
HAL Id: hal-04484760
https://hal.science/hal-04484760

Submitted on 29 Feb 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The LORELI database: 21 cm signal inference with 3D
radiative hydrodynamics simulations

R. Meriot, B. Semelin

To cite this version:
R. Meriot, B. Semelin. The LORELI database: 21 cm signal inference with 3D radiative hydro-
dynamics simulations. Astronomy and Astrophysics - A&A, 2024, 683, pp.A24. �10.1051/0004-
6361/202347591�. �hal-04484760�

https://hal.science/hal-04484760
https://hal.archives-ouvertes.fr


A&A, 683, A24 (2024)
https://doi.org/10.1051/0004-6361/202347591
c© The Authors 2024

Astronomy
&Astrophysics

The LoReLi database: 21 cm signal inference with 3D radiative
hydrodynamics simulations

R. Meriot and B. Semelin

Observatoire de Paris, PSL Research University, Sorbonne Université, CNRS, LERMA, 75014 Paris, France
e-mail: romain.meriot@obspm.fr

Received 28 July 2023 / Accepted 23 October 2023

ABSTRACT

The Square Kilometer Array is expected to measure the 21 cm signal from the Epoch of Reionization (EoR) in the coming decade,
and its pathfinders may provide a statistical detection even earlier. The currently reported upper limits provide tentative constraints on
the astrophysical parameters of the models of the EoR. In order to interpret such data with 3D radiative hydrodynamics simulations
using Bayesian inference, we present the latest developments of the Licorice code. Relying on an implementation of the halo
conditional mass function to account for unresolved star formation, this code now allows accurate simulations of the EoR at 2563

resolution. We use this version of Licorice to produce the first iteration of LoReLi, a public dataset now containing hundreds of
21 cm signals computed from radiative hydrodynamics simulations. We train a neural network on LoReLi to provide a fast emulator
of the Licorice power spectra, LorEMU, which has ∼5% rms error relative to the simulated signals. LorEMU is used in a Markov
chain Monte Carlo framework to perform Bayesian inference, first on a mock observation composed of a simulated signal and thermal
noise corresponding to 100 h observations with the SKA. We then apply our inference pipeline to the latest measurements from the
HERA interferometer. We report constraints on the X-ray emissivity, and confirm that cold reionization scenarios are unlikely to
accurately represent our Universe.
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1. Introduction

The first billion years of the evolution of the Universe constitute
a key epoch in its development on large scales. Following the
hierarchical theory of structure formation and the physics regu-
lating star formation, the gas contained in massive halos cools
down, subsequently fragmenting, collapsing, and giving birth to
the first stars. This marks the end of the “dark ages” in the history
of the Universe. There are several processes responsible for this
cooling. The atomic hydrogen cooling channel allows significant
cooling down to ∼104 K, that is below the virial temperature
of halos with masses of greater than Mmin ≈ 108 M�, allowing
gravothermal collapse and star formation. Molecular hydrogen
cooling brings this minimal mass for star formation down to
Mmin ≈ 105 M�, in so-called “mini halos”. The emergence of
the first stars and galaxies, in a period called Cosmic Dawn (CD,
z ∼ 15−30), greatly impacted the neutral gas in the intergalactic
medium (IGM). Ultraviolet radiation from the first generation of
sources ionized their local environment, while the still neutral
IGM, farther away from the sources, became heated by X-ray
emissions. During the Epoch of Reionization (EoR, z ∼ 6−15),
the ionized regions quickly grew until they covered the entire
IGM. The 21 cm line of neutral hydrogen is emitted by the neu-
tral hydrogen in the IGM and its intensity fluctuations are shaped
by the astrophysical properties of the first sources, making it an
extremely promising source of information regarding the first
billion years of the evolution of the Universe. Furlanetto & Peng
(2006) provide a review of this topic.

While valuable, the detection of this signal remains an obser-
vational challenge. Foreground emissions, which are roughly
10 000 times stronger than the expected intensity of the 21 cm

signal, must be subtracted from observed data or avoided in
order to extract the cosmological signal. The subtraction requires
the very good handling of radio frequency interference, a deep
and exact sky model, and accurate direction-dependent cali-
bration (see e.g. Mertens et al. 2020). Many instrumental pro-
grams are tackling this challenge, the most ambitious being the
Square Kilometer Array (SKA). The unprecedented sensitiv-
ity of the SKA will enable us to probe this epoch with suf-
ficient signal-to-noise ratio to build a full tomography of the
signal between z ∼ 27 and z ∼ 6, providing a comprehen-
sive view of how reionization unfolded. The observation of the
21 cm signal by the SKA will start by the end of this decade,
but several instruments are already trying to measure summary
statistics of the signal. A first detection of the global (sky-
averaged) signal at z ∼ 16 was announced by Bowman et al.
(2018), who used the Experiment to Detect the Global EoR Sig-
nature (EDGES) instrument. The features of this detection, in
particular the strong intensity of the signal in absorption, are not
compatible with standard models of reionization and this result
has not been confirmed by other global signal experiments, such
as SARAS-3 (Singh & Nambissan 2022). Interferometers such
as the Low-Frequency Array (LOFAR), the Murchison Wide-
field Array (MWA), the New Extension in Nançay Upgrad-
ing LOFAR (NenuFAR), and the Hydrogen Epoch of Reioniza-
tion Array (HERA) aim to measure the power spectrum of the
21 cm signal. While no detection has yet been claimed, upper
limits on the spectrum have been devised (e.g., Mertens et al.
2020; Trott et al. 2020; Abdurashidova et al. 2023; Munshi et al.,
in prep., and references therein). In the coming years, these
instruments are expected to detect the signal or to produce upper
limits that are informative enough to constrain nonexotic models
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of the EoR at various scales and redshifts. Given these obser-
vational prospects, in order to extract astrophysical information,
the community must provide accurate models of the first billion
years of evolution of the Universe, as well as inference meth-
ods linking raw observational data to the astrophysical processes
encoded in the models.

On the one hand, sustained effort has been put into devel-
oping theoretical and numerical approaches to model the EoR,
ranging from fast semi-analytical codes (e.g., Mesinger et al.
2011; Santos et al. 2010; Cohen et al. 2017; Murray et al. 2020;
Reis et al. 2021) to expensive 3D radiative transfer simula-
tions (e.g., Ciardi et al. 2003; Mellema et al. 2006; Baek et al.
2010; Semelin et al. 2017; Ocvirk et al. 2020; Lewis et al. 2022;
Doussot & Semelin 2022). Fast codes compute the dynamics of
dark matter in the linear regime and typically assume a con-
stant gas-to-dark-matter density ratio. On large scales (more
than a few cMpc), this yields similar results to full numeri-
cal simulations that compute the nonlinear dynamics of gravity
and hydrodynamics. However, star formation, a crucial process
when modeling the EoR, occurs on small scales. This leads to
very different modeling approaches. In high-resolution N-body
simulations, individual dark matter halos are resolved. Star for-
mation within the halos can then be computed from the local
properties of the gas (typically density and temperature), though
the actual equations linking gas properties to star formation
may differ between simulation codes. One-dimensional (spher-
ically symmetric) radiative transfer simulations assign baryons
to halos formed in pre-computed dark-matter-only simulations
(Krause et al. 2018; Ghara et al. 2018; Schaeffer et al. 2023)
using simple recipes, and compute star formation from there.
Semi-analytical codes usually do not resolve individual halos
but estimate populations of halos and stars in a given region,
through for instance the CMF formalism (Lacey & Cole 1993).
These different modeling approaches can potentially induce dif-
ferent features in the reionization field. The second critical step
is the process through which UV and X-rays are accounted
for. Fully numerical simulations typically include 3D radiative
transfer through the use of M1 or various ray-tracing methods,
while semi-analytical codes identify ionized and heated regions
through simple (and easy to compute) photon budget arguments.
A comprehensive evaluation of the impact of these different
modeling approaches on the interpretation of the 21 cm signal
remains to be performed.

