

25
N) ≥ RN (17

25
(N − 1)) >

13
25

.

Now we show the stability of iBDE.

Theorem 11. Consider using iBDE with population size N ≥
max{5−2F

1−F
, 3125−1224F

625−612F
, 625

24F
} to optimize a D-dimensional function f with some

neutral bit. Let Yg denote the number of ones in the neutral bit position among
all individuals of generation g. There is a constant c′ > 0, depending on F only,
such that

Pr[∀g ∈ {0, . . . , T} : Yg ∈ [0.4N, 0.6N]] ≥ 1− 2(T + 1) exp(−c′N)

for all T ∈ N.thm:iBDENeutral

Proof. Without loss of generality, let the first bit be the neutral bit. Since the bit
is neutral, we can first run iBDE without this bit and then analyze the process
of this bit conditional on the outcome of this run. More detailedly, we now fix
one run of iBDE on f with all random variables sampled except the initial values
X0

i,1, i = 1, . . . , N of the first bit and the indices r1(i, g), r2(i, g), r3(i, g) and the
random variables mrand1(i, g) which are used for generating the first bit of V g

i

in generation g. Since all random variables used for generating other positions of
Ug

i are sampled and the first bit is neutral, we know whether Ug
i or Xg

i will enter
the next generation. Since crand1(i, g) is already sampled as well, whether the
neutral bit Ug

i,1 stems from V g
i,1 or Xg

i,1 is also determined. Therefore, conditioning

on all these random variables, we know whether Xg+1
i,1 is inherited from Xg

i,1 (either

because Xg+1
i := Xg

i in the selection step or because Xg+1
i := Ug

i , but Ug
i,1 inher-

ited Xg
i,1 in the crossover step), or whether Xg+1

i,1 stems from the mutant V g
i,1 (in

this case, Xg+1
i = Ug

i and crand1(i, g) < C). Consequently, the already sampled
random variables completely determine the random process in the neutral bit.

We therefore now regard the following random process. We fix an arbitrary
inheritance pattern consisting of boolean variable Ig

i , i ∈ {1, . . . , N}, g ∈ N0.
We then sample ξ0

1 , . . . , ξ0
N ∈ {0, 1} independently and uniformly at random. If

ξg
1 , . . . , ξg

N are determined for some g ∈ N0, then we define ξg+1
1 , . . . , ξg+1

N as follows.
Let i ∈ {1, . . . , N} and Y i,−

g :=
∑D

j=1,j 6=i ξg
j . If Ig

i is true, then ξg+1
i = ξg

i . Oth-

erwise, we choose ξg+1
i ∈ {0, 1} randomly (independently for all i ∈ {1, . . . , D})

such that

Pr[ξg+1
i = 1] = RN(Y i,−

g) := pg
i ,

27

where RN(Y i,−
g) is defined in Lemma

lem:mutprobin
10.

From the above, it is clear that this process exactly describes the values of the
neutral bit discussed in a run of iBDE.

Consider the process η = (ηg
i) which is identical to the ξ-process except that

ηg+1
i is sampled (the case when Ig

i is false) independently with Pr[ηg+1
i = 1] = 13

25
,

and the process φ = φg
i which is identical to the ξ-process except that φg+1

i is
sampled independently with Pr[φg+1

i = 1] = 12
25

. Let b0, b1 ∈ [0, 1] such that
RN (b0(N − 1)) = 12

25
and RN (b1N) = 13

25
. Since RN (y) is strictly monotonically

increasing from Lemma
lem:mutprobin
10, we know b0 and b1 are well defined. Since RN (12

25
(N −

1)) > 12
25

and RN(8
25

(N − 1)) < 12
25

, RN(13
25

N) < 13
25

and RN(17
25

N) > 13
25

, and RN (y)
is monotonically increasing, we have

8
25

< b0 < 12
25

and 13
25

< b1 < 17
25

. (10) eq:appb01

Hence, b0 < 25b0+12
50

< 12
25

and 13
25

< 25b1+13
50

< b1. Thus, we have (12
25

N, 13
25

N) ⊂
(25b0+12

50
N, 25b1+13

50
N) and

RN ([25b0+12
50

(N − 1), 25b1+13
50

N]) ∈ (12
25

, 13
25

). (11) eq:rnvalue

Let Yg :=
∑N

i=1 ξg
i . We now show that if Yg ∈ (25b0+12

50
N, 25b1+13

50
N), then

Y η
g+1 :=

∑N
i=1 ηg+1

i stochastically dominates Yg+1 and Yg+1 stochastically domi-

nates Y φ
g+1 :=

∑N
i=1 φg+1

i . Assume that Yg ∈ (25b0+12
50

N, 25b1+13
50

N). Then we have
Y i,−

g ∈ [25b0+12
50

(N − 1), 25b1+13
50

N] for i ∈ {1, . . . , N}. For pg
i = RN (Y i,−

g), from

(
eq:rnvalue
11), we know that pg

i ∈ (12
25

, 13
25

), that is, Pr[ξg+1
i = 1 | Ig

i 6= TRUE] ∈ [12
25

, 13
25

].

Since Pr[ηg+1
i = 1 | Ig

i 6= TRUE] = 13
25

and Pr[φg+1
i = 1 | Ig

i 6= TRUE] = 12
25

, due to

the definition of ηg+1
i and φg+1

i , we know ηg+1
i dominates ξg+1

i and ξg+1
i dominates

φg+1
i . Hence Y η

g+1 dominates Yg+1 and Yg+1 dominates Y φ
g+1.

Finally, we argue that in the η process, we have Y η
g < 25b1+13

50
N with probability

1 − exp(c1N), where the constant c1 will be specified in the following discussion.
Fix any generation g. The inheritance pattern determines in which iteration ηg

i

was sampled (including the case that it was an initial sample). In either case, we
have Pr[ηg

i = 1] ≤ 13
25

regardless of the outcomes of ηg
i′ , i′ 6= i. Consequently, we

can apply the multiplicative Chernoff bound and obtain that

Pr[Y η
g ≥ 25b1+13

50
N] ≤ exp(−c1N),

where c1 = 1
12

(b1 − 13
25

)2. Due to the dominance, we have

Pr[Yg < 25b1+13
50

N | Yg−1 < 25b1+13
50

N]

≥ Pr[Y η
g < 25b1+13

50
N] ≥ 1− exp(−c1N).

(12) eq:YgUp

Since E[Y0] = 0.5N , by a simple Chernoff inequality (Theorem 1.11 in [Doe11]),
we have

Pr[Y0 ≥ 25b1+13
50

N] ≤ exp(−c0N), (13) eq:Y06

28

where c0 = (25b1−12)2

1250
.

With (
eq:YgUp
12) and (

eq:Y06
13), a simple induction gives

Pr[∀g ∈ {0, . . . , T} : Yg < 25b1+13
50

N]

= Pr[YT < 25b1+13
50

N | ∀g ∈ {0, . . . , T − 1} : Yg < 25b1+13
50

N
]

· Pr[∀g ∈ {0, . . . , T − 1} : Yg < 25b1+13
50

N]

≥ (1− exp(−c0N))(1− exp(−c1N))T ≥ (1− exp(−c1N))T +1,

where we use the fact that c0 > c1. Using Bernoulli’s inequality, we obtain

Pr[∀g ∈ {0, . . . , T} : Yg < 25b1+13
50

N] ≥ (1− exp(−c1N))T +1

≥ 1− (T + 1) exp(−c1N).
(14) eq:allYgUp

Similarly, for φ process, we have

Pr[Y0 ≥ 25b0+12
50

N] ≤ exp(−c2N),

Pr[Yg > 25b0+13
50

N | Yg−1 > 25b0+12
50

N] ≥ Pr[Y φ
g < 25b0+12

50
N] ≥ 1− exp(−c3N)

and

Pr[∀g ∈ {0, . . . , T} : Yg > 25b0+12
50

N] ≥ 1− (T + 1) exp(−c3N), (15) eq:allYgLow

where c2 = (13−25b0)2

1250
and c3 = 1

8
(12

25
− b0)2.

With (
eq:allYgUp
14) and (

eq:allYgLow
15), we have

Pr[∀g ∈ {0, . . . , T} : Yg ∈ (25b0+12
50

N, 25b1+13
50

N)] ≥ 1− 2(T + 1) exp(−c′N),

where c′ = min{c1, c3}. Since b0 and b1 can either be a constant or a constant only
depends on F , we can say c′ only depends on F .

With (
eq:appb01
10), we have 2

5
< 25b0+12

50
< 25b1+13

50
< 3

5
and thus

Pr[∀g ∈ {0, . . . , T} : Yg ∈ [0.4N, 0.6N]] ≥ 1− 2(T + 1) exp(−c′N).

The above theorem shows that for iBDE, with high probability, the frequency
of a neutral bit will stay in [0.4, 0.6] for a number of generations an exponential in
the population size.

The experimentally observed similarity between BDE and iBDE and this the-
oretical result about the stability of iBDE indicate that BDE is stable in arbitrary
neutral bits.

29

4.4 The Behavior of Neutral Bits in Classic EDAs
sec:neutralothers

Different from the stable behavior of BDE and iBDE discussed above, many nature-
inspired optimization heuristics are unstable, that is, the frequencies of neutral bits
approach the boundary values relatively fast. We quantify this effect asymptoti-
cally precise for the two EDAs, UMDA and cGA, by showing that the expected
time until the sampling frequency of a neutral bit is 0 or 1 is Θ(µ) for UMDA and
is Θ(K2) for cGA.

thm:stableEDA Theorem 12. For UMDA without margins, the expected first time the frequency
in the neutral bit is absorbed in 0 or 1 is Θ(µ), and it is Θ(K2) for cGA.

Since the n-Bernoulli-λ-EDA framework proposed in [FKK16] covers many
well-known EDAs including UMDA and cGA, we use it to make precise these two
EDAs.

Algorithm 3 n-Bernoulli-λ-EDA with a given update scheme ϕ maximizing a
function f : {0, 1}D → R

1: p0 = (1
2 , 1

2 , . . . , 1
2) ∈ [0, 1]D

2: for t = 1, 2, . . . do

3: for i = 1, 2, . . . , λ do

%% Sampling of individual Xt
i = (Xt

i,1, . . . , Xt
i,D)

4: for j = 1, 2, . . . , D do

5: Xt
i,j ∼ Bernoulli(pt−1

i,j);
6: end for

7: end for

%% Update of the frequency vector

8: pt ← ϕ(pt−1, (Xi, f(Xi))i=1,...,λ);
9: end foralg:EDA

The n-Bernoulli-λ-EDA framework is shown in Alg.
alg:EDA
3. By suitably specifying

the update scheme ϕ, we derive UMDA and cGA. For UMDA with parameters µ
and λ and without margins (that is, without artificial boundaries like 1

D
and 1− 1

D

for the frequencies), the update scheme is

pt
j = ϕ(pt−1, (Xi, f(Xi))i=1,...,λ)j =

1

µ

µ
∑

i=1

X̃ t
i,j , (16) eq:pbilupdate

where X̃ t
1, ..., X̃ t

µ are the selected µ best individuals from the λ offspring.

30

To obtain cGA with hypothetical population size K, we use λ = 2 and the
update scheme

pt
j = ϕ(pt−1, (Xi, f(Xi))i=1,...,λ)j =

pt−1
j + 1

K
, if X t

(1),j > X t
(2),j

pt−1
j − 1

K
, if X t

(1),j < X t
(2),j

pt−1
j , if X t

(1),j = X t
(2),j ,

(17) eq:cgaupdate

where {X t
(1), X t

(2)} = {X t
1, X t

2} such that f(X t
(1)) ≥ f(X t

(2)). We shall always

assume that K is even, so that the initial frequency 1
2

is also a multiple of 1
K

.
As discussed in [FKK16], UMDA and cGA are not stable. More precisely, this

work shows that for cGA, the frequency of a neutral bit is arbitrary close to the
borders 0 or 1 after ω(K2) generations. From Corollary 9 in [FKK16], we can
derive an upper bound of O(K2 log K) for the boundary hitting time although
this is not mentioned in [FKK16].

