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ABSTRACT

Photometric redshift estimation plays a crucial role in modern cosmological surveys for studying the universe’s large-scale structures
and the evolution of galaxies. Deep learning has emerged as a powerful method to produce accurate photometric redshift estimates
from multiband images of galaxies. Here, we introduce a multimodal approach consisting of the parallel processing of several subsets
of prior image bands, the outputs of which are then merged for further processing through a convolutional neural network (CNN).
We evaluate the performance of our method using three surveys: the Sloan Digital Sky Survey (SDSS), the Canada-France-Hawaii
Telescope Legacy Survey (CFHTLS), and the Hyper Suprime-Cam (HSC). By improving the model’s ability to capture information
embedded in the correlation between different bands, our technique surpasses state-of-the-art photometric redshift precision. We find
that the positive gain does not depend on the specific architecture of the CNN and that it increases with the number of photometric
filters available.

Key words. methods: data analysis – techniques: image processing – surveys – galaxies: distances and redshifts –
galaxies: high-redshift – galaxies: photometry

1. Introduction

Photometric redshifts have become crucial for cosmological sur-
veys based on multiband imaging surveys such as the current
Dark Energy Survey (DES; Dark Energy Survey Collaboration
2016), the Kilo-Degree Survey (KIDS, de Jong et al. 2013), and
the upcoming Vera Rubin survey (LSST, Ivezić et al. 2019)
and Euclid (Laureijs et al. 2011). The magnitude depth and the
extent of the area covered by these surveys make it impossible to
rely solely on spectroscopy for redshift estimates, so photomet-
ric redshifts became a major component of these cosmological
endeavors.

The methods to estimate redshifts from multiband photome-
try fall into three broad categories:

– Spectral energy distribution (SED) template fitting: this
technique has been used for several decades. It relies on a set
of observed or modeled SEDs, assumed to be representative of
the diversity of galaxies. These theoretical magnitudes are then
compared to the observed ones with a minimization fitting pro-
cedure to derive the most probable template and redshift esti-
mates (e.g., Arnouts et al. 1999; Ilbert et al. 2006; Benítez 2000;
Brammer et al. 2008).

– Machine learning algorithms: this approach benefits from
the increase in available spectroscopic redshifts required to train
the algorithms. Models learn correlations between redshifts and
the input features provided. Once trained, they can be used to
estimate redshifts based on the same input information. Dif-
ferent algorithms have been used such as an artificial neural
network (Collister & Lahav 2004), k-nearest neighbors (kNN,
Csabai et al. 2007), and random forest techniques (Carliles et al.
2010). These methods are fast and were shown to be effective in

the domain of validity of the training set. As with SED fitting
algorithms, the input information consists of features extracted
from the multiband images, such as fluxes, colors, and morpho-
logical parameters.

– Deep learning algorithms: the images are used directly as
input, in contrast to the two previous methods. These algorithms
are multilayer neural networks that extract relevant features from
the multiband images of galaxies by adjusting parameters during
a learning process in which a cost function is minimized. Con-
volutional neural networks (CNNs) are a popular type of deep
learning algorithm for image-related tasks. CNNs are designed
to detect small, local correlations and patterns in images with the
first layers, and increasingly larger and more complex patterns
with deeper layers.

Over the last few years, deep learning has proven to be a
highly effective method. Through the use of various deep learn-
ing frameworks, state-of-the-art results have been achieved in
photometric redshift estimation in the main galaxy sample of the
Sloan Digital Sky Survey (SDSS MGS), a nearly complete spec-
troscopic dataset to r = 17.8.

Pasquet et al. (2019, hereafter P19) developed a deep CNN
based on the inception network. The method uses 64× 64 pixel
images centered on the SDSS spectroscopic targets in the ugriz
bands, along with the line-of-sight galactic reddening value. The
results show an improvement by a factor of 1.5 over the released
SDSS photometric redshifts, which are based on a k-NN algo-
rithm (Beck et al. 2016).

Hayat et al. (2021) presented a self-supervised contrastive
learning framework. It aims to build a low-dimensional space
that captures the underlying structure and meaningful features
of a large dataset of unlabeled (no spectroscopic redshift)
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galaxies. The network is trained to minimize the distance
between representations of a source image and its augmented
versions while maximizing the distance between these represen-
tations and representations of other galaxies. Once this latent
space is obtained, the network is fine-tuned on the redshift
estimation task with labeled data. This work outperforms P19
but, more interestingly, it reveals that including unlabeled data
reduces the amount of labeled data necessary to achieve the P19
results.

Dey et al. (2022) used deep capsule networks to jointly esti-
mate redshift and morphological type. Their network consists
of a primary convolutional layer followed by Conv-Caps lay-
ers. While conventional CNNs primarily detect features, capsule
networks also compute feature properties (orientation, size, col-
ors, etc.). We note that even though these networks are robust
and invariant to image orientation, the authors used rotation and
flip data augmentation during training. The dimension of their
latent space is only 16, which allows for a better interpretabil-
ity. Compared to classical CNNs, the capsule networks are more
difficult to train, and not easy to scale to deeper architectures for
more complex tasks. Their results on the SDSS sample show a
marginal improvement over P19.

Finally, Treyer et al. (2024) present an updated version of
the network introduced by P19. The number of parameters is
reduced with a latent space of 96 dimensions instead of 22 272
in the original work, which improves the generalization capacity
of the network. While their goal is to extend redshift estimation
to fainter magnitude, they also show that the new network out-
performs previous works on the SDSS MGS.

In this work, we propose a multimodal architecture. Multi-
modality commonly refers to the combination of different types
of information for training (Ngiam et al. 2011; Ma et al. 2015;
Hou et al. 2018). This approach is especially relevant when deal-
ing with data from different sensors (such as cameras, LiDAR,
and radar). It exploits the complementary nature of the informa-
tion contained in different types of data (e.g., Qian et al. 2021;
Chen et al. 2017) by processing them in parallel modalities,
allowing them to interact at various stages, and finally merging
them all together (Hong et al. 2020).

The photometric images provide a low-resolution view of
the source spectra, and the correlation between them is strongly
informative of the redshift. The conventional approach is to stack
these images all together as a network input (P19; Hayat et al.
2021; Dey et al. 2022; Treyer et al. 2024). In this work, we show
that this is suboptimal and we introduce the use of multimodal-
ity for redshift estimation. It consists of organizing the input into
subsets of bands that are processed in parallel prior to being
merged, which improves the extraction of inter-band correla-
tions, and ultimately the redshift precision. Furthermore, we
discuss the key ingredients of the multimodal architecture and
validate it on several datasets.