On the other hand, applications of inference methods to
the 21 cm signal have been under development in the last
10 yr. The most widely employed technique is undoubtedly
the Markov chain Monte Carlo (MCMC) algorithm (see e.g.,
Greig & Mesinger 2015, 2018; Schmit & Pritchard 2018). In
this approach, the posterior distribution of the parameters is
explored in a guided random walk. This method is guaranteed
to converge towards the true posterior probability (under some
reasonable assumptions). However, it requires that an explicit
likelihood can be formulated and it might require hundreds of
thousands or millions of steps (and thus of realisations of the
model) to produce a good estimate of the posterior, making its
use only suited to fast numerical codes. This led the community
to explore other inference techniques, such as training artificial
neural networks to do the inference (Shimabukuro & Semelin
2017; Doussot et al. 2019; Kendall & Gal 2017; Neutsch et al.
2022). While requiring fewer simulations in the training sam-
ple, convergence towards the true maximum likelihood or true
posterior is in this case not guaranteed, as the training of the
neural network can produce a systematic bias or a residual
additional variance. Another noteworthy family of methods is

called “simulation-based inference” or “likelihood-free infer-
ence” (Alsing et al. 2018; Alsing & Wandelt 2018; Zhao et al.
2022; Prelogović & Mesinger 2023). These methods rely on the
fact that a simulation is in and of itself a draw in the joint prob-
ability of the observable data and the model parameter, a joint
probability that need not necessarily be explicitly writable. The
joint probability distribution is then fitted using a neural net-
work acting as a parametric function, allowing the straightfor-
ward computation of the posterior.

Due to computation time constraints, most inference meth-
ods have until now only been applied to signals generated using
semi-numerical approaches, as they typically are a hundred thou-
sand times faster than fully numerical simulations. Indeed, per-
forming a single MCMC inference with the Licorice code, for
example, running at high resolution would require 1011 CPU
hours of computation, well beyond current capabilities. Perform-
ing inference with such a code at a reasonable cost therefore
requires the use of machine-learning-based approaches, which
can reduce the number of simulations to a few thousand. How-
ever, even in this case, a decrease in resolution is necessary to
reach an affordable computing cost. This decrease must be com-
pensated for by a significant amount of subgrid modeling. This
constitutes the approach at the heart of this work, where we
use of the order of 103 simulations to chart a 4D astrophysi-
cal parameters space with 2563 simulations in 300 cMpc boxes.
When then train neural network emulators for the power spec-
trum of the signal and use them to perform MCMC inference.

In this paper, we present LoReLi, a collection of numerical
simulations of the EoR using the Licorice code. In Sect. 2, we
explain the recent modifications of the code that make such a
database possible. In Sect. 3, we give details about the LoReLi
database, and in Sect. 4, we show the results of parameter infer-
ence applied to both mock data and the most recent data from
the HERA Collaboration (Abdurashidova et al. 2022), which we
obtain using an emulator of the code trained on LoReLi.

2. The LICORICE code

The simulations of the LoReLi dataset were run using
the Licorice simulation code (Semelin et al. 2007, 2017;
Baek et al. 2009; Semelin 2016). Here, we provide a brief
overview of the code and details about recent develop-
ments. Licorice is an N-body simulation code dealing with
baryons and dark matter particles. Dynamics is solved using
a TREE+SPH method (Springel et al. 2001). Radiative transfer
in UV and X-ray continuum is coupled to dynamics through a
Monte-Carlo scheme on an adaptive grid: photon packets are
emitted in random directions by source particles (baryon par-
ticles with a nonzero stellar fraction), propagate at the speed of
light, redshift, and deposit their energy in gas particles lying in
the encountered cells depending on local density. They represent
UV ionizing radiation and X-rays. “Hard” X-rays, after propa-
gating over a distance larger than the size of the simulation box,
are added to a uniform background. The ionization and temper-
ature states of each gas particle are then updated several times
per dynamical time step and the latter affect dynamics through
the pressure and artificial viscosity terms in the SPH scheme
(Monaghan 1992; Springel et al. 2001).

2.1. Star formation model

In previous iterations of Licorice, gas particles with an SPH-
calculated overdensity δ greater than a fixed threshold δthresh
transform – at each dynamical time step – a fraction of their
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gas mass into stellar mass following a Schmidt-Kennicutt law of
exponent one, using

d f∗ = ( fcoll − f∗)
dt
τ
, (1)

where f∗ is the current stellar fraction of the particle, fcoll = 1
if δ > δthresh and f∗ otherwise, d f∗ is the newly created stellar
fraction, dt the duration of a time step, and τ is an astrophysical
parameter of the simulation representing the typical gas-to-stars
conversion timescale, thus controlling the star formation rate
(SFR). However, this star formation numerical method is sen-
sitive to an insufficient resolution: failure to resolve the small-
scale modes of the density field will smooth out the density
peaks and prevent particles from reaching the density threshold
for star formation, causing Eq. (1) to underestimate the SFR.
Essentially, a simulation will lack the star formation of unre-
solved star-forming halos. The mass of the lightest of these halos
is estimated to be ∼108 M�, as it corresponds to a virial temper-
ature of 104 K, the lowest temperature reached through the cool-
ing of atomic hydrogen. In boxes of hundreds of cMpc, which
is large enough to capture relevant large-scale fluctuations of the
21 cm signal, resolving such halos requires more than 40963 par-
ticles and 107∼8 cpuh. This motivates a new implementation in
the code of a subgrid model designed to provide a better estimate
of star formation in unresolved halos, without affecting resolved
ones.

2.2. The conditional mass function subgrid model

The chosen subgrid model relies on the conditional mass func-
tion (CMF) formalism (Lacey & Cole 1993) to estimate the
halo mass functions of regions below the spatial resolution
limit. In the CMF theory, the density of spheres of decreas-
ing radii follows a random walk, and statistically estimating the
radius at which the threshold δc is crossed for the first time
gives the CMF of regions parameterized by their radius R0 and
overdensity δ0.