For UMDA, the situation is similar. After ω(µ) iterations, the frequencies are
arbitrary close to the boundaries and the expected hitting time can be shown to
be O(µ log µ) via similar arguments as above.

Sudholt and Witt’s work [SW16] mentions that the boundary hitting time
of cGA is Θ(K2), but without a clear proof (in particular, because they do not
discuss what happens once the frequency exceeds 5/6). Although Krejca and
Witt’s recently work [KW17] focuses on the lower bound of the runtime of UMDA
on OneMax, we can derive from it that the hitting time of the boundary 0 is at
least Ω(µ). This follows from the drift of φ in Lemma 9 in [KW17] together with
the additive drift theorem [HY01].

While the results above give some indication on the degree of stability of UMDA
and cGA, a sharp proven result is still missing. We overcome this shortage with
a simultaneous analysis of UMDA and cGA which determines these hitting times
as Θ(µ) for UMDA and Θ(K2) for cGA, see Theorem

thm:stableEDA
12.

4.4.1 Notation

Without loss of generality, let the first bit of f be neutral. Since the first bit is
not relevant for the fitness, we can simply assume that X̃ t

i,1 = X t
i,1, i = 1, . . . , µ in

(
eq:pbilupdate
16), and X t

(1),1 = X t
1,1, X t

(2),1 = X t
2,1 in (

eq:cgaupdate
17). Let pt = pt

1 be the frequency of the
neutral bit after generation t. Then for UMDA, we have

pt =

1
2
, t = 0

1
µ

µ
∑

i=1
X t

i,1, t ≥ 1,

where the X t
i,1 are independent 0, 1 random variables with Pr[X t

i,1 = 1] = pt−1.

31

For cGA, we have

pt =

1
2
, t = 0

pt−1 + 1
K

, if X t
1,1 > X t

2,1

pt−1 − 1
K

, if X t
1,1 < X t

2,1

pt−1, if X t
1,1 = X t

2,1

, t ≥ 1,

where X t
1,1 and X t

2,1 are independent 0, 1 random variables with Pr[X t
1,1 = 1] =

Pr[X t
2,1 = 1] = pt−1.

The random process (pt) is independent of f, D, and, in the case of UMDA, λ.
We have

E[pt | pt−1] = pt−1,

that is, both UMDA and cGA are balanced in the sense of [FKK16].
Finally, let T = min{t | pt ∈ {0, 1}} be the hitting time of the absorbing state

0 or 1.
We are now ready to prove matching upper and lower bounds for the hitting

time T . Naturally, the upper bounds are more interesting since they show that
UMDA and cGA are not very stable. We start nevertheless with the lower bounds
as these are easier to prove and thus a good warm-up for the upper bound proofs.

4.4.2 Lower Bounds

We now prove the following lower bound on the hitting time of the absorbing
states.

Theorem 13. Consider using an n-Bernoulli-λ-EDA to optimize some function
f with a neutral bit. Let T denote the first time the frequency of the neutral bit
is absorbed in state 0 or 1. For UMDA without margins, we have E[T] = Ω(µ)
regardless of λ. For cGA, we have E[T] = Ω(K2).thm:lower

Proof. For UMDA, building on the notation introduced above, we consider the
random process

Ztµ+a = pt(µ− a) +
a
∑

i=1

X t+1
i,1 ,

where t = 0, 1, . . . , and a = 0, 1, . . . , µ− 1. For a = 0, we obviously have Ztµ/µ =
pt, that is, the Z-process contains the process (pt) we are interested in.

Noting that Z(t+1)µ can also be written as Ztµ+µ = pt(µ− µ) +
∑µ

i=1 X t+1
i,1 , it is

also not difficult to see that for all k = 0, 1, . . . , we have

Pr[Zk+1 = Zk + 1− pt | Z1, . . . , Zk] = pt,

Pr[Zk+1 = Zk + 0− pt | Z1, . . . , Zk] = 1− pt.
(18) eq:nprob

32

Consequently,
E[Zk+1 | Z1, . . . , Zk] = Zk

and the sequence Z0, Z1, Z2, . . . is a martingale. For k = 1, 2, . . . , let Rk = Zk −
Zk−1 define the martingale difference sequence. By (

eq:nprob
18),

|Rk| ≤ max{(1− pt), pt} ≤ 1.

By the Hoeffding-Azuma inequality for maxima and minima (Theorem 3.10 and
(41) in [McD98], note that in (41) the absolute value should be inside the maxi-
mum, that is, maxk |

∑k
i=1 Yi| as can be seen from the proof), we have

Pr

[

max
k=1,...,tµ

∣

∣

∣

∣

∣

k
∑

i=1

Ri

∣

∣

∣

∣

∣

≥M

]

≤ 2 exp
(

−M2

2tµ

)

. (19) eq:azumaMM

Recalling Z0 = µ
2

and pt = Ztµ/µ, we have

Pr
[

max
k=1,...,t

∣

∣

∣pk − 1
2

∣

∣

∣ ≥M/µ
]

≤ Pr

[

max
k=1,...,tµ

∣

∣

∣

∣

∣

k
∑

i=1

Ri

∣

∣

∣

∣

∣

≥M

]

. (20) eq:pZ

Combining (
eq:azumaMM
19) and (

eq:pZ
20) with M = µ

4
, we obtain

Pr
[

max
k=1,...,t

∣

∣

∣pk − 1
2

∣

∣

∣ ≥ 1
4

]

≤ 2 exp
(

− µ

32t

)

.

Consequently, with T0 = min{t | |pt − 1
2
| ≥ 1

4
}, we have

E[T] ≥ E[T0] ≥ (1− 2 exp(− µ
32t

))(t + 1),

and taking, e.g., t = µ
32

, gives the desired result E[T] = Ω(µ).
For cGA, we may simply regard the process Zk = pk. Since for all k = 0, 1, . . . ,

Pr[Zk+1 = Zk + 1
K
| Z1, . . . , Zk] = pk(1− pk),

Pr[Zk+1 = Zk − 1
K
| Z1, . . . , Zk] = pk(1− pk),

Pr[Zk+1 = Zk | Z1, . . . , Zk] = 1− 2pk(1− pk),

we have E[Zk+1 | Z1, . . . , Zk] = Zk. The martingale difference sequence Rk :=
Zk − Zk−1 satisfies |Rk| ≤ 1

K
. By the Hoeffding-Azuma inequality, we have

Pr
[

max
k=1,...,t

∣

∣

∣pk − 1
2

∣

∣

∣ ≥M
]

= Pr

[

max
k=1,...,t

∣

∣

∣

∣

∣

k
∑

i=1

Ri

∣

∣

∣

∣

∣

≥M

]

≤ 2 exp
(

−M2K2

2t

)

.

With M = 1
4
, t = K2

32
, and T0 = min{t | |pt − 1

2
| ≥ 1

4
}, we have E[T] ≥ E[T0] =

Ω(K2).

33

4.4.3 Upper Bounds

To prove of our upper bounds, we use the following two auxiliary lemmas.

Lemma 14. For all z ≥ 0 and z0 > 0, we have

√
z ≤
√

z0 + 1
2
z

− 1

2

0 (z − z0)− 1
8
z

− 3

2

0 (z − z0)2 + 1
16

z
− 5

2

0 (z − z0)3.

lem:z

Proof. For the convenience of proof, let x =
√

z and a =
√

z0. We consider
function

g(x) = x− a− 1
2
a−1(x2 − a2) + 1

8
a−3(x2 − a2)2 − 1

16
a−5(x2 − a2)3

= − 1
16

a−5x6 + 5
16

a−3x4 − 15
16

a−1x2 + x− 5
16

a

and show that g(x) ≤ 0. Since

g′(x) = −3
8
a−5x5 + 5

4
a−3x3 − 15

8
a−1x + 1

and

g′′(x) = − 15
8

a−5x4 + 15
4

a−3x2 − 15
8

a−1

= − 15
8

a−5(x4 − 2a2x2 + a4) = −15
8

a−5(x2 − a2)2 ≤ 0,

we know that g′(x) is monotonically decreasing. Since g′(0) = 1 and g′(a) = 0, we
observe that g(x) increases on [0, a) and decreases on [a,∞). Therefore, g(x) ≤
g(a) = 0.

An easy calculation gives the following second-order and third-order central
moments of the frequency of a neutral bit in UMDA and cGA.

Lemma 15. For UMDA, we have

Var[pt | pt−1] = 1
µ
pt−1(1− pt−1),

E[(pt − E[pt | pt−1])3 | pt−1] = 1
µ2 pt−1(1− pt−1)(1− 2pt−1).

For cGA, we have

Var[pt | pt−1] = 2
K2 pt−1(1− pt−1),

E[(pt − E[pt | pt−1])3 | pt−1] = 0.

lem:moments

We are now ready to prove the following upper bound for the hitting time of
the absorbing states of the frequency of a neutral bit.

34

Theorem 16. Consider using an n-Bernoulli-λ-EDA to optimize some function
f with a neutral bit. Let T denote the first time the frequency of the neutral bit
is absorbed in state 0 or 1. For UMDA without margins, we have E[T] = O(µ)
regardless of λ. For cGA, we have E[T] = O(K2).thm:upper

Proof. Let qt = min{pt, 1 − pt} and Yt =
√

qt. Then T = min{t | qt = 0}. Due
to the symmetry, we just discuss the case that qt−1 = pt−1. Obviously, pt−1 ≤ 1

2

in this case. Let us assume that pt−1 > 0. Using Lemma
lem:z
14 with z = pt and

z0 = pt−1, we have

E[
√

pt | pt−1] ≤ E[Yt−1 | pt−1] + 1
2
p

− 1

2

t−1E[pt − pt−1 | pt−1]

− 1
8
p

− 3

2

t−1E[(pt − pt−1)2 | pt−1] + 1
16

p
− 5

2

t−1E[(pt − pt−1)3 | pt−1]

and thus

E[Yt−1 −
√

pt | Yt−1] ≥ −1
2
p

− 1

2

t−1E[pt − pt−1 | pt−1]

+1
8
p

− 3

2

t−1E[(pt − pt−1)2 | pt−1]− 1
16

p
− 5

2

t−1E[(pt − pt−1)3 | pt−1].
(21) eq:drift2

Via Lemma
lem:moments
15, we have for UMDA

E[Yt−1 −
√

pt | Yt−1]

≥ 1
8
p

− 3

2

t−1
1
µ
pt−1(1− pt−1)− 1

16
p

− 5

2

t−1
1

µ2 pt−1(1− pt−1)(1− 2pt−1)

= 1
16µ

p
− 1

2

t−1(1− pt−1)(2− 1
µpt−1

(1− 2pt−1))

≥ 1
16µ

p
− 1

2

t−1(1− pt−1),

where the last estimate follows from the fact that pt−1 > 0 implies pt−1 ≥ 1
µ
. Since

pt−1 ≤ 1
2
, we have p

− 1

2

t−1(1 − pt−1) ≥
√

2
2

. Hence E[Yt−1 −
√

pt | Yt−1] ≥
√

2
32µ

. Using

qt = min{pt, 1− pt}, we have

E[Yt−1 − Yt | Yt−1] ≥ E[Yt−1 −
√

pt | Yt−1] ≥
√

2
32µ

.

Via the additive drift theorem [HY01] and Y0 =
√

1
2
, we know that the expected

time of Y -process hitting zero is at most Y0/
√

2
32µ

= O(µ).

Similarly, for cGA, with Lemma
lem:moments
15 equation (

eq:drift2
21) becomes

E[Yt−1 −
√

pt | Yt−1] ≥ 1
8
p

− 3

2

t−1
2

K2 pt−1(1− pt−1) = 1
4
p

− 1

2

t−1
1−pt−1

K2 ≥ 1
4

√
2

2
1

K2 =
√

2
8K2 .

Hence,
E[Yt−1 − Yt | Yt−1] ≥ E[Yt−1 −

√
pt | Yt−1] ≥

√
2

8K2 ,

and via the additive drift theorem [HY01] and Y0 =
√

1
2
, we conclude that the

expected time of the Y -process reaching zero is at most Y0/
√

2
8K2 = 4K2.