The paper is organized as follows: the different photometric
and spectroscopic datasets are presented in Sect. 2; the architec-
ture, training, and input/output of the network are described in
Sect. 3, with additional information in Appendix A; the adapta-
tion of the network to incorporate multimodality is described in
Sect. 4; Sect. 5 defines the metrics used to evaluate the redshift
estimates and presents different experiments to understand the
key components of the multimodal approach; Sect. 6 presents
the performance and gains of the optimal multimodal network
with respect to the baseline model (single modality) on differ-
ent datasets; discussions are had in Sect. 7; and we conclude this
work in Sect. 8.

2. Data

We used three different photometric and spectroscopic datasets
covering a wide range of image depth and redshift. In the fol-
lowing, DR stands for data release.

2.1. The SDSS survey

The SDSS is a 5-band (ugriz) imaging (r ≤ 22.5) and spectro-
scopic survey using a dedicated 2.5-m telescope at Apache Point
Observatory in New Mexico. We use the same spectroscopic
sample as P19 based on the SDSS DR12 (Alam et al. 2015) in
the northern galactic cap and Stripe82 regions. It consists of
516 525 sources with dereddened petrosian magnitudes r ≤ 17.8
and spectroscopic redshifts z ≤ 0.4. For each source, in each of
the five bands, all the available images from the SDSS Science
Archive Server are resampled, stacked, and clipped. The result-
ing input data is a 5 × 64 × 64 pixel datacube with a pixel scale
of 0.396 arcsec, in a gnomonic projection centered on the galaxy
coordinates, and aligned with the local celestial coordinate sys-
tem (see P19 for details), in addition to the galactic extinction
value (Schlegel et al. 1998).

2.2. The CFHTLS imaging survey

The Canada-France-Hawaii Telescope (CFHT) Legacy Survey1

(CFHTLS) is an imaging survey performed with MegaCam
(Boulade et al. 2000) in five optical bands (u?griz). In the
following we only considered the CFHTLS-Wide component,
which covers four independent sky patches totaling 154 deg2

with sub-arcsecond seeing (median∼ 0.7′′) and a typical depth
of i ∼ 24.8 (5σ detection in 2′′ apertures).

We used the images and photometric catalogues from the
T0007 release2 produced by TERAPIX3 (Hudelot et al. 2012).
This final release includes an improved absolute and internal
photometric calibration, at a 1–2% level, based on the photomet-
ric calibration scheme adopted by the Supernova Legacy Survey
(SNLS; Regnault et al. 2009).

The final images were stacked with the Swarp tool4
(Bertin 2006). The detection and photometric catalogues were
performed with SExtractor (Bertin & Arnouts 1996) in dual
mode with the source detection based on the gri − χ2 image
(Szalay et al. 1999). Although the pixel scale is smaller (i.e.,
0.18 arcsec pix−1) than in the SDSS, we adopted the same 64 ×
64 pixel cutouts for the CFHTLS datacubes.

2.3. The HSC-Deep imaging survey

This dataset consists of the four HSC-Deep fields (COSMOS,
XMM-LSS, ELAIS-N1, and DEEP2-3) partially covered by the
u-band CLAUDS survey (Sawicki et al. 2019) and the near-
infrared (NIR) surveys UltraVISTA (McCracken et al. 2012,
COSMOS field) and VIDEO (Jarvis et al. 2013, XMM-LSS
field). A full description of the HSC-Deep dataset and its ancil-
lary data are given in Desprez et al. (2023) and summarized
hereafter.

The HSC-SSP is an imaging survey conducted with the
Hyper Suprime-Cam camera (Miyazaki et al. 2018) on the

1 http://www.cfht.hawaii.edu/Science/CFHTLS/
2 https://cfhtls.calet.org/
3 https://calet.org/2018/10/04/final-cfhtls-terapix-
dataset-available-at-calet/
4 http://astromatic.net/software/swarp
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Subaru telescope in five broadband filters (grizy)5. We used the
public DR2 (Aihara et al. 2019) for the Deep (∼20 deg2) and
UltraDeep (∼3 deg2) layers of the survey. These have median
depths of g = 26.5−27 and y = 24.5−25.5, respectively.

CLAUDS is a deep survey with the CFHT MegaCam imager
in the u-band and slightly redder u?-band (Sawicki et al. 2019).
The u? filter covers the whole XMM-LSS region. ELAIS-N1
and DEEP2-3 are exclusively covered with the u filter, while
COSMOS was observed with both filters. CLAUDS covers
18 deg2 of the four HSC-Deep fields down to a median depth of
u = 27,and1.6 deg2 of the twoultradeepregionsdowntou = 27.4.

UltraVISTA6 and VIDEO7 are deep NIR surveys acquired
by the VISTA Telescope (Emerson et al. 2004) with the VIR-
CAM instrument (Dalton et al. 2006). For UltraVISTA we used
the DR3 Y JHKs images covering 1.4 deg2 down to Y ∼ 25 and
J,H,Ks ∼ 24.7 (McCracken et al. 2012).

For VIDEO we used the DR4 images in the same passbands
covering 4.1 deg2, down to depths ranging from Y = 25.0 to
Ks = 23.8 (Jarvis et al. 2013).

All the images were projected onto the same HSC reference
pixel grid, using SWarp (Bertin et al. 2002), with a pixel scale
of 0.168′′ pixel−1. For the u-band images, the stacks were gen-
erated with the native HSC pixel grid, while for the NIR images
the fully calibrated mosaics were later projected onto the HSC
pixel grid.

The dimension of the HSC-Deep datacubes is 9 × 64 ×
64 pixels. They include one u-band image (u?, otherwise u), five
HSC images (grizy), and three NIR images (JHKs). When miss-
ing, the NIR channels were padded with zeros.

