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ABSTRACT

Context. The transport of angular momentum and chemical elements within evolving stars remains poorly understood. Asteroseis-
mic and spectroscopic observations of low-mass main sequence stars and red giants reveal that their radiative cores rotate orders of
magnitude slower than classical predictions from stellar evolution models and that the abundances of their surface light elements are
too small. Magnetohydrodynamic (MHD) turbulence is considered a primary mechanism to enhance the transport in radiative stellar
interiors but its efficiency is still largely uncertain.
Aims. We explore the transport of angular momentum and chemical elements due to azimuthal magnetorotational instability, one of
the dominant instabilities expected in differentially rotating radiative stellar interiors.
Methods. We employed 3D MHD direct numerical simulations in a spherical shell of unstratified and stably stratified flows under
the Boussinesq approximation. The background differential rotation was maintained by a volumetric body force. We examined the
transport of chemical elements using a passive scalar.
Results. We provide evidence of magnetorotational instability for purely azimuthal magnetic fields in the parameter regime expected
from local and global linear stability analyses. Without stratification and when the Reynolds number Re and the background azimuthal
field strength are large enough, we observed dynamo action driven by the instability at values of the magnetic Prandtl number Pm in
the range 0.6−1, which is the smallest ever reported in a global setup. When considering stable stratification at Pm = 1, the turbulence
is transitional and becomes less homogeneous and isotropic upon increasing buoyancy effects. The transport of angular momentum
occurs radially outward and is dominated by the Maxwell stresses when stratification is large enough. We find that the turbulent vis-
cosity decreases when buoyancy effects strengthen and scales with the square root of the ratio of the reference rotation rate Ωa to the
Brunt–Väisälä frequency N. The chemical turbulent diffusion coefficient scales with stratification similarly to the turbulent viscosity,
but is lower in amplitude so that the transport of chemicals is slower than the one of angular momentum, in agreement with recent
stellar evolution models of low-mass stars.
Conclusions. We show that the transport induced by azimuthal magnetorotational instability scales somewhat slowly with stratifi-
cation and may enforce rigid rotations of red giant cores on a timescale of a few thousand years. In agreement with recent stellar
evolution models of low-mass stars, the instability transports chemical elements less efficiently than angular momentum.
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1. Introduction

A consistent description of the transport of angular momentum
(AM) and chemical elements within evolving stars is still lack-
ing and remains a major problem for stellar physics. Recent
asteroseismic observations based on space photometry have
transformed our knowledge of the dynamics of stellar interiors,
offering the opportunity for unprecedented advances in this field.
By uncovering the internal rotations of low-mass stars at vari-
ous stages of evolution, from main sequence (MS) stars to white
dwarf remnants, these observations unambiguously showed that
the cores of these stars rotate orders of magnitude slower than
classical predictions from stellar evolution models and that AM
is efficiently extracted from stellar cores as they evolve (for a
recent review, see Aerts et al. 2019). For instance, the radia-
tive cores of low-mass subgiants rotate slowly and do not spin
up while evolving on the red giant branch (Beck et al. 2011;
Deheuvels et al. 2014; Gehan et al. 2018). The cores of these
stars are in gravitational contraction and, if AM was conserved,
they would rotate almost 3 orders of magnitude faster and spin
up while evolving (e.g., Cantiello et al. 2014). The convective
envelopes, on the other hand, expand and should spin down lead-

ing to a strong rotation contrast with the core. The measured
envelope rotation rates of subgiants are instead only less than
10 times slower than those of the cores at most (Deheuvels et al.
2014). Red giants are also the sole class of stellar objects for
which, since as of recently, we have direct seismic measure-
ments of their internal magnetic fields (Li et al. 2022, 2023;
Deheuvels et al. 2023). The seismic detection probes a narrow
region of the core around to the hydrogen burning shell where
strong radial field strengths ranging from 30 to 600 kG have been
reported.

In order to explain all of these observations, various mecha-
nisms to enhance the transport of AM in radiative stellar interi-
ors have been proposed. The transport by atomic diffusion and
standard hydrodynamical processes, such as meridional circula-
tion and shear instabilities, falls short of predicting the almost
rigid rotation of the Sun’s core, as well as the slow internal rota-
tions of red giants and white dwarfs (e.g., Eggenberger et al.
2012; Marques et al. 2013; Dumont et al. 2021). Internal grav-
ity waves, which are excited by convective motions in the over-
lying envelope, can contribute to transport AM in the cores of
solar-type stars and subgiants, but the process is likely negligible
on the red giant branch (Fuller et al. 2014; Pinçon et al. 2017).
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The transport by instabilities due to magnetic fields is
expected to be higher than any of the hydrodynamical processes
above and is considered the primary mechanism to explain the
slow internal rotations observed (Spruit 2002; Cantiello et al.
2014; Spada et al. 2016; Fuller et al. 2019). In differentially
rotating radiative stellar interiors, magnetorotational instability
and Tayler instability are expected to be the two dominant mag-
netohydrodynamic (MHD) instabilities (Spruit 1999).

Magnetorotational instability (MRI) is an instability of
hydrodynamically stable shear flows in which the magnetic
field allows the free energy of the shear to be released. For
axisymmetric magnetic fields that are either purely azimuthal or
with both toroidal and poloidal components, linearly unstable
MRI modes are nonaxisymmetric (e.g., Balbus & Hawley 1992;
Ogilvie & Pringle 1996; Rüdiger et al. 2007; Hollerbach et al.
2010). Dominant toroidal fields are expected in differentially
rotating radiative stellar interiors, provided that the poloidal field
is weak enough (Spruit 1999). Azimuthal MRI (AMRI) gener-
ally refers to the instability of hydrodynamically stable Taylor–
Couette flow, the flow of a viscous incompressible fluid confined
between two coaxial and rigidly rotating cylinders, with imposed
current-free azimuthal fields (Rüdiger et al. 2007; Kirillov et al.
2012). In this work, however, we refer to this version of the
instability for generic, purely or dominantly azimuthal field con-
figurations with a nonzero Lorentz force that are free to evolve
over time, as expected in astrophysical situations. Due to its non-
axisymmetric nature, AMRI can self-sustain a magnetic field
(e.g., Guseva et al. 2017a). Dynamo action driven by MRI is a
highly nonlinear phenomenon in which the turbulence due to
the instability generates large-scale magnetic fields that continu-
ously destabilize the flow to self-sustain the turbulence (Rincon
2019).

Tayler instability (TI) is instead a kink-type instability of
purely axisymmetric azimuthal fields driven by magnetic pres-
sure gradients (Tayler 1973). This instability is expected to
dominate in radiative stellar interiors since, relying on almost
horizontal motions, is less sensitive than MRI to stable stratifi-
cation (Spruit 1999; Bonanno & Urpin 2012). However, numer-
ical simulations show that the presence of a latitudinal shear
may favor AMRI over TI, even when stable stratification is rel-
atively high (Jouve et al. 2020). While there has been no aster-
oseismic evidence of latitudinal differential rotation in the inte-
rior of evolved stars so far, theoretical studies suggest that this
can be produced by gravitational contraction when buoyancy
effects are not too high, as for example in the outer radiative
regions of red giants (Gouhier et al. 2021, 2022). Numerical
simulations in a spherical shell have also demonstrated that MRI
can occur for dominantly azimuthal fields generated by shearing
an initial weak poloidal field through differential rotation, a pro-
cess known as the Ω-effect and that is thought to take place in
stellar interiors (Jouve et al. 2015; Meduri et al. 2019).

In spite of its importance, the efficiency of the AM trans-
port due to AMRI in radiative stellar interiors remains highly
uncertain. AMRI-induced transport is mostly investigated using
shearing box simulations, which are local numerical mod-
els of accretion disks hardly relevant to stellar interiors (e.g.,
Lesur & Longaretti 2007). Global numerical studies generally
model liquid metal laboratory experiments, hence consider
unstratified Taylor–Couette flow with imposed magnetic fields
(e.g., Rüdiger et al. 2013; Guseva et al. 2017b). Numerical sim-
ulations of stratified AMRI turbulence in a spherical geome-
try can certainly provide more robust constraints on the trans-
port in stellar interiors. However, there are only a few of
these studies, which either explore a very limited range of

parameters (Arlt et al. 2003), often relevant to neutron stars
(Reboul-Salze et al. 2022), or focus only on the role played by
differential rotation (Jouve et al. 2020).

Stellar evolution models can provide indication of the effi-
ciency of the missing transport processes. However, in the AM
evolution equation of these models, the turbulence is often
parameterized with a diffusion coefficient, which is used as a
free parameter to fit the observations. This procedure ignores
the physical origin of the transport and how this scales with
the fundamental fluid properties, such as stratification or the
molecular diffusivities, which strongly vary in the interior of
stars and during their evolution. For example, a turbulent dif-
fusion coefficient depending on the ratio of the core to surface
rotation rates, attributed by analogy to the expected scaling of
AMRI turbulence with the shear, and that increases monoton-
ically from about 102 cm2 s−1 to almost 106 cm2 s−1 has been
shown to reproduce the rotational evolution of subgiants and
red giants (Spada et al. 2016; Moyano et al. 2022, 2023). As
for TI turbulence, theoretical scaling laws for the enhanced tur-
bulent viscosity have instead been employed in stellar evolu-
tion models (Fuller et al. 2019) but they fail at capturing the
rotational evolution of subgiants and red giants simultaneously
(Eggenberger et al. 2019).

Advancing our understanding of the AM transport in stel-
lar interiors is also key to comprehend the mixing of chemical
elements. The transport of light elements such as lithium, beryl-
lium and boron, which are destroyed at temperatures as low as
a few million K, contributes to determine the chemical compo-
sition and, consequently, the stellar evolution (Deliyannis et al.
2000). State-of-the-art stellar evolution models including atomic
diffusion and hydrodynamical transport processes such as those
mentioned above predict surface abundances of 7Li (Li here-
after) orders of magnitude higher than those observed for the Sun
and solar-type stars (Lodders et al. 2009; Dumont et al. 2021),
and also for red giants (see Charbonnel et al. 2020 and refer-
ences therein). Recent progresses on understanding the com-
bined rotational and chemical evolution of stars again come from
considering the transport due to MHD turbulence. For exam-
ple, stellar evolution models suggest that TI-induced transport
may reconcile the almost rigid rotation of the Sun’s core and its
photospheric Li abundance (Eggenberger et al. 2022) and that
MRI turbulence strongly influences the chemical evolution of
massive stars (Wheeler et al. 2015; Griffiths et al. 2022). These
studies, however, employ uncertain theoretical prescriptions of
TI-driven dynamo action or somewhat approximate estimates of
MRI-induced transport derived from accretion disk simulations.
MHD numerical simulations appropriate to model stellar interi-
ors and that explicitly explore the transport of chemicals could
provide better constraints but such studies are lacking so far.

In this work we investigate the transport of AM and chem-
ical elements due to AMRI turbulence using 3D direct numer-
ical simulations in a spherical shell. We consider unstratified
and stably stratified flows under the Boussinesq approximation
where the background differential rotation is forced. We per-
form a comprehensive parametric study varying the rotation
rate, the molecular diffusivities and stratification. The molecu-
lar diffusivity ratios are among the lowest ones ever explored in
a global geometry for MRI turbulence and are relevant to the
electron-degenerate cores of red giants. A passive scalar allows
us to examine the transport of chemical elements.

The remainder of this work is organized as follows. In
Sect. 2 we describe the governing equations and the numerical
model. The unstratified axisymmetric solutions, obtained from
the evolution of an initial purely azimuthal field, are discussed
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in Sect. 3. Section 4 investigates their stability to weak nonax-
isymmetric perturbations. In Sect. 5 we describe the nonlinear
evolution of the unstable solutions where AMRI is identified and
discuss the effect of stable stratification. Section 6 explores and
quantifies the transport of AM and Sect. 7 the one of a passive
scalar. Section 8 closes the paper with a discussion of the numer-
ical results and their application to stellar interiors.

2. Governing equations

We consider a stably stratified MHD flow under the Boussinesq
approximation. The fluid is confined to a spherical shell of thick-
ness d = ro−ri, where ri and ro are the inner and outer boundary
radii respectively, and has uniform kinematic viscosity ν, mag-
netic diffusivity η, and thermal diffusivity κ. The thermal expan-
sion coefficient is α. The density of the fluid ρ is uniform, hence
gravity varies linearly with radius, g = −gor/roêr, where go is the
gravitational acceleration at the outer boundary. If not explicitly
stated otherwise, (r, θ, φ) denote dimensionless spherical coordi-
nates hereafter and the respective unit vectors are êr, êθ, and êφ.

The governing equations are non-dimensionalized using the
shell gap d as length scale and τΩ = 1/Ωa as timescale, where Ωa
is the angular velocity at the cylindrical radius s = r sin θ = 0.
The scale for temperature is ∆T = To−Ti > 0, the imposed
positive temperature contrast between the isothermal outer and
inner boundaries that establishes stable stratification. The non-
hydrostatic pressure Π is scaled by ρdΩ2

a and the magnetic field
B∗ by (µ0ρ)1/2d Ωa, where µ0 is the magnetic permeability of
vacuum. This choice makes the dimensionless magnetic field
strength B equal to the Lenhert number

Le =
B∗

(µ0ρ)1/2d Ωa
, (1)

which can be interpreted as the ratio of the rotation timescale
τΩ to the Alfvén travel time d/uA, where uA = B∗/(µ0ρ)1/2 is
the Alfvén velocity. In the following we use B and Le inter-
changeably. For example, the dimensionless azimuthal field will
be indicated with Bφ or Leφ.

In this scaling scheme, the equations governing the evolution
of the fluid velocity u, the magnetic field B, and the temperature
perturbations T ′ (around the background adiabatic state) are: the
momentum equation

∂u
∂t

+ (u · ∇)u = −∇Π−
N2

Ω2
a

T ′
r
ro

êr + (∇× B)× B +
1

Re
∇

2u + f,

(2)

the induction equation

∂B
∂t

= ∇ × (u × B) +
1

Re Pm
∇

2B, (3)

and the evolution equation for the temperature perturbations

∂T ′

∂t
+ (u · ∇)T ′ =

1
Re Pr

∇
2T ′. (4)

The flow and the magnetic field obey to the continuity
conditions

∇ · u = 0 and ∇ · B = 0. (5)

The four dimensionless control parameters of the problem are:
the Reynolds number

Re =
Ωad2

ν
, (6)

the ratio of the reference Brunt–Väisälä frequency N to the ref-
erence rotation rate Ωa,

N =
N
Ωa

=

(
α∆Tgo

d

)1/2 1
Ωa
, (7)

the Prandtl number

Pr =
ν

κ
, (8)

and the magnetic Prandtl number

Pm =
ν

η
. (9)

In this work we fix the aspect ratio of the spherical shell χ = ri/ro
to 0.3. We employ stress-free boundary conditions for the flow.
Electrically insulating boundary conditions are assumed for the
magnetic field, which are appropriate to match a potential field
outside the fluid volume.