35

5 Behavior of Dominant Bits
sec:dominant

One particular strength of BDE, as we will see in this section, is that it optimizes
the most important decision variables quickly. We shall prove rigorously that
BDE lets the frequency of a dominant bit in the population grow to the optimal
bit value in time logarithmic in the population size. Taking the LeadingOnes and
BinaryValue functions as examples, we demonstrate that BDE is also able to find
and optimize a sequence of bits having the property that they become dominant
one after the other. Due to the difficulties of analyzing full runs of BDE, for these
results we again need to resort to iBDE or to at least take the assumption that the
frequencies of bits that are momentarily neutral do not leave the middle range.

The LeadingOnes and BinaryValue results suggest that BDE is able to opti-
mize in a greedy fashion the most profitable decision variables first. This appears
to be a valuable property when not necessarily aiming at finding the absolute
optimum, but when rather aiming at finding a reasonably good solution in rea-
sonable time. We shall not make this formal here, but note that the problem of
finding approximate solutions has been formalized via notions like fixed-budget
computation [JZ14] or the time-to-target runtimes TA,f(a) defined in [DJWZ13,
Section 3].

5.1 Convergence Time of a Dominant Bit
ssec:convdominant

We take the dominant bit as example to discuss the behavior on the most important
decision variables. A dominant bit is a bit such that the fitness is always better if
the value of the bit is one than if the bit value is zero, regardless of the values of the
other bits. In the following, let us assume that we optimize some D-dimensional
function f via BDE and that f is such that the first bit is dominant, that is, we have
f(1, x2, . . . , xD) > f(0, x2, . . . , xD) for all x2, . . . , xD ∈ {0, 1}. Theorem

thm:domiTime
19 further

below shows that the frequency of the dominant bit converges to the optimal value
in time logarithmic in the population size.

To ease reading the main proof, we first show separately two technical results
on the behavior of the dominant bit. Note that by the parent-offspring selection
and the definition of dominant bits, an individual having a one in the dominant
bit can never be replaced by an individual having a zero in the dominant bit.
Therefore, the main question is how difficult it is to replace a zero by a one in the
dominant bit. This is what we analyze in the following lemma.

Lemma 17. Consider using BDE with population size N to optimize a D-
dimensional function f with the first bit being dominant. Let Zg denote the number
of zeros in the first bit position among all individuals of generation g. Let Xg

i be
an individual with first bit equal to 0. Then the probability for changing this bit

36

value to 1 is

Pr[Xg+1
i,1 = 1 | Xg

i,1 = 0] =
A1Z

3
g + A2Z

2
g + A3Zg + A4

(N − 1)(N − 2)(N − 3)
,

where

A1 = −4FC,

A2 = (6N + 6)FC,

A3 = −C((1 + 2F)N2 + (8F − 5)N + 6 + 2F),

A4 = CN3 + (2F − 5)CN2 + (6 + 2F)CN.
lem:conp

Proof. In the notation of Algorithm
alg:originalBDE
1, we observe that to have Xg+1

i,1 = 1, Ug
i,1

must be 1 (since Xg+1
i,1 ∈ {Ug

i,1, Xg
i,1} and Xg

i,1 = 0). In order to have Ug
i,1 = 1, Ug

i,1

must stem from V g
i,1, and V g

i,1 must be 1. Hence, Xg+1
i,1 = 1 if and only if one of the

following cases holds.

• Xg
r1,1 = 1, Xg

r2,1 = Xg
r3,1, crand1 ≤ C.

• Xg
r1,1 = 1, Xg

r2,1 6= Xg
r3,1, mrand1 ≥ F, crand1 ≤ C.

• Xg
r1,1 = 0, Xg

r2,1 6= Xg
r3,1, mrand1 < F, crand1 ≤ C.

Recalling that Zg is the number of zeros in the first bit among all individuals of
the generation g, we compute

Pr[Xg+1
i,1 = 1 | Xg

i,1 = 0]

=
(N − Zg)((N − Zg − 1)(N − Zg − 2) + (Zg − 1)(Zg − 2))

(N − 1)(N − 2)(N − 3)
C

+
(N − Zg)(Zg − 1)(N − Zg − 1)

(N − 1)(N − 2)(N − 3)
2(1− F)C

+
(Zg − 1)(N − Zg)(Zg − 2)

(N − 1)(N − 2)(N − 3)
2FC

=
A1Z3

g + A2Z2
g + A3Zg + A4

(N − 1)(N − 2)(N − 3)
,

with A1, . . . , A4 as in the statement of the lemma.

To gain a better understanding of the quantity Pr[Xg+1
i,1 = 1 | Xg

i,1 = 0] just
computed, let us define (for implicitly given F and C) the function SN : [1, N] 7→
[0,∞) by

SN(z) =
A1z

3 + A2z
2 + A3z + A4

(N − 1)(N − 2)(N − 3)

37

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

s(
x
)

N = 50, F = C = 0.9
N = 10, F = C = 0.9

Figure 6: A visualization of s(x) := SN(Nx), that is, the probability for changing
the first bit value to 1 when the population has a ratio of x zeros in the first bit
position. For N not too small, this function is monotonically decreasing.fig:sx

with A1, . . . , A4 as in Lemma
lem:conp
17, so that Pr[Xg+1

i,1 = 1 | Xg
i,1 = 0] = SN(Zg). Going

from absolute numbers to relative numbers, we also define s(x) = SN(Nx) for all
x ∈ [1

N
, 1]. Figure

fig:sx
6 visualizes this function for two sets of parameter values.

In the following Lemma
lem:monode
18, we show that the probability for changing the first

bit value from 0 to 1 is monotonically decreasing with respect to Zg when N is at
least some constant (depending on F).

Lemma 18. Let F, C ∈ (0, 1) and N ∈ [max{5−2F
1−F

, 11},∞)∩N. Then the follow-
ing statements hold.

• SN(z) is monotonically decreasing.

• For any a ∈ (0, 1), we have SN(aN) ≥ C(1− a)(1
2
− F

8
).

lem:monode

Proof. Let g(z) = A1z
3 + A2z

2 + A3z + A4. It is easy to see that g(z) and SN(z)
have the same monotonicity. We compute

g′(z) = 3A1z
2 + 2A2z + A3,

g′′(z) = 6A1z + 2A2 = −24FCz + 12(N + 1)FC.

Since FC > 0, we know that g′′(z) ≥ 0 for z ≤ N+1
2

and g′′(z) ≤ 0 for z ≥ N+1
2

.
Hence g′(z) has a unique maximum at N+1

2
. Therefore,

g′(z) ≤ g′(N+1
2

)

38

= 3(−4FC) (N+1)2

4
+ 2(6N + 6)FC N+1

2

− C((1 + 2F)N2 + (8F − 5)N + 6 + 2F)

= C(−(1− F)N2 + (5− 2F)N + F − 6).

With F < 1 and N ≥ 5−2F
1−F

, we estimate

−(1− F)N2 + (5− 2F)N + F − 6

≤ −(5− 2F)N + (5− 2F)N + F − 6 = F − 6 < 0.

Hence g′(z) is negative and thus g(z) and SN(z) are monotonically decreasing.
When z = aN ,

SN(aN) = C(1− a)
(1− 2Fa + 4Fa2)N3 + (2F − 5− 6Fa)N2 + (2F + 6)N

(N − 1)(N − 2)(N − 3)
.

We compute

(1− 2Fa + 4Fa2)N3 + (2F − 5− 6Fa)N2 + (2F + 6)N

− (1
2
− Fa + 2Fa2)(N − 1)(N − 2)(N − 3)

= (1
2
− Fa + 2Fa2)N3 + (2F − 2− 12Fa + 12Fa2)N2

+ (1
2

+ 2F + 11Fa− 22Fa2)N + 6(1
2
− Fa + 2Fa2)

= (1
2
− F

8
+ 2F (a− 1

4
)2)N3 + (−F − 2 + 12F (a− 1

2
)2)N2

+ (1
2

+ 27
8

F − 22F (a− 1
4
)2)N + 6(1

2
− F

8
+ 2F (a− 1

4
)2)

≥ (1
2
− F

8
)N3 + (−F − 2)N2 + (1

2
+ 27

8
F − 22F (1− 1

4
)2)N

= (1
2
− F

8
)N3 + (−F − 2)N2 + (1

2
− 9F)N

≥ 3
8
N3 − 3N2 − 17

2
N = N

8
(3(N − 4)2 − 116)

≥ N
8

(3(11− 4)2 − 116) = 31
8

N > 0,

(22) eq:comp

where the last inequality in (
eq:comp
22) uses the fact N ≥ 11. Consequently,

SN(aN) ≥ C(1− a)
(1

2
− Fa + 2Fa2)(N − 1)(N − 2)(N − 3)

(N − 1)(N − 2)(N − 3)

= C(1− a)(1
2
− Fa + 2Fa2) = C(1− a)(1

2
− F

8
+ 2F (a− 1

4
)2)

≥ C(1− a)(1
2
− F

8
).

We are now in the position to show that with high probability the whole pop-
ulation has a one in the dominant bit after O(ln N) iterations.

39

Theorem 19. Consider using BDE with population size N ≥ 5−2F
1−F

to optimize
a D-dimensional function f with the first bit being dominant. Let Zg denote the
number of zeros in the first bit position among all individuals of generation g. Let
T := min{g | Zg = 0} denote the convergence time of the first bit.

Then there is a constant δ ∈ (0, 1) depending on F and C such that conditional
on Z0 ≤ 0.7N , which is an event that holds with probability 1− exp(−2N/25), the
following statements hold.

• E[T | Z0] ≤ ln(Z0)+1
δ
≤ ln(N)+1

δ
.

• Pr[T ≥ ln(N)+r
δ

] ≤ Pr[T ≥ ln(Z0)+r
δ
| Z0] ≤ e−r, ∀r > 0.

thm:domiTime

Proof. We first note that, since E[Z0] = 0.5N , by the simple Chernoff inequality
(Theorem 1.11 in [Doe11]), we have Pr[Z0 ≥ 0.7N] ≤ exp(−2N/25). Hence with
probability at least 1−exp(−2N/25), we have Z0 ≤ 0.7N . In the following analysis,
we condition on this event.

As discussed already before in Lemma
lem:conp
17, we have Xg+1

i,1 = 1 with probability
one if Xg

i,1 = 1. Thus we have Zg+1 ≤ Zg. A simple induction gives Zg ≤ Z0 for
all g ≥ 0. Therefore, applying Lemma

lem:conp
17 and Lemma

lem:monode
18, we have

Pr[Xg+1
i,1 = 1 | Xg

i,1 = 0] =
A1Z3

0 + A2Z2
0 + A3Z0 + A4

(N − 1)(N − 2)(N − 3)

≥ C(1− 0.7)(1
2
− F

8
) = 3C(4−F)

80
=: δ

for all generations g. Consequently,

E[Zg+1 | Zg] ≤ Zg(1− δ),

and thus

E[Zg − Zg+1 | Zg] ≥ δZg.

Now the multiplicative drift theorem with tail bounds [DG13] shows the claim.

In the result above, we showed a logarithmic convergence time assuming that
we start with at most 70% zeroes in the dominant bit, a condition that is satisfied
apart from an exponentially small failure chance. We now further weaken this
requirement to the (obviously necessary) condition that the dominant bit is not
converged to the wrong value of zero.