2.4. The spectroscopic redshift dataset

The CFHTLS and HSC-Deep regions have been widely cov-
ered by large spectroscopic redshift surveys, including: SDSS-
BOSS (DR16, available everywhere, Ahumada et al. 2020),
GAMA (DR3, r ≤ 19.8, Baldry et al. 2018), WiggleZ (final
release, NUV ≤ 22.8, Drinkwater et al. 2018), VVDS Wide and
Deep (i ≤ 22.5 and i ≤ 24, Le Fèvre et al. 2013), VUDS
(i ≤ 25, Le Fèvre et al. 2015), DEEP2 (DR4, r ≤ 24,
Newman et al. 2013), VIPERS (DR2, i ≤ 22.5, Scodeggio et al.
2018), VANDELS (DR4, high redshift in XMM-LSS, H ≤ 25,
Garilli et al. 2021), CLAMATO (DR1, high redshift LBGs in
COSMOS, Lee et al. 2018), UDSz (in XMM-LSS, McLure et al.
2013; Bradshaw et al. 2013), and zCOSMOS-bright (i ≤ 22.5 in
COSMOS, Lilly et al. 2007). We also included the COSMOS
team’s spectroscopic redshift catalog (Salvato, priv. comm.),
which consists of several optical and NIR spectroscopic follow-
ups of X-ray to far-IR/radio sources, high-redshift star-forming
and passive galaxies, and galaxies that are poorly represented
in multidimensional color space (C3R2, Masters et al. 2019).
Table 1 summarizes the main characteristics of the different
spectroscopic surveys considered.

For all the above redshift surveys, we only considered the
most secure redshifts, identified with high signal-to-noise and
several spectral features (equivalent to flags three and four in
VVDS or VIPERS). For duplicated redshifts, we kept the most
secure or randomly picked one when they had similar flag qual-
ity.

5 The HSC-Deep survey include also narrowband filters not considered
in this work.
6 https://ultravista.org
7 http://www.eso.org/sci/observing/phase3/data_
releases.html

Table 1. Spectroscopic surveys summary.

Spectroscopy
Survey Res. z-range Selection

SDSS DR12(1) 2000 z ≤ 0.4 r ≤ 17.8
SDSS-BOSS(2) 2000 0.3 ≤ z ≤ 0.7 LRGs
GAMA(3) 1300 z ≤ 0.7 r ≤ 19.8
WIGGLEZ(4) 1300 z ≤ 1.2 NUV ≤ 22.8
zCOSMOS(5) 650 z ≤ 1.2−5 r ≤ 22.5 − 25
VANDELS(6) 650 1 ≤ z ≤ 6 H ≤ 25
UDSz(7) 650 z ≤ 4 K ≤ 23
DEEP28) 6000 0.7 ≤ z ≤ 1.5 r ≤ 24
VVDS(9) 230 z ≤ 1.2−6 i ≤ 22.5 − 24
VIPERS(10) 230 0.4 ≤ z ≤ 1.5 i ≤ 22.5
VUDS(11) 230 2 ≤ z ≤ 6 K ≤ 23
CLAMATO(12) 1100 2 ≤ z ≤ 3.5 LBGs
C3R2(13) 1100 z ≤ 4 SOM
COSMOS(14) Multiple z ≤ 4 Multiple
3DHST(15) 130 z ≤ 4 H ≤ 24
PRIMUS(16) 40 z ≤ 0.9 i ≤ 22.5
COSMOS20(17) photo-z z ≤ 6 i ≤ 26.5

Notes. Spectroscopic surveys’ typical spectral resolution, redshift
range, and main target selection criteria. Surveys 1–14 are used for the
spectroscopic training and validation datasets. Surveys 15–17 are used
for testing only.

Table 2. Performance comparison of different deep learning networks
on the SDSS MGS (r ≤ 17.8).

Experiences σ η 〈∆z〉
10−3 % 10−3

SDSS r < 17.8
P19 9.08 0.31 0.04
Dey et al. (2022) 8.98 0.19 0.07
Hayat et al. (2021) 8.25 0.21 0.1
Treyer et al. (2024) 8.00 0.18 −0.31
Multimodal network 7.85 0.16 0.31

The characteristics of the spectroscopic samples vary from
one survey to another. The SDSS sample includes 516 525
sources with r ≤ 17.8 and spectroscopic redshifts z ≤ 0.4. Mean-
while, the CFHTLS-Wide sample includes ∼108 500 secure red-
shifts distributed as 34% with i ≤ 19.5, 57% with 19.5 ≤ i ≤
22.5, and 9% with 22.5 ≤ i ≤ 25. Lastly, the HSC-Deep sur-
vey includes ∼51,000 redshifts with at least six optical bands
(ugrizy) and 45% are brighter than i ∼ 22 and 10% fainter than
i ∼ 24. Amongst this sample, ∼37 400 sources also have NIR
bands (JHKs).

In addition, for the HSC-Deep survey, we also included
as test samples the low-resolution spectroscopic redshifts from
the 3DHST survey (based on NIR slitless grism spectroscopy,
Skelton et al. 2014), the PRIMUS survey (based on optical prism
multi-objects spectroscopy, Coil et al. 2011), and the 30 band
photometric redshifts from COSMOS2020 (Weaver et al. 2022),
with the spectral resolution reported in Table 1. For 3DHST,
we used the DRv4.1.5 restricted to secure grism redshift mea-
surement (Momcheva et al. 2016; Skelton et al. 2014). It con-
tains ∼4150 sources with HAB ≤ 24 located in XMM-LSS and
COSMOS. For PRIMUS, we restricted the sample to bright
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sources (iAB ≤ 22.5) at moderate redshift (z ≤ 0.9) with the
most secure redshifts (Cool et al. 2013). It contains ∼19 500
sources, located in the XMM-LSS, COSMOS, and DEEP2-3
fields. Finally, for COSMOS2020, we used the 30 band photo-
metric redshifts provided by Weaver et al. (2022), who estimated
four different photometric redshifts based on two different multi-
band photometric catalogues (using two distinct flux extraction
software packages) and two different photometric redshift codes.
We computed the mean and standard deviation of these four red-
shifts, z̄ and σ(z), and retained those with σ(z) ≤ 0.1(1 + z̄).

3. Network and training procedure

3.1. Network input

For each galaxy, a N×64×64 pixel data cube was created with a
subtracted background. N is the number of bands (five for SDSS
and CFHTLS, six or nine for HSC-Deep). Images in the data
cube were sorted in ascending order of wavelength (e.g., ugriz).

The network takes as input a batch of datacubes. Given
the wide range of pixel values, the P19 dynamic range com-
pression, xc was applied to each image, x, defined as xc =
sign(x)(

√
|x| + 1 − 1). Additionally, each band was center-

reduced using all the training objects. This ensures a more robust
and efficient training.