The azimuthal body force

f =
uf − uφ
τ

êφ (10)

in Eq. (2) imposes the background axisymmetric differential
rotation. Here uφ is the axisymmetric azimuthal velocity and
uf = s Ωf is the forced contribution, which is axisymmetric
(∂uf/∂φ = 0). The timescale τ in Eq. (10) provides the time on
which uφ relaxes to uf and is fixed to 5× 10−3. This is the shortest
timescale in the system and practically sets the numerical inte-
gration time step in our simulations.

The forced angular velocity Ωf is vertically invariant and is
defined by

Ωf = 2µ − 1 +
2(1 − µ)

1 + (1 − χ)b sb , (11)

where µ = Ωe/Ωa < 1. Here Ωe is the angular velocity at the
equator on the outer boundary. The real constant b > 0 defines
the steepness of the decay of Ωf with the cylindrical radius s.
In this work we consider µ = 0.45 and b = 2.9. The black line
in Fig. 1a shows Ωf as a function of the cylindrical radius s for
this parameter combination. Figure 1b presents a snapshot of the
axisymmetric angular velocity Ω in one of our numerical sim-
ulations and demonstrates that this closely follows the forced
angular velocity Ωf.

The forced angular velocity that we choose here simulta-
neously maximizes the mean and the maximum of the shear
parameter q = |d ln Ωf/d ln s| in the fluid domain while still
maintaining the flow stable according to the Rayleigh crite-
rion for inviscid flows, which prescribes ∂L2/∂s > 0, where
L = suφ is the specific AM. In the unstratified case, that is
when N = 0 and there is no temperature equation to solve, we
verified numerically that this flow is indeed hydrodynamically
stable to weak nonaxisymmetric perturbations by performing
nonmagnetic runs at the typical Reynolds numbers Re explored
here. The shear parameter q increases monotonically with s and
attains its maximum value on the outer boundary at the equa-
tor where q ≈ 1.77 (Fig. 1a, red line). The mean value of q in
the domain is 0.57. It is useful to define a characteristic timescale
and length scale of the shear. The shear timescale is τ∆Ω = ∆Ω−1,
where ∆Ω = Ωa − Ωe = (1 − µ) Ωa ≈ Ωa/2 is the difference
between the axial and the equatorial rotation rates. The shear
length scale is l∆Ω =

(
Ω−1

f dΩf/ds
)−1

, which can be estimated as

l∆Ω ∼
(
Ω−1

e ∆Ω/ro

)−1
= ro/(µ−1 − 1) ≈ ro.
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Fig. 1. Forced angular velocity employed in the simulations. (a) Forced
angular velocity Ωf (Eq. (11) with µ = 0.45 and b = 2.9) and shear
parameter q as a function of the cylindrical radius s/ro. (b) Snapshot
of the axisymmetric angular velocity Ω in the axisymmetric simulation
run at N = 0, Re = 5 × 104, Pm = 1, and Le0 = 0.1.

The problem above is solved numerically using the open-
source pseudospectral MHD code MagIC1 (Wicht 2002;
Schaeffer 2013), which we modified to include the volumet-
ric body force f in the momentum equation. The numerical
technique is described in detail in Christensen & Wicht (2007)
and we therefore mention only the essentials here. MagIC uses
a poloidal-toroidal decomposition for the vector fields u and
B and for the scalar temperature field. Spherical harmonics
are employed in the latitudinal and azimuthal directions and
Chebyshev polynomials in radius. An implicit-explicit time step-
ping scheme, where the nonlinear terms and the volumetric body
force are treated explicitly, is employed. The nonaxisymmetric
simulations performed here typically use a spatial resolution of
257 radial grid points and a maximum spherical harmonic (SH)
degree `max = 341. Depending on the characteristic scales of the
turbulence to resolve, the spatial grid is sometimes coarser. The
spherical harmonic kinetic and magnetic energy spectra of the
solutions span at least three orders of magnitude in amplitude,
which ensures numerical convergence of the results as we gen-
erally verified.

Throughout this work, we use the following notation for
azimuthal, horizontal (over a spherical surface), and temporal
averages of an arbitrary function f = f (r, θ, φ, t),

f =
1

2π

∫ 2π

0
f dφ,

〈 f 〉 =
1

4πr2

∫ π

0

∫ 2π

0
f r2 sin θ dφ dθ,

and

f̂ =
1
∆t

∫ t1+∆t

t1
f dt

respectively. Here ∆t is the time averaging period. In the fol-
lowing, only when explicitly specified, the angular brackets 〈·〉
denote spatial averages different from the one above. The nonax-
isymmetric flow velocity and magnetic field are denoted by the
superscript ′, for example B′ = B − B.

3. Unstratified axisymmetric solutions

We first describe the axisymmetric solutions obtained for an
unstratified flow, that is when N = 0 and there is no tempera-
ture equation to solve.

1 https://magic-sph.github.io
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Fig. 2. Temporal evolution of the magnetic energy Emag (black lines)
and of the poloidal kinetic energy Epol

kin (red lines) in five unstratified
axisymmetric runs at different Re and Ha0 (see the legend at the top).
The magnetic Prandtl number Pm is 1. Time is scaled with the viscous
diffusion time τν here. Note that the left and right vertical axes span
different ranges. The gray line displays the exponential Ohmic decay
rate based on η/l2

B
for the run at Re = 5 × 104 and Ha0 = 4 × 103 (see

the main text for details).

3.1. Initial magnetic field condition and dimensionless
parameters

As initial condition for the magnetic field, we consider a purely
azimuthal field linearly increasing with the cylindrical radius s,

B(t = 0) = B0 s êφ, (12)

where B0 = Le0 = B∗0/(µ0ρ)1/2d Ωa is the field strength at s = 1.
In differentially rotating radiative stellar interiors where a weak
axisymmetric poloidal field Bp is present, we expect dominantly
azimuthal field configurations to be generated by the Ω-effect,
that is by shearing the poloidal field through the differential
rotation via the term s(Bp · ∇)Ω in the azimuthal component
of the axisymmetric induction equation (e.g., Spruit 1999). The
azimuthal field would be stronger where the differential rotation
is higher and, given our background angular velocity profile Ωf,
this motivates the choice of the initial condition above.

To discuss the axisymmetric solutions, it is useful to rescale
the magnetic field independently of the rotation rate by introduc-
ing the Hartmann number

Ha =
B∗ d

(µ0ρνη)1/2 . (13)

The Hartmann number is related to the dimensionless parameters
introduced in the previous section by Ha = Le Re Pm1/2 and can
be interpreted as the ratio of the geometric mean of the viscous
and magnetic diffusion times, τν = d2/ν and τη = d2/η respec-
tively, to the Alfvén travel time d/uA. In the following Ha0 and
Haφ denote the Hartmann number based on the initial reference
field strength B∗0 and on the azimuthal field B∗φ respectively.

In Sect. 3.2 we discuss the flow and magnetic field solutions
obtained when varying Ha0 and the Reynolds number Re at a
fixed magnetic Prandtl number Pm of 1. For consistency with
the new dimensionless magnetic field B̃ = Ha, the flow velocity
is scaled with d/(νη)1/2 and indicated with ũ in this section.

3.2. Temporal evolution

The black lines in Fig. 2 illustrate the temporal evolution of the
volume integrated magnetic energy Emag = 1

2

∫
B̃2dV in four
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Fig. 3. Unstratified axisymmetric solutions of the runs in Fig. 2 at the times when the poloidal kinetic energy Epol
kin reaches its maximum. The

Reynolds number Re and the Hartmann number Ha0 are shown at the top of each panel. The magnetic Prandtl number Pm is 1. The colour
contours show the azimuthal magnetic field Leφ and the black isocontour lines the meridional circulation (solid and dashed for clockwise and
counterclockwise, respectively).

runs at Re = 5 × 104 with Ha0 in the range 102−104 and in one
run at the lower Re of 5 × 103. Since no poloidal field is initial-
ized, the solution remains purely toroidal. Axisymmetric mag-
netic fields cannot be maintained by dynamo action (Cowling’s
antidynamo theorem) and the toroidal field decays exponentially
due to Ohmic diffusion. The magnetic energy evolution is com-
patible with a field decay rate of η/l2

B
, where lB is the charac-

teristic azimuthal field length scale, which we calculated as a
meridional average of

∣∣∣B̃φ∣∣∣ / ∣∣∣∇B̃φ
∣∣∣ at the last numerical integra-

tion time step of these runs (the gray line in Fig. 2 shows the
exponential Ohmic decay rate of the run at Re = 5 × 104 and
Ha0 = 4 × 103 as an example).

Due to the azimuthal flow forcing, the toroidal kinetic energy
Etor

kin = 1
2

∫
ũ2
φdV ≈ 1

2

∫
ũ2

f dV , which is approximately 5.75× 109

and 5.75 × 107 in the runs at Re = 5 × 104 and 5 × 103 respec-
tively, is the dominant energy contribution and remains constant
over time (not shown). Boundary driven flows produced by the
Lorentz force induce a global meridional circulation in the first
few rotation times τΩ, as evidenced by the initial rapid growth of
the poloidal kinetic energy Epol

kin (red lines in Fig. 2). The peak
amplitude of Epol

kin scales with Ha2
0 and, on longer times, Epol

kin
decays at a rate comparable to the one of the field, confirming
the magnetic origin of the meridional flow. We now describe
qualitatively how this global circulation is generated and how
its morphology changes when varying Ha0.

The jump between the interior azimuthal field solution B̃φ ∝
s and the electrically insulating boundary conditions, which
impose B̃φ = 0 at r = ri/d and ro/d, is accommodated in thin
layers close to the boundaries, where the radial Lorentz force
is strong due to the high radial gradients of the field. Due to
the form of the interior field solution, the radial Lorentz force
is stronger in the outer boundary layer than in the inner one.
The Lorentz force in these boundary layers induces radial flows
which, by mass conservation, generate return flows in the lati-
tudinal direction. These return flows remain high in amplitude
due to the stress-free boundary conditions and induce the large
scale circulation observed. We note that the Lorentz force plays
a similar dynamical role in modifying viscous boundary layers
when a transverse magnetic field is applied (Hartmann boundary
layers; see, e.g., Dormy & Soward 2007).

The boundary driven circulation is equatorially antisymmet-
ric and, at the time when the poloidal kinetic energy peaks, is
characterized by one cell in each hemisphere for the run at the
lowest Ha0 of 102 (black isocontours in Fig. 3a). Increasing Ha0
to 103, the outer boundary layer thickness decreases as expected
(black isocontours in Fig. 3b) and the meridional circulation
amplitude strengthen (Fig. 2, dash double-dot red line). The
radial Lorentz force is now important in the inner boundary layer

as well, producing secondary circulation cells in the inner fluid
regions (Fig. 3b). These secondary circulation cells are charac-
terized by flows in the opposite direction to those of the primary
ones, due to the opposite sign of the driving radial Lorentz force
in the inner and outer boundary layers.

At Ha0 & 4 × 103, the circulation driven by the inner bound-
ary layer extends toward the outer fluid regions and becomes
comparable in amplitude to the outer one (black isocontours in
Figs. 3c,e). The azimuthal field is efficiently advected by such
strong flows and complex configurations with locally strong field
gradients are produced (Figs. 3c,e).

Further evidence that the meridional flow in our simulations
is of magnetic origin is given by the fact that the solution does
not depend on Re. The evolution of the magnetic and kinetic
energies of the two runs at Ha0 = 4 × 103 in Fig. 2 with Re =
5× 103 (dotted-dashed line) and 5× 104 (dashed line) are indeed
almost identical and snapshots of the two solutions are nearly
indistinguishable (Figs. 3c,d). While the axisymmetric solutions
above may be regarded as peculiar, they have to be considered
only as initial states prone to AMRI. These solutions support
turbulence for a period long enough to study the transport of
AM and chemical elements, as we shall see in the following.

4. Linear stability

We now investigate the stability of the unstratified axisymmetric
solutions discussed in the previous section. We introduce non-
axisymmetric perturbations after the magnetically driven merid-
ional flows develop and the azimuthal field slowly decays due to
Ohmic diffusion. The perturbations consist of a spatially uncor-
related random nonaxisymmetric toroidal field of weak ampli-
tude. This is obtained by adding to the spherical harmonic
decomposition of the toroidal field and for each radii small
amplitude coefficients δh`,m(r) drawn from a uniform distribu-
tion for all degrees ` and orders m > 0. As in the previous
section, the magnetic Prandtl number Pm is fixed to 1 here.
The Reynolds number Re is varied in the range 103−105. At a
fixed Re, to explore the effect of the background azimuthal field
strength on the stability, we either perform runs with different
Ha0 or we introduce the perturbations at successive times in a
single run. The azimuthal field strength of the perturbed axisym-
metric solution is characterized by the maximum value of Haφ
in the fluid domain at the perturbation time t = tpert. This is indi-
cated as Hamax

φ hereafter and ranges from 60 to about 104.