Corollary 20. Consider using BDE with population size N ≥ 5−2F
1−F

to optimize
a D-dimensional function f with the first bit being dominant. Let Zg denote the
number of zeros in the first bit position among all individuals of generation g. Let

40

T := min{g | Zg = 0} denote the convergence time of the first bit. There are
constants c0 > 1 and δ ∈ (0, 1) depending on F and C such that, regardless of Z0

(as long as Z0 < N), we have

E[T | Z0] ≤ ln(0.7N)+1
δ

+ 4 logc0

0.3N
N−Z0

.

cor:strongerTime

Proof. By Theorem
thm:domiTime
19, it suffices to discuss how long we need to reach a Z-value

of at most 0.7N .
Consider the process Og = N−Zg of the number of ones in the first bit position

among all individuals of generation g. From Lemma
lem:conp
17 and Lemma

lem:monode
18, we have

Pr[Xg+1
i,1 = 1 | Xg

i,1 = 0] =
A1Z3

0 + A2Z2
0 + A3Z0 + A4

(N − 1)(N − 2)(N − 3)

≥ C(1− Zg

N
)(1

2
− F

8
) = Og

N
C(1

2
− F

8
).

Note that for all i with Xg
i,1 = 0, the events “Xg+1

i,1 = 1” are independent. Also,
as discussed before Lemma

lem:conp
17, a one in the dominant bit of some individual Xg

i

is never replaced by a zero. Consequently, Og+1 stochastically dominates Og +

Bin(Zg, Og

N
C(1

2
− F

8
)). Let Õg ∼ Bin(Zg, Og

N
C(1

2
− F

8
)). Then

E[Õg | Og] = Og

N
C(1

2
− F

8
)Zg. (23)

Let Q denote the event that Õg ≥ E[Õg | Og]. From [GM14] (see [Doe18c]
for an elementary proof), we know that a binomial random variable exceeds its
expectation with probability at least 1

4
. Hence Pr[Q] ≥ 1

4
. The first time SQ that

Q happens, therefore is dominated by a geometric random variable with success
probability 1

4
. Thus we have E[SQ] ≤ 4. For Sk, the first time that Q happens k

times, we have E[Sk] ≤ 4k.
Since Og+1 dominates Og + Õg, recalling that Q denotes the event that Õg ≥

E[Õg | Og], we know that when Q happens,

Og+1 ≥ Og + Zg

N
C(1

2
− F

8
)Og = (1 + Zg

N
C(1

2
− F

8
))Og.

Consequently, for Zg ≥ 0.7N , we have

Og+1 ≥ (1 + 0.7C(1
2
− F

8
))Og = c0Og

with c0 = 1+0.7C(1
2
− F

8
) a constant depending on F and C only and being greater

than 1.
Recalling that Sk represents the first time that Q happens k times, with a

simple induction, we have OSk
≥ min{0.3N, (c0)

kO0}. Since Z0 < N , we have
O0 ≥ 1. For k = logc0

0.3N
O0

, we have OSk
≥ 0.3N .

Hence the expected time to reach a Z-value of at most 0.7N , is 4k = 4 logc0

0.3N
O0

.

From that point on, by Theorem
thm:domiTime
19, it takes another expected number of ln(0.7N)+1

δ

iterations to have only ones in the dominant bit.

41

5.2 The Runtime for BDE Optimizing the LeadingOnes
Function

sec:BDELO

The above discussion shows the quick convergence of one dominant bit. It appears
straight-forward to extend this result to a sequence of bits having the property
that they become dominant one after the other. If such a sequence of sequentially
dominating bits has length D, then the previous result suggests that BDE can
optimize them all in time O(D log N). This is, under suitable assumptions, true.
In fact, even more is true. Since BDE does not have to wait until a bit is converged,
but can instead already start optimizing later bits of individuals which are further
optimized, we can show a runtime of O(D), that is, BDE optimizes such bits in
amortized constant time.

Let us make this precise. The classic benchmark function having sequentially
dominating bits is the LeadingOnes function (defined in (

eq:LO1
9)). Due to the stochastic

dependencies in the search process, we cannot prove a runtime result for BDE on
LeadingOnes without further assumptions. In fact, the sole difficulty which we
have is the one we encountered already in Section

sec:neutral
4, namely that we cannot prove

that a neutral bit (other than the ones of the Needle function) is stable. Note
that in the optimization of LeadingOnes a bit behaves neutral if there is a zero-bit
to the left of it. As we have seen in Section

sec:neutral
4, the frequencies of these bits stay

very close to 1
2
. Hence taking the assumption that such neutral bits have their

frequencies bounded away from zero by a constant margin, is very natural. Under
such an assumption (which we will further justify below), we can prove the O(D)
runtime of BDE on LeadingOnes.

To put our result into perspective, let us quickly describe what is known in
terms of proven runtimes for the LeadingOnes function. The LeadingOnes func-
tion was proposed by Rudolph [Rud97] as an example for a unimodal function that
most likely is not optimized by the (1 + 1) EA in O(D log D) time, thus being a
counterexample to the claim that all unimodal functions are that easy to opti-
mize. Rudolph proved an upper bound of O(D2) and provided an experimental
evidence for the Θ(D2) runtime. The lower bound of Ω(D2) was formally proven
in [DJW02], together with a concentration result stating that the runtime is Θ(n2)
with probability 1− exp(−Ω(D)).

A precise expression for the runtime of the (1 + 1) EA on LeadingOnes was
given independently in [BDN10, Sud13]. In [BDN10], also the optimal fixed and
fitness-dependent mutation rates were determined. That the optimal mutation
rate changes with the current fitness has spurred a number of subsequent results
that determine the leading constant in the Θ(D2) runtime for various hyperheuris-
tics [AL14, LOW17, DLOW18]. A runtime analysis for a general class of (1 + 1)
type algorithms on LeadingOnes was given in [Doe18a].

42

For the (µ + 1) EA with parent population size µ at most polynomial in D,
a runtime of Θ(D2 + Dµ log µ) was shown in [Wit06]. For the (1 + λ) EA with
offspring population size λ at most polynomial in D, the runtime was determined to
be Θ(D2

λ
+ D) generations [JJW05]. No result exists for the (µ + λ) EA, for which

surprisingly few runtime results for classic benchmark problems exist [ADFH18].
For the (1+(λ, λ)) EA proposed in [DDE15], also no formally proven result exists,
but it can relatively easily be seen that with the recommended parameters p =
λ/D and c = 1/λ, a runtime guarantee of O(D2) generations holds (for this,
one first observes in an iteration starting with a parent individual of fitness k,
with probability Ω(1/D) the mutation winner has the (k + 1)-st bit flipped, and
then, that in such an iteration with constant probability the crossover winner has
fitness at least k + 1). We note that the quadratic (in terms of the number of
fitness evaluations) runtimes of the (1 + 1) EA and (1 + λ) EA remain valid under
various noise assumptions, see [GK16, DNDD+18, Sud18].

For the estimation-of-distribution algorithm PBIL, an O(D2

λ
+ D log λ) run-

time (in generations) was shown in [LN18]. For the 1-ANT ant colony optimizer,
the bounds O(D2(6e)1/Dρ) and exp(Ω(min{D, 1/Dρ})) were shown in [DNSW11].
For either of the MMAS and MMAS∗ ant colony optimizers, the upper bounds
O(D2 + D/ρ) and O(D2ρ−ε + D/ρ log(1/ρ)) for an arbitrary small constant ε > 0
were shown in [NSW09] together with a lower bound of Ω(D2 + D/ρ log(2/ρ)) for
MMAS∗.

All upper bounds described above are at least of the order O(D2) fitness
evaluations. A better upper bound, namely of order O(D log D), is known (for
suitable parameter choices) only for the convex search algorithm (CSA) [MS17],
the sc-GA [FKK16], and the sig-cGA [DK18a]. The black-box complexity
of LeadingOnes is even smaller, namely Θ(D) for the XOR-invariant class of
LeadingOnes functions [DJW06] and Θ(D log log D) for the class of all func-
tions having a fitness landscape isomorphic to the classic LeadingOnes func-
tion [AAD+13], but the algorithms behind these bounds are far from a general-
purpose randomized search heuristic.

In the light of these results, our bound of O(D) generations (under the assump-
tion that the frequencies never go too low) is quite interesting. Clearly, we need
an at least logarithmic population size (otherwise already the initial population
would have bits converged to zero), but the analysis of the iBDE suggests that
a logarithmic population size is also sufficient. Hence apart from this mean-field
argument, we prove in this section that BDE with a logarithmic population size
optimizes LeadingOnes with O(D log D) fitness evaluations, a runtime so far only
observed for the not very common algorithms CSA, sc-GA, and sig-cGA.

43

5.2.1 Runtime of BDE on LeadingOnes

We extract the following lemma from the main proof to make it more readable.

Lemma 21. For all a ∈ (0, 2
5

√
10] and N ∈ [4

a
, +∞) ∩ N, we have

aN(aN − 1)(aN − 2)

(N − 1)(N − 2)(N − 3)
≥ a3

4
.

lem:sc

Proof. Since a ∈ (0, 2
5

√
10] and N ≥ 4

a
, we calculate

aN(aN − 1)(aN − 2)− a3

4
(N − 1)(N − 2)(N − 3)

=3
4
a3N3 + (6

4
a3 − 3a2)N2 + (2a− 11

4
a3)N + 6

4
a3

≥3a2N2 + (6
4
a3 − 3a2)N2 + (2a− 11

4
a3)N

≥6
4
a3N + (2a− 11

4
a3)N = a(2− 5

4
a2)N ≥ 0,

which proves the lemma.

Now Theorem
thm:BDEforLOwAssumption
22 shows that under the assumption of all frequencies being

bounded away from zero, BDE optimizes LeadingOnes within an expected number
of O(D) generations. To increase the readability of result and proof, we give a
non-asymptotic bound, namely 64

ε4C
D, but we did not try to optimize the constant

in this O(D) expression.

Theorem 22. Let ε ∈ (0, 1). Consider using BDE with population size N ≥ 8
ε

to
optimize the D-dimensional LeadingOnes function. Assume that in each genera-
tion the number of ones in each bit is at least εN . Then the expected number of
generations to find the optimum is at most 64

ε4C
D.thm:BDEforLOwAssumption

Proof. Due to the parent-offspring selection strategy, the fitness of each individual
Xg+1

i in the next generation is greater than or equal to the fitness f(Xg
i) in the

current generation. For the LeadingOnes function, we thus know that the first
f(Xg

i) ones in the current Xg
i will be kept in all following generations. We call

these ones locked and we call all other positions free. Let Zg denote the total
number of free positions in the population. We shall argue that for each generation
with no optimum in the population P g, we have E[Zg−Zg+1] ≥ Ω(N), and use an
additive drift argument to show that the time T to first find the optimum satisfies
E[T] = O(D).

Let g be such that P g does not contain an optimal solution. We first show that
E[Zg − Zg+1] ≥ 1

64
ε4N . Let ε′ = 1

2
ε. Let j ∈ {0, . . . , D} be maximal such that at

least ε′N individuals of P g have a fitness of j or more. By our assumption that

44

each bit position contains at least εN ones, we have j ≥ 1, and by our assumption
that P g contains no optimum, we have j < D.

We argue that at least ε′N individuals have a fitness of less than j. Note that
an individual Xi with fitness at least j such that Xi,j+1 = 1 has in fact fitness at
least j + 1. If there are less than ε′N individuals with fitness less than j, then our
assumption on the presence of ones, the fact that j < D, and a simple counting
argument show that at least εN − ε′N = ε′N of the at least 1 − ε′N individuals
with fitness at least j have actually a fitness of at least j +1, in contradiction with
our definition of j.

Let Xg
i be an individual with f(Xg

i) < j and let j′ = f(Xg
i) be its fitness.

When generating Xg+1
i , we consider the event that Xg

r1
, Xg

r2
and Xg

r3
all have the

fitness at least j. Since j′ < j, we have Xg
r1,j′+1 = Xg

r2,j′+1 = Xg
r3,j′+1 = 1, and

thus we have Xg+1
i,j′+1 = Ug

i,j′+1 = 1 with probability C. Note that always we have

Xg+1
i,k = 1 for k ≤ j′. Consequently,

Pr[f(Xg+1
i) ≥ j′ + 1] ≥ ε′N(ε′N − 1)(ε′N − 2)

(N − 1)(N − 2)(N − 3)
C ≥ (ε′)3

4
C =

ε3C

32
, (24) eq:improvement

where the last inequality stems from Lemma
lem:sc
21 with N ≥ 8

ε
= 4

ε′
. Recalling that

Xg
i contributes exactly D − j′ free positions to Zg, hence, we know that with

probability at least 1
32

ε3C, Xg+1
i contributes at least one less free position to Zg+1.