Following P19, we also included as an input the galactic
reddening excess, E(B − V), as the network had no informa-
tion regarding the location of the sources. The E(B − V) value
was appended to the compressed nonspatial latent representa-
tion, helping to break the degeneracy between dust reddening
and redshift (i.e., P19).

3.2. The baseline architecture

As a benchmark, we used a network architecture inspired by
P19 and presented by Treyer et al. (2024), which currently deliv-
ers the best precision for the SDSS MGS dataset (Table 2).
The network consists of two convolutional layers followed by
multiple sequential inception blocks (inspired by Szegedy et al.
2015). Each inception block is composed of convolutional lay-
ers, with different kernel sizes, which capture patterns at dif-
ferent resolutions. On all layers, a ReLU activation function
(Nair & Hinton 2010) was used, with the exception of the first
and second layers where a PReLU (He et al. 2015) and a hyper-
bolic tangent function were employed, respectively, to reduce
the signal dynamic range. At the end of the sequential blocks,
valid padding was applied, reducing the information to 96 one-
by-one feature maps. Finally, sequential fully connected lay-
ers were employed to produce the classification and regression
outputs.

3.3. Network output

The redshift estimation task has been treated using either a
regression or a classification method. When a regression method
is adopted, the network is trained by minimizing a loss function,
for example the mean absolute error (MAE) or the root mean
squared error (RMSE) between the predicted and true redshifts
(Dey et al. 2022; Schuldt et al. 2021).

Alternatively, it can be treated using a classification method,
as in P19 and in this work, and also in other kinds of applica-
tions (Rothe et al. 2018; Stöter et al. 2018; Rogez et al. 2017).
We discretized the redshift space into narrow, mutually exclu-
sive Nb redshift bins. The network was trained to classify each

galaxy into the correct redshift bin through the optimization
of the softmax cross-entropy (a strictly proper loss function).
Gneiting & Raftery (2007) show that its correct minimization
guarantees convergence on the true conditional probability.

The outputs of our nonlinear, complex-enough classification
network (after the application of the softmax activation function)
are positive and normalized scores distributed over the prede-
fined redshift bins. We consider them to be estimators of the true
conditional probability of the redshift belonging to a specific
bin (LeCun et al. 2015; Krizhevsky et al. 2017; Szegedy et al.
2015), which is, in turn, an approximation of the true redshift
probability density function. Consequently, we refer to the net-
work classification output as a redshift probability distribution
(PDF).

In Appendix A, we show the performance obtained with
models based on regression and/or classification methods using
two different training sets. We find that the classification model
outperforms the regression model. Additionally, we obtain a
slight improvement by combining the classification and regres-
sion losses. In all subsequent experiments, we adopted this
mixed scheme.

3.4. Network Training Protocol

We used an ADAM optimizer (Kingma & Ba 2014) and a batch
size of 32 datacubes to train our network. Data augmentation
was applied with random flips and rotations of the images (90◦
step).

The models were trained by simultaneously optimizing the
cross-entropy loss function for the classification module and the
MAE for the regression module. For a source, s, with a spectro-
scopic redshift, zspec, the loss function is the sum of these two
loss functions:

L(s) =

Nb∑
i=1

−yi log(pi) + |zpred − zspec| (1)

where Nb is the number of redshift classes, yi the classification
label of the redshift bin i (1 for the bin containing zspec, 0 for
the other bins), pi the estimation for the class, i, produced by the
classification module, and zpred the regression estimate.

For a given training set, the database was split into five cross-
validation samples. Each cross-validation sample (20%) was
used as a test sample, while the remaining four (80%) were used
for training. This guaranteed that each galaxy appeared once in
the test sample. We used ensemble learning (Goodfellow et al.
2016) by running each training configuration several times with
weights randomly initialized and the training set randomly shuf-
fled: three times for the HSC and CFHTLS datasets and five
times for the SDSS dataset (for comparison with other published
works). The final PDF is the average of the outputs of the trained
models.

All the results presented in the following sections are limited
to i ≤ 24.

4. Multimodality for redshift estimation

A key component of redshift estimation is the correlations
between different bands covering different spectral domains.
SED fitting techniques and machine learning algorithms exploit
the flux ratios between bands. CNNs are able to capture cor-
relations between different channels directly from the images
and to extract spatially correlated patterns. In a classical CNN
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architecture, each kernel of the first convolution layer combines
all the channels to produce one feature map (see Fig. 3 in P19).

Multimodality is commonly used to train a network
with multiple kinds of input data (i.e., images, audio, text)
(Ngiam et al. 2011; Hou et al. 2018). Multiple input streams are
incorporated into the network, processed in parallel, and com-
bined at a later stage (Hong et al. 2020). This allows for better
feature extraction from each modality.

In the present work, we used multimodality to analyze sub-
sets of bands separately before combining their outputs. In the
following, we introduce our formalism for the multimodal con-
figuration, the modifications to the network architecture, and the
key hyper-parameters involved in such networks.

4.1. Modalities

The images were sorted in ascending order of wavelength. The
size of a modality refers to the number of bands it contains, while
the order refers to the proximity of the bands. First-order modal-
ities use adjacent bands, second-order modalities use bands sep-
arated by one band, third-order modalities use bands with a gap
of two bands, etc. Table C.2 details the modalities of the first,
second, and third orders for the ugrizy jhk bands.

4.2. Network architecture

We adopted a flexible network architecture to incorporate the
multimodalities. As illustrated in Fig. 1, we defined two main
parts:

– Parallel blocks: for each input modality, we defined an
independent module at the start of the network. It consists of
successive inception blocks sized according to the size of the
modality.

– Common block: it combines the outputs of the parallel
blocks and proceeds with its own architecture detailed in Fig. 1.

The depth of the parallel and common blocks depend on the
type of fusion used as described in the next subsection. However,
we limited the total network depth to eight inception blocks and
the pooling layers were performed at fixed depths (before the
1st, 4th, and 6th inception blocks). The baseline architecture pre-
sented in Sect. 3.2 can be obtained within the current framework
by considering only one modality containing all the bands. In
the following we use “baseline” and “baseline single modality”
interchangeably.