4.1. Parameter space for stable and unstable regimes

Hydrodynamically stable shear flows with purely axisymmet-
ric azimuthal fields as those considered here are stable to
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axisymmetric perturbations (Velikhov 1959), but they can be
unstable to AMRI and to TI. At fixed Re, AMRI can develop
only if the azimuthal field is nor too weak nor too strong, other-
wise AMRI modes are stabilized by diffusive effects or by mag-
netic tension respectively. We provide order of magnitude esti-
mates of these stability limits using results from the local linear
stability analysis of Masada et al. (2006). The authors employ
cylindrical coordinates and consider classical local harmonic
perturbations with an azimuthal wavelength much larger than
the meridional ones. The azimuthal velocity uφ = sΩ and the
toroidal field Bφ of the basic, purely toroidal axisymmetric state
are assumed to depend only on the cylindrical radius s. For an
unstratified flow with strong differential rotation, as in most of
our numerical simulations where q � Le2

φ, the most unstable
azimuthal mode predicted by the local linear analysis is

mAMRI
max =

(4q − q2)1/2Ω

2ωA
(14)

in the absence of diffusive effects. Here ωA = Bφ/(µ0ρ)1/2s is the
local azimuthal Alfvén frequency. The adiabatic growth rate of
the most unstable mode is

γAMRI
max =

q Ω

2
. (15)

AMRI can develop only when its most unstable mode grows
faster than it decays by resistive effects (or equivalently by vis-
cous effects since Pm = 1 here)

γAMRI
max > η

(
kAMRI

max

)2
, (16)

where kAMRI
max = mAMRI

max /s is the most unstable azimuthal
wavenumber. Substituting Eqs. (14) and (15) in the relation
above yields

Ha2
φ > 2

(
1 −

q
4

)
Re (17)

when considering Ω ≈ Ωa, s ≈ d, and Pm = 1.
For increasing field strengths, large azimuthal modes are sta-

bilized by magnetic tension and the spectrum of unstable modes
shifts toward lower m. The condition mAMRI

max ≥ 1 provides an
upper limit on the field strength for instability which, for Pm = 1
and using the same values for Ω and s as above, reads

Haφ ≤
(
q −

q2

4

)1/2

Re. (18)

Combining Eqs. (17) and (18), we obtain the instability condi-
tion

2
(
1 −

q
4

)
Re < Ha2

φ ≤ q
(
1 −

q
4

)
Re2 (19)

when q < 4. For our simulations where q ≈ 1, Eq. (19) reduces
to
3
2

Re < Ha2
φ ≤

3
4

Re2 (20)

or equivalently√
3
2

1
Re1/2 < Leφ ≤

√
3

2
(21)

since Haφ = Leφ Re when Pm = 1. Another prediction from the
local linear theory of Masada et al. (2006) that will be used in
the following is the critical AMRI mode

mAMRI
crit = (2 q)1/2Ω/ωA. (22)

0.0
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104103102101
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AMRI dynamo
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Guseva et al. (2017)

Fig. 4. Instability domain of the unstratified (N = 0) axisymmetric
solutions at Pm = 1 and comparison with local and global linear stabil-
ity analysis results. The Reynolds number Re is shown as a function of
Hamax

φ , the maximum azimuthal Hartmann number in the fluid domain at
the perturbation time tpert. Crosses denote stable runs, that is simulations
where the applied nonaxisymmetric perturbations decay. Orange (red)
symbols display runs where AMRI (TI) is identified. Circles (squares)
denote transient (self-sustained) turbulence for the nonlinear instability
evolution. The white area shows the region unstable to AMRI accord-
ing to order of magnitude estimates based on a local linear analysis
(Eq. (20)). AMRI is stabilized by diffusive effects at lower magnetic
field strengths (gray area on the left) and by magnetic tension at larger
field strengths (gray area on the right). The thin dotted lines are isocon-
tours of the azimuthal Lehnert number Lemax

φ = Hamax
φ /Re. For Lemax

φ up
to 1/

√
2 (red dotted line) the expected maximum growth rate of AMRI

is larger than the one of TI (Eq. (24)). The thick dashed lines are repro-
duced from Fig. 1a of Guseva et al. (2017b) and show the lower and
upper neutral stability lines of AMRI from their global linear analysis
of Taylor–Couette flow for a quasi-Keplerian shear.

As mentioned above, the axisymmetric solutions explored here
are in principle unstable to both AMRI and TI. However, in the
AMRI regime defined by Eq. (21), the expected most unstable TI
mode is virtually always growing slower than the corresponding
AMRI mode. The most unstable TI mode is mTI

max = 1 and its adi-
abatic growth rate, in the presence of rotation, is γTI

max ∼ ω
2
A/Ω

(Pitts & Tayler 1985; Spruit 1999; Bonanno & Urpin 2013).
AMRI dominates over TI when γAMRI

max > γTI
max, that is

ωA

Ω
<

(q
2

)1/2
. (23)

When assuming Ω ≈ Ωa, s ≈ d, and q ≈ 1 as done above, this
condition reads

Leφ < 1
/√

2 (24)

which is slightly smaller than the upper bound of Eq. (21). Sim-
ilarly to what we obtain here using simple order of magnitude
estimates, Jouve et al. (2015) showed that TI dominates over
AMRI when Leφ & 1 by applying a local linear dispersion rela-
tion to dominant azimuthal field configurations obtained from
direct numerical simulations.

Figure 4 compares our numerical simulation results with
the predictions from the local linear analysis just discussed.
Crosses show runs where the applied nonaxisymmetric perturba-
tions decay and no instability is found; for circles and squares,

A12, page 6 of 23



Meduri, D. G., et al.: A&A, 683, A12 (2024)

the perturbations grow exponentially over time. Runs where, as
demonstrated in the next section, we observe AMRI (orange
symbols) fall within the region of the parameter space pre-
dicted by the instability condition Eq. (20) (white background)
as expected. For low azimuthal field strengths (Hamax

φ )2 < 3Re/2
(gray background on the left) where AMRI is stabilized by diffu-
sive effects according to the estimates above, we found no unsta-
ble run.

For larger azimuthal field strengths (Hamax
φ )2 > 3Re2/4 (gray

background on the right), AMRI is expected to be suppressed by
magnetic tension and we indeed observe TI (red circles). Evi-
dence of TI in these simulation runs is provided in Appendix A.
The critical Lemax

φ of 1/
√

2 for which the maximum TI growth
rate becomes larger than the one of AMRI (red dotted line;
cf. Eq. (24)) lies close to the boundary where AMRI is sup-
pressed. In other words, in the AMRI regime, the maximum TI
growth rate is virtually always lower than the one of AMRI.

Guseva et al. (2017b) performed a global linear stability
analysis of AMRI in Taylor–Couette flow with a quasi-Keplerian
shear that resembles the one employed here. The lower and
upper neutral instability lines calculated by the authors (thick
dashed lines in Fig. 4) agree remarkably well with our numeri-
cal simulation results.

In the reminder of this work, we focus on the AMRI regime
only. In Sect. 5 we discuss the nonlinear evolution of the insta-
bility but we anticipate here that transient AMRI turbulence
(orange circles in Fig. 4) is generally observed and only two runs
at Re ≥ 5×104 show self-sustained turbulence (orange squares).

4.2. Evidence of AMRI

We now analyze the linear evolution of the instability observed
in our numerical simulations and provide evidence of AMRI.
Here we focus on the run at Re = 5× 104 and Hamax

φ = 5012
as an example. The perturbations are introduced at time tpert =
326.0. Similar results are obtained for the other unstable runs of
Fig. 4 and we therefore do not discuss them in detail here.

Figures 5a,b present the initial temporal evolution of the
toroidal and poloidal magnetic energies of various azimuthal
modes m in this run. The energies are calculated over the spher-
ical surface at radius r/ro = 0.9 and map the outer fluid regions
where the instability first develops (Fig. 6a). As expected for
AMRI, the instability fluctuations are larger in the outer equa-
torial region where the unstable modes have higher growth rates
due to the stronger background shear (Fig. 1a).

Nonaxisymmetric azimuthal modes m < 25 grow exponen-
tially typically after about 10 system rotations from the per-
turbation time until t−tpert ≈ 25 (Figs. 5a,b). The background
axisymmetric (m = 0) azimuthal field (black line in Fig. 5a)
slowly decays due to Ohmic diffusion and its evolution is prac-
tically stationary during the linear instability growth. We also
observe the generation of an initially weak and decaying axisym-
metric poloidal field (black line in Fig. 5b). This field is pro-
duced from weak nonlinear correlations of the initial flow and
field instability fluctuations.

Figure 5c displays the growth rates of the nonaxisymmet-
ric azimuthal modes m from 1 to 25, calculated from the evo-
lution of the poloidal (dashed line) and toroidal (solid line)
magnetic energies above during the period t−tpert = 9−24 of
the linear instability growth. The two growth rates spectra are in
good agreement between each other. According to the toroidal
spectrum, modes m < 24 are linearly unstable. The most unsta-
ble mode is mmax = 14, although very similar growth rates are
observed for the two adjacent modes m = 13 and 15. The lon-
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Fig. 5. Temporal evolution of various azimuthal modes and observed
growth rates for the unstratified run at Re = 5 × 104, Hamax

φ = 5012,
and Pm = 1. (a) Toroidal and (b) poloidal magnetic energies of various
linearly unstable azimuthal modes m as a function of time. The energies
are calculated over the spherical surface at radius r/ro = 0.9. The most
unstable linear mode is m = 14. The first subcritical mode observed
for both energy components is m = 25. (c) Linear growth rates γ/Ωa
of the azimuthal modes 1 ≤ m ≤ 25. The growth rates are calculated
by fitting the toroidal (solid line) and poloidal (dashed line) magnetic
energy evolution shown in (a,b) during the period t−tpert = 9−24. The
green and red triangles show, respectively, the most unstable and the
critical AMRI modes predicted by the local linear theory and evaluated
as explained in the main text.

gitudinal structure of the nonaxisymmetric azimuthal field B′φ is
compatible with such dominant modes (Fig. 6b).

The observed most unstable mode mmax and its growth rate
γmax closely agree with the ones expected from the local linear
theory discussed in the previous section. Equation (14) indeed
provides 〈mAMRI

max 〉 ≈ 15, which is very close to the observed
most unstable mode. Here and in the remainder of this section
the angular brackets 〈·〉 denote average over a spherical sur-
face at radius r/ro = 0.9 where the azimuthal modes spectra
above are calculated. Based on Eq. (15), the expected maximum
growth rate of AMRI is 〈γAMRI

max 〉/Ωa ≈ 0.29, which also closely
agrees with the one observed from the toroidal spectrum at 0.30
(Fig. 5c).
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Fig. 6. Snapshot of the nonaxisymmetric azimuthal field B′φ during the
linear growth of the instability (t−tpert = 22) for the run in Fig. 5.
(a) Meridional cut at longitude φ = 90◦. The curved dashed line shows
radius r/ro = 0.9 where the magnetic energies of Figs. 5a,b are calcu-
lated. (b) Azimuthal cut at colatitude θ = 85◦ passing through a local
maximum of B′φ (shown as an oblique dashed line in (a)).

The toroidal spectrum in Fig. 5c shows that the azimuthal
modes m ≥ 24 are initially subcritical. This is again compatible
with the local linear theory which predicts a critical azimuthal
mode 〈mAMRI

crit 〉 ≈ 25 (Eq. (22); red triangle in Fig. 5c). The
linearly stable modes start to grow only at t−tpert & 25 due to
nonlinear mode energy transfers (the red line in Figs. 5a,b dis-
plays the evolution of m = 25 as an example), when we veri-
fied that the axisymmetric magnetic energy becomes comparable
in amplitude to the nonaxisymmetric one. The nonlinear growth
rates of the modes m = 1 and m = 2 (blue lines in Figs. 5a,b) are
roughly twice the growth rate of mmax, possibly because of mode
interactions between the faster growing linear modes. Finally,
the instability saturates at t−tpert ≈ 55 with the nonaxisymmetric
poloidal and toroidal energies roughly in equipartition.

Figure 7 displays the observed maximum growth rates γmax
and the most unstable azimuthal modes mmax for some of the
unstable runs of Fig. 4 in the AMRI regime. The simulation data
points are shown as a function of 〈ωA/Ω〉 at the perturbation
time. The numerical results are in good agreement with the local
linear analysis predictions for AMRI (Eqs. (15) and (14)), which
are indicated by the gray shaded regions. The largest differences
between the numerical and theoretical values are of about 20% in
the maximum growth rate and of a factor 2 in the most unstable
mode. Such differences are surprisingly very limited consider-
ing all the simplifying assumptions of the local linear analysis,
which can only roughly describe the global modes excited in our
numerical simulations.

5. Nonlinear solutions

In this section we discuss the nonlinear evolution of AMRI and
describe the turbulent solutions obtained for unstratified and
stratified flows. First, we consider the unstratified runs at Pm = 1
of the previous section. In Sect. 5.1 we describe in detail the
fiducial dynamo run at Re = 5 × 104 and Hamax

φ = 5012 and
we examine the dynamo onset in Sect. 5.2. The effect of Pm
on the dynamo onset is presented in Sect. 5.3. Finally, Sect. 5.4
analyzes the nonlinear solutions obtained when including stable
stratification.

5.1. Fiducial dynamo run

We describe the self-sustained turbulent solution of run U0 at
N = 0, Re = 5 × 104, Pm = 1, and Hamax

φ = 5012, which we
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Fig. 7. Comparison of the observed most unstable AMRI modes and
their growth rates with the local linear theory predictions. (a) Maxi-
mum growth rates γmax and (b) most unstable azimuthal modes mmax
as a function of 〈ωA/Ω〉. The AMRI runs shown are those of Fig. 4 at
(Re,Hamax

φ ) = (5 × 103, 1125), (5 × 103, 2520), (104, 1125), (104, 2520),
(2 × 104, 5012), and (5 × 104, 5012). For each run, γmax and mmax are
calculated from the evolution of the toroidal magnetic energy of the lin-
early unstable modes as explained in the main text. The gray shaded
regions display the range of maximum growth rates and most unstable
modes predicted by the local linear theory for these runs.
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Fig. 8. Temporal evolution of the kinetic (red lines) and magnetic (black
lines) energies for the fiducial dynamo run U0 (N = 0, Re = 5 × 104,
Pm = 1, and Hamax

φ = 5012). The axisymmetric toroidal kinetic energy
of the forced azimuthal flow is the dominant energy contribution (not
shown) and has been subtracted from the calculation of the total kinetic
energy. The lower (upper) horizontal axis shows time scaled in units of
the rotation timescale τΩ = 1/Ωa (Ohmic diffusion time τOhm).

refer to as the fiducial dynamo run hereafter. The linear phase of
the instability growth in this run has been discussed in Sect. 4.2.

Figure 8 presents the temporal evolution of the various com-
ponents of the kinetic and magnetic energies. The dominant
(stationary) toroidal axisymmetric kinetic energy of the back-
ground flow is 1

2

∫
uφ dV ≈ 1

2

∫
uf dV ≈ 2.3 (not shown) and has

been subtracted from the total kinetic energy contribution. After
around 700 system rotations from the perturbation time tpert =
326.0, a stationary regime is reached. The magnetic energy of
this state is dominantly nonaxisymmetric (dashed black line).
The axisymmetric toroidal magnetic energy (dot dashed black
line) is the second largest contribution, with an amplitude about
3 times smaller than the total magnetic energy. The axisymmet-
ric poloidal field Bp, generated by the instability fluctuations
through the azimuthal component of the mean electromotive
force (EMF) E = u′ × B′, is decisively weaker and saturates
at an energy (dotted black line) roughly 2 orders of magnitude
lower than the one of the axisymmetric toroidal field. Although
weak, a positive EMF feedback on Bp as the one observed here
is crucial for MRI dynamos to operate. The Ω-effect obtained
by shearing this weak Bp through the background differential
rotation provides indeed the required closure for self-sustained
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Fig. 9. Steady flow and magnetic field solution of the fiducial dynamo run U0 at time ts = 1241 (or ts−tpert = 915). (a,b) Meridional cut and surface
projection at r/ro = 0.8 of the azimuthal field Bφ. (c,d) Meridional cuts of the radial flow velocity ur and of the axisymmetric azimuthal field Bφ.
Black isocontours in (c) and (d) show the meridional circulation and the axisymmetric poloidal field respectively.

dynamo action (Rincon et al. 2007; Rincon 2019). The time
averaged nonaxisymmetric magnetic energy of the steady state
is about 4 times larger than the kinetic one (dashed red line).
Similar turbulent magnetic to kinetic energy ratios are observed
in global and local simulations of MRI turbulence with zero net
flux (Reboul-Salze et al. 2021).