Since there are at least ε′N individuals with fitness below j and each of them
with probability at least 1

32
ε3C loses a free position, we have E[Zg+1 − Zg] ≥

1
32

ε3C · ε′N = 1
64

ε4CN .
We finally transform this information on the expected shrinking of Zg into

a drift argument bounding the runtime. Let Z̃g be defined by Z̃g = 0, if P g

contains an optimal solution, and Z̃g = Zg otherwise. Since Z̃g ≤ Zg, for all
g such that P g does not contain an optimal solution we have E[Z̃g − Z̃g+1] =
E[Zg − Z̃g+1] ≥ E[Zg − Zg+1] ≥ 1

64
ε4CN . Noting that the runtime of the BDE is

T = min{g | Z̃g = 0}, the additive drift theorem [HY01] and the just computed
drift E[Z̃g − Z̃g+1 | g < T] ≥ 1

64
ε4CN gives

E[T] ≤ ND
1
64

ε4CN
=

64

ε4C
D.

Note that in the computation of (
eq:improvement
24), we cannot use the analyses conducted

in Section
ssec:convdominant
5.1 as we not only want to generate a one in position j′ + 1 of the i-th

individual, but we also want to have ones in all lower positions of the mutant V g
i .

Note also that the proof above heavily exploits the dependencies stemming from
the way BDE generates the mutants. In other words, the proof above is not valid

45

for the analysis of iBDE on LeadingOnes. In fact, we do not have a mathematical
proof showing that iBDE optimizes LeadingOnes also in O(D) iterations (under
conditions similar to the ones of Theorem

thm:BDEforLOwAssumption
22).

5.2.2 The Assumption in Theorem
thm:BDEforLOwAssumption
22

It remains to verify the assumption made in Theorem
thm:BDEforLOwAssumption
22 that the frequencies are

bounded away from zero. Due to the stochastic dependencies in BDE, we are mo-
mentarily lacking the methods to do this via a mathematical proof. We therefore
consult the experiments described in Section

sec:Anyneutral
4.3, observe that they support the

assumption for both BDE and iBDE, and then formally prove the assumption to
be valid in iBDE.

From the runtimes shown in Table
tbl:LOruntime
1 and the average fitnesses shown in Fig-

ure
fig:BDEandiBDEfitonLOmBW
4, we see a generally similar optimization behavior of BDE and iBDE. The

minimum frequencies depicted in Figure
fig:NeutralQuantiles
2 show clearly that for both BDE and

iBDE, the frequencies are bounded away from zero by a constant. Also, the min-
imum frequencies behave similarly in both algorithms. From all this, it appears
reasonable that BDE and iBDE behave similarly with respect to the assumption
made in Theorem

thm:BDEforLOwAssumption
22.

We now prove that the assumption made in Theorem
thm:BDEforLOwAssumption
22 is valid for iBDE.

The main argument for this result is that the process can be coupled with the
optimization process on a LeadingOnes function with a neutral bit. For the latter,
we have the desired result from our understanding of neutral bits in iBDE.

lem:LOassumiBDE Lemma 23. Let N ≥ max{5−2F
1−F

, 3125−1224F
625−612F

, 625
24F
}. Consider using iBDE with

population size N to optimize the D-dimensional LeadingOnes function. For all
j ∈ {1, . . . , D}, let Yg(j) denote the number of ones in the j-th bit position among
all individuals of generation g. There is a constant c′ > 0, depending on F only,
such that

Pr[∀g ≤ T, ∀j ∈ {1, . . . , D} : Yg(j) ≥ 0.4N] ≥ 1−D(T + 1) exp(−c′N)

for all T ∈ N.

Proof. Let ℓ ∈ {1, . . . , D}. We show that we can couple the optimization process
on LeadingOnes and on the LeadingOnes function with the ℓ-th bit neutral in a
way that at all times and for all individuals the first ℓ − 1 bits are identical and
the ℓ-th bit in the original process is at least as large as in the process with the
neutral bit. Consequently, a lower bound on the number of ones in the ℓ-th bit for
the process with the neutral bit carries over to the true process.

To make this precise, let Xg
i,j denote the value of the j-th bit of the individual

Xg
i in a run of iBDE on the LeadingOnes function f defined in (

eq:LO1
9). Let X̃g

i,j denote

46

the corresponding bit value in a run of iBDE on the function f̃ defined by

f̃(X) = f(X1, . . . , Xj−1, 1, Xj+1, . . . , XD).

We show by induction that we can couple the two processes in a way that for
all g and i we have (i) Xg

i,j = X̃g
i,j for all j < ℓ and (ii) Xg

i,ℓ ≥ X̃g
i,ℓ. Clearly, there

is nothing to show for g = 0, that is, for the random initial population. Hence let
g ≥ 0 and assume that the desired coupling exists for this generation. We show
that the desired coupling also exists for generation g + 1. Exploiting the coupling
in generation g, we can assume that we have concrete outcomes for Xg

i and X̃g
i

such that Xg
i,j = X̃g

i,j for all j < ℓ and Xg
i,ℓ ≥ X̃g

i,ℓ. Using identical randomness in
the generations of the first ℓ − 1 bits (that is, by using the identity mapping as
coupling), we immediately obtain that the mutants V g

i and Ṽ g
i satisfy V g

i,j = Ṽ g
i,j

for all j < ℓ.
To analyze the ℓ-th bit of the i-th individual, let Y i,−

g =
∑

k=1,k 6=i Xg
k,ℓ and

Ỹ i,−
g =

∑

k=1,k 6=i X̃g
k,ℓ. Since Xg

k,ℓ ≥ X̃g
k,ℓ for all k, we have Y i,−

g ≥ Ỹ i,−
g . Now the

probabilities of sampling V g
i,ℓ and V g

i,ℓ as one satisfy RN (Y i,−
g) ≥ RN(Ỹ i,−

g), since
RN (·) defined in Lemma

lem:mutprobin
10 is monotonically increasing. Hence we can couple the

mutants in a way that also V g
i,ℓ ≥ Ṽ g

i,ℓ.
By using identical outcomes for the random decisions in generating the trials,

we can also ensure that Ug
i,j = Ũg

i,j for all j < ℓ and Ug
i,ℓ ≥ Ũg

i,ℓ.
We finally argue that the selection between parent and offspring takes the

desired relation between Xg
i and X̃g

i into the next generation. Since both parents
and both trials agree on the first ℓ − 1 bits, an easy case distinction shows that
either both parents or both trials are selected except possibly in the case that
Xg

i,1 = · · · = Xg
i,ℓ = 1 and Ug

i,1 = · · · = Ug
i,ℓ−1 = 1. In this case, however, regardless

of the selection, we have Xg+1
i,1 = · · · = Xg+1

i,ℓ = 1 and X̃g+1
i,1 = · · · = X̃g+1

i,ℓ−1 = 1,
and hence again the desired relation.

Let Ỹg(ℓ) =
∑N

i=1 X̃g
i,ℓ and recall that Yg(ℓ) =

∑N
i=1 Xg

i,ℓ. By the relation just

proven, we have Yg(ℓ) ≥ Ỹg(ℓ). Since the ℓ-th bit of f̃ is neutral, we know from
the proof of Theorem

thm:iBDENeutral
11 that

Pr[∃g ≤ T : Yg(ℓ) ≤ 0.4N] ≤ Pr[∃g ≤ T : Ỹg(ℓ) ≤ 0.4N] ≤ (T + 1) exp(−c′N),

where c′ is defined in Theorem
thm:iBDENeutral
11. By a union bound over all positions ℓ, we have

Pr[∃g ≤ T, ∃ℓ ∈ {1, . . . , D} : Yg(ℓ) ≤ 0.4N] ≤ D(T + 1) exp(−c′N).

Hence,

Pr[∀g ≤ T, ∀ℓ ∈ {1, . . . , D} : Yg(ℓ) ≥ 0.4N] ≥ 1−D(T + 1) exp(−c′N).

47

5.3 The Runtime for BDE Optimizing the BinaryValue
Function

We now briefly mention that the results shown for LeadingOnes in Section
sec:BDELO
5.2 also

hold for the BinaryValue (BinVal) function f : {0, 1}D → Z defined by

f(X) =
D
∑

i=1

2D−iXi

for all X = (X1, . . . , XD). This is not totally surprising, but since not too many
results exist on how complicated algorithms optimize BinaryValue and since for
many algorithms the runtimes on LeadingOnes and BinaryValue differ, we feel
that discussing this in less than two pages is justified.

The few results we are aware of are the following. The BinaryValue function
belongs to the class of pseudo-Boolean linear functions, which kept the field busy
for quite a while. That the runtime of the (1 + 1) EA on any linear function (with
at least Dε non-zero coefficients) is Θ(D log D) was first proven in the seminal
paper [DJW02]. Increasingly sharper results or simpler proofs have been given,
e.g., in [HY01, Jäg08, DJW12, Wit13].

For the (1 + λ) EA with λ = O(D), a tight runtime bound of Θ(D log D
λ

+ D)
generations was given in [DK15], which also showed that for this algorithm the
BinaryValue function is harder than the linear function OneMax. For the (µ +
1) EA, an upper bound of O(Dµ log µ + D2) was shown and a lower bound of
Ω(Dµ log µ + D log D) was conjectured recently in [Wit18].

The first mathematical runtime analysis for an EDA [Dro06] gave an interest-
ing picture of how the cGA without margins optimizes linear functions. When
K ≥ D1+ε, ε > 0 any constant, then for any linear function O(KD) iterations suf-
fice to find the optimum with at least constant probability. For the BinaryValue
function and any K, with probability at least 1−exp(−K/48) the cGA needs more
than KD/3 iterations to find the optimum. Interestingly, for the linear function
OneMax, with at least constant probability the optimum is found already after
O(K

√
D) iterations (and this result is tight).

Again for the BinaryValue function, a lower bound of Ω(D2) regardless of K
was shown for the expected runtime of the cGA in [Wit18]. Also, it was shown
that for K ≥ cD log D with c a sufficiently large constant and K = DO(1), with
high probability this runtime is O(KD). For the StSt

(

µ
2

)

GA, which maintains a
population with size µ and creates in each iteration two individuals via uniform
crossover, Witt [Wit18] showed that the runtime on BinaryValue is O(µD log µ)
with high probability when µ ≥ cD log2 D for c a sufficiently large constant and
µ = DO(1). For PBIL, an O(D2

λ
+ D log λ) runtime was shown in [LN18].

In [DNSW11], it was proven that the 1-ANT ant colony optimizer finds
the optimum of the BinaryValue function in an expected time bounded by

48

2Ω(min{D,1/(Dρ)}) and O(D2 · 2O((log2 D)/(Dρ))). In [KNSW11], expected runtime
bounds of O(D2 + D/ρ) and O(D2(1/ρ)ε + (D/ρ)/(log(1/ρ))) were shown for
MMAS and MMAS*, respectively, for every constant ε > 0.

Finally, we note that the black-box complexity of BinaryValue functions can
be very small. For the class of all functions fz : {0, 1}D → Z; x 7→ f(x XOR z), the
black-box complexity was shown to be exactly 2 − 2−D in [DJW06]. Even when
regarding the class of all fitness functions having a fitness landscape isomorphic to
the classic binary value function (that is, we also allow permutations of the bit-
position), the black-box complexity is at most ⌈log2 D⌉+ 2 as shown in [DW14].

With exactly the same proof as for Theorem
thm:BDEforLOwAssumption
22, we obtain that BDE optimizes

also the BinaryValue function in O(D) iterations when we can assume that at
all times each bit position contains a constant fraction of ones. This result is
interesting, among others, in that it, together with our results of Section

sec:onemax
6, shows

that BDE behaves very different from the cGA on linear functions. Whereas the
cGA finds OneMax much easier than BinaryValue (see Droste’s results described
above), our results show that BDE easily optimize BinaryValue, but has some
difficulties with OneMax.