In extended Press-Schechter (EPS), the simplest formulation
of the CMF theory, the fraction of the mass of a region (again
parameterized by a radius R0 and overdensity δ0) that lies in col-
lapsed halos more massive than Mmin is given by

fcoll = erfc

 δc − δ0√
2(σ(Mmin)2 − σ2

0)

 , (2)

where σ(M) is the density variance on mass scale M and δc is the
linear overdensity of collapse. The classical theory of structure
formation predicts δc ≈ 1.68.

Sheth et al. (2001) devised a more accurate formalism (ST)
to calculate the mass function. During the random walk, instead
of crossing a constant threshold of size δc, a “moving barrier”

B(σ2, z) =
√

aδc[1 + β(a
δ2

c

σ2 )−α] (3)

is adopted. This extends the EPS formalism from the physics
of spherical collapse to that of ellipsoidal collapse. α ≈

0.615, β ≈ 0.485 are parameters whose values come from ellip-
soidal dynamics and a ≈ 0.707 is fitted to accurately model
simulations. Rubiño-Martín et al. (2008), Tramonte et al. (2017)
provided an expression for the CMF associated with ST:

nc(M) = −

√
2
π

dσ
dM

ρ0

M
|T (σ2|σ2

0)|σ

(σ2 − σ2
0)3/2

exp
− (B(σ2, z) − δ0)2

2(σ2 − σ2
0)

 ,
(4)

where

T (σ2|σ2
0) =

5∑
n=0

(σ2
0 − σ

2)n

n!
∂n[B(σ2, z) − δ0]

∂(σ2)n . (5)

One can then easily calculate Mcoll, the mass of the region con-
tained in halos more massive than Mmin:

Mcoll = Vregion

∫ Mregion

Mmin

nc(M)MdM, (6)

where Vregion is the Lagrangian volume of the region and Mregion
its mass. We then calculate the collapsed fraction as

fcoll =
Mcoll

Mregion
. (7)

Both EPS and ST CMFs are implemented in the version of
Licorice used in the present work. In practice, we calculate
fcoll for each gas particle. To do so, we calculate the overdensity
δ0 =

ρ0−ρm
ρm

of the region they represent, where ρ0 is the SPH-
calculated density of the particle multiplied by the cosmological
ratio Ωm/Ωb. The volume of the region is given by V = γ 4

3πR3
0,

where R0 is the SPH smoothing radius. While the formulation of
the CMFs relies on top-hat filters, the SPH smoothing kernel is
not a top-hat, and so the γ parameter is tuned to represent the vol-
ume of the region of identical density smoothed with a top-hat
kernel. Motivated by the fact that the integral of the SPH kernel
reaches 99% of its maximum value past ∼0.7R0, we find γ = 0.4
to be a reasonable choice, and indeed this choice is validated by
the resolution study presented below.

We use the resulting value of fcoll in Eq. (1) instead of setting
fcoll depending on some density threshold. This is done either
with Eq. (2) when using the EPS formalism, or with Eqs. (4), (6)
and (7) when using ST.

A final subtlety lies in the fact that in Licorice, all gas par-
ticles with a nonzero stellar fraction are considered sources of
photons. However, this CMF formalism assigns a strictly pos-
itive fcoll to all particles. This causes particles to behave in an
unphysical manner, as they instantly turn into sources at the
beginning of the simulation with infinitesimal stellar fractions.
To avoid this, a method to stochastically assign fcoll was adopted:
when d fcoll, the difference in fcoll of a particle between one time
step and the next, is smaller than d fcoll,min = Mmin

Mregion
, d fcoll,min is

assigned to the particle with a probability d fcoll
d fcoll,min

. This effectively
prevents very weak, unphysical star formation at very high red-
shifts (z & 25−30 depending on Mmin, approximately when star
formation starts in high-resolution simulations) while ensuring
that the average star formation density (SFRD) remains identi-
cal to that of the nonstochastic model.

Figure 1 shows how the HMF of HIRRAH-21, a high-
resolution Licorice simulation (20483 particles, with no sub-
grid model) presented in Doussot & Semelin (2022), compares
with the PS and ST models at different redshifts. The HMF of
HIRRAH-21 was calculated by finding halos in the simulation
using a Friends-of-Friends (FoF) algorithm. We find excellent
agreement with the ST HMF, which lies a couple orders of mag-
nitude above the PS HMF. This is not unexpected, given the
findings of Reed et al. (2007), and this difference in the HMFs
necessarily appears in the CMFs. This justifies the implementa-
tion and use of the ST CMF. However, for practical reasons, in
the presented and current version of the LoReLi database, we
compute star formation using EPS and a different choice of an
effective radius (10% smaller, which implies a ∼5% larger σ)
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Fig. 1. Evolution with redshift of the halo mass function of
HIRRAH-21, calculated using a FoF algorithm. We also show the
history of theoretical PS and ST HMFs for the same cosmology.

1010 1011

M (M )
10 15

10 14

10 13

10 12

10 11

10 10

dn
/d

M
(M

pc
3 M

1 )

ST
EPS (scaled)
HIRRAH-21

0.4

0.3

0.2

0.1

0.0

0.1

0.2

0.3

0.4

Fig. 2. Evolution of the simulated CMF with the overdensity δ and of
the theoretical CMFs as predicted by the ST and EPS models. In order
to match the high-resolution simulation, the σ in the EPS model has
been scaled up by 5% on average.

that produces a very similar SFRD. Future versions of the
database will use the ST CMF. A comparison of the conditional
mass functions of HIRRAH-21 at z = 9.48 with the prediction of
ST and EPS (with a σ scaled up by 5%) at different overdensities
δ can be seen in Fig. 2. Good agreement between simulation and
models is observed, with errors roughly within the fluctuations
in the simulated CMF due to cosmic variance. The resulting fcoll
are within ∼30% of each other.

However, the connection between the simulated HMFs and
star formation in the simulation is indirect, as star formation
in Licorice does not necessarily occur in identified dark mat-
ter halos: only the local density of the gas appears in the star
formation equation and not the properties of the dark matter
that may or may not be present nearby. In order to evaluate the
results of this subgrid model on star formation, we compare in
Fig. 3 the star formation rate density (SFRD) of HIRRAH-21
and LORRAH-21, a low-resolution simulation (2563 particles
with the subgrid modeling of star formation). The Mmin param-
eter of the subgrid model was set at 4 × 109 M� to match the
mass of the lightest halos identified by FoF in HIRRAH-21,
and all other astrophysical and numerical parameters are iden-
tical in the two setups except for the dynamical time step:
0.5 Myr in HIRRAH-21 and 7 Myr in LORRAH-21. We observe
very good agreement between the SFRDs of LORRAH-21 and
HIRRAH-21 over the entire redshift range (with an RMS of the
relative error of 0.16 between z ∼ 20 and z ∼ 7, and of 0.09
between z ∼ 15 and z ∼ 7). The largest mismatch (∼30%) occurs
at z ∼ 18−20, when the stochastic attribution of fcoll is the most
relevant. In order to test this subgrid model at a different reso-
lution, Fig. 3 also shows the SFRD in a 10243 simulation (from
the 21SSD database Semelin et al. 2017) with the same parame-
ters as HIRRAH-21 (but a minimal mass of DM halos naturally
set to 3.2 × 1010 M�) and in LORRAH-21, this time with Mmin
set to the same value. In this case as well, excellent agreement is
observed, implying that this CMF formalism is robust to resolu-
tion and can accurately describe the behavior of simulations of
higher resolution.