Figure 9 illustrates the complex turbulent character of the
solution in the steady state. The magnetic field is small scaled in
the meridional directions, while it presents elongated structures
in the azimuthal direction, which are typical of MRI turbulence
and are due to shear effects (Figs. 9a,b). Inside the tangent cylin-
der, the imaginary vertical cylindrical surface tangent to the inner
boundary at the equator, the magnetic field is weak since AMRI
is less active due to the low background shear (Fig. 1). Nonethe-
less, these regions host large scale axisymmetric poloidal fields
confined at high latitudes by the meridional flow (black isocon-
tours in Figs. 9c,d). Outside the tangent cylinder, both Bp and
Bφ are concentrated in small flux patches generated by the insta-
bility fluctuations (Fig. 9d). The structures of the flow velocity
components are similar to those of the magnetic field, except for
ur where the large scale meridional circulation produces radial
plumes (Fig. 9c).

Dynamo action occurs when the magnetic field is sustained
for a period longer than its characteristic Ohmic diffusion time
τOhm = l2B/η, where lB is a characteristic magnetic field length
scale. Since the typical radial and latitudinal length scales of
the magnetic field in the stationary state are similar, we esti-
mate lB based on the horizontal length scales only. To this
end, we define the instantaneous horizontal half wavelength of
the field

lB,⊥ =
π d
`B
, (25)

where

`B =

∑
`,m ` 〈B2

`,m〉

〈B2〉
(26)

is the mean SH degree of the field (Christensen & Aubert 2006).
Here B`,m is the coefficient at degree ` and order m of the SH
expansion of the field and the angular brackets denote a volume
integral over the fluid domain. The time average of lB,⊥ during
the steady state of the fiducial dynamo run is l̂B,⊥ = 0.14 d, which
yields an Ohmic diffusion time τOhm ≈ 955 Ω−1

a . The top hori-
zontal axis of Fig. 8 shows that the quasi steady evolution of
this run, which we define to start after about 670 Ω−1

a from the
perturbation time, covers 1.84 τOhm and therefore self-sustained
dynamo action is at work.

Hereafter we classify a simulation run as a dynamo if its
quasi steady evolution lasts longer than τOhm. The simulation
run presented here is the first MRI dynamo at a value of the
magnetic Prandtl number Pm as low as 1 ever reported in a
global setup. Previous global numerical studies have shown self-
sustained MRI turbulence only for Pm ≥ 10 (Guseva et al.
2017b; Reboul-Salze et al. 2021). We remind here that these
solutions have to be interpreted as small-scale dynamos, in the
sense that the generated flow and magnetic fields are at scales
smaller than the forcing scale of the background flow, which is
on the order of ro in our runs (e.g., Rincon 2019).

Similarly to the above, we define the horizontal half wave-
length of the flow lu,⊥ = π d/`u, where `u is the mean SH
degree of |u − uf|, the flow velocity amplitude after subtracting
the contribution of the forcing. For the simplicity of notation,
we refer to lu,⊥ and lB,⊥ as their time averaged values over a
period of stationary evolution of the solution hereafter. For run
U0, lu,⊥ = 0.19 d, which is slightly larger than lB,⊥. These hori-
zontal length scales are listed, together with the control param-
eters and other output measures, in Table 1 for run U0 and for
the other unstratified dynamos and stratified runs that we shall
discuss in the next sections.

5.2. Dynamo onset at Pm = 1

Dynamo action driven by MRI is an inherently nonlinear phe-
nomenon: it requires instability fluctuations that transiently grow
to finite amplitudes, leading to nonlinear effects that eventually
sustain the turbulence (Rincon et al. 2008). Linear MRI modes
can easily reach finite amplitudes since they exhibit nonmodal
growth, that is they can transiently grow faster than the least
stable eigenmode on short timescales (e.g., Balbus & Hawley
1992; Squire & Bhattacharjee 2014; Mamatsashvili et al. 2020).
Nonmodal effects are a well known property of non-self-adjoint
linear systems, which include not only those prone to MRI but
also purely hydrodynamical shear flows (Schmid 2007).

As a consequence of their nonmodal character, the exci-
tation of MRI dynamos strongly depends on the amplitude
and morphology of the initial condition (Riols et al. 2013;
Guseva et al. 2017a). Consistently with these findings, as antic-
ipated in Sect. 4.1, we observe self-sustained dynamo action in
our unstratified simulations at Pm = 1 and fixed Re only when
the field strength of the perturbed axisymmetric solution is large
enough. Figure 10a compares the temporal evolution of the mag-
netic energy Emag, scaled as in Sect. 3, of the fiducial dynamo run
U0 (solid black line) with two runs at lower Hamax

φ . The latter
runs show transient turbulence where the instability decays after
saturating for a period which shortens when Hamax

φ decreases.
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Table 1. Input parameters and output diagnostics of the unstratified (N = 0) dynamo runs and of the stratified (N > 0) runs.

Name N Re/104 Pm Hamax
φ Pr tpert lc/d Regime Rmeff τeddy/τΩ τOhm/τΩ ∆t/τOhm lu,⊥/d lB,⊥/d l′u,⊥/d l′B,⊥/d

U0 0 5 1 5012 – 326 – D 823 5.8 955 1.84 0.190 0.138 0.090 0.075
U1 0 5 2 5012 – 566 – D 2136 3.3 828 0.82 0.142 0.091 0.067 0.057
U2 0 10 1 5012 – 654 – D 2527 2.2 956 1.07 0.114 0.098 0.054 0.059
U3 0 10 0.6 5012 – 412 – D 1035 4.2 935 1.60 0.144 0.125 0.068 0.067
S0 1 5 1 – 10−3 – 0.141 T 677 6.3 1206 0.95 0.169 0.155 0.083 0.076
S1 1 5 1 – 10−2 – 0.045 T 669 6.4 1878 0.40 0.169 0.194 0.084 0.084
S2 1 5 1 – 10−1 – 0.014 T 770 6.7 2946 0.17 0.204 0.243 0.102 0.083
S3 10 5 1 – 10−4 – 0.141 T 490 9.3 2052 0.37 0.173 0.203 0.086 0.083
S4 10 5 1 – 10−3 – 0.045 T 424 13.0 9831 0.19 0.216 0.443 0.107 0.091
S5 10 5 1 – 2 × 10−3 – 0.032 T 438 13.6 17 912 0.09 0.238 0.599 0.117 0.103
S6 10 5 1 – 10−2 – 0.014 S – – – – – – – –
S7 20 5 1 – 10−4 – 0.100 T 415 12.5 4076 0.17 0.197 0.286 0.098 0.087
S8 20 5 1 – 5 × 10−4 – 0.045 T 373 17.1 18 273 0.05 0.254 0.605 0.125 0.110
S9 20 5 1 – 10−3 – 0.032 T 429 15.6 29 011 0.04 0.265 0.762 0.131 0.121
S10 20 5 1 – 5 × 10−3 – 0.014 S – – – – – – – –

Notes. The Reynolds number, the magnetic Prandtl number, and the Prandtl number are Re, Pm, and Pr respectively. Hamax
φ is the maximum value

of the azimuthal Hartmann number in the fluid domain at the perturbation time tpert. The initial condition of the stratified runs is the solution of
fiducial dynamo run U0 at time ts = 1241 (Fig. 9). lc/d is the critical radial flow length scale below which thermal diffusion is expected to weaken
the stabilizing buoyancy. As for the run regime, D, T, and S stand for dynamo, transient turbulence, and stable respectively. Rmeff is the effective
magnetic Reynolds number based on the rms flow velocity after subtracting the forced azimuthal flow. τeddy and τOhm are the eddy turnover time
and the Ohmic diffusion time respectively and are reported in units of the rotation timescale τΩ = 1/Ωa. ∆t is the period of quasi steady evolution
and over which all time averages are calculated. The horizontal length scales based on the (turbulent) flow velocity and magnetic field are (l′u,⊥ and
l′B,⊥) lu,⊥ and lB,⊥ respectively. See the main text for definitions of all these output diagnostics.

The turbulent magnetic Reynolds number

Rm′ =
u′rms d
η

(27)

and the turbulent Lundquist number

Lu′ =
B′rms d

(µ0ρ)1/2η
, (28)

where u′rms and B′rms are the root mean square (rms) nonaxisym-
metric flow and magnetic field strengths respectively, can be
used to compare the amplitudes of the flow and field instabil-
ity fluctuations between these runs. The peak values reached by
Rm′ and Lu′ increase with Hamax

φ (Figs. 10c,e), arguably pro-
ducing a stronger mean EMF E which sustains the axisymmetric
field against resistive effects at the larger Hamax

φ of 5012 of run
U0. As already mentioned above, this instability-driven EMF is
key to generate the axisymmetric poloidal field required for MRI
dynamos to operate. We note that studies of AMRI in Taylor–
Couette flow also show that both the turbulent flow and field
amplitudes increase with the imposed background field strength
as we observe here (Rüdiger et al. 2013).

As anticipated in Sect. 4.1, we find dynamo action for Re ≥
5 × 104, that is when the azimuthal flow forcing is strong enough.
Figure10bindeeddemonstrates that Emag inrunsatafixedHamax

φ of
5012 decays for Re ≤ 2× 104, while a quasi steady state is reached
in the two other runs at larger Re. The peak amplitudes of Rm′ and
Lu′ increase with the Reynolds number (Figs. 10d,f), which again
suggests that dynamo action occurs when the mean EMF becomes
strong enough. The background differential rotation contrast from
pole to equator ∆Ω scales roughly as Re/2 (Sect. 2). This produces
a stronger Ω-effect in the two runs at larger Re which also helps to
sustain the axisymmetric azimuthal field Bφ.

We remark here that the perturbed axisymmetric azimuthal
field solutions of these runs at fixed Hamax

φ are very similar but not
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Fig. 10. Temporal evolution of the (a,b) magnetic energy Emag, the
(c,d) turbulent magnetic Reynolds number Rm′, and the (e,f) turbulent
Lundquist number Lu′ for six unstratified runs at Pm = 1. The solid
black line shows the fiducial dynamo run U0. The left (right) panels
present runs at Re = 5 × 104 (Hamax

φ = 5012) and different Hamax
φ (Re)

as indicated in the legend of the bottom panel.

exactly identical. Although mild, these differences may contribute
to explain the regime change from decaying to self-sustained
turbulence when increasing Re. The critical magnetic Reynolds
number for the onset of MRI dynamo action indeed strongly
depends on the initial condition itself (Riols et al. 2013).

5.3. Dependence of the dynamo onset on Pm

Local shearing box simulations with zero or nonzero net mag-
netic fluxes show that viscous and resistive effects strongly
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Fig. 11. Temporal evolution of the nonaxisymmetric kinetic (dashed
lines) and magnetic (solid lines) energies for four unstratified runs at
Re = 5 × 104 and Re = 105 and different values of Pm as indicated in
the legend at the top. The black lines show the fiducial dynamo run U0.

affect the saturated state of MRI turbulence (Lesur & Longaretti
2007; Fromang et al. 2007; Simon & Hawley 2009). In particu-
lar, magnetic diffusion limits the turbulence saturation level such
that, at fixed Re, dynamo action is lost below a critical value of
Pm, a behavior that we also find here.

Figure 11 presents the temporal evolution of the nonaxisym-
metric kinetic and magnetic energies in run U0 (black lines) and
in two other runs at the same Re of 5 × 104, but with Pm = 0.5
and 2 (run U1). After a few hundreds of system rotations, run
U1 (green lines) reaches a quasi steady state covering a period
∆t = 0.82 τOhm (Table 1). Given that the various energy compo-
nents are stationary and that the period of quasi steady evolution
is close to one Ohmic diffusion time, we consider this run as a
dynamo. The time averaged turbulent kinetic and magnetic ener-
gies in the quasi steady state increase by about a factor 2 relative
to run U0, in qualitative agreement with the shearing box studies
mentioned above.

When decreasing Pm to 0.5, AMRI turbulence is maintained
only for some tens of system rotations and then it decays away
(blue lines in Fig. 11). We note that the perturbed axisymmet-
ric azimuthal field configurations of these runs are different, but
their mean strength increases when Pm lowers which, in princi-
ple, favors dynamo action as discussed in the previous section.
While this cannot justify the observed dynamo behavior, it may
explain the large peak values of the turbulent energies reached
by the nondynamo run at Pm = 0.5, which are comparable to
those of runs U0 and U1.

The shearing box MRI studies mentioned above also indi-
cate that the critical Pm for dynamo onset decreases when Re
increases (e.g., Fromang et al. 2007). At the largest Re of 105

that we explored here, we indeed observe dynamo action for
a value of Pm as low as 0.6 (run U3; red lines in Fig. 11).
After an initial transient of about 340 system rotations the tur-
bulence reaches a quasi steady evolution lasting for 1.6 τOhm.
MRI dynamos at Pm < 1 are reported in local shearing box
simulations with net magnetic fluxes (Simon & Hawley 2009;
Käpylä & Korpi 2011), but never so far in global setups as the
one explored here.

5.4. Effect of stable stratification on AMRI turbulence

We now study how stable stratification modifies unstratified
AMRI turbulence at Re = 5 × 104 and Pm = 1. To this end,
we solve Eqs. (2)–(4) using as initial condition the quasi steady
solution of the fiducial dynamo run U0 at time ts = 1241 (Fig. 9).
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Fig. 12. Temporal evolution of the magnetic and kinetic energies of four
unstratified and stratified runs at Re = 5 × 104 and Pm = 1. (a) Non-
axisymmetric magnetic energy, (b) nonaxisymmetric kinetic energy,
(c) axisymmetric toroidal (solid lines) and poloidal (dashed lines) mag-
netic energies as a function of time for the unstratified fiducial dynamo
run U0 (black) and the three runs S0, S4, and S9 at N = 1, 10, and 20
respectively (see the legend in the middle panel). All the stratified runs
are at Pr = 10−3. The inset in (a) shows the nonaxisymmetric magnetic
energies of runs S0 and S4 on a linear scale. The initial condition of the
stratified runs is the steady state solution of run U0 at time ts = 1241
shown in Fig. 9.