4.3. Fusion

The stage of fusion, in which the parallel processed modalities
are combined, is the last key factor to consider. It determines
how much network processing is allocated to feature extraction
from each modality and how much is assigned to combining
those features for redshift estimation. We considered three stages
(Hong et al. 2020). First, early fusion where the features from
each modality were fused after two parallel inception blocks,
prior to passing through six common inception blocks. Second,
middle fusion where modalities were combined after four par-
allel inception blocks, followed by four common blocks. Lastly,
late fusion where modalities were combined after six inception
blocks, followed by two common blocks.

We tested two methods of fusing the feature maps from
the different modalities: simple concatenation and cross-fusion.
A cross-fusion module consists of a set of parallel inception
blocks, each processing modalities one by one (hence cross) for
improved feature blending. The cross-fused feature maps pass

through a common convolution layer prior to being concatenated
(Hong et al. 2020).

5. Experiments

5.1. Metrics and point estimates

To evaluate the photometric redshift performance between the
different experiments, three metrics were considered based on
the normalized residuals, ∆z = (zphot − zspec)/(1 + zspec) (P19):

– the MAD (median absolute deviation), σMAD = 1.4826 ×
Median(|∆z −Median(∆z)|)

– the fraction of outliers, η (%), with |∆z| ≥ 0.05 for the
SDSS or 0.15 for the other datasets.

– the bias, 〈∆z〉 = Mean(∆z).
We chose the median of the output PDF as the point estimate,

zphot. However this choice was not critical as we are interested in
the relative performance of the various experiments.

5.2. Multimodality configurations

To evaluate the impact of the three variable ingredients of our
multimodal approach, we used the HSC Deep Imaging Survey
dataset (Sect. 2.3), as it covers the widest range of magnitude
and redshift and has the largest number of photometric bands.
We ran experiments with different multimodal configurations in
order to determine: the most efficient stage of fusion, the best
fusion type (cross-fusion or simple concatenation), the optimal
modality size, and the optimal modality order.

5.2.1. Stage and type of fusion

We conducted four experiments: early, middle, and late fusion
with concatenation fusion, and an early cross-fusion scenario,
assuming size two and first- and second-order modalities.

The resulting MADs as a function of the magnitude and
redshift are shown in Fig. 2 and compared to the baseline, single-
modality model. Error bars were defined as the standard devia-
tion between the metrics of the five validation folds. Early and
middle fusions provide the most significant improvement, with
early fusion slightly outperforming middle fusion. The perfor-
mance of the early concatenation fusion is similar to the early
cross-fusion scheme while being more computationally efficient.
Thus, we proceeded with concatenation fusion for the other
experiments.

Additionally, we tested very early fusion (where fusion
occurs after the two initial convolutions and one inception block)
and extremely early fusion (fusion after just two convolutions).
Results reported in Fig. B.4 show that early fusion obtains the
best precision followed by very early fusion then extremely early
fusion.

5.2.2. Size of modalities

We varied the size of the modalities from one to five, assuming
first-order and early fusion. The MADs are presented in Fig. 3 as
a function of magnitude and redshift. Adopting a size of two or
more significantly and similarly improves the performance over
the baseline. This confirms our initial hypothesis that processing
subsets of bands in parallel prior to merging information helps
the network to capture inter-band correlations.

By contrast, single-band modalities perform similarly to the
baseline at faint magnitudes and worse at bright magnitudes.
The network may have more difficulties extracting inter-band
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Fig. 1. Generic architecture of the multimodality network. The number of parallel blocks is contingent on the number of modalities. The depth
of both the parallel and common blocks will be determined by the type of fusion being implemented (early, middle, or late fusion); however, it is
important to note that the total network depth is fixed at eight (each modality will go through eight inception blocks in total). The same goes for
the average pooling layers; they are performed consistently through the different architectures, before the 1st, 4th, and 6th inception blocks and
the last one after the valid padding convolution layers. The baseline model without the multimodality approach represents a special case, where
all the image bands are grouped into a single modality. The fixed depth allows for a standardized comparison between the different experiments.

correlation information, in this case not available until the
modalities were merged within the network.

To further investigate these results, we analyzed the impact
of modalities of sizes two and four under early, middle, and late
fusion, as shown in Fig. 4. We can observe the relatively minor
impact of the modality size under the three different configu-
rations. We conclude that the impact of modality size does not
depend on the stage of fusion.

5.2.3. Order of modalities

Here we examine the impact of modalities based on the wave-
length closeness of their bands. Assuming two-band modali-
ties and early fusion, we tested four combinations of orders:
first; first and second; first, second, and third; and finally
second and third orders (the different orders are detailed in
Table C.2).
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Fig. 2. MAD of the redshift estimation as a function of magnitude (i band, left panel) and spectroscopic redshift (right panel) for different types of
fusion, compared to the baseline (single modality) model for the HSC 9-band dataset. The gray histograms represent the magnitude and redshift
distributions, the horizontal lines show the mean MAD, and the error bars represent the standard deviation between the five validation folds. The
data were split into eight x-axis bins containing the same number of objects, each point representing the center of the bin.

Fig. 3. Same as Fig. 2 but for early fusion, first-order modality models with a different number of bands for each modality, compared to the baseline
model.

Fig. 4. Same as Fig. 2 but for modalities of size two and four using the three different stages of fusion, compared to the baseline model.

As illustrated in Fig. 5, we find that experiments that
included first-order modalities performed optimally. The experi-
ment using only second and third orders was comparable to the
baseline, showing that the network was not able to extract addi-
tional relevant inter-band correlation information that could out-
perform the baseline. These results are in line with expectations,
as adjacent bands express with the highest resolution the color
information directly related to redshift estimation.

6. Results

Based on the above experiments, we evaluated the multimodal
approach using two-band, first-order modalities and performed
cross-validations on different datasets.

The SDSS MGS dataset (r ≤ 17.8) provides a benchmark
to compare our work with other deep learning redshift estimates

(P19; Dey et al. 2022; Hayat et al. 2021) and with the baseline
model (Treyer et al. 2024). Results reported in Table 2 show that
the multimodal approach outperforms all previous works both in
terms of the MAD and the outlier fraction, while not worsening
the baseline bias.