Theorem 24. Let ε ∈ (0, 1). Consider using BDE with population size N ≥ 8
ε

to optimize the D-dimensional BinaryValue function. Assume that in each gener-
ation the number of ones in each bit is at least εN . Then the expected number of
generations to find the optimum is at most 64

ε4C
D.thm:BDEforBVwAssumption

As in Section
sec:BDELO
5.2 we cannot prove rigorously that we have a constant rate of

ones in each bit position, so we resort to our mean-field argument. With the same
proof as for Lemma

lem:LOassumiBDE
23, we obtain the minimum-frequency assertion of iBDE.

Lemma 25. Let N ≥ max{5−2F
1−F

, 3125−1224F
625−612F

, 625
24F
}. Consider using iBDE with

population size N to optimize the D-dimensional BinaryValue function. For all
j ∈ {1, . . . , D}, let Yg(j) denote the number of ones in the j-th bit position among
all individuals of generation g. There is a constant c′ > 0, depending on F only,
such that

Pr[∀g ≤ T, ∀j ∈ {1, . . . , D} : Yg(j) ≥ 0.4N] ≥ 1−D(T + 1) exp(−c′N)

for all T ∈ N.lem:BVassumiBDE

It remains to argue with experimental data for the fact that BDE and iBDE
behave similarly when optimizing the BinaryValue function.

In our experiments we use the setting D = 1000, N = 1000, F = 0.2, and
C = 0.3 (for both BDE and iBDE). For each algorithm, 100 independent runs are
conducted. Table

tbl:BVruntime
2 gives the minimum, average and maximum runtimes, Figure

fig:BDEandiBDEfitonBV
7

plots the average number of ones in the best individual and the LeadingOnes

49

value of the best individual of BDE and iBDE, and Figure
fig:QuantilesBV
8 plots the minimum,

maximum, and 10%, 50%, 90% quantiles of the frequency of ones in the last bit
(which has the least influence on the fitness) as well as the minimum frequency of
ones among all bit positions and all runs.

Table 2: The runtimes of BDE and iBDE optimizing the BinaryValue function in
100 independent runs (D = 1000, N = 1000, F = 0.2, C = 0.3).

tbl:BVruntime
minimum average maximum

BDE 1179 1195 1208
iBDE 1180 1195 1216

0 200 400 600 800 1000 1200
Generation

500

600

700

800

900

1000

N
um

be
r

of
 1

s
in

 th
e

be
st

 in
di

vi
du

al

BDE
iBDE

0 200 400 600 800 1000 1200
Generation

100

200

300

400

500

600

700

800

900

1000

Le
ad

in
gO

ne
s

va
lu

e
of

 th
e

be
st

 in
di

vi
du

al

BDE
iBDE

Figure 7: Number of ones in the best individual (top) and LeadingOnes value of the
best individual (bottom) among 100 runs BDE and iBDE optimizing BinaryValue
function (D = 1000, N = 1000, F = 0.2, C = 0.3).fig:BDEandiBDEfitonBV

50

0 200 400 600 800 1000 1200
Generation

0

0.2

0.4

0.6

0.8

1

F
re

qu
en

cy

min of last bit frequency
10% quantile of last bit frequency
50% quantile of last bit frequency
90% quantile of last bit frequency
max of last bit frequency
minimum frequency over all bits

0 200 400 600 800 1000 1200
Generation

0

0.2

0.4

0.6

0.8

1

F
re

qu
en

cy

min of last bit frequency
10% quantile of last bit frequency
50% quantile of last bit frequency
90% quantile of last bit frequency
max of last bit frequency
minimum frequency over all bits

Figure 8: The minimum, maximum, and 10%, 50%, 90% quantiles of the frequency
of ones in the last bit position among 100 runs of BDE (top) and iBDE (bottom)
optimizing the BinaryValue function (D = 1000, N = 1000, F = 0.2, C = 0.3).
Also depicted are the minimum frequency of ones in all bit positions and all runs.fig:QuantilesBV

All results demonstrate a very similar optimization behavior of BDE and iBDE.
The minimum frequencies depicted in Figure

fig:QuantilesBV
8 in addition show clearly that for

both BDE and iBDE, the frequencies are bounded away from zero by a constant.
From all this, it appears reasonable that BDE and iBDE behave similarly with
respect to the assumption made in Theorem

thm:BDEforBVwAssumption
24.

6 Negative Consequences from the Stability
sec:onemax

It has been observed that the stability of an algorithm can lead to difficulties when
solving problems in which the fitness only gives a weak signal on what is the right
value for a bit-position. In [DK18a], it was proven that the scGA, a version of the
cGA artificially made stable, has a runtime of exp(Ω(min{n, K})) on the OneMax
benchmark function when the hypothetical population size is K. For the convex

51

search algorithm (CSA), an at least super-polynomial runtime was shown for the
optimization of OneMax [DK18b].

To see if BDE suffers from its stability in a similar manner, we now analyze its
performance on the OneMax function as well. Our results will be less conclusive
than those for the scGA and CSA, but still rather indicate that BDE finds it hard
to optimize OneMax. As a proven result, we show that when the initial population
is chosen such that each bit value is one independently with a probability strictly
larger than 0.5 (but less than one), then BDE does not profit from the better fitness
of this population, but instead has a runtime exponential in the dimension D. We
can not prove such a result for the usual uniform random initialization. Our
experiments, however, indicate a super-polynomial runtime.

6.1 Runtime of BDE When Initialized With a Good Ran-

dom Population

In this subsection, we analyze the runtime of BDE on OneMax when initialized
with each bit value being one with probability 0.5 < p < 1 independently. Note
that the expected fitness of each initial individual is pD, which is better than the
value 0.5D obtained from a uniform random initialization. Despite this fitness
advantage, we can show that BDE with high probability needs an exponential
time to find the optimum. The main argument is that BDE already needs that
long to generate an offspring that is better than its parent.

The following elementary estimate will be needed in our proof.

lem:ineq1 Lemma 26. For x ∈ [0, 1],

exp(−8
3
x(1− x)(x− 1

2
)2) ≥ x. (25) eq:ineq1

Proof. When x = 0, exp(−8
3
x(1− x)(x− 1

2
)2) = 1 > 0 = x. We consider x ∈ (0, 1]

in the following. Let ℓ(x) = −8
3
x(1− x)(x− 1

2
)2 − ln x. Then

ℓ′(x) = − 8
3
((1− 2x)(x− 1

2
)2 + x(1− x)2(x− 1

2
))− 1

x

= − 8(1−2x)
3

(2x2 − 2x + 1
4
)− 1

x

= 2x−1
3

((4x− 2)2 − 2)− 1
x

≤ 2x−1
3

((4x− 2)2 − 2)− 1.

It is not difficult to see that when x ∈ (0, 1
2
), (1 − 2x)(2 − (2 − 4x)2) ≤ 2, when

x ∈ (1
2
, 1], (2x−1)((4x−2)2−2) ≤ 2, and when x = 1

2
, (2x−1)((4x−2)2−2) = 0.

Thus for x ∈ (0, 1], we have (2x− 1)((4x− 2)2 − 2) ≤ 2. Hence ℓ′(x) ≤ 2
3
− 1 < 0.

Since thus ℓ(x) is monotonically decreasing, and we have ℓ(x) ≥ ℓ(1) = 0 for all
x ∈ (0, 1], which gives the claim.

52

Now we state and prove our lower bound on the runtime.

thm:rtlargeprob Theorem 27. Let 0.5 < p < 1. Consider using BDE with population size N to
optimize the D-dimensional OneMax function when in the initial population each

bit is one independently with probability p. Let γ = 8
3

F 2Cp(1−p)(p−0.5)2

1+(1−2F Cp(1−p))F (1−2p)2 , which

is a positive constant depending on the constants F , C, and p only. For all t ∈ N,
the runtime T satisfies

Pr[T ≥ t] ≥ 1− tN exp(−γD).

In particular, E[T] ≥ 1
2N

exp(γD)− 1.

The proof involves some computations similar to those done earlier in this work,
namely what is the probability to generate a 1 in a mutant or trial. The difference,
and this makes things a little easier, is that here we can assume that the bit values
used in generating the mutants are independent.

Proof. Let t ∈ N and let At be the event that within the first t iterations, BDE
generates no trial that is at least as good as its parent.

We first show that a trial vector Ui generated from four random individuals
Xi, Xr1

, Xr2
and Xr3

with probability at least 1 − exp(−γD) is worse than the
parent Xi, where γ is a constant specified further below. Let Xi, Xr1

, Xr2
, Xr3

∈
{0, 1}D such that each entry of these vectors independently is one with probabil-
ity p. For each position j ∈ {1, . . . , D}, we have Vi,j = 1 exactly if one of the
following disjoint cases holds.

• Xr1,j = 1, Xr2,j = Xr3,j.

• Xr1,j = 1, Xr2,j 6= Xr3,j, mrandj ≥ F .

• Xr1,j = 0, Xr2,j 6= Xr3,j, mrandj < F .

Since the random variables Xr1,j, Xr2,j, Xr3,j are independent Bernoulli trials with
success probability p, we have

Pr[Vi,j = 1] = p(p2 + (1− p)2) + p(2p(1− p))(1− F) + (1− p)(2p(1− p))F

= p + 4F · p(1− p)(0.5− p).
(26) eq:mutprob

Note that Vi,j is determined by Xr1
, Xr2

, Xr3
and mrandj . Since Xr1

, Xr2
, Xr3

and mrandj are independent from Xi, we know that Vi,j and Xi,j are independent.

53

Recalling the definition of Ui,j, we have

Pr[Ui,j = 1, Xi,j = 0]

= Pr[Vi,j = 1, Xi,j = 0, crandj ≤ C] = Pr[Vi,j = 1] Pr[Xi,j = 0] Pr[crandj ≤ C]

= (p + 4F · p(1− p)(0.5− p))(1− p)C = (1 + 4F (1− p)(0.5− p))p(1− p)C,

Pr[Ui,j = 0, Xi,j = 1]

= Pr[Vi,j = 0, Xi,j = 1, crandj ≤ C] = Pr[Vi,j = 0] Pr[Xi,j = 1] Pr[crandj ≤ C]

= (1− p− 4F · p(1− p)(0.5− p))pC = (1− 4Fp(0.5− p))p(1− p)C.

(27) eq:jointprob

Let Yj = Ui,j−Xi,j . From (
eq:jointprob
27), we know that Yj is a random variable, which is

+1 with probability (1+4F (1−p)(0.5−p))p(1−p)C, which is −1 with probability
(1− 4Fp(0.5− p))p(1− p)C and which is zero otherwise. Hence we have

E[Yj] = 4FCp(1− p)(0.5− p)

and

Var[Yj] = E[Y 2
j]−E[Yj]

2

= (1 + 4F (1− p)(0.5− p))p(1− p)C + (1− 4Fp(0.5− p))p(1− p)C

− 4FCp(1− p)(0.5− p)

= 2Cp(1− p)(1 + (1− 2FCp(1− p))F (1− 2p)2).

Let Y =
∑D

j=1 Yj and observe that this is the fitness difference between Ui and
Xi. Then E[Y] = 4FCDp(1− p)(0.5− p). Note that the Yj are independent. Via
a Chernoff bound like Theorem 10.12 in [Doe18d], we have

Pr[Y ≥ 0] = Pr[Y ≥ E[Y] + |E[Y]|]

≤ exp

(

−1

3
min

{

E[Y]2

Var[Y]
,
|E[Y]|

1 + |E[Yj]|

})

≤ exp

(

− 1

3
min

{

(4FCDp(1− p)(p− 0.5))2

2Cp(1− p)(1 + (1− 2FCp(1− p))F (1− 2p)2)D
,

4FCDp(1− p)|p− 0.5|
})

= exp

(

−4FCp(1− p)|p− 0.5|
3

min

{

2F |p− 0.5|
1 + (1− 2FCp(1− p))F (1− 2p)2

, 1

}

D

)

= exp

(

−8

3

F 2Cp(1− p)(p− 0.5)2

1 + (1− 2FCp(1− p))F (1− 2p)2
D

)

= exp(−γD)

54

with γ = 8
3

F 2Cp(1−p)(p−0.5)2

1+(1−2F Cp(1−p))F (1−2p)2 . Consequently, with probability at least 1 −
exp(−γD), the trial Ui is worse than the parent Xi.