2.3. Two-phase model of gas particles

The other significant adaptation of the code is the computation
of a specific temperature for the neutral phase within each gas
particle. In previous versions of the code, only the average tem-
perature of particles was considered (see Baek et al. 2009 for
details) and used in 21 cm computations. This may have no con-
sequence in high-resolution simulations, as ionization fronts are
resolved, but becomes an issue as the resolution decreases. Low
resolution implies a high number of partially ionized particles
that actually represent a fully neutral phase and a fully ionized
phase, and using the phase-averaged temperature then leads to
a poor estimation of the intensity of the 21 cm signal. Indeed,
the average temperature between the neutral and ionized gas is
greater than the temperature of the neutral phase alone, often by
orders of magnitude. This does not affect codes that do not allow
partial ionization, such as 21cmFAST (Mesinger & Furlanetto
2007), and post-processing solutions have been designed to cor-
rect for this effect with the significant drawback of having to
run additional simulations without X-rays (Ross et al. 2017). To
compute the temperature of the neutral phase in Licorice, only
the coupling to the dynamics, the cosmological adiabatic expan-
sion of the gas, and the heating by X-rays were considered.
This means computing the temperature evolution equation in
Baek et al. (2009) with only the HI atoms:

dTHI

dt
=

2
3kBnHI

[
−

3
2

kBTHI
dnHI

dt
+ Λ

]
, (8)

where Λ contains the X-ray heating and the adiabatic temper-
ature evolution of the gas due to the dynamics, as well as the
viscosity term of the SPH algorithm from Monaghan (1992),
all computed independently for the neutral phase. This equation
describes the evolution of the internal energy of the neutral phase
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of a particle when interacting with the other particles in the SPH
scheme.

The resulting evolution of temperatures is shown in Fig. 4.
These results confirm that, after the start of reionization (z . 13),
the temperature of the neutral phase of particles in LORRAH-21 is
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Fig. 5. Global 21 cm signal in HIRRAH-21 and LORRAH-21, the latter
calculated using either the phase-averaged temperature 〈T 〉 of particles
or the temperature of their neutral phase THI. This shows that properly
taking into account the temperature of the neutral phase is critical in
order to correctly model the 21 cm signal in low-resolution numerical
simulations.

more than an order of magnitude below their average temperature
and on average significantly lower than the temperature of weakly
ionized (.2%) particles. This temperature is much closer to the
temperature of weakly ionized particles of HIRRAH-21, which
is used as an imperfect proxy for the temperature of the neutral
phase in HIRRAH-21, which was not implemented at the time.

A decrease in resolution also affects the recombination rate
R of the ionized gas, as it depends on the square of the HII den-
sity. The main theoretical approach to counter this effect is to
use a clumping factor. Different versions of the clumping factor
(inspired by different works : Kaurov & Gnedin 2014; Mao et al.
2020; Chen et al. 2020; Bianco et al. 2021) have been imple-
mented in Licorice. However, none of them managed to recon-
cile the reionization timings of LORRAH-21 and HIRRAH-21.

The main cause of this failure is that any error in the cal-
ibration of the parameters of the implemented clumping factor
formula will cause an error in the average ionized fraction in
the simulated box that increases with time. For instance, too
small a clumping factor at a time step n will cause too few
HII to recombine, leaving too many photons per HI at time step
n + 1, further increasing the HII density. In conclusion, none of
the theoretical approaches to the clumping factor or fit to high-
resolution simulations available in the literature were accurate
enough, and matching the reionization timings of our low- and
high-resolution simulations required a calibration of the photon
budget instead. To do so, a “step” model of the UV escape frac-
tion fesc was implemented in LORRAH-21, depending on the
local ionization fraction xion:

fesc =

{
fesc,post if xion > xthresh

fesc,pre if xion < xthresh,
(9)

where fesc,post = 0.1, fesc,pre = 0.01, and xthresh = 0.01
are parameters of this model, calibrated on HIRRAH-21 for
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LORRAH-21. This is justified by the fact that the recombina-
tions missing in LORRAH-21 occur in unresolved dense regions
that are likely to surround the unresolved sources and must
be ionized before letting the UV photons escape the ∼1 Mpc
region represented by a gas particle. The ionization history
of LORRAH-21 using this model is consistent with that of
HIRRAH-21, which is something that was not observed when
the simulation code relied on a clumping factor implementa-
tion. However, an approach using the clumping factor that leads
to equivalent or more accurate results might be found in the
future.

The global 21 cm signals of HIRRAH-21 and LORRAH-21
(calculated with the average temperature and with the HI tem-
perature) are shown in Fig. 5. As expected, the 21 cm signal
is strongly modified when calculated with the phase-averaged
temperature when compared to the result obtained using the HI
temperature. In addition, the 21 cm signal of LORRAH-21 cal-
culated using the HI temperature is in good agreement with the
signal in HIRRAH-21. A small mismatch occurs at z . 11,
as heating occurs in LORRAH-21 approximately 0.15 redshift
units before HIRRAH-21, which is mainly due to the slight dif-
ference in SFRD. Over the whole redshift range, LORRAH-21
is a good approximation of HIRRAH-21, especially given the
104 increase in computation speed in LORRAH-21 caused by
the drop in resolution: HIRRAH-21 required ∼3 × 106 cpuh
(which is why it was not run again with the newly imple-
mented subgrid models) while running LORRAH-21 only takes
∼3 × 102 cpuh.

3. The LORELI database

We now present the LoReLi database1, which consists of
760 simulations with 2563 resolution elements run in 300 Mpc
boxes using the code presented in the previous section,
including the subgrid models for unresolved sources and the
computation of the neutral phase temperature for each par-
ticle. Initial conditions, generated using the MUSIC code
(Hahn & Abel 2011), vary between simulations. The four-
parameter space sampled by the database was designed to
loosely constrain parameter values according to various probes
of reionization. Here are the varied parameters and explored
ranges:

– The gas-to-star conversion timescale τ ∈ [10 Gyr, 100 Gyr]
and minimum halo mass Mmin ∈ [108 M�, 4 × 109 M�] are
the parameters of the star formation model.

– fesc,post ∈ {0.05, 0.1, 0.2, 0.3, 0.4, 0.5} is the escape fraction of
UV radiation in particles with an ionized fraction of higher
than xthresh.