We compared the multimodal network with the baseline of
the CFHTLS (five bands) and HSC (six and nine bands). Addi-
tionally, we tested the network trained on the HSC nine bands on
the low-resolution spectroscopic samples 3DHST and PRIMUS
and on the high-quality photometric redshift COSMOS2020.
The metrics are reported in Table 3. We also report the relative
gain or loss defined as follows:

G(M) =
|MB| − |MM|

|MB|
(2)
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Fig. 5. Same as Fig. 2 but for different combinations of orders within 2-band modalities and using early fusion, compared to the baseline model.

where MB and MM are, respectively, the baseline and multi-
modality values of a given metric, M. Finally, we estimated the
statistical significance of the differences in metrics (MB − MM)
using the paired bootstrap test detailed in Appendix D. The com-
puted pvalues are reported in Table 3, with statistically significant
differences under a 5% risk threshold highlighted in green.

The results in Table 3 show that the multimodal approach
offers statistically significant improvements of the MAD, rang-
ing from 2% to 10%, across all datasets. In the case of 3DHST,
the difference is significantly under a 7% risk threshold. Similar
improvements are also observed in the outlier fractions, rang-
ing from 4% to 30%. However, the improvements in the HSC
nine and six bands and the 3DHST datasets were not statistically
significant under a 5% risk threshold. Regarding the bias, the
baseline approach performs better on the HSC nine bands and
CFHTLS, but with no significant difference. The two-band, first-
order setting achieves these results while being only 1.2 times
slower than the baseline.

We investigated the relation between the impact multimodal-
ity and the number of bands. Figure 6 illustrates the multimodal-
ity gains compared to the baseline when training the models with
different band combinations, specifically grizy, ugrizy, ugrizy j,
ugrizy jh, and ugrizy jhk, using the HSC nine-band subset. We
can see that the impact of multimodality on the MAD becomes
more pronounced as more bands are incorporated into the
training.

Its effect on the outlier fraction is less conclusive, as it does
not exhibit a consistent pattern with the increasing number of
bands.

In conclusion, our experiments show that the multimodal-
ity approach offers a statistically significant improvement in the
precision of the redshift estimation. This is observed in both the
MAD and the outlier fraction across all datasets. The impact is
less conclusive for the mean bias.

7. Discussions

7.1. Dependence on network architecture

We evaluated the integration of multimodality in three additional
network architectures: a five-layer CNN, a ten-layer CNN, and
a 21-layer CNN. The impact of multimodality on the MAD of
redshift estimates for these architectures, as well as the incep-
tion baseline, is depicted in Fig. 7. The results show a con-
sistent improvement when multimodality is incorporated. Its
impact was more substantial in the deeper networks compared
to the shallower five-convolution-layer network. We conclude
that the effectiveness of multimodality is enhanced when the net-

Table 3. Impact of multimodality on different datasets.

Experiences σ η 〈∆z〉 Count
10−3 % 10−3 103

SDSS
Baseline 07.99 0.18 0.34 516.5
Multimodal 07.85 0.16 0.31 516.5
G(M) 1.74% 10.88% 6.28% –
pvalue 0.0 0.0 0.0 –

CFHTLS
Baseline 16.01 0.85 0.22 108.5
Multimodal 15.35 0.79 0.29 108.5
G(M) 4.13% 7.22% −24.05% –
pvalue 0.0 0.0002 0.15 –

HSC-6b
Baseline 09.14 1.25 1.97 46.8
Multimodal 08.87 1.20 1.63 46.8
G(M) 2.96% 3.94% 17.33% –
pvalue 0.0 0.0575 0.04 –

HSC-9b
Baseline 08.41 1.24 1.58 33.1
Multimodal 07.60 1.19 1.64 33.1
G(M) 10.1% 3.67% −3.1% –
pvalue 0.0 0.11 0.40 –

HSC-9b with 3DHST redshifts
Baseline 14.44 2.46 13.28 2.2
Multimodal 13.88 2.37 10.6 2.2
G(M) 3.93% 3.71% 20.19% –
pvalue 0.069 0.27 0.10 –

HSC-9b with PRIMUS redshifts
Baseline 12.34 2.66 11.84 15
Multimodal 11.38 1.85 09.23 15
G(M) 7.74% 30.4% 22.01% –
pvalue 0.0 0.0 0.0 –
HSC-9b with COSMOS2020 photometric redshifts

Baseline 12.01 1.01 8.74 43.7
Multimodal 11.46 0.83 6.82 43.7
G(M) 4.57% 17.08% 21.97% –
pvalue 0.0 0.0 0.0001 –

Notes. The MAD, the outlier fraction, and the bias are reported for the
baseline and the multimodal models, along with the relative difference
and the pvalue as a measure of the significativity of the observed dif-
ference. The sizes of the datasets down to i = 24 are reported in the
last column. For the nine-band experiments, some objects were missing
the j band, so we used redshift estimations of models trained in those
conditions.
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Fig. 6. Comparison of the multimodality gain, G(M), using 5, 6, 7, 8,
and 9 bands for the MAD and the outlier fraction on the HSC nine-band
dataset.

Fig. 7. Comparison of the multimodality impact on the MAD of the
redshift estimation in the HSC 9-band dataset for 4 different network
architectures.

work architecture is sufficiently deep. Finally, we note that these
results are unrelated to the number of network parameters, as
shown in Appendix C.

7.2. Dependence on training set size

We examined the effect of multimodality for various sizes of
training set using the HSC nine-band dataset. Figure 8 presents
the results when training on 40%, 60%, 80%, and 100% of the
training set. The results show that the multimodality improve-
ment relative to the baseline remains consistent regardless of the
training set size. We conclude that the effectiveness of multi-
modality is independent of the number of training objects.

7.3. Multimodality impact on training

The positive impact of multimodality can have different expla-
nations. The most intuitive interpretation is that each parallel
block that processes a subset of the input bands specializes
in extracting information from the correlations between those
bands, ultimately allowing the network to capture more relevant
information than the baseline model.

Alternatively, noise may be present in the correlations
between all the bands, causing an overfit. This noise would not
have a consistent relation with the redshift but the network could

Fig. 8. Comparison of the multimodality impact on the MAD of the
redshift estimation in the HSC 9-band dataset for four different sizes of
the training set.

Fig. 9. MAD of the redshift estimation for two-band, first-order modal-
ities with and without an additional modality containing all the bands,
compared to the baseline model.

map it to the specific redshifts of the training sources, allow-
ing it to optimize the training loss at the expense of extracting
more general features. This would result in a suboptimal perfor-
mance on the validation set. Unlike the baseline, the multimodal
network would avoid over-fitting this noise as the correlations
between all the bands are not directly available, and so this opti-
mization path would be more difficult to attain.