We first discuss the effect of stable stratification by vary-
ing N at a fixed Prandtl number Pr of 10−3. Stable stratifica-
tion strongly limits radial motions, modifying the characteristics
of the turbulence. Figures 12a,b present the temporal evolution,
starting at t = ts, of the turbulent (nonaxisymmetric) magnetic
and kinetic energies in run U0 (black lines) and in the three
stratified runs S0 (N = 1), S4 (N = 10), and S9 (N = 20),
showing that they lower when increasing stratification. After
an initial transient which gets longer when increasing N , the
quasi steady evolutions of runs S4 (green lines) and S9 (red
lines) cover 0.95 and 0.19 τOhm respectively. The turbulence in
the weakly stratified run S0 (blue lines) slowly decays following
the resistive decay of the background axisymmetric field (blue
lines in Fig. 12c). By limiting radial motions, stable stratifica-
tion lowers the effective magnetic Reynolds number Rmeff =
urms d

/
η below the critical value for dynamo onset, which is of

about 820 based on the unstratified simulations (Table 1). Here
urms =

(
V−1

∫
|u − uf|

2 dV
)1/2

is the rms flow velocity after sub-
tracting the forced azimuthal flow. The energies of all stratified
runs explored here display an oscillatory behavior (see the inset
in Fig. 12a) which is characteristic of stratified MRI turbulence
and is often attributed to an αΩ-dynamo process (Gressel 2010;
Reboul-Salze et al. 2022).

The location and structure of the turbulence also change with
stratification. The snapshots of B′φ in Figs. 13d–f reveal that
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Fig. 13. Snapshots of the flow and magnetic field solutions of runs S0,
S4, and S9 shown in Fig. 12. From top to bottom: meridional cuts of the
azimuthal field Bφ, nonaxisymmetric azimuthal field B′φ, axisymmetric
azimuthal field Bφ, and radial flow velocity ur. Black isocontours super-
imposed on Bφ and ur show the axisymmetric poloidal field and the
meridional circulation respectively.

the turbulence in the weakly stratified run S0 remains homoge-
neous outside the tangent cylinder as in the unstratified fiducial
dynamo, while the instability is confined up to intermediate lat-
itudes in run S4 and is almost entirely located in the southern
hemisphere in the most stratified run S9. The unstable regions in
the two latter runs correlate with the locations where the axisym-
metric azimuthal field Bφ is stronger (Figs. 13h,i) and unstable
to AMRI according to the local linear analysis, which predicts
5.5 × 10−3 < Bφ ≤ 0.87 based on the instability condition
Eq. (21). Outside these locations, Bφ is too weak, with typical
absolute amplitudes of 10−3 or smaller, and AMRI modes are
damped by diffusive effects.

In the most stratified run S9, the turbulence becomes weakly
anisotropic, with structures elongated in the latitudinal direction

as expected (Fig. 13f). The horizontal turbulent field length scale
l′B,⊥/d is 0.12 in this run, which is 60% larger than the value of
the weakly stratified run S0 (Table 1). In the latitudinal direction,
the structures of the flow are less stretched than those of the field,
as evidenced by comparing the snapshots of Bφ (Fig. 13c) and ur

(Fig. 13l). The horizontal field length scale lB,⊥/d is indeed as
large as 0.76, whereas the one of the flow is lower at lu,⊥/d =
0.27.

It is interesting to note that the axisymmetric toroidal mag-
netic energy increases with stratification (solid lines in Fig. 12c).
This energy contribution dominates over the nonaxisymmetric
one for N > 1, so that Bφ is characterized by larger spatial
scales as stratification increases (Figs. 13a–c). On the contrary,
the axisymmetric poloidal magnetic energy weakly lowers with
stratification (dashed lines in Fig. 12c). As a consequence, the
ratio Bφ,rms/Bp,rms, where Bφ,rms (Bp,rms) is the time averaged rms
axisymmetric azimuthal (poloidal) field, increases when increas-
ingN and ranges between 10 and 25 in our stratified simulations
(Table 2). In the mean induction equation, the source terms that
generate the axisymmetric toroidal field Bφ are the radial mean
EMF Er and the term associated to the Ω-effect, s(Bp · ∇)Ω,
where Bp is the axisymmetric poloidal field. In runs S4 and S9,
Bφ is mostly concentrated in large flux patches located where
the turbulence is most active which suggests a positive feed-
back of Er on its generation. The more coherent structure of
the turbulence obtained when increasing stratification may yield
locally stronger Er, which then causes the observed increase in
Bφ. Although Bp is weak in all runs explored, the Ω-effect – a
key ingredient of MRI dynamos as mentioned before – is still of
leading order due to the strong background shear. The positive
feedback of the Ω-effect on the generation of Bφ is suggested,
for example, by the positive flux patch in the northern hemi-
sphere observed in run S9 (Fig. 13i). The maximum of this flux
patch is indeed located where Bp (black isocontours in Fig. 13i)
is roughly antiparallel to the shear direction ês as expected.

The ratio of the time averaged rms azimuthal field to the
radial one Bφ,rms/Br,rms ranges between 3 and 5 in the unstrat-
ified and weakly stratified runs at N = 1 and increases when
stable stratification strengthens. At Pr = 10−3, for example,
Bφ,rms/Br,rms grows from 4.1 to 14.8 when increasing N from
1 to 20. This field ratio is in the range 2−6 in global compress-
ible simulations of stratified MRI turbulence in accretion disks
(Hawley et al. 2011, 2013), while local shearing box simulations
obtain values around 2 (Shi et al. 2010).

By reducing the amplitude of the temperature fluctuations,
thermal diffusion can weaken the stabilizing buoyancy force in
Eq. (2). This occurs when thermal diffusion acts faster than the
buoyancy force, that is when τκ < τN , where τκ = l2r/κ is
the thermal diffusion timescale at the radial flow length scale
lr and τN = 1/N is the buoyancy timescale. By equating these
two timescales, we obtain the critical (radial) flow length scale
lc = (κ/N)1/2, or lc/d = (Pr ReN)−1/2, below which thermal dif-
fusion weakens buoyancy. To explore the effect of thermal diffu-
sion in our stratified simulations at Re = 5 × 104 and Pm = 1,
we varied the Prandtl number Pr at fixed N .

Figure 14a displays the temporal evolution of the turbulent
magnetic energy (solid lines) in four runs at N = 10 with Pr
increasing from 10−4 to 10−2. While AMRI is observed for Pr ≤
2 × 10−3, further increasing the Prandtl number to 10−2 (solid
red line) suppresses the instability. In this stable run the nonax-
isymmetric modes decay at a rate increasing with the azimuthal
wavenumber m as expected (Fig. 14b).
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Table 2. Time averaged diagnostics for the flow, the magnetic field, and the angular momentum transport for all unstable runs of Table 1.

Name N Re/104 Pm Pr Bφ,rms/Bp,rms Bφ,rms/Br,rms u′rms/10−3 B′rms/10−3 uM,rms/10−3 R ν̃T × 105

U0 0 5 1 – 8.9 3.9 15.5 30.8 5.6 11.9 37.1 ± 4.5
U1 0 5 2 – 7.4 3.3 20.3 42.2 6.7 13.0 74.0 ± 8.1
U2 0 10 1 – 7.4 3.1 24.3 46.1 7.1 11.8 88.4 ± 7.7
U3 0 10 0.6 – 9.0 3.6 16.5 30.5 5.2 10.4 38.1 ± 8.0
S0 1 5 1 10−3 9.6 4.1 13.1 28.0 3.5 11.1 30.8 ± 3.4
S1 1 5 1 10−2 10.2 3.9 13.2 26.5 2.0 9.4 30.6 ± 3.7
S2 1 5 1 10−1 12.2 4.7 15.3 28.5 2.0 6.8 31.3 ± 1.9
S3 10 5 1 10−4 10.9 4.4 9.6 22.1 1.9 10.1 20.3 ± 5.3
S4 10 5 1 10−3 16.2 6.9 8.4 18.3 1.3 6.6 11.8 ± 2.2
S5 10 5 1 2 × 10−3 19.9 10.0 8.6 18.3 1.6 5.7 8.2 ± 1.1
S7 20 5 1 10−4 13.0 5.2 8.2 18.8 1.3 8.1 14.3 ± 4.3
S8 20 5 1 5 × 10−4 20.3 10.9 7.3 16.2 1.4 6.2 5.8 ± 0.8
S9 20 5 1 10−3 24.6 14.8 8.5 17.6 1.5 5.2 4.9 ± 0.6

Notes. The averages are evaluated over the periods ∆t reported in Table 1. Bφ,rms/Bp,rms is the ratio of the rms axisymmetric azimuthal field to the
rms axisymmetric poloidal field. Bφ,rms/Br,rms is the ratio of the rms azimuthal field to the rms radial field. The rms turbulent flow velocity and
magnetic field are u′rms and B′rms respectively. The rms meridional flow velocity is uM,rms. R denotes the ratio of the volume averaged radial Maxwell
stresses (µ0ρ)−1〈B′r B′φ〉 to the volume averaged radial Reynolds stresses 〈u′ru

′
φ〉. ν̃T is the dimensionless turbulent viscosity estimated as explained

in the main text; the error indicates 1 standard deviation in time.
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Fig. 14. Effect of the Prandtl number Pr on the instability. (a) Nonax-
isymmetric (solid lines) and axisymmetric toroidal (dashed lines) mag-
netic energies as a function of time in runs S3–S6 (Re = 5 × 104,
Pm = 1, N = 10, and different values of Pr as indicated in the legend).
Only the nonaxisymmetric energy is shown for run S6 at Pr = 10−2.
(b) Toroidal magnetic energy at radius r/ro = 0.5 as a function of time
for the azimuthal modes m = 0−6 for the stable run S6.

The analysis of a few snapshots of the turbulent radial veloc-
ity u′r shows that the radial flow length scale lr, obtained from
a volume average of u′r

/ ∣∣∣êr · ∇u′r
∣∣∣, is . O(lc) for Pr ≤ 2 × 10−3,

which suggests that buoyancy effects are limited by thermal dif-
fusion in these runs. In the run at Pr = 10−2, on the contrary,
lr/d ≈ 0.05 is several times larger than the critical length scale
lc/d = 0.014, hence thermal diffusion cannot reduce the effect of
stable stratification, which is too strong and suppresses the insta-
bility. Similarly, we observe AMRI turbulence at N = 20 when
Pr ≤ 10−3, whereas the instability is suppressed at the larger Pr
of 5×10−3 (Table 1). A similar behavior where increasing buoy-
ancy effects stabilizes the system is also typical of hydrodynami-
cal shear instabilities in vertically stratified flow (Lignières et al.
1999). We remark here that strong enough latitudinal gradients
of the differential rotation allow AMRI to develop even when
lc � lr and thermal diffusion does not limit stable stratification
(Jouve et al. 2020).

Finally, we note that all stratified AMRI runs show either
transient turbulence or cover periods too short to test for dynamo

action. For example, at N = 10, we found decaying turbulence
at Pr = 10−4 (Fig. 14a, solid black line). The decay rate of the
turbulent fluctuations is compatible with the one of the axisym-
metric azimuthal field which sustains the instability (Fig. 14a,
dashed black line). In the two runs at Pr = 10−3 and 2×10−3, the
turbulence is sustained for 0.19 and 0.09 Ohmic diffusion times
τOhm respectively and it may decay on longer timescales not cap-
tured here (Table 1). These periods correspond to, respectively,
140 and 115 eddy turnover times τeddy, which ensure a robust
statistics for the turbulence. Hereafter τeddy is defined as the time
averaged ratio l′u,⊥/u

′
rms.

6. Angular momentum transport

In this section we examine the transport of AM induced by
AMRI in the unstratified and stratified simulations described
above. An equation of conservation for the specific AM L =

s uφ = s2Ω can be obtained by averaging the azimuthal compo-
nent of Eq. (2) over longitude and multiplying both members by
s = r sin θ,

∂L
∂t
− s f · êφ = −∇ ·

(
FMC + FRS + FVD + FMS + FMT

)
, (29)

where

FMC = uM L, (30)

FRS = s u′ru
′
φ êr + s u′θu

′
φ êθ, (31)

FVD = −
1

Re
s2
∇Ω, (32)

FMS = −s B′rB′φ êr − s B′θB
′
φ êθ, (33)

FMT = −Bφ BM (34)

are the fluxes of the meridional circulation (MC), Reynolds
stresses (RS), viscous diffusion (VD), Maxwell stresses (MS),
and magnetic tension (MT) respectively. Hereafter the subscript
M indicates the meridional component (e.g., uM = urêr + uθêθ).
Note that there is no contribution from the magnetic pressure
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Fig. 15. Time averaged integrated fluxes (a–c) Îi
r and (d–f) Îi

θ for the
unstratified runs U0, U2, and U1 (from left to right). The shaded area
around each flux contribution shows 1 standard deviation above and
below the time average. The scale of the vertical axis is the same in all
panels.

B2/2 in Eq. (29) since the longitudinal magnetic pressure gradi-
ent vanishes when integrated over φ.

We decompose the flux terms Eqs. (30)–(34) into the sum of
their radial and latitudinal contributions, that is

Fi = F i
r êr + F i

θ êθ (35)

where i = {MC,RS,VD,MS,MT}; for example, the Reynolds
stresses flux is FRS = FRS

r êr + FRS
θ êθ, where FRS

r = s u′ru
′
φ and

FRS
θ = s u′θu

′
φ. To assess the net AM transport in the radial and

latitudinal directions, following Brun & Toomre (2002), we inte-
grate F i

r and F i
θ over spherical surfaces of varying radii and over

cones of varying inclination respectively,

Ii
r(r, t) =

∫ π

0
F i

r(r, θ, t) r2 sin θ dθ (36)

and

Ii
θ(θ, t) =

∫ ro

ri

F i
θ(r, θ, t) r sin θ dr. (37)

We then time average these integrated fluxes, obtaining Îi
r and Îi

θ
respectively. In the unstratified dynamo runs, the time averages
are calculated over quasi steady states generally covering inter-
vals ∆t of a few hundreds of eddy turnover times τeddy (Table 1).
In the stratified runs the turbulence is transient and no steady
state is reached, so that the time averaging interval ∆t is defined
by periods, after the initial transient, where the turbulent mag-
netic energy does not decay significantly. Such periods cover at
least 56 τeddy (Table 1), which still ensures a robust statistics for
the turbulence.