– The X-ray production efficiency fx ∈ [0.1, 10], in nine
logarithmically spaced values. This drives the X-ray emis-
sivity according to Lx = 3.4 × 1040 fx

(
SFR

1 M� yr−1

)
erg s−1

(Furlanetto & Peng 2006).
Only astrophysical parameters were varied: cosmology was

kept constant across the database. Due to computation time con-
straints, fesc,pre and xthresh were not varied and were kept at 0.01,
the same as in LORRAH-21. We expect these parameters to have
a smaller impact on the global ionization field (except at high
redshift) as the local ionization rises above the threshold early
in the source life. Numerical and cosmological parameters are
detailed in Table 1.

1 Available at https://21ssd.obspm.fr/

Table 1. Numerical and cosmological parameters of LoReLi
simulations.

H0 Ω0 Ωb ΩΛ σ8

67.8 km s−1 Mpc−1 0.308 0.0484 0.692 0.815
Lbox( Mpc) dt (Myr) Npart

294 7 2563
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Fig. 6. Star formation rate density history for the 17 (τ, Mmin) param-
eter couples used in LoReLi simulations (solid). The parameters were
selected from a grid after a χ2 goodness-of-fit test. Only the parameter
couples yielding a p-value p such that 1 − p < 0.95 for at least one of
the plotted observational data sets were kept from the initial grid. For
reference, the SFR in HIRRAH-21 is also plotted (dashed).

3.1. Observational constraints

Here we describe the regions of the parameter space that were
explored and the observational constraints we used to restrict
these regions. We also present the evolution of different relevant
physical quantities in the LoReLi simulations.

3.1.1. Star formation rate

The star formation parameters τ and Mmin were constrained
using recent observations of high-redshift galaxies and SFR
estimates by Bouwens et al. (2016), McLeod et al. (2016), and
Oesch et al. (2018). A χ2 test was performed to exclude mod-
els that fit none of the considered observational data sets with a
probability of higher than 5 %. Seventeen {τ,Mmin} couples were
selected and the range of SFRD spanned in our database can be
seen in Fig. 6. Measurements acquired with the JWST are likely
to give tighter and higher redshift constraints in the near future.

3.1.2. The Thomson scattering optical depth

As late reionization scenarios are disfavored by several reion-
ization probes (Fan et al. 2006; Mitra et al. 2011; Greig et al.
2019), fesc values were chosen so that reionization in LoReLi
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Fig. 7. Thomson optical depth of the LoReLi signals. The ionization
histories of the simulations confine the optical depths to within 1σ
of Planck’s 2015 measurement (dotted: central value, shaded region:
1σ). As in 21SSD (Semelin et al. 2017), the second ionization of He is
assumed to occur at z = 3.

ends between z ∼ 5 and z ∼ 8. Reionization history can
also be characterized based on the Thomson optical depth
τT . The values of τT of the LoReLi simulations are shown
in Fig. 7 along with the results from the Planck Collabora-
tion (Planck Collaboration XIII 2016; Planck Collaboration VI
2020). While we did not use this observation to con-
strain the parameter space of LoReLi, nearly all models
are within 3σ of the mean value in Planck 2018 cosmol-
ogy and within 1σ of that of Planck 2015. We note that
the value obtained in Planck 2018 assumes simple mod-
els for reionization, and we do not exclude the couple
LoReLi simulations that display a &3σ tension from the
dataset.

No other constraints on reionization history were applied.
In particular, no attempt was made to match observational
data on the evolution of the global average ionized fraction
〈xHII〉, as calibrating the escape fraction parameters for each
{τ,Mmin} couple would require many simulations. For complete-
ness, we plot the evolution of 〈xHII〉 for all LoReLi simulations
in Fig. 8.

3.2. 21 cm signals in LORELI

The differential brightness δTb of each 21 cm signal in LoReLi
was computed according to, for example, Furlanetto & Peng
(2006):

δTb = 27xHI(1 + δ)
[
Ts − TCMB

Ts

] [
1 +

dv||/dr||
H(z)

]−1

×

[
1 + z
10

]1/2 [
Ωb

0.044
h

0.7

] [
Ωm

0.27

]1/2

mK,

(10)

where xHI is the local neutral fraction, δ the local overdensity, Ts
the spin temperature of neutral hydrogen, TCMB the CMB tem-
perature at redshift z, H(z) the Hubble parameter, and dv||/dr|| the

6 8 10 12 14 16 18
z

10 4

10 3

10 2

10 1

100

x H
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Fig. 8. Average ionization fraction of the LoReLi models, as well
as observations from Bouwens et al. (2015), Davies et al. (2018),
Wang et al. (2020). These observations were not used to calibrate the
database, and reionization ends in all models between z ∼ 8 and
z ∼ 5.

velocity gradient along the line of sight. The spin temperature
was calculated from simulated data according to the classical
equation (see e.g., Furlanetto & Peng 2006) :

T−1
s =

T−1
CMB + xcT−1

kin + xαT−1
kin

1 + xc + xα
, (11)

where Tkin is the kinetic temperature of hydrogen, and xc
and xα the collisional and Wouthuysen-Field couplings, respec-
tively. Collisional coupling is negligible in the considered red-
shift range, and therefore coupling to Tkin is driven by the
Wouthuysen-Field effect (Wouthuysen 1952). xα was computed
on all saved snapshots for all simulations in a post-processing
step using the semi-analytical code SPINTER (Semelin et al.
2023). The luminosities of Licorice particles were arranged on
a 2563 grid, which SPINTER takes as input. SPINTER com-
putes spherically symmetric propagation kernels using MCMC
ray tracing that accounts for scattering in the wings of Lyman-α
line. These kernels are then convolved with the emissivity field at
previous redshifts to output grids of xα. The outputs of SPINTER
are close to those of full radiative transfer in the Lyman bands,
and calculating xα for a single simulation takes a few CPU
hours, making the cost of this post-processing step negligible.
We show every global 21 cm signal in Fig. 9. In its current state,
the database contains a wide range of models that can be con-
sidered fiducial: these are shaped by conservative observational
constraints and no “exotic” physics are included, such as non-
standard dark matter (Barkana 2018) or extra radio background
(Fialkov & Barkana 2019). In particular, the EDGES measure-
ments are not compatible with any of the LoReLi signals, as
the absorption peaks of LoReLi signals are shallower at lower
redshifts, and have milder slopes than EDGES-compatible sig-
nals. However, some of these exotic physics, such as the extra
radio background, can easily be computed in post-processing
steps from LoReLi snapshots.

A24, page 7 of 15



Meriot, R., and Semelin, B.: A&A, 683, A24 (2024)

5 10 15 20 25
z

250

200

150

100

50

0

T b
 (m

k)

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

lo
g 1

0(
f X

)
Fig. 9. Global 21 cm brightness temperature of the LoReLi simulations.
As opposed to 21SSD, global brightness temperatures are calculated
from full 3D snapshots, not single slices of lightcones, and therefore do
not exhibit small redshift-scale fluctuations. Color represents the value
of fX , the parameter which impacts the depth of the signal the most.