To investigate which of these two mechanisms better
explains the observed gain, we designed the following experi-
ment using the HSC nine-band dataset: we added a new modal-
ity containing all nine images to the existing modalities of
the multimodal network. If the noise present in the correlation
between the bands, which is preserved in the added modality,
offers the easiest optimization path and facilitates over-fitting,
we would expect the performance to degrade back to the base-
line model. If, on the other hand, the benefit of multimodality
arises from improved extraction of information, the additional
modality should have little impact on the performance.

The results presented in Fig. 9 point to the latter option. We
conclude that the multimodality approach gains from extracting
more information rather than from reducing over-fitting.

7.4. Modality dropout

In order to study the impact of specific inter-band correlations on
redshift estimation, we used a specific type of dropout technique,
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Fig. 10. Evolution of the MAD as a function of redshift for the multimodal model with one modality dropped at a time. All the single-band
modalities dropped are shown with gray lines as they show similar performances. We also include, for comparison, the baseline model (single
modality, dash-dotted cyan line), the reference multimodal model (dash-dotted black line), and the multimodal model trained with dropout but with
no modality dropped in the test (dash-dotted dark red line). Finally, we have the different two-band modalities dropped one at a time. Labels on
the left panel are ranked according to their mean MAD. The gray histogram shows the redshift distribution of the HSC nine-band test sample. The
test objects are evenly distributed between the line points, which are slightly shifted on the x axis for better visual distinctiveness. The horizontal
lines on the right represent the mean MAD of each experiment.

whereby the output of a given modality was entirely dropped,
allowing us to weigh its relative importance on network perfor-
mance. We aimed to study the impact of the correlations between
each two bands and not necessarily the bands themselves.

To do so, we trained a network with two-band, first-order
modalities and nine single-band modalities, to guarantee that no
information was lost in the test phase when a two-band modality
was dropped. During the training phase, we randomly dropped
zero to five modalities for each batch, while during the test, we
consistently dropped one specific modality.

Figure 10 shows how the test MAD is affected as a func-
tion of redshift. The models are ranked according to their impact
on the mean MAD value. We also show for comparison the base-
line model, our reference multimodal model, and the multimodal
model trained with modality dropouts, but tested with no modal-
ity dropped. The results can be summarized as follows:

– The network trained with dropouts but tested without per-
forms similarly (marginally lower) to the reference multimodal
model. This reflects how the classical model keeps a good level
of generalization.

– When dropping only one single-band modality, the results
are also very close to the reference multimodal model, whichever
band is dropped. This shows that the network focuses more on
the two-band modalities, as we might expect.

– When dropping a two-band modality, the impact is very
dependant on which one is dropped. Modalities with optical
bands, g_r and r_i, are overall the most important, with notice-
able trends with redshift.

The blue modality, u_g, is critical at low redshifts, z ≤ 0.5,
while j_h, i_z, and z_y are more important at high redshifts,
z ≥ 1.

To conclude, the modality dropout test allows us to confirm
that our multimodal model retains a good level of generalization
and to highlight the importance of specific pairs of bands at dif-
ferent redshifts, as do SED fitting methods but with much better
accuracy.

8. Conclusion

We introduce multimodality as a novel approach to redshift esti-
mation in the framework of supervised deep learning. The input
consists of galaxy images in several broadband filters, labeled
with a spectroscopic redshift. Subsets of bands (modalities) are
first processed separately in parallel. Their respective feature
maps are then combined at an appropriate stage in the network
and fed to a common block. We find that this technique enhances
the extraction of color information independently of the net-
work number of parameters and that it significantly improves
the redshift precision for various datasets covering a range of
characteristics (depth, sky coverage, resolution). In particular,
our approach achieves new state-of-the-art results for the widely
used SDSS MGS dataset.

We explored modalities of different sizes and different wave-
length proximity with different stages of fusion. We conclude
that the early fusion of modalities composed of two adjacent
bands offer the best results with minimal complexity.
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Like other CNNs, our multimodal network fully exploits the
information present at the pixel level but the prior parallel pro-
cessing of bicolor modalities captures additional color informa-
tion that improves its outcome. We find that the improvement
in photometric redshift precision is statistically significant, does
not depend on a specific CNN architecture, and increases with
the number of photometric filters available. This scheme, com-
bined with a modality dropout test, allows us to highlight the
impact of individual colors on the redshift estimation as a func-
tion of redshift.

Future work will focus on leveraging the advancements made
in this study to produce redshifts for the entire HSC dataset. This
will present a number of challenges, such as domain mismatch
between different multiband image acquisition conditions and
the scarcity of spectroscopically confirmed redshifts. Despite
these challenges, the use of multimodality and other developed
deep learning techniques have the potential to provide reliable
estimates of photometric redshift, which will deliver valuable
insights into the large-scale structure of the universe and the evo-
lution of galaxies.
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Appendix A: Classification or regression

To study the impact of both classification and regression training
strategies, we tested different models on both the HSC nine-band
and the CFHTLS datasets using the single modality scheme.

We tested training the model with the regression module
using three different losses:

– the root-mean-square error (RMSE),
RMS E =

√
mean((zpred − zspec)2)

– the mean absolute error (MAE),
MAE = mean(|zpred − zspec|)

– the normalized MAE (NMAE, with the residuals normalized
by the value of the label),
NMAE = mean( |zpred−zspec |

zspec+1 )
We also tested a model trained solely with classification, and one
aided by a MAE regression, by combining with equal weight the
two loss functions in the training.

The results of these experiments are presented in Table A.1.
For the two datasets, the performances with the regression

appear to depend on the choice of the loss function, with the
normalized MAE leading to the best performances. Overall,
the classification-based models outperform the regression ones
(especially for the MAD) for both datasets, independently of the
depth and number of available bands. It is even slightly improved
when the classification is co-optimized with a regression for the

Table A.1. Global performances of classification- and regression-based
models (see text) for the HSC nine-band and CFHTLS datasets.

Experiences σ η < ∆z >
10−3 % 10−3

HSC 9 bands
Classification and Regression MAE 08.36 1.24 0.68

Classification 08.66 1.33 1.20
Regression RMSE 18.99 1.33 1.86
Regression MAE 13.04 1.26 1.57

Normalized Regression MAE 12.03 1.25 1.15
CFHTLS

Classification and Regression MAE 16.28 0.99 1.43
Classification 16.28 0.98 1.46

Regression RMSE 20.79 0.96 1.18
Regression MAE 18.26 0.99 1.10

Normalized Regression MAE 17.95 0.99 -0.56

HSC dataset (we used the classification module estimation in
this case).