6.1. Unstratified dynamo runs

First, we analyze the AM transport in the unstratified dynamo
runs described in Sects. 5.1–5.3. Figures 15a,d present the time
averaged integrated fluxes Îi

r and Îi
θ in the fiducial dynamo run

U0. In both directions, the Maxwell stresses (red lines) and
meridional circulation (black lines) fluxes largely dominate over

all the other contributions. In the radial direction, the third largest
contribution is the Reynolds stresses flux ÎRS

r (green line in
Fig. 15a) with a peak amplitude more than 4 times lower than
the one of the Maxwell stresses flux ÎMS

r . Viscous diffusion and
magnetic tension come next, with peak amplitudes of ÎVD

r and
ÎMT
r about 10 and 30 times smaller than the one of ÎMS

r . In the
latitudinal direction, the Reynolds stresses, viscous diffusion and
magnetic tension fluxes all have comparable amplitudes and,
similarly to the radial fluxes, their peak values are one order of
magnitude lower than ÎMS

θ .
The color shaded areas in Figs. 15a,d show the 1 standard

deviation intervals around the time averaged fluxes and evidence
that the temporal variability of the meridional circulation fluxes
is much higher than the one of all the other terms. This high
variability is due to an oscillatory behavior of the meridional
flow (dotted red line in Fig. 8) where the dominant large scale
meridional circulation cells characterizing the steady state solu-
tion (black isocontours in Fig. 9c) are regularly replaced by new
ones of opposite sign. These new meridional circulation cells are
generated by radial flow plumes arising at mid and high latitudes
in the inner fluid regions.

Since the radial fluxes of the prevailing Maxwell stresses and
meridional circulation dominate over the respective latitudinal
contributions, the transport of AM mainly occurs in the radial
direction. The Maxwell stresses transport AM radially outward
since ÎMS

r > 0. The meridional circulation contributes to the out-
ward transport in the internal fluid regions where r/ro . 0.6,
while it opposes in the external regions at larger radii (black line
in Fig. 15a). It is not surprising that the meridional flow con-
tributes to the radial transport. In fact, the radial length scales
of the meridional circulation cells are comparable to the charac-
teristic scale of the background shear l∆Ω ≈ ro (Fig. 9c, black
isocontours).

The larger amplitudes of ÎMS
r with respect to ÎMC

r suggest a
net outward AM transport. This is confirmed by an additional
numerical experiment that we performed by stopping the forc-
ing (f = 0) during the quasi steady evolution of run U0 and
letting the azimuthal flow free to evolve. We observe the cylin-
drical rotation profile flattening over time, with the azimuthal
flow decelerating in the interior and accelerating in the equato-
rial region to reach uniform rotation on a few hundreds of rota-
tion times τΩ (Appendix B).

Although negligible relative to the radial one, the transport of
AM in the latitudinal direction is also dominated by the Maxwell
stresses and the meridional circulation. The former produce an
equatorward transport since ÎMS

θ is equatorially antisymmetric,
with a positive (negative) contribution in the northern (southern)
hemisphere (Fig. 15d, red line). ÎMC

θ is mostly positive (Fig. 15d,
black line), hence it contributes to the equatorward transport by
the Maxwell stresses in the northern hemisphere and it opposes
in the southern one. The amplitudes of ÎMC

θ are generally compa-
rable to the one of ÎMS

θ , except in the equatorial region and at low
latitudes in the southern hemisphere where the former is larger.

We now discuss how the transport varies with Re and Pm.
The middle and right panels of Fig. 15 display the time aver-
aged integrated fluxes of the dynamo runs U2 and U1 respec-
tively, which we discussed in Sects. 5.2 and 5.3. Relative to
the fiducial dynamo run U0, run U2 has a larger Re of 105

and run U1 a larger Pm of 2. Similarly to the fiducial dynamo,
the radial transport in these runs dominates over the latitudinal
one and we therefore discuss only the former in the following
(Figs. 15b,c,e,f). The net transport occurs radially outward due
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Fig. 16. Same as Fig. 15 but for the three stratified runs S0, S4, and S9 at Pr = 10−3 andN = 1, 10, and 20 respectively (second to fourth from left
panels). The leftmost panels show the unstratified fiducial dynamo run U0 for the sake of comparison. All runs are at Re = 5 × 104 and Pm = 1.

to the prevailing radial Maxwell stresses (Fig. 15b). The peak
amplitudes of ÎMS

r in runs U2 and U1 are, respectively, about
3 and 2 times higher than the one of run U0, which suggest
similar variations in the AM transport efficiency. The time aver-
aged rms turbulent field strenghts B′rms of runs U2 and U1 are
50% and 41% larger than the one of run U0 respectively, which
contributes to explain the observed variations in the Maxwell
stresses flux (Table 2). The time averaged rms turbulent flow
velocity u′rms in these runs is also a few tens of percent higher
than the one of run U0 and contribute to explain the increase of
the radial Reynolds stresses flux ÎRS

r (green lines in Figs. 15b,c).
Similarly to run U0, the meridional circulation in runs U2

and U1 opposes the radial transport by the Maxwell stresses
over most of the fluid domain (black lines in Figs. 15b,c). The
meridional circulation in these runs is still large scaled and
its rms amplitude uM,rms is about 20% higher than the one of
run U0 (Table 2), which can explain the observed variations of
ÎMC
r . These faster meridional flows may result from the higher

Reynolds and Maxwell stresses which contribute to the merid-
ional circulation maintenance (see, e.g., Miesch 2005). Likewise
to run U0, viscous diffusion and magnetic tension play a negli-
gible role in the transport. Similar variations of the flux contri-
butions with Pm are obtained at Re = 105 by comparing run U2
with run U3 at Pm = 0.6 (not shown).

The weaker dependence of the Reynolds and Maxwell
stresses on Pm than on Re that we just discussed qualitatively
agrees with previous results obtained from local and global sim-
ulations of unstratified MRI turbulence. Guseva et al. (2017b)
showed that the transport coefficient, the sum of the Reynolds
and Maxwell stresses, of AMRI turbulence in Taylor–Couette
flow scales as Pm1/2Re when Rm & 102. Local shearing box
simulations with zero net flux suggest a similar scaling with
Pm, although the variation with Re is much weaker than the lin-
ear one obtained for Taylor–Couette flow (Lesur & Longaretti
2007).

6.2. Stably stratified runs

By weakening radial motions, stable stratification modifies the
transport of AM. Here we discuss how the transport varies with
stratification considering the three runs S0, S4, and S9 (Pr =
10−3 and N = 1, 10, and 20 respectively) discussed in Sect. 5.4.
Figure 16 displays the time averaged integrated fluxes Îi

r and Îi
θ in

these runs, together with the fiducial dynamo run U0 in the two
leftmost panels for the sake of reference. In the weakly stratified
run S0, the transport occurs similarly to the unstratified case.
Only a small decrease of the dominant Maxwell stresses and
meridional circulation fluxes is observed (red and black lines
in Figs. 16b,f). However, the meridional circulation shows a
much weaker variability, as demonstrated by the small 1 standard
deviation intervals around ÎMC

r and ÎMC
θ (gray shaded regions in

Figs. 16b,f), since the oscillatory behavior observed for run U0
is absent.

Increasing N to 10 (run S4) produces a sizeable decrease of
the radial Maxwell stresses flux ÎMS

r (red line in Fig. 16c). The
latitudinal Maxwell stresses flux ÎMS

θ is confined at low to inter-
mediate latitudes (red line in Fig. 16g), which correlates with the
locations where the instability is active (Fig. 13e). The transport
by the meridional flow becomes almost negligible (black lines
in Figs. 16c,g) since radial flow motions are severely limited by
the stabilizing buoyancy force. The meridional flow amplitude
uM,rms is indeed 2.5 times smaller than the one of the weakly
stratified run S0 (Table 2) and multiple meridional circulation
cells elongated in the latitudinal direction are observed (black
isocontours in Fig. 13k). The horizontal flow length scale lu,⊥/d
increases to 0.22, while is smaller at 0.17 in run S0 as expected.

In run S9 atN = 20, ÎMS
r further weakens and its peak ampli-

tude becomes comparable to the respective latitudinal contri-
bution ÎMS

θ (red lines in Figs. 16d,h). The latitudinal Maxwell
stresses flux is concentrated in the southern hemisphere at
the locations where the axisymmetric azimuthal field is strong
enough to support AMRI (Sect. 5.4). The transport by the
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Fig. 17. Time averaged integrated (a) radial and (b) latitudinal Maxwell
stresses fluxes in runs S3, S4, and S5, which are at Pr = 10−4, 10−3, and
2 × 10−3 respectively. The other parameters are Re = 5 × 104, Pm = 1,
and N = 10. The shaded areas show 1 standard deviation above and
below the time averages.

meridional circulation remains very weak as in run S4 (black
lines in Figs. 16d,h) and no significant variation in the merid-
ional flow amplitude is observed (Table 2). However, the merid-
ional circulation cells become thinner in the radial direction as
expected (black isocontours in Fig. 13l).

Similar results on the variation of the integrated fluxes are
obtained when strengthening buoyancy effects by reducing ther-
mal diffusion, that is when increasing Pr at fixed N . Since the
Maxwell stresses dominate the transport, we discuss only their
variation with Pr here. Figure 17 presents ÎMS

r and ÎMS
θ in runs S3,

S4, and S5 at N = 10 and Pr = 10−4, 10−3, and 2 × 10−3 respec-
tively. Similarly to the runs discussed above, the radial Maxwell
stresses flux prevails over the latitudinal one. The amplitude of
ÎMS
r lowers when Pr increases and its distribution shifts toward

the outer fluid regions where the instability is active (Fig. 17a).
Similarly to what has been observed above for run S9, ÎMS

θ con-
centrates in the southern hemisphere when buoyancy effects are
stronger at the larger Pr of 2 × 10−3 (green line in Fig. 17b).

In all stratified runs explored here, Reynolds stresses, vis-
cous diffusion and magnetic tension contribute very weakly to
the AM transport in both the radial and latitudinal directions.
Magnetic tension is the weakest of all contributions since Bp is
always small as we discussed in Sect. 5.4.

6.3. Turbulent viscosity

We demonstrated above that the AM transport induced by
AMRI occurs radially outward and is dominated by the Maxwell
stresses when N > 1. The meridional circulation contribution is
significant only in the unstratified and weakly stratified runs at
N = 1. To quantify the transport efficiency, we therefore con-
sider the contribution by the radial Maxwell stresses only and
we assume the classical turbulent viscosity hypothesis in which
AM is transported in the direction of slow rotation,

−
1
µ0ρ

B′rB′φ = −νT s
∂Ω

∂r
. (38)

Here νT is the radial turbulent viscosity and Ω = Ωf. We obtain
the turbulent viscosity estimate ν̂T from the relation above by
taking first a volume average of both members,

νT = (µ0ρ)−1〈B′rB′φ〉
/
〈s ∂Ωf/∂r〉, (39)

and then by time averaging Eq. (39) over the intervals ∆t defined
before and listed in Table 1. In runs showing transient turbu-
lence, ν̂T has to be interpreted as an upper estimate for the
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Fig. 18. Turbulent viscosity ν̃T as a function of N for Re = 5 × 104 and
Pm = 1. The symbol color shows the Prandtl number Pr as indicated
in the legend. The black circle at N = 0 is the fiducial dynamo run
U0. The error bars show 1 standard deviation intervals around the time
averages, which are evaluated over the periods ∆t listed in Table 1. The
dashed curve shows a power law fit ν̃T = aN−δ of the stratified runs at
Pr = 10−3. The best fitting parameters are a = 3.1 × 10−4 and δ = 0.50.
The right vertical axis displays the turbulent viscosity in units of the
molecular viscosity ν.

transport efficiency since the instability decays on timescales
longer than ∆t. The dimensionless turbulent viscosity estimate
is ν̃T = ν̂T/∆Ω r2

o, where we employed the shear timescale
τ∆Ω = ∆Ω−1 and the shear length scale l∆Ω ≈ ro as reference
scales.

Figure 18 displays ν̃T as a function ofN for all unstable runs
at Re = 5 × 104 and Pm = 1 explored here. The turbulent vis-
cosity lowers when buoyancy effects strengthen, that is when N
and/or Pr increase. The largest value of ν̃T is 3.7 × 10−4 and is
obtained for the unstratified fiducial dynamo run U0 as expected
(black circle). In the stratified runs at N > 1, the turbulent vis-
cosity approaches the unstratified value when Pr decreases since
thermal diffusion limits the stabilizing buoyancy force. In the
weakly stratified runs at N = 1 the effect of stable stratification
on the radial Maxwell stresses is only marginal (Sect. 6.2) and
therefore ν̃T shows only a weak decrease relative to the unstrati-
fied run.

At fixed Prandtl number Pr, the turbulent viscosity ν̃T low-
ers when increasing N . At Pr = 10−3, for example, ν̃T varies by
roughly a factor 6 in the range of stratification explored. When
N increases from 1 (run S0) to 10 (run S4), such variation is
mostly due to changes in the turbulent field amplitudes. In fact,
ν̃T decreases by more than a factor 2 from run S0 to run S4 and
(B′rms)

2 lowers by a factor 1.6 (Table 2). The residual turbulent
viscosity variation may be an effect of volume averaging. The
unstable fluid regions of run S4 are indeed more localized than
those of run S0, as already discussed in Sect. 5.4. This is also
clearly evidenced by the distribution of F̂MS

r , the time averaged
radial Maxwell stresses flux, which is shown in Figs. 19b,c for
these two runs. The smaller turbulent viscosity value of run S9
at N = 20 instead originates from the weaker spatial correla-
tions of the turbulence, together with a volume averaging effect.
In fact, runs S9 and S4 share a similar value of B′rms of 0.018
(Table 2) but the peak amplitudes of F̂MS

r are 40% lower in the
former run (Figs. 19c,d).

The variations of ν̃T with Pr, observed when N > 1 is fixed,
likewise originate from changes in both the size of the unstable
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Fig. 19. Time averaged radial Maxwell stresses fluxes F̂MS
r for (a) the

unstratified fiducial dynamo run U0 and (b–d) the stratified runs S0, S4,
and S9 at Pr = 10−3 and N = 1, 10, and 20 respectively. In all runs,
Re = 5 × 104 and Pm = 1.

regions and the spatial correlations of the turbulent field. In these
runs, while B′rms weakly changes with Pr (Table 2), the integrated
Maxwell stresses flux ÎMS

r reduces when Pr increases (Sect. 6.2),
which suggests a decrease of the spatial correlations of the tur-
bulent field. The distribution of ÎMS

r also narrows as Pr increases,
which yields smaller values for the volume averaged Maxwell
stresses in our turbulent viscosity estimate.

A power law of the form ν̃T = aN−δ, where δ > 0, well
describes the dependence of the turbulent viscosity on stratifi-
cation. A least squares fit of the runs at Pr = 10−3 provides
an exponent δ = 0.50 and a prefactor a = 3.1 × 10−4 (dashed
line in Fig. 18). For AMRI turbulence in Taylor–Couette flow,
Spada et al. (2016) suggest a stronger scaling of N−1. For a free
shear, Jouve et al. (2020) demonstrated that some of the linear
properties of AMRI, such as the instability threshold and the
range of linearly unstable modes, depend only on the parame-
ter combination N2Pr. However, our simulations indicate that
this is not the case for the nonlinear evolution of AMRI and for
the AM transport efficiency.