4. Inference on power spectra

In the previous section, we detail the set of simulations at our
disposal. However, simulating many scenarios of the EoR is only
the first step toward understanding how reionization took place
in our Universe. Indeed, one must then be able to extract infor-
mation from observations to determine which model is the like-
liest. In this section, we present how we perform this inference
step using the LoReLi dataset, first on mock data and then on
actual observations from the HERA instrument. LoReLi con-
tains raw snapshots and lightcones containing full particle infor-
mation at 55 redshifts between 53.6 and 4.97, as well as various
physical quantities on 3D grids (data cubes). However, in order
to compare models to future observational data, it is convenient
to compress this high-dimensional data into summary statis-
tics. The most common choice is the 3D power spectrum of
the 21 cm signal, which various instruments are currently try-
ing to measure (Patil et al. 2017; Mertens et al. 2020; Trott et al.
2020; Abdurashidova et al. 2023). While it does not contain non-
Gaussian information, and summaries representing complemen-
tary information do exist, we focus on the power spectrum in
the following. We show the power spectra of the LoReLi simu-
lations in Figs. 10 and 11, as well as upper limits from recent
observations, and expected thermal noises of various instru-
ments. The power spectra were calculated using the coeval cubes
of the signal and not the lightcones. This approximation can have
a significant (up to ∼50%) effect on the spectrum (Datta et al.
2012, 2014) and taking this into account will be at the center of
future improvements of our method. As expected from classical
21 cm theory, at higher redshift, the amplitude of the spectra is
mostly driven by the Lyman-α coupling, and becomes primar-
ily dictated by the value of fX at lower redshifts. We anticipate
that improvements of these upper limits in the coming years will
soon allow tight constraints on our models.

Classical Bayesian inference, for example through the use of
MCMC, requires large numbers of forward modeling instances
(&105), often sequentially. Given the computation cost of a
single Licorice simulation, this is unreasonable even at 2563

resolution. In order to perform parameter inference on this
power spectra dataset, our method consists in using LoReLi
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Fig. 10. Power spectra of the LoReLi simulations at k = 0.1 h/cMpc
as a function of z. These are compared to recent upper limits of vari-
ous instruments (Patil et al. 2017; Mertens et al. 2020; Trott et al. 2020;
Abdurashidova et al. 2023) as well as theoretical thermal noise power
of 1000 h observations with NenuFAR and LOFAR.

as a training sample for a neural network that will function as
an emulator of Licorice, and then performing classical MCMC
inference using the emulator as the model. Indeed, once the emu-
lator is trained, the computation cost of producing a single sig-
nal drops to a few milliseconds, which allows a sufficiently large
number of steps to be completed in the Markov chain in a few
hours of runtime.

4.1. Data preprocessing

4.1.1. Data properties

In order to efficiently train the network, it is necessary
to preprocess the data. The power spectra were computed
for a list of 32 redshifts, with power spectra being set to
zero for z between the redshift of full reionization and the
last redshift bin. However, in order to reduce the dimen-
sionality of the problem, we restrict our analysis to k =
[0.23, 0.33, 0.46, 0.66, 0.93, 1.31, 1.86, 2.64h cMpc−1] and z =
[15.67, 14.05, 12.77, 11.73, 10.87, 10.14, 9.51, 8.96]. The k bins
width is defined such that the bins do not overlap. The 21 cm
power spectra span many orders of magnitude, which tends to
hinder the training of networks. Therefore, the logarithm of the
power spectra was used before normalizing by dividing by the
maximum value across the dataset.

4.1.2. Noise in the signals

For an inference framework to have any practical application, it
must be performed on signals affected by instrumental effects.
Here we neglect foreground residuals and other systematics and
focus on the SKA thermal noise for an observation time of
100 h. As in Doussot et al. (2019), and following McQuinn et al.
(2006), the standard deviation of the power spectrum caused by
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SKA thermal noise was computed as

δP(k, z) =

∑
|k|=k

 1
Ax2y
λ(z)2B2 C(k,k)


2
−1/2

, (12)

where λ is the observed wavelength, A the area of a 256-antenna
station, B = 10 MHz is the bandwidth, x the comoving distance
to the observed redshift, y the depth of field, and C the detector
covariance matrix. In order to noise a signal, we simply add a
realization of a Gaussian random variable of mean 0 and stan-
dard deviation δP(k, z) for each k, z.

This noise is added to another form of stochasticity, the cos-
mic variance of the simulation box (CV), which is implicit to
our setup. We recall the equation found in McQuinn et al. (2006)
to compute the covariance matrix of CV, which is added to the
detector noise covariance matrix in the previous equation:

CCV (ki, k j) ≈ P(ki)
λ2B2

Ax2y
δi j. (13)

Marginalizing over CV for each point in parameter space
requires hundreds of simulations at each point and is not feasible
using LoReLi. However, as CV mainly affects the largest scales,
its effect can be at least partially avoided by focusing the analysis
on k & 0.1 h cMpc−1. This motivates us to focus our analysis on
a region in k-space more affected by thermal noise, which is far
less computationally expensive to generate. It is also likely that
a machine learning method that tends to interpolate between the
LoReLi simulations, such as the one presented in the following
section, smooths over the effects of CV altogether.

4.2. LOREMU

LorEMU, an emulator of the Licorice power spectra, was
trained using the LoReLi simulations. The network is a multi-
layer perceptron that takes the four astrophysical parameters and
a (k, z) pair as inputs, and outputs a noiseless power spectrum
value. The full architecture and parameters are shown in Table 22

and were implemented using the Keras framework (Chollet 2015).
LorEMU was trained in a supervised manner to predict the value
of the (noiseless) power spectrum given the inputs k, z, and the
astrophysical parameter values. Training took place over 200
epochs, using a batch size of 32, and minimizing a mean squared
error (MSE) loss function using the Adam optimizer with a learn-
ing rate of 5×10−4. The training set was composed of a randomly
selected 75% of the 760 spectra, while the remaining 25% of the
spectra were set aside to constitute the test set.

This network is deterministic. In particular, this means the
output power spectra do not include a proper contribution by CV.
It is hypothesized that the emulator learns to average over the CV
affecting the large scales, as the spectra in the training set that
are close in parameter space have been generated using different
initial conditions of the density field and therefore have different
CV realizations. Various quantities describing the accuracy of
the emulator are depicted in Fig. 12. As indicated by the bottom
left plot, the emulator performs especially well at high k and
low redshifts. At large scales, the error is caused by the fact that
the emulator cannot predict CV, whereas spectra in the test set
include a CV realization (see top right plot). At high redshift,
the signal is faint, resulting in low loss but high relative error
(see bottom plots). The rise in relative error at the very lowest

2 The detailed signification of the technical terms can be found at
https://keras.io/
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Fig. 11. Power spectra of LoReLi models as a function of k at redshifts
of 9, 11, and 14, from top to bottom. The value of the SKA thermal
noise (1000 h of observation) is plotted to demonstrate that the LoReLi
signals should be detectable by the instrument.

redshift may partially be due to simulations approaching the end
of reionization, but is in this case accompanied by a rise in the
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Table 2. Architecture and hyperparameters of LorEMU.