We now use the above claim to show that also over a longer time frame, BDE
started with this initial population will not make any progress with high prob-
ability. To overcome the dependencies stemming from the small, but positive
probability of accepting a better individual, we use the following artificial process.

The artificial process is identical to BDE except that it never replaces a parent
with the trial. Consequently, it starts each iteration with the initial population.
Since the artificial process and the true BDE behave identical up to (and including)
the first iteration in which a search point at least as good as its parent is generated,
the events that for t iterations no search point as good as its parent is generated,
have the same probability for both processes. It therefore suffices to analyze the
probability of the event At for the artificial process.

To overcome the dependencies from reusing the same individuals when gener-
ating different mutants, we use the simple union bound over the t iterations and
the N trials generated in each iterations. This gives Pr[¬At] ≤ tN exp(−γD).

To obtain a lower bound on the optimization time, we also need to regard the
event B that one of the random initial individuals is already the optimum. Each
random initial individual has a probability of pD of being optimal. With (

eq:ineq1
25), we

estimate
pD ≤ exp(−8

3
p(1− p)(p− 1

2
)2D) ≤ exp(−γD).

Hence Pr[B] ≤ N exp(−γD) and

Pr[T ≥ t] ≥ 1− Pr[(¬At−1) ∪B] ≥ 1− tN exp(−γD),

which is the claimed probabilistic lower bound. To turn this into a lower bound for
the expectation, we observe that the probabilistic lower bound immediately implies
that the runtime T stochastically dominates (cf. [Doe18b]) a random variable U
which is uniformly distributed on [0..u − 1] with u = ⌊ 1

N
exp(γD)⌋. To see this,

it suffices to compute that Pr[U ≥ t] = 1 − t
u
≤ 1 − tN exp(−γD). Hence

E[T] ≥ E[U] = u−1
2

= 1
2
⌊ 1

N
exp(γD)− 1⌋ ≥ 1

2N
exp(γD)− 1.

The lower bound for the runtime just proven becomes weaker with increasing
population size. This stems from the fact that we only regarded the event that
not a single improving offspring is generated. We do not expect that this is the
true behavior. For larger population sizes, indeed we will earlier create an improv-
ing offspring, but its influence on the bit-frequencies is smaller. Since the result
above is sufficient to give an runtime exponential in D for sub-exponential popu-
lation sizes, we do not investigate this question in more detail. The experimental
results in the following section indicate that there is no advantage from increas-
ing the population size above the level which is necessary to prevent premature
convergence.

55

Table 3: The success rates of BDE and iBDE when optimizing OneMax. Given
are number of successful runs (#Success), failed runs caused by premature conver-
gence, that is, a bit frequency reading zero (#Frequency0), and failed runs caused
by reaching the computational budget of 2000 generations (#LimitedFen), each
out of 100 runs.

tbl:sucResult
BDE: N 25 50 100 1000 10000
#Success 0 95 100 100 100
#Frequency0 100 5 0 0 0
#LimitedGen 0 0 0 0 0

iBDE: N 25 50 100 1000 10000
#Success 0 96 100 100 100
#Frequency0 100 4 0 0 0
#LimitedGen 0 0 0 0 0

6.2 Experimental Results for OneMax
sec:onemaxexp

The above result could indicate that BDE has significant difficulties optimizing
OneMax, in particular, for larger dimensions. To obtain a first understanding
of the performance of BDE on OneMax when using the usual random initial-
ization, we perform experiments for BDE and iBDE with D = 500, F = 0.2,
and C = 0.3, which are the same parameter values as used in [GT07]. For each
N = 25, 50, 100, 1000, 10000, we conducted 100 independent runs. While all runs
converge within the maximum number of iterations of 2000, for small values of N
the frequencies of some bit-values converge to the wrong value of zero (see Table

tbl:sucResult
3

for the details). This general behavior, which is of similar order for BDE and
iBDE, is roughly what was to be expected – if the population size is small, the
relative variance within a bit-frequency is larger and this can lead to all individuals
having a zero in one bit-position.

When regarding the convergence curves, that is, the growth of the average fit-
ness over time (Figure

fig:OMD500BDE
9), for both BDE and iBDE we see only small differences

between the different population sizes. This is matches our expectations, see the
discussion following the proof of Theorem

thm:rtlargeprob
27. Overall, this first set of results

indicates that a certain population size is necessary to prevent premature conver-
gence, but there is no gain from increasing the population size further. That larger
population sizes give little additional benefit has been observed for classic DE in
continuous optimization before, see, e.g., [Sto17].

56

0 100 200 300 400 500
Generation

300

350

400

450

500

O
ne

M
ax

 A
ve

ra
ge

 F
itn

es
s

N=25
N=50
N=100
N=1000
N=10000

0 100 200 300 400 500
Generation

300

350

400

450

500

O
ne

M
ax

 A
ve

ra
ge

 F
itn

es
s

N=25
N=50
N=100
N=1000
N=10000

Figure 9: Average fitness curves among 100 runs of BDE (top) and iBDE
(bottom) with different population sizes when optimizing the OneMax function
(D = 500, F = 0.2, C = 0.3, N = 25, 50, 100, 1000, 10000).fig:OMD500BDE

The experimental results just presented do not allow a clear answer to the ques-
tion whether OneMax is an easy or a difficult function for BDE. One scenario
could be that BDE has a runtime exponential in D, but that the implicit constants
are too small to let this exponential runtime behavior become visible for the prob-
lem size D = 500. Note that already in Theorem

thm:rtlargeprob
27 (where we have proven an

exponential runtime for a suitable initialization), the constant γ is γ = 7.62×10−5

for the usual parameters F = 0.2 and C = 0.3 and for p = 0.6.
To gain more insight, we conduct experiments for varying problem size D =

100, 200, . . . , 3300. Based on our previous insight, we only regard the mid-range
population sizes N = 100, 200, 500. Apart from a few runs for N = 100 and
D ≥ 2700, all runs succeeded in finding the optimum. The average runtimes
of the successful runs (as before in generations and not fitness evaluations) are
depicted in Figure

fig:OMBDEVaryD
10. In particular for N = 200 and N = 500, we see a steep

increase of the runtime with growing problem size. The double-logarithmic plot of
the same data in Figure

fig:loglogOMBDEVaryD
11 indicates that these are not polynomial functions.

57

0 500 1000 1500 2000 2500 3000 3500
Dimension Size

0

2000

4000

6000

8000

10000

H
itt

in
g

T
im

e
(G

en
er

at
io

n) N=100
N=200
N=500

Figure 10: Average hitting time curves among 100 runs of BDE optimizing OneMax
function (D = 100, 200, . . . , 3300, N = 100, 200, 500, F = 0.2, and C = 0.3). The
dashed part of the line for N = 100 indicates that from N = 2700 on, a few runs
did not find the optimum; here the average is taken over all successful runs.fig:OMBDEVaryD

102 103

Dimension Size

102

103

H
itt

in
g

T
im

e
(G

en
er

at
io

n) N=100
N=200
N=500

Figure 11: Double-logarithmic plots of the average hitting times displayed in Fig-
ure

fig:OMBDEVaryD
10.fig:loglogOMBDEVaryD

While this is not a formal proof for a super-polynomial runtime of BDE on
OneMax, these results support our previous suspicion that generally BDE has a
not very convincing runtime behavior on easy functions like OneMax. However,
the difficulties of making this behavior visible also suggest that with the right
choice of the parameters, for moderate problem sizes still an efficient optimization
is possible.

7 Conclusion

We have conducted the first fundamental analysis of the working principles of
BDE and found that BDE behaves quite differently from classic evolutionary algo-

58

rithms or distribution-based methods. The dependencies stemming from reusing
the same individuals in the mutation operator and from the selection operator ap-
pear to be the main reason for this. Unfortunately, they also lead to more difficult
mathematical analyses compared with the general univariate algorithms.

While many classic evolutionary algorithms and EDAs can generate any search
point from the current population, this is different for BDE. We proved that from
the random initial population, only an exponentially small fraction of the search
space is reachable in one iteration. This does not necessarily harm the performance,
but it makes it harder to decide whether convergence to the optimum is still
possible from the current population. We gave an example showing that this
question is more difficult for BDE than for most other evolutionary algorithms.

One interesting feature of BDE is that it is more stable (frequencies not subject
to a fitness signal stay around 1/2 for a long time) than most other algorithms.
This enables BDE to quickly optimize decision variables which initially behave
neutral, but then become important (as in the LeadingOnes benchmark function).
The potential downside of this is that highly symmetric functions like OneMax,
in which each bit position only has a small influence on the fitness, could be
more difficult to optimize. In particular from the view-point of quickly finding a
good, but not necessarily optimal solution, the property to quickly optimize the
currently crucial bits appears to outweigh possible performance losses on OneMax
type functions.

Overall this work shows that BDE has a number of interesting feature not
present in most classic evolutionary algorithms (including EDAs). This first work
on the working principles of BDE suggests to explore these in more detail. This
work has not identified a reason why differential evolution should in discrete search
spaces not be similarly successful as in continuous one search spaces.

One clear challenge arising from this work is to devise mathematical analysis
methods that can cope with the inherent stochastic dependencies. At the moment,
they make it hard to use the rigorous runtime analysis methodology which greatly
improved the understanding of classic evolutionary algorithms. The obvious par-
ticular problems left open in this work are a completely rigorous runtime analysis
(without mean-field arguments) for the LeadingOnes, BinaryValue, and OneMax
benchmark functions.

Acknowledgement

This work was supported in part by the National Key R&D Program of China
(Grant No. 2017YFA0604500), and by the National Natural Science Foundation
of China (Grant No.5171101179, 61702297, 91530323).

59

References

[AAD+13] Peyman Afshani, Manindra Agrawal, Benjamin Doerr, Carola Doerr,
Kasper Green Larsen, and Kurt Mehlhorn. The query complexity
of finding a hidden permutation. In Space-Efficient Data Structures,
Streams, and Algorithms, volume 8066 of Lecture Notes in Computer
Science, pages 1–11. Springer, 2013. Full version available online at
http://eccc.hpi-web.de/report/2012/087/.

[ADFH18] Denis Antipov, Benjamin Doerr, Jiefeng Fang, and Tangi Hetet. Run-
time analysis for the (µ + λ) EA optimizing OneMax. In Genetic and
Evolutionary Computation Conference, GECCO 2018, pages 1459–
1466. ACM, 2018.

[AL14] Fawaz Alanazi and Per Kristian Lehre. Runtime analysis of selection
hyper-heuristics with classical learning mechanisms. In Congress on
Evolutionary Computation, CEC 2104, pages 2515–2523. IEEE, 2014.

[BDN10] Süntje Böttcher, Benjamin Doerr, and Frank Neumann. Optimal
fixed and adaptive mutation rates for the LeadingOnes problem.
In Parallel Problem Solving from Nature, PPSN 2010, pages 1–10.
Springer, 2010.

[CTCY10] Tianshi Chen, Ke Tang, Guoliang Chen, and Xin Yao. Analysis of
computational time of simple estimation of distribution algorithms.
IEEE Transactions on Evolutionary Computation, 14:1–22, 2010.

[DDE15] Benjamin Doerr, Carola Doerr, and Franziska Ebel. From black-box
complexity to designing new genetic algorithms. Theoretical Com-
puter Science, 567:87–104, 2015.

[DG13] Benjamin Doerr and Leslie Ann Goldberg. Adaptive drift analysis.
Algorithmica, 65:224–250, 2013.

[DJW02] Stefan Droste, Thomas Jansen, and Ingo Wegener. On the analysis
of the (1+1) evolutionary algorithm. Theoretical Computer Science,
276:51–81, 2002.