7. Transport of chemical elements

7.1. Model formulation

We assume the light stellar chemical elements to contaminate
the turbulent fluid flow as a passive scalar, that is their concen-
tration is so low that they have no dynamical influence on the
fluid motion itself. The equation of evolution of the chemical
concentration c is
∂c
∂t

+ (u · ∇)c =
1

Sc Re
∇

2c, (40)

which is solved together with Eqs. (2)–(4). Here the Schmidt
number

Sc =
ν

Dc
(41)

is the ratio of the fluid kinematic viscosity ν to the molecular
chemical diffusivity Dc. We consider Sc = 1 so that the diffusion
timescale of the chemicals d2/Dc and the viscous timescale of
the flow τν = d2/ν are equal. We assume no sources nor sinks of
the chemical elements from the boundaries by imposing a zero
chemical concentration flux ∂c/∂r = 0 at r = ri and ro. The ini-
tial distribution of the chemical concentration is the spherically
symmetric Gaussian

c(r, t = t0) =
1

C0
exp

− (r − r0)2

2σ2
0

 . (42)

The distribution is centered at mid depth in the fluid domain,
r0 = (1/χ − 1)−1 + 1/2, and has a full width at half maximum of

Table 3. Input parameters and output diagnostics of the simulations
where a passive scalar is introduced.

Name N Pr Run t0 τM/τΩ D̃T × 105

C0 0 – U0 1764.1 117.5 18.9 ± 6.8
C1 1 10−3 S0 2151.3 139.8 16.6 ± 0.7
C2 1 10−2 S1 1811.2 187.2 12.0 ± 1.4
C3 1 10−1 S2 2092.9 277.4 8.3 ± 0.8
C4 10 10−4 S3 1400.2 353.9 10.6 ± 1.5
C5 10 10−3 S4 2625.1 246.3 5.4 ± 0.6
C6 10 2 × 10−3 S5 2466.5 435.3 3.9 ± 0.4
C7 20 10−4 S7 1755.6 249.9 7.8 ± 1.1
C8 20 5 × 10−4 S8 1902.6 543.1 3.3 ± 0.2
C9 20 10−3 S9 2282.4 648.3 2.7 ± 0.2

Notes. t0 is the time of the simulation runs indicated in the fourth col-
umn at which the passive scalar is introduced. τM is the meridional flow
timescale calculated as explained in the main text. D̃T is the estimated
turbulent chemical diffusivity and the error denotes 1 standard deviation
in time. All runs are at Re = 5 × 104 and Pm = 1.

δ0/d = 1/10, which corresponds to a variance σ2
0 = (σ∗0/d)2 ≈

1.8 × 10−3. The total mass of the chemicals in the fluid domain
C0 =

∫
c(t = t0) dV is a conserved quantity and serves as a

normalization constant here.
The chemical layer Eq. (42) is introduced during the turbu-

lent AMRI evolution of the unstratified fiducial dynamo run U0
and of all the stratified runs at the times t = t0 listed in Table 3.
In the following sections we study the turbulent transport of the
chemicals, we estimate its efficiency and we compare the results
with the AM transport.

7.2. Estimate of the turbulent chemical diffusivity

First, we examine the temporal evolution of the azimuthally
averaged (mean) chemical concentration c in our numerical sim-
ulations and analyze the turbulent transport. If the turbulent
transport occurs as a diffusive process, the radial distribution of
c remains Gaussian over time and its variance σ2 increases lin-
early. The rate at which σ2 grows defines the radial turbulent
chemical diffusivity

DT =
1
2

dσ2

dt
. (43)

In all runs explored here, the turbulent transport of the mean
chemical concentration is diffusive during the initial stages of its
evolution. Figure 20a displays the evolution of the radial profile
of the horizontally averaged mean chemical concentration 〈c〉 in
run C5 (N = 10 and Pr = 10−3) as an example. The distribution
remains Gaussian for a period of about 150 Ω−1

a after t0 and its
variance σ2 increases linearly as expected (Fig. 20c; see also the
snapshots of c in Figs. 21a–c). We calculated the turbulent chem-
ical diffusivity DT from Eq. (43) by performing a time average
of dσ2/dt over this interval (dashed line in Fig. 20c), which cov-
ers 12 eddy turnover times τeddy (see the upper horizontal axis of
Fig. 20c). This procedure yields a dimensionless chemical diffu-
sivity D̃T = DT/∆Ω r2

o of 5.4 × 10−5. The last column of Table 3
reports the estimates D̃T for all runs explored here.

In run C5, deviations from a diffusive transport begin at time
t−t0 ≈ 200 when σ2 starts to level off and does not evolve
linearly anymore (Fig. 20c). At t−t0 = 400 the distribution of
the mean concentration becomes decisively non-Gaussian and
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Fig. 20. Chemical turbulent transport for run C5 at N = 10 and
Pr = 10−3 (left panels) and for the unstratified run C0 (right panels).
(a,b) Radial distribution of the horizontally averaged mean chemical
concentration 〈c〉 at the times t − t0 indicated in the legend. The first
three times cover the diffusive phase of the transport. (c,d) Variance σ2

of the mean chemical concentration c as a function of t− t0. The dashed
line is defined by the time average of dσ2/dt evaluated over the dif-
fusive phase of the transport (orange shaded background). The vertical
dotted line marks the time t − t0 = τM/τΩ after which the meridional
flow is expected to dominate the transport. Here τM is the meridional
flow timescale estimated as explained in the main text. The upper hori-
zontal axis displays time scaled in units of the eddy turnover time τeddy.

its flanks reach the boundaries (Fig. 20a, red line). A snapshot
of c at this time evidences that the meridional circulation con-
tributes, on such longer timescales, to expel the chemicals from
the central parts of the fluid domain, accumulating them at high
latitudes in the southern hemisphere (Fig. 21d). We estimated a
characteristic timescale for the meridional flow in the region of
the chemical layer as τM =

∫ r0+σ0

r0−σ0
dr/〈uM〉, where 〈uM〉 is the

horizontally averaged meridional velocity at t = t0. In run C5
τM = 246 Ω−1

a (vertical dotted line in Fig. 20c), which agrees
well with the timescale on which σ2 starts to deviate from the
initial diffusive evolution.

When buoyancy effects weaken by considering lower N
and/or Pr, the meridional flow timescale τM decreases as
expected (Table 3) and therefore the transport of the chemicals
by the meridional flow takes over the turbulent one earlier during
the evolution. Nonetheless, the shortest period of diffusive evo-
lution in our stratified simulations, obtained for run C1 (N = 1
and Pr = 10−3), covers about 8 τeddy, which still ensures a robust
statistics for the turbulence.

In the unstratified run C0 the diffusive phase covers an even
shorter interval of 3.7 τeddy (orange shaded area in Fig. 20d).
The meridional flow timescale τM reduces to 118 Ω−1

a and 〈c〉
becomes decisively non-Gaussian already at t−t0 = 70 (Fig. 20b,
red line; Fig. 21h). The estimate of D̃T in run C0 is therefore less
accurate than all the other runs where a reliable measurement
is instead achieved. In this run the standard deviation of D̃T is
as large as 31% of the turbulent diffusivity value itself. In the
runs at N = 10 and 20 and higher Pr, the standard deviation
is instead of only a few percent of D̃T since the diffusive phase
lasts more than 10 τeddy (Table 3). For a diffusive transport, a cer-
tain degree of scale separation between the initial chemical layer
width δ0 and the characteristic radial length scale of the turbu-
lence is required. While in runs atN > 1 such a scale separation

Fig. 21. Snapshots of the mean chemical concentration c in runs C5 (top
panels) and C0 (bottom panels) at the times t − t0 of Figs. 20a,b. The
mean concentration c is normalized with its maximum value at t = t0
here.

is verified, in run C0 this becomes only marginally satisfied, as
evidenced by the strong latitudinal variations of c (Figs. 21f,g),
and may cause additional accuracy loss in our estimate of the
turbulent diffusivity.

7.3. Chemical and angular momentum transport

We now discuss how the efficiency of the chemical turbulent
transport varies with the effect of stratification. Figure 22a shows
that D̃T lowers when buoyancy effects strengthen either by
increasing N and/or Pr. The two most weakly stratified runs at
N = 1 with Pr = 10−3 and 10−2 have values of D̃T compa-
rable to the unstratified case (black circle) within their 1 stan-
dard deviation intervals. In the runs at N = 10 and 20, as
discussed in the previous section, the turbulent diffusivity esti-
mates become more accurate due to the longer diffusion phase
and the uncertainties are generally smaller than the symbol sizes
themselves. As with the turbulent viscosity, a power law well
describes the dependence of the chemical diffusivity on stratifi-
cation. A power law fit of the stratified runs at Pr = 10−3 provides
D̃T = 1.7× 10−4N−0.54 (dashed line in Fig. 22a). The exponent
ofN is very similar to the one obtained for the turbulent viscos-
ity (Sect. 6.3).

The turbulent Schmidt number

ScT =
ν̃T

D̃T
(44)

measures the efficiency of the AM transport relative to the one
of the chemical elements. Figure 22b displays ScT as a function
of N for all simulation runs and shows that this is always larger
than 1 and does not vary much with increasing buoyancy effects
in the ranges ofN and Pr explored. The value ScT = 1.96± 0.75
of the unstratified run C0 (black circle) encompasses all the other
estimates obtained for the stratified runs, except for the case
at N = 1 and Pr = 10−1 which is larger at ScT = 3.8. Our
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Fig. 22. Efficiency of the turbulent transport of the chemicals and com-
parison with the one of angular momentum. (a) Turbulent chemical
diffusivity D̃T and (b) turbulent Schmidt number ScT as a function of
N . The black circle shows the unstratified fiducial dynamo run U0.
The symbol color of the stratified runs codes the Prandtl number Pr as
indicated in the legend in (a). Error bars in (a) show 1 standard devi-
ation intervals around the time averaged turbulent diffusivity values.
The dashed line in (a) displays a power law fit of the stratified runs at
Pr = 10−3, that is D̃T = 1.7 × 10−4N−0.54. The errors in (b) are obtained
by propagating the uncertainties of the turbulent viscosity ν̃T and of the
turbulent diffusivity D̃T.

simulations therefore suggest that AMRI turbulence induces a
transport of AM which is systematically stronger than the one of
chemical elements. This is expected since the Maxwell stresses,
which dominate the transport of AM in our runs and do not
directly influence the one of chemical elements, are generally
stronger than the Reynolds stresses (Sects. 6.1 and 6.2), which
instead regulate the chemical transport. However, we note that
R = (µ0ρ)−1〈B′rB′φ〉/〈u

′
ru
′
φ〉, the ratio of the volume averaged

radial Maxwell stresses to the volume averaged radial Reynolds
stresses, is always larger than 5 (Table 2) and overestimates the
relative transport efficiency measured by ScT.

8. Summary and discussion

Additional transport processes beyond atomic diffusion and stan-
dard hydrodynamical mechanisms, such as meridional circula-
tion and shear turbulence, are required to explain the observed
rotational and chemical evolution of low-mass stars. MHD tur-
bulence is regarded as one of the primary processes to enhance
the transport in radiative stellar interiors. In this work we inves-
tigated numerically the transport of AM and chemical elements
due to azimuthal MRI in a spherical shell where cylindrical dif-
ferential rotation is forced.

We first considered an unstratified flow at a magnetic Prandtl
number Pm of 1 and explored the stability of purely axisymmet-
ric toroidal field configurations to weak nonaxisymmetric pertur-
bations. The parameter regime where we observe AMRI agrees
well with predictions obtained from a local linear stability anal-
ysis and with the global linear analysis results of Guseva et al.
(2017b) who analyze Taylor–Couette flow with an imposed field.
Our AMRI runs are characterized by values of Lemax

φ not smaller
than about 5 × 10−3, otherwise diffusive effects stabilize the sys-
tem, and not larger than about 0.5, or else the nature of the insta-
bility changes and TI is found. Here Lemax

φ is the maximum value
in the fluid domain of the ratio of the Alfvén frequency of the
axisymmetric azimuthal field ωAφ = Bφ

/
(µ0ρ)1/2d to the refer-

ence rotation rate Ωa.
Next, we explored the nonlinear evolution of the instability

in these unstratified runs. At Pm = 1, we observe self-sustained

dynamo action when Re ≥ 5 × 104 and the azimuthal field
strength of the perturbed axisymmetric solution is large enough
(runs U0 and U2). At the larger Re of 105, we find dynamo
action down to Pm = 0.6 (run U3). These simulations are the
first global MRI dynamos ever reported at such low values of
Pm. We obtain transient turbulence in all the other unstable runs.

We then examined the effect of thermal stable stratification on
unstratified AMRI turbulence at Re = 5 × 104 and Pm = 1. To
this end, we variedN = N/Ωa, the ratio of the Brunt–Väisälä fre-
quency to the reference rotation rate, from 1 to 20 and the Prandtl
number Pr in the range 10−4−10−1. When increasing buoyancy
effects, the turbulence becomes less isotropic and homogeneous.
However, when Pr is too large, thermal diffusion cannot limit the
stabilizing buoyancy force anymore and AMRI is suppressed. In
our most stratified unstable runs, we observe instability struc-
tures elongated in the latitudinal direction and unstable regions
localized in the southern hemisphere where the axisymmetric
azimuthal field is strong enough to support AMRI. All the strat-
ified runs show transient turbulence, although in a few cases the
numerical integration time is too short to test for dynamo action.
We argue that, by limiting radial flow motions, stable stratification
reduces the effective magnetic Reynolds number Rmeff below the
critical value for dynamo onset, which is of about 800 based on
the unstratified runs. Nonetheless, the magnetic and kinetic ener-
gies show an oscillatory behavior typical ofαΩ-dynamos that has
been reported before (e.g., Reboul-Salze et al. 2022).

We explored the transport of AM in the unstratified dynamo
solutions and in the stratified runs, showing that it occurs radi-
ally outward and is largely dominated by the Maxwell stresses
when N ≥ 10. The meridional circulation opposes to the radial
transport by the Maxwell stresses only when no stratification
is present or is weak at N = 1. We quantified the radial AM
transport by estimating the turbulent viscosity ν̃T = νT

/
∆Ω r2

o,
where ∆Ω is the global rotation contrast and ro the outer bound-
ary radius, and we show that it decreases when buoyancy effects
strengthen. Within the explored range of parameters, the turbu-
lent viscosity variations are well described by the power law
ν̃T = aN−1/2, where a = 3.1 × 10−4.