Layer type Activation function Regularization

Dense, 512 neurons Leaky ReLu (α = 0.05) L1 (λ = 5 × 10−6)
Dense, 512 neurons Leaky ReLu (α = 0.05) L1 (λ = 5 × 10−8)
Dense, 512 neurons Leaky ReLu (α = 0.05) None
Dense, 1 neuron Sigmoid None
Optimizer Loss function Batch size
Adam (learning rate = 5 × 10−4) Mean squared error 32
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Fig. 12. Diagnostics of the performance of the emulator. Top left: At each k, z, median across the dataset of the emulator error-to-thermal-noise
ratio. Top right: At each k, z, median across the dataset of the emulator error-to-cosmic-variance ratio. The error increases with cosmic variance,
as the deterministic network cannot replicate the noise induced by cosmic variance. Bottom left: 100x mean squared relative error across the
dataset between the emulator prediction and the training sample. Bottom right: Loss at each k, z. Faint signal at high z causes low loss but high
relative error. Cosmic variance causes high loss and relative error at low k. Additionally, we checked that the mean square relative error exhibits
no systematic trend depending on the values of the astrophysical parameters.

loss function, which is more difficult to explain. A similar issue
was found to occur by Jennings et al. (2019), and this region in
(k, z) may be the focus of future improvements of the emulator.
Overall, our emulator outperforms that of Jennings et al. (2019)
by a factor of ∼2. We show examples of simulated and emulated
signals in Fig. 13.

4.2.1. Inference on mock data

LorEMU allows the generation of a 8 × 8 power spec-
trum in milliseconds and is therefore a suitable method
for forward modeling in an MCMC inference pipeline.
Figure 14 shows examples of Bayesian inference on a simulated
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Fig. 13. Randomly selected examples of true (top) and emulated (bottom) LoReLi signals qualitatively showing the resemblance between emulated
and simulated spectra.

spectrum3, assuming perfect foreground removal and noise cor-
responding to a 100 h SKA observation, as explained previously.
The inferences were performed using the emcee Python package
(Foreman-Mackey et al. 2013). The log-likelihood of a model y
with astrophysical parameter set θ, with respect to data x, and
with total variance σtot, can be explicitly written:

logL(y|θ) = −
∑
k,z

1
2

(
x(k, z) − y(θ, k, z)

σtot(k, z)

)2

. (14)

It is worth noting that this form of the likelihood assumes that
Fourier modes are independent variables, an assumption dis-
cussed in Prelogović & Mesinger (2023) for example. While
these latter authors show that using a diagonal covariance for the
cosmic variance can lead to biased inference results, they also
show that the nondiagonal terms are mostly erased by the level
of their thermal noise, which is an order of magnitude below
that used in our work. Therefore, we expect no significant con-
tribution from these nondiagonal terms in our case. In our case,
σtot is

σtot =

√
σ2

thermal + σ2
CV + σ2

train, (15)

and includes, at each bin of k, z, the cosmic variance σCV , the
variance of the SKA thermal noise σthermal, and the “training
variance” σtrain, which represents the variance in the training of
the network and is detailed below.

According to Bayes theorem, the posterior distribution of the
parameters can be written:

p(θ|y) ∝ L(y|θ)π(θ), (16)

where π(θ) is the prior over the astrophysical parameters.
In order to estimate the error induced by an imperfect train-

ing of the emulator, nine different versions of LorEMU were
trained. Each version uses the same architecture, and was trained
using different weight initialization and with different random
splits of the data to constitute the test and training sets. The rest

3 Calculated using the following astrophysical parameters: fX = 0.56,
τ = 27 Gyr, Mmin = 109.06 M�, fesc,post = 0.2.

of the training pipeline was kept unchanged. Each one of these
trained emulators was subsequently used as the forward simu-
lator in the MCMC pipeline, producing the different posteriors
of Fig. 14. The inferences were done using 160 walkers, ran-
domly initialized in the prior, and approximately 800 000 total
steps. The prior on the astrophysical parameters is flat within the
region in parameter space explored in LoReLi and zero outside
this region.

The inferences were all performed on the same simu-
lated signal noised with the same 100 h SKA noise realisa-
tion, and therefore the differences between inferences are due
to the different weight initializations and training stochasticity
between the different versions of LorEMU. This training vari-
ance can be defined at each k, z, and astrophysical parameters
set θ as

σ2
train =

1
N

∑
N

(
Ppredicted(k, z, θ) − Ptarget(k, z, θ)

)2
, (17)

where Ptarget and Ppredicted are the training spectra and the out-
puts of the emulator, respectively, and the sum is taken over a
large number N of emulators trained with different weight ini-
tializations. Rigorously evaluating this variance would not only
require a large number of emulators, but also a target signal for
any value of θ, while we have signals only for the parameter
values present in the LoReLi database. To address those dif-
ficulties, we chose to average this quantity over θ. The result
is an approximation of the training variance. However, this is
justified by the fact that the error shows no clear dependency
on parameters. This variance adds a bias in the inference with
single emulators, and putting the training variance in the like-
lihood widens the confidence contours. While negligible for
fX , the effect of this training variance is comparable to that of
the SKA 100 h thermal noise for the SFR parameters. In an
attempt to marginalize over the random initializations, Fig. 14
shows a posterior obtained using the average predictions of the
nine emulators in the MCMC framework, following the bag-
ging method commonly used in machine learning. In order to
demonstrate that, for the average emulator, the biases of the pre-
dictions are negligible compared to the uncertainty induced by
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MCMC on simulated LICORICE powerspectrum

Fig. 14. Results of multiple inferences done using several versions of LorEMU, trained with different weight initializations (dashed). On the 2D
panels, only the 1σ contours are shown for clarity. The blue dotted lines are the posteriors obtained using each emulator. The thick red line shows
the posterior obtained using the average emulator on the noised signal, while the inference on the noiseless signal is shown in black.

the noise, Fig. 14 also shows the posterior applied to the noise-
less signal (but with the SKA 100 h thermal noise variance still
included in the likelihood). We see that, in this case, the confi-
dence contours are well centered on the target parameter values.
This also indicates that our inference results are only weakly
affected by our choice of using a diagonal covariance in the
likelihood.

τ and Mmin are unsurprisingly strongly anticorrelated, as
their effects on star formation are degenerate. Similarly, fX is
correlated with Mmin and anticorrelated with τ, as X-ray emissiv-
ity is proportional to SFR. We note that these effects are unlikely
to stem from our choice of priors, because they are visible in
confidence contours far away from the flat prior boundaries.
Additionally, fesc is the least strongly constrained parameter,
with large contours and non-negligible likelihood over the whole

prior. Except for fesc, the true values of the astrophysical param-
eters are within the 1σ contours obtained after inference with the
average emulator.