In conclusion, we adopted a classification model aided
by a regression for all the experiments presented in this
work.
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Appendix B: Multimodality impact on outlier
fraction and bias

We previously detailed the impact of the different multimodal
configurations on the MAD metric. Here we show the evolution

of the outlier fraction and bias as a function of the i band mag-
nitude and the estimated redshift, zpred. We can see in Figures
B.1, B.2, and B.3 that different multimodality configurations
only slightly improve the outlier fraction and have little impact
on the bias compared to the baseline model.

Fig. B.1. Comparison of the outlier fraction and bias versus the band i magnitude and predicted redshift of different fusion types and the single
modality baseline on the nine-band sources from the HSC dataset

Fig. B.2. Same as Fig B.1 but for early fusion, first-order modality models with a different number of bands for each modality and the single
modality baseline.
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Fig. B.3. Same as Fig B.1 but for different modality order combinations for two-band modalities using early fusion and the single modality
baseline.

Fig. B.4. Same as Fig 2 but for early, very early and extremely early fusion models and the baseline model.
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Appendix C: Configuration details

Table C.1. Trainable parameter count for various models

Experience Parameters (106)

Baseline 19.03
2 bands first order

Extremely early fusion 9.52
Very early fusion 11.16
Early fusion 12.51
Middle fusion 15.22
Late fusion 17.94

Early fusion first order
1 band 8.80
2 bands 12.51
3 bands 17.23
4 bands 22.11
5 bands 26.29

Early fusion 2 bands
1st and 2nd order 17.37
1 st, 2nd and 3rd order 21.54
2nd and 3rd order 15.98

Notes. Number of trainable parameters for some models grouped by
fusion stage, modality size, and modality order.

Table C.1 shows the number of parameters for various exper-
iments. We note that certain multimodal models outperformed
the baseline while having a lower number of parameters, like the

Table C.2. Modality bands for various configurations

2 bands 3 bands 4 bands

1st order u_g, g_r, u_g_r, g_r_i, u_g_r_i, g_r_i_z,
r_i, i_z, r_i_z, i_z_y, r_i_z_y, i_z_y_j,
z_y, y_j, z_y_j, y_j_h, z_y_j_h, y_j_h_k
j_h, h_k j_h_k

2nd order u_r, g_i, u_r_z, g_i_y, u_r_z_j, g_i_y_h,
r_z, i_y, r_z_j, i_y_h, r_z_j_k
z_j, y_h, z_j_k]

j_k
3rd order u_i, g_z, u_i_j, g_z_h,

r_y, i_j, r_y_k
z_h, y_k

Notes. A detailed breakdown of the specific bands that are included in
each modality for all the first-, second-, and third-order modalities of
sizes 2, 3, and 4 in a nine-band dataset.

two-band first-order modalities with early fusion. Additionally,
other models with a higher number of parameters, such as the
five-band first-order modalities with early fusion, also showed
improved performance. These results reinforce our conclusion
that the effectiveness of the multimodal approach relies not on
the number of parameters but rather on its superior capacity to
extract relevant information.

Table C.2 details the composition of first-, second-, and third-
order modalities, and the sizes of two, three, and four bands per
modality when using the ugrizyjhk bands.
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Appendix D: Paired bootstrap test

To assess the statistical significance of the observed differ-
ence between the baseline and the multimodal approaches,
we used the paired bootstrap significance test introduced by
Efron & Tibshirani (1994) and frequently used in the field of nat-
ural language processing (Berg-Kirkpatrick et al. 2012; Koehn
2004). It is a nonparametric hypothesis test with no assump-
tion about the distribution of the data. For a given dataset, D,
we defined

δ(D) = MM(D) − MB(D), (D.1)

where MM(D) and MB(D) are the metrics of the multimodal
and the baseline model for the dataset, D, respectively. We first
assumed that MM is, contrary to what we believe, equal or worse
than MB. This is known as the null hypothesis, H0. Next, for
a given dataset, Dtest, we estimated the likelihood, pvalue(Dtest),
of observing, under H0 and on a new dataset, D, a metric gain,
δM(D), equal to or better than δM(Dtest), so that

pvalue(Dtest) = P(δ(D) ≥ δ(Dtest)|H0). (D.2)

A low pvalue(Dtest) suggests that observing δ(Dtest) is unlikely
if H0 were true, so we can reject H0 and conclude that the metric
gain, δ(Dtest), of MM compared to MB is significant and not just
a random fluke.

The pvalue(Dtest) is hard to compute and must be approxi-
mated as we don’t have new datasets to test on, so we used the

paired bootstrap method to simulate this. We sampled from the
test set, with replacement, K, same-size samples as the test set,
on which δ(Dtest) was computed. We refer to these samples as
bootstrapped samples.

Naively, we may think that we should compute the frequency
of δ(Dbootstrapped) ≥ δ(Dtest) over the K samples as an approxi-
mation of pvalue(Dtest). However, these samples aren’t suitable
for our null hypothesis H0 since they were sampled from the test
set, causing their average δ(Dbootstrapped) to be around δ(Dtest),
contrary to what H0 requires. Because H0 assumes that the ini-
tially observed difference, δ(Dtest), is due to a random fluke, the
solution is to shift the δ(Dbootstrapped) distribution by this value,
so we obtain

pvalue(Dtest) = Freq(δ(Dbootstrapped) − δ(Dtest) ≥ δ(Dtest)) (D.3)

The results reported in Table. 3 were obtained with a signifi-
cance test assuming K = 104.

Fig. D.1 illustrates two cases for the HSC nine-band dataset:
the left panel shows the distributions of the MAD of the boot-
strapped samples, where the performance gain is significant;
the right panel shows the distributions of the outlier fractions
where the gain is not significant under a 5% risk threshold. The
green histogram is the original distribution that does not satisfy
H0. The red histogram is the shifted one that satisfies H0. The
blue line represents the difference initially observed on the test
dataset, δ(Dtest), and the pvalue(Dtest) corresponds to the fraction
of the red histogram exceeding this value.

Fig. D.1. Distribution of the MAD and outlier fraction differences for a K = 104 paired bootstrap test to assess the significance of the difference
between MM and MB on the HSC nine-band test dataset.
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