[DJW06] Stefan Droste, Thomas Jansen, and Ingo Wegener. Upper and lower
bounds for randomized search heuristics in black-box optimization.
Theory of Computing Systems, 39:525–544, 2006.

[DJW12] Benjamin Doerr, Daniel Johannsen, and Carola Winzen. Multiplica-
tive drift analysis. Algorithmica, 64:673–697, 2012.

60

http://eccc.hpi-web.de/report/2012/087/

[DJWZ13] Benjamin Doerr, Thomas Jansen, Carsten Witt, and Christine
Zarges. A method to derive fixed budget results from expected optimi-
sation times. In Genetic and Evolutionary Computation Conference,
GECCO 2013, pages 1581–1588. ACM, 2013.

[DK15] Benjamin Doerr and Marvin Künnemann. Optimizing linear func-
tions with the (1+λ) evolutionary algorithm—different asymptotic
runtimes for different instances. Theoretical Computer Science,
561:3–23, 2015.

[DK18a] Benjamin Doerr and Martin S. Krejca. Significance-based estimation-
of-distribution algorithms. In Genetic and Evolutionary Computation
Conference, GECCO 2018, pages 1483–1490. ACM, 2018.

[DK18b] Benjamin Doerr and Martin S. Krejca. Significance-based estimation-
of-distribution algorithms. CoRR, abs/1807.03495, 2018.

[DLOW18] Benjamin Doerr, Andrei Lissovoi, Pietro S. Oliveto, and John Alas-
dair Warwicker. On the runtime analysis of selection hyper-heuristics
with adaptive learning periods. In Genetic and Evolutionary Com-
putation Conference, GECCO 2018, pages 1015–1022. ACM, 2018.

[DMS16] Swagatam Das, Sankha Subhra Mullick, and Ponnuthurai N. Sugan-
than. Recent advances in differential evolution – an updated survey.
Swarm and Evolutionary Computation, 27:1–30, 2016.

[DNDD+18] Raphaël Dang-Nhu, Thibault Dardinier, Benjamin Doerr, Gautier
Izacard, and Dorian Nogneng. A new analysis method for evolu-
tionary optimization of dynamic and noisy objective functions. In
Genetic and Evolutionary Computation Conference, GECCO 2018,
pages 1467–1474. ACM, 2018.

[DNSW11] Benjamin Doerr, Frank Neumann, Dirk Sudholt, and Carsten Witt.
Runtime analysis of the 1-ANT ant colony optimizer. Theoretical
Computer Science, 412:1629–1644, 2011.

[Doe11] Benjamin Doerr. Analyzing randomized search heuristics: Tools from
probability theory. In Theory of Randomized Search Heuristics, pages
1–20. World Scientific Publishing, 2011.

[Doe18a] Benjamin Doerr. Better runtime guarantees via stochastic domina-
tion. CoRR, abs/1801.04487, 2018.

61

[Doe18b] Benjamin Doerr. Better runtime guarantees via stochastic domina-
tion. In Evolutionary Computation in Combinatorial Optimization,
EvoCOP 2018, pages 1–17. Springer, 2018.

[Doe18c] Benjamin Doerr. An elementary analysis of the probability that a bi-
nomial random variable exceeds its expectation. Statistics and Prob-
ability Letters, 139:67–74, 2018.

[Doe18d] Benjamin Doerr. Probabilistic tools for the analysis of randomized
optimization heuristics. CoRR, abs/1801.06733, 2018.

[Dro06] Stefan Droste. A rigorous analysis of the compact genetic algorithm
for linear functions. Natural Computing, 5:257–283, 2006.

[DW14] Benjamin Doerr and Carola Winzen. Ranking-based black-box com-
plexity. Algorithmica, 68:571–609, 2014.

[EP07] Andries Petrus Engelbrecht and Gary Pampara. Binary differential
evolution strategies. In Congress on Evolutionary Computation, CEC
2007, pages 1942–1947. IEEE, 2007.

[FKK16] Tobias Friedrich, Timo Kötzing, and Martin S. Krejca. EDAs cannot
be balanced and stable. In Genetic and Evolutionary Computation
Conference, GECCO 2016, pages 1139–1146. ACM, 2016.

[GK16] Christian Gießen and Timo Kötzing. Robustness of populations in
stochastic environments. Algorithmica, 75:462–489, 2016.

[GM14] Spencer Greenberg and Mehryar Mohri. Tight lower bound on the
probability of a binomial exceeding its expectation. Statistics and
Probability Letters, 86:91–98, 2014.

[GT07] Tao Gong and Andrew L. Tuson. Differential evolution for binary en-
coding. In Soft Computing in Industrial Applications: Recent Trends,
pages 251–262. Springer, 2007.

[Gut08] Walter J. Gutjahr. First steps to the runtime complexity analysis of
ant colony optimization. Computers & Operations Research, 35:2711–
2727, 2008.

[HY01] Jun He and Xin Yao. Drift analysis and average time complexity of
evolutionary algorithms. Artificial Intelligence, 127:51–81, 2001.

62

[Jäg08] Jens Jägersküpper. A blend of Markov-chain and drift analysis. In
Parallel Problem Solving From Nature, PPSN 2008, pages 41–51.
Springer, 2008.

[JJW05] Thomas Jansen, Kenneth A. De Jong, and Ingo Wegener. On the
choice of the offspring population size in evolutionary algorithms.
Evolutionary Computation, 13:413–440, 2005.

[JZ14] Thomas Jansen and Christine Zarges. Performance analysis of ran-
domised search heuristics operating with a fixed budget. Theoretical
Computer Science, 545:39–58, 2014.

[KNSW11] Timo Kötzing, Frank Neumann, Dirk Sudholt, and Markus Wagner.
Simple max-min ant systems and the optimization of linear pseudo-
boolean functions. In Foundations of Genetic Algorithms, FOGA
2011, pages 209–218. ACM, 2011.

[KW17] Martin S. Krejca and Carsten Witt. Lower bounds on the run time
of the univariate marginal distribution algorithm on OneMax. In
Foundations of Genetic Algorithms, FOGA 2017, pages 65–79. ACM,
2017.

[LN18] Per Kristian Lehre and Phan Trung Hai Nguyen. Level-based analysis
of the population-based incremental learning algorithm. In Parallel
Problem Solving From Nature, PPSN 2018, pages 105–116. Springer,
2018.

[LOW17] Andrei Lissovoi, Pietro Simone Oliveto, and John Alasdair War-
wicker. On the runtime analysis of generalised selection hyper-
heuristics for pseudo-Boolean optimisation. In Genetic and Evo-
lutionary Computation Conference, GECCO 2017, pages 849–856.
ACM, 2017.

[LSW18] Johannes Lengler, Dirk Sudholt, and Carsten Witt. Medium step
sizes are harmful for the compact genetic algorithm. In Genetic and
Evolutionary Computation Conference, GECCO 2018, pages 1499–
1506. ACM, 2018.

[McD98] Colin McDiarmid. Concentration. In Probabilistic Methods for Algo-
rithmic Discrete Mathematics, pages 195–248. Springer, Berlin, 1998.

[MS17] Alberto Moraglio and Dirk Sudholt. Principled design and runtime
analysis of abstract convex evolutionary search. Evolutionary Com-
putation, 25:205–236, 2017.

63

[MT09] Alberto Moraglio and Julian Togelius. Geometric differential evolu-
tion. In Genetic and Evolutionary Computation Conference, GECCO
2009, pages 1705–1712. ACM, 2009.

[MTS13] Alberto Moraglio, Julian Togelius, and Sara Silva. Geometric differ-
ential evolution for combinatorial and programs spaces. Evolutionary
Computation, 21:591–624, 2013.

[NSW09] Frank Neumann, Dirk Sudholt, and Carsten Witt. Analysis of dif-
ferent MMAS ACO algorithms on unimodal functions and plateaus.
Swarm Intelligence, 3:35–68, 2009.

[NW09] Frank Neumann and Carsten Witt. Runtime analysis of a simple ant
colony optimization algorithm. Algorithmica, 54:243–255, 2009.

[PEF06] Gary Pampara, Andries Petrus Engelbrecht, and Nelis Franken. Bi-
nary differential evolution. In Congress on Evolutionary Computa-
tion, CEC 2006, pages 1873–1879. IEEE, 2006.

[Rud97] Günter Rudolph. Convergence Properties of Evolutionary Algorithms.
Kovac, Hamburg, Germany, 1997.

[SBM16] Valentino Santucci, Marco Baioletti, and Alfredo Milani. Algebraic
differential evolution algorithm for the permutation flowshop schedul-
ing problem with total flowtime criterion. IEEE Transactions on
Evolutionary Computation, 20:682–694, 2016.

[SP97] Rainer Storn and Kenneth Price. Differential evolution – a simple
and efficient heuristic for global optimization over continuous spaces.
Journal of global optimization, 11:341–359, 1997.

[Sto17] Rainer Storn. Real-world applications in the communications indus-
try – when do we resort to differential evolution? In Congress on
Evolutionary Computation, CEC 2017, pages 765–772. IEEE, 2017.

[Sud13] Dirk Sudholt. A new method for lower bounds on the running time of
evolutionary algorithms. IEEE Transactions on Evolutionary Com-
putation, 17:418–435, 2013.

[Sud18] Dirk Sudholt. On the robustness of evolutionary algorithms to noise:
refined results and an example where noise helps. In Genetic and
Evolutionary Computation Conference, GECCO 2018, pages 1523–
1530. ACM, 2018.

64

[SW16] Dirk Sudholt and Carsten Witt. Update strength in EDAs and ACO:
How to avoid genetic drift. In Genetic and Evolutionary Computation
Conference, GECCO 2016, pages 61–68. ACM, 2016.

[Wit06] Carsten Witt. Runtime analysis of the (µ + 1) EA on simple pseudo-
Boolean functions. Evolutionary Computation, 14:65–86, 2006.

[Wit13] Carsten Witt. Tight bounds on the optimization time of a randomized
search heuristic on linear functions. Combinatorics, Probability &
Computing, 22:294–318, 2013.

[Wit17] Carsten Witt. Upper bounds on the runtime of the univariate
marginal distribution algorithm on OneMax. In Genetic and Evo-
lutionary Computation Conference, GECCO 2017, pages 1415–1422.
ACM, 2017.

[Wit18] Carsten Witt. Domino convergence: Why one should hill-climb on
linear functions. In Genetic and Evolutionary Computation Confer-
ence, GECCO 2018. ACM, 2018.

[ZYD18] Weijie Zheng, Guangwen Yang, and Benjamin Doerr. Working prin-
ciples of binary differential evolution. In Genetic and Evolution-
ary Computation Conference, GECCO 2018, pages 1103–1110. ACM,
2018.

65

	1 Introduction
	2 Binary Differential Evolution
	3 Stochastic Dependencies and Mean-Field Approaches
	3.1 Stochastic Dependencies
	3.1.1 Reachable Offspring
	3.1.2 Convergence

	3.2 Mean-Field Approaches and Independent BDE (iDBE)

	4 Stability, Behavior of Neutral Bits
	4.1 Stability of EDAs and BDE
	4.2 Stability of BDE When Optimizing the Needle Function
	4.3 The Behavior of an Arbitrary Neutral Bit
	4.3.1 Experimental Comparison of the Behavior of Neutral Bits in BDE and iBDE
	4.3.2 Theoretical Analysis of the Behavior of a Neutral Bit for iBDE

	4.4 The Behavior of Neutral Bits in Classic EDAs
	4.4.1 Notation
	4.4.2 Lower Bounds
	4.4.3 Upper Bounds

	5 Behavior of Dominant Bits
	5.1 Convergence Time of a Dominant Bit
	5.2 The Runtime for BDE Optimizing the LeadingOnes Function
	5.2.1 Runtime of BDE on LeadingOnes
	5.2.2 The Assumption in Theorem ??

	5.3 The Runtime for BDE Optimizing the BinaryValue Function

	6 Negative Consequences from the Stability
	6.1 Runtime of BDE When Initialized With a Good Random Population
	6.2 Experimental Results for OneMax

	7 Conclusion