4.2.2. Inference on recent HERA data

In the previous section, we validated our method by apply-
ing it to mock observations generated from our simulated data.
We now turn to real data, and provide an analysis of the most
recent HERA observations (Abdurashidova et al. 2023), at z =
10.4 and z = 7.9. As indicated in Fig. 11, the most recent
HERA upper limits are currently the only ones capable of con-
straining our data set. We follow the procedure detailed in
Abdurashidova et al. (2022; thereafter HERA2022), which we
briefly summarize here. The observed data are assumed to be the
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Fig. 15. Results of inference on HERA data using LorEMU. On the 1D panels, the priors are in red and the posteriors in blue. Contours represent
68% and 95% levels of confidence.

21 cm signal, to which systematic uncertainties (typically fore-
ground residuals and radio frequency interference) are added.
The power of the systematic uncertainties is supposed to be pos-
itive, and marginalizing over them yields the likelihood:

L(y|θ) =
∏
k,z

1
2

[
1 + erf

(
x(k, z) − y(θ, k, z)
√

2σ(k, z)

)]
. (18)

The emulator was not retrained on spectra calculated with the
k bins of HERA data with its window function. The posterior
distribution of the astrophysical parameters obtained through
MCMC inference is shown in Fig. 15. The only parameter for
which the posterior distribution is different from its prior is fX .
Qualitatively, our conclusions match those of HERA2022: a cold
reionization of the Universe is an unlikely scenario. However,
quantitatively, the constraints we put on fX appear looser than in
HERA2022. In Fig. 6 of HERA2022, which shows the inference
results as obtained using 21cmFAST, the likelihood decreases

for fx < 1, while we only observe such a decrease for fX < 0.5.
This may stem from a difference in the prior on the SFR param-
eters. Indeed, the observational constraints on SFR applied to
LoReLi and 21cmFAST only exist at z ≤ 10, leaving the
functional form of the SFR evolution completely free at higher
redshift. Different posteriors can result from this, as seminumer-
ical codes typically assume that stars are formed instantaneously
as some fraction of the collapsed gas. As detailed in Sect. 2, in
Licorice, the stellar fraction evolves with time. If the stellar
fraction in Licorice is typically lower than in seminumerical
codes at high redshift and higher at lower redshift in order to
be consistent with the same observational constraints on SFRD,
then this difference in the inference result is expected. Unfor-
tunately, as the codes function in significantly different ways
with different parametrizations, understanding the difference in
the predicted posteriors of both inferences would require an in-
depth comparison of Licorice and 21cmFAST (as well as with
other codes) that does not yet exist and lies beyond the scope of
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this work. Regarding Fig. 14 of HERA2022, which was obtained
using the seminumerical code described in HERA2022, an addi-
tional explanation may be that the authors marginalize over fr,
a parameter that controls the intensity of an exotic radio back-
ground, while we implicitly fix fr to zero as the only background
we consider is the CMB.

As a final note, the inference was also attempted on upper
limits from LOFAR (Mertens et al. 2020) using the exact same
methodology. As could be expected from Fig. 11, no difference
between priors and posteriors could be established in that case.

5. Conclusions

In this work, we present new functionalities of the Licorice
simulation code that allow low-resolution simulations of the
EoR that reproduce many features of high-resolution simula-
tions. These new functionalities are twofold. One is an imple-
mentation of the conditional mass function formalism as a way
to statistically estimate the mass of unresolved dark matter halos.
We then include the gas contained in these halos to compute star
formation in low-resolution simulations, which would otherwise
be severely underestimated. Using the Sheth-Tormen formula-
tion of the CMF, we find excellent agreement with 10243 and
20483 simulations.

The other modification is a calculation of the temperature of
the neutral phase of each particle. Due to poorly resolved ioniza-
tion fronts in low-resolution simulations, we find that using the
phase-averaged temperature of the particles leads to a significant
overestimate of the intensity of the 21 cm signal. Using the neu-
tral phase temperature leads to good agreement between results
at low and high resolution.

Together, these improvements allow physically reasonable
Licorice simulations at 2563 resolution that run in approx-
imately 300 cpuh. Consequently, this makes running many
Licorice simulations computationally feasible. Therefore, we
present LoReLi, a growing dataset of 760 Licorice simula-
tions with 2563 particles in 300 Mpc boxes. Full particle data are
saved at 32 redshift values, and LoReLi spans a four-parameter
space: the escape fraction fesc,post, the X-ray emissivity fX , the
minimum mass of star forming halos Mmin, and the gas-to-star
conversion timescale τ. The latter two parameters were cali-
brated using constraints on the SFRD, and the first was chosen
so that reionization ends in all models at between z ∼ 5 and
z ∼ 8. LoReLi therefore contains a variety of standard models
of the EoR.

In the first application of this dataset, we summarize our data
into independent power spectra values at 8 k and 8 z values. We
then present LorEMU, a neural network trained on LoReLi to
produce accurate Licorice power spectra given k, z, and a set
of the four astrophysical parameters. During training, LorEMU
reaches between ∼5% and 10% relative mean squared error aver-
aged over the dataset. We then perform Bayesian inference using
LorEMU and MCMC on a power spectrum generated using
Licorice, to which a noise realization corresponding to 100 h of
SKA observations was added. Because different random weight
initializations affect the result of the network training, nine dif-
ferent versions of LorEMU were trained, and training variance
was included into the inference likelihood. By averaging the out-
puts of the different networks during inference, we obtain accu-
rate posterior distributions. We find that this approach produces
a posterior with very little bias by performing inference on a
noiseless simulated signal. Finally, we apply the same infer-
ence pipeline to the most recent HERA upper limits and obtain

constraints on lower values of fX , indicating that our Universe is
unlikely to have followed a cold reionization scenario.

The new implementation of Licorice suffers from some
limitations. While star formation in resolved halos is sensi-
tive to the local environment through the dynamics of the gas,
unresolved halos of a given mass have a similar SFR, which
only varies if they are located in particles with different stel-
lar fractions. Moreover, the CMF formalism provides the cos-
mic average of the halo population in a given region with fixed
overdensity. In reality, such regions may present fluctuations
around this average. A future improvement will be to include
stochasticity in the unresolved SFR, both from the halo popula-
tion fluctuations and from the star formation efficiency of each
unresolved halo. The latter will have to be parameterized with
one last additional astrophysical parameter. Future versions of
the LoReLi database will include both a denser sampling of
the parameter space and variations of additional astrophysical
parameters.

In this work, we have only begun to tap the potential of
the LoReLi database. As we are modeling the 21 cm signal
using full nonlinear dynamics and 3D radiative transfer, we can
hope that the non-Gaussian properties of the signal are well
accounted for. It will be relevant to explore inference based on
non-Gaussian summary statistics of the signal. An explicit like-
lihood is usually not available in this case. One solution is to
choose summary statistics that, while encoding non-Gaussian
properties of the signal, have themselves near-Gaussian behav-
iors (due to the central limit theorem) and model the likelihood
as a multivariate Gaussian. Another promising avenue is to use
simulation-based inference (e.g., Zhao et al. 2022). We will be
working toward both goals.
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