Finally, we investigated the turbulent transport of a passive
scalar. After demonstrating that this occurs as a diffusive process,
we estimated the diffusion coefficient D̃T. In the range of param-
eters explored, D̃T varies with buoyancy effects similarly to the
turbulent viscosity ν̃T but its magnitude is sistematically lower.
A power law D̃T = 1.7 × 10−4N−0.54 well describes our simu-
lation data so that the turbulent Schmidt number ScT = ν̃T/D̃T
is always of about 2 in the range of parameters explored. When
buoyancy effects are high enough and the AM transport is dom-
inated by the turbulent magnetic field fluctuations and the one
of the chemicals by the flow fluctuations, we tested whether
the ratio of the radial Maxwell stresses to the radial Reynolds
stresses is a good proxy for ScT. We find that this ratio generally
overestimates ScT by roughly a factor 3 in our simulations.

As far as an application to stars is concerned, there are sev-
eral limitations to the setup explored here. First, we examined
MRI of purely toroidal fields whereas magnetic field configu-
rations with both toroidal and poloidal components are expected
in stellar interiors. Secondly, the background differential rotation
profile and its amplitude may not be representative of the shear in
stellar interiors. We also ignored the additional stabilizing effect
of chemical buoyancy in the momentum equation. Relaxing one
or more of these assumptions may yield to turbulent diffusion
coefficients that differ from those estimated here.

However, other fluid properties employed in our simulations
approach those expected in certain regions of stellar interiors.
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For example, the values of the molecular diffusivity ratios and
of the stable stratification are close to those of the electron-
degenerate cores of red giants and of the nondegenerate radia-
tive outer regions of these stars, respectively. In fact, the Prandtl
number Pr is typically ∼10−3 in degenerate red giant cores
(Garaud et al. 2015) and the magnetic Prandtl number Pm ranges
between 10−1 and 10 (Rüdiger et al. 2015). The nondegener-
ate radiative regions immediately above the hydrogen burning
shell are less dense than the degenerate zones below and expand
during their evolution, hence the thermal component of the
Brunt–Väisälä frequency NT is relatively low at ∼10−3 s−1 in the
subgiant phase and further decreases to about 5× 10−4 s−1 on the
red giant branch (Talon & Charbonnel 2008). The typical angu-
lar rotation frequency Ω/2π of the cores of these stars is roughly
in the range 600−700 nHz (Deheuvels et al. 2014; Gehan et al.
2018), which yields NT/Ω ≈ 100−200, that is only from 5 to
10 times larger than the highest value of N = 20 employed in
our simulations. Such moderate values of NT/Ω also charaterize
the interior of pre-MS stars (Gouhier et al. 2021).

However, in both the radiative regions of red giants above
and below the hydrogen burning shell, the values of the molec-
ular diffusivity ratios and NT/Ω cannot be captured simultane-
ously. In the degenerate cores, NT/Ω is as large as ∼103 during
the subgiant phase and increases to 104 in evolved red giants
(Talon & Charbonnel 2008). In the outer nondegenerate layers,
where the diffusivities are dominated by radiative and collisional
contributions only, Pr and Pm drop to about 10−7 and 10−2

respectively (Garaud et al. 2015; Rüdiger et al. 2015).
We show that the turbulent viscosity in our simulations scales

with N−1/2, which is slower than the N−1 scaling suggested for
AMRI in Taylor–Couette flow with imposed current-free mag-
netic fields (Spada et al. 2016). Assuming that our scaling pre-
diction ν̃T = 3.1 × 10−4N−1/2 is confirmed for larger values of
the stable stratification than those explored here, we obtain a tur-
bulent viscosity νT = ν̃T r2

o∆Ω in the range 2−7×108 cm2 s−1 for
the degenerate cores of subgiants and red giants. ForN , here we
used the values of NT/Ω discussed above; for the shear contrast
∆Ω/2π we considered the typical angular velocity difference
between the core and the envelope of subgiants of 900 nHz, and
for the radius of the radiative region ro = 0.05 R�, which is 2%
of the typical radius of subgiants R = 2.5 R� (Deheuvels et al.
2014). Such a high turbulent viscosity value enforces solid body
rotation in the degenerate core on a timescale of around 2000 yr,
which is not incompatible with the observations. It is indeed
likely that the observed radial shear of subgiants is localized
around the hydrogen burning shell, hence above the degener-
ate core which may be in rigid rotation instead (Deheuvels et al.
2014). This observational evidence is further supported by the
fact that stable stratification peaks at the hydrogen burning shell,
where the transport of AM would be the slowest (Fuller et al.
2019). In regions around the hydrogen burning shell, chemi-
cal stratification largely dominates over the thermal contribu-
tion. The thermal Brunt–Väisälä frequency NT is lower in these
regions than in the core so that our scaling predicts even larger
turbulent viscosity values, hence faster transport than the one
estimated above. Stellar evolution models that reproduce the
rotational evolution of low-mass evolved stars suggest a signif-
icantly smaller turbulent diffusion coefficient which increases
monotonically from 102 cm2 s−1 in early subgiants to almost
106 cm2 s−1 at the end of the red giant phase (Spada et al. 2016;
Moyano et al. 2022).

Our simulations show that the transport of AM due to AMRI
may be more efficient than the one induced by TI. The theory of

Fuller et al. (2019) for TI-driven dynamo action predicts that the
turbulent viscosity scales as (NT/Ω)−2, whereas here we obtain
a power exponent of −1/2 for AMRI. TI dynamo action may
have been recently identified in global numerical simulations
(Petitdemange et al. 2023), but robustly testing the proposed tur-
bulent viscosity scalings requires further study.

The magnetic field strengths recently measured in red giant
cores can be directly compared to our numerical simulation
results in terms of the radial Lenhert number Lerms

r , the ratio
of the local Alfvén frequency based on the rms radial field
Brms

r /(µ0ρ)r to the rotation rate Ω. In the 13 red giants where
magnetic field measurements exist so far, Lerms

r ranges between
0.05 and 0.25 at the hydrogen burning shell, the region of
maximum sensitivity for the asteroseismic inversions (Li et al.
2023). Such strong field amplitudes are incompatible with
those expected from TI dynamo action which predicts Lerms

r ∼

(N/Ω)−5/3 ∼ 10−9, where N here is the Brunt–Väisälä fre-
quency including both thermal and compositional contributions
(Fuller et al. 2019; Li et al. 2022, 2023). For AMRI, our numeri-
cal results indicate that Lerms

r decreases less steeply with thermal
stratification. However, the typical values we obtain at a moder-
ate stratification of N = 20 are Lerms

r ∼ 10−3, which is already
one order of magnitude lower than the smallest observed value.

Although AMRI turbulence seems unable to explain the
strong magnetic fields observed in the core, we cannot exclude
that weaker fields could be generated in the outer radiative
regions of red giants, in particular above the hydrogen burn-
ing shell where NT/Ω is lower at ∼102 as discussed before.
AMRI could also be triggered during earlier stages of the evolu-
tion of low-mass stars, for example during the core contraction
phase immediately after the main sequence. Numerical simula-
tions suggest that large scale fields, relic of a core convective
dynamo during the main sequence, can destabilize the differen-
tial rotation produced by core contraction through axisymmetric
MRI (Gouhier et al. 2022).

Recent stellar evolution models indicate that MHD tur-
bulence is required to reconcile the internal rotation of the
Sun with its surface Li abundance and to reproduce the
observed Li depletion of pre-main sequence and solar-type stars
(Eggenberger et al. 2022). These models employ prescriptions
for the transport by TI dynamo action where the turbulent
Schmidt number scales as ScT ∼ (N/Ω)2 � 1. We show that
AMRI turbulence transports AM more efficiently than chemi-
cal elements, as suggested by these stellar evolution models, but
ScT is too low at values of about 2 and does not show signifi-
cant variations for the moderate degrees of thermal stratification
explored.

In conclusion, we confirm that AMRI turbulence can
strongly enhance the transport of AM and chemical elements in
radiative stellar interiors and its efficiency may be higher than
the one of TI. The turbulent viscosity moderately decreases with
stable stratification and the chemical turbulent diffusion coeffi-
cient follows a similar scaling but is weaker in amplitude. While
our numerical simulations capture the mild molecular diffusivity
ratios of degenerate stellar cores, extensive parameter investiga-
tions are needed to robustly extrapolate the results at the extreme
degrees of stratification that characterize stellar interiors. Fur-
ther numerical studies in a spherical geometry exploring MRI-
induced transport for different shear profiles and amplitudes than
those examined here and considering chemical buoyancy could
give additional insights on the rotational and chemical evolution
of low-mass stars.
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Appendix A: Tayler instability

As mentioned in Sect. 4.1, we observe TI in two of our unstrati-
fied simulation runs at Pm = 1. Here we provide evidence of this
instability in run U4 at Re = 5 × 103 and Hamax

φ = 5012.
TI is a pinch-type instability of purely toroidal fields

expected to occur in radiative stellar interiors (Tayler 1973;
Spruit 1999). In spherical coordinates, Goossens & Tayler
(1980) studied the adiabatic stability of weak axisymmetric
toroidal fields Bφ(r, θ) when no rotation is present using an
energy method. The toroidal field Bφ has arbitrary radial depen-
dence and angular dependence (1 − x2)1/2dP`/dx, where x =
cos θ and P` is the Legendre polynomial of degree `. The field
is weak in the sense that the magnetic pressure is much smaller
than the hydrostatic pressure, so that it does not modify the basic
stellar equilibrium. A necessary and sufficient condition for non-
axisymmetric instability is (Goossens et al. 1981)

B2
φ

(
m2 − 2 cos2 θ

)
− sin θ cos θ

∂B2
φ

∂θ
< 0. (A.1)

The instability is most likely for azimuthal modes |m| = 1 and
for large latitudinal gradients of B2

φ. A Taylor expansion easily
shows that the regions close to the poles (|x| � 1) are always
unstable for |m| = 1. Away from the poles, instability can also
occur but only if B2

φ increases sufficiently rapidly with x. The
growth rate of the most unstable mode mTI

max = 1 is on the order
of the toroidal Alfvén frequency ωA = Bφ

/
(µ0ρ)1/2r sin θ (Tayler

1973; Goossens et al. 1981). Rotation has a stabilizing influence
on TI. Although not removing the instability, it reduces its max-
imum growth rate to (Pitts & Tayler 1985; Bonanno & Urpin
2013)

γTI
max = ω2

A/Ω. (A.2)

Figure A.1 displays the temporal evolution of the toroidal
and poloidal magnetic energies of the spherical harmonic orders
0 ≤ m ≤ 10 for run U4. The nonaxisymmetric perturbations
grow exponentially after about 2 system rotations from the per-
turbation time tpert = 33.2. The most unstable azimuthal mode is
m = 1 (solid purple lines) as expected for TI. Its linear growth
rate is γmax/Ωa ≈ 1.9 and 1.6 when calculated over the time
interval t − tpert = 2 − 4 of the rms toroidal and poloidal field
evolutions respectively (cf. black dashed lines in Fig. A.1).

The instability saturates at t− tpert ≈ 12 when the rms nonax-
isymmetric toroidal field strength is roughly 5 times lower than
the one of the axisymmetric toroidal field Bφ and about 2 times
higher than the nonaxisymmetric poloidal one. We observe the
generation of axisymmetric poloidal field Bp due to the flow and
field instability fluctuations at a rate which is roughly twice the
one of the m = 1 mode (solid black line in Fig. A.1b). After
saturation, the instability decays on longer times not shown in
Fig. A.1.
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Fig. A.1. Temporal evolution of the (a) toroidal and (b) poloidal mag-
netic energies of the azimuthal modes m = 0 − 10 for run U4 (N = 0,
Re = 5 × 103, Pm = 1, and Hamax

φ = 5012). The black dashed lines
show linear fits of the energies of the most unstable mode m = 1 over
the interval 2 ≤ t − tpert ≤ 4 covering the linear phase of the instability
growth. These fits provide the growth rates γmax/Ωa of the m = 1 rms
toroidal and poloidal fields, which are 1.9 and 1.6 respectively.

During its linear growth, the instability is localized close
to the poles, but also around the central equatorial regions of
the fluid domain (Fig. A.2a,b). For the axisymmetric azimuthal
field configuration Bφ that we perturbed (Fig. A.2c), the instabil-
ity condition (A.1) predicts, in addition to the classical wedge-
shaped regions around the poles, several other unstable locations
dispersed at lower latitudes, which originate from locally high
latitudinal gradients of the field (gray shaded areas in Fig. A.2d).
The unstable central equatorial regions correlate with the loca-
tions where the expected growth rates γTI

max from Eq. (A.2) are
larger (Fig. A.2d) and where the instability is also observed.
At these locations γTI

max/Ωa ≈ 1.3, which agrees well with the
growth rate γmax of the m = 1 mode observed in the simulation
run.

We also observe TI in the unstratified run at Re = 104 and
Hamax

φ = 9787 (Fig. 4) and we obtain similar results in the anal-
ysis of the linear instability growth that we therefore do not dis-
cuss here.
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Fig. A.2. Tayler instability in run U4 and comparison with local linear analysis predictions. (a) Meridional cut and (b) surface projection of the
nonaxisymmetric azimuthal field B′φ at time t− tpert = 3.5 during the linear phase of the instability growth. The surface projection is taken at radius
r/ro = 0.7, which is indicated by the dashed line in (a). (c) Axisymmetric azimuthal field Bφ at the perturbation time tpert = 33.2. (d) Theoretical TI
growth rate γTI

max = ω2
A/Ω. The gray shaded areas show the locations where the instability condition (A.1) for the m = 1 mode and the axisymmetric

azimuthal field solution in (c) is fulfilled.

Appendix B: Free azimuthal flow evolution of the
fiducial dynamo run U0

Here we confirm that a net outward transport of AM is induced
by AMRI, as already anticipated by the analysis of Sect. 6, per-
forming a numerical experiment where the azimuthal flow is free
to evolve.
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Fig. B.1. Axisymmetric toroidal kinetic energy as a function of time
for the unstratified fiducial dynamo run U0 when the azimuthal flow is
free to evolve. The azimuthal flow forcing is stopped (f = 0) at time
t − tpert = 915.0 which is marked by the vertical dashed line.

Figure B.1 displays part of the temporal evolution of the
axisymmetric toroidal kinetic energy in the quasi steady state
of the unstratified fiducial dynamo run U0 (t − tpert < 915). At
t − tpert = 915.0 (vertical dashed line), the azimuthal body force
f in the momentum equation (2) is set to zero. The azimuthal
flow relaxes to a state of uniform rotation in a few hundreds of
rotation times τΩ = 1/Ωa. Figure B.2 demonstrates that the ini-
tial cylindrical profile of the azimuthally averaged angular veloc-
ity Ω flattens over time under the influence of AMRI. The flow
decelerates in the interior and accelerates in the outer regions,
producing a net outward transport of AM, and reaches a state of
almost rigid rotation at t − tpert ≈ 1200.
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Fig. B.2. Snapshots of the azimuthally averaged angular velocity Ω dur-
ing the free azimuthal flow evolution of run U0 (t − tpert > 915) shown
in Fig. B.1.
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