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Abstract: We report a straightforward alkane elimination strategy to prepare well-defined heter-
obimetallic Al/Mo species. Notably, the reaction of the monohydride complex of molybdenum,
Cp*MoH(CO)3, with triisobutyl aluminum affords a new heterobimetallic [MoAl]2 tetranuclear
compound, [Cp*Mo(CO)(µ-CO)2Al(iBu)2]2, (1), featuring a 12-membered C4O4Mo2Al2 ring in which
isocarbonyls bridge the Mo and Al centers. The addition of pyridine to this complex successfully
results in the dissociation of the dimer into a new discrete binuclear complex, [Cp*Mo(CO)2(µ-
CO)Al(Py)(iBu)2], (2). Switching the nature of the Lewis base from pyridine to tetrahydrofuran does
not lead to the THF analogue of adduct 2, but rather to a complex reaction where one of the identi-
fied products corresponds to a tetranuclear species, [Cp*Mo(CO)3(µ-CH2CH2CH2CH2O)Al(iBu)2]2,
(3), featuring two bridging alkoxybutyl fragments originating from the C-O ring opening of THF.
Compound 3 adds to the unusual occurrences of THF ring opening by heterobimetallic complexes,
which is evocative of masked metal-only frustrated Lewis pair behavior and highlights the high
reactivity of these Al/Mo assemblies.

Keywords: heterobimetallics; aluminum; molybdenum; alkane elimination; binuclear complexes;
THF ring opening

1. Introduction

Aluminum-based heterobimetallic complexes are burgeoning as captivating entities in
coordination chemistry [1–15], presenting unique structures and reactivities. The distinct
properties of aluminum, such as its hard Lewis acidity or its large palette of coordina-
tion modes, coupled with the diverse reactivity of transition metals, pave the way for
innovative catalytic and synthetic applications [15–20]. Furthermore, aluminum is the
most earth-abundant metal, which is appealing in view of developing more sustainable
chemical processes.

As investigations into their applications continue, the exploration of novel Al/M
combinations as well as the tuning of the steric and electronic features in these complexes
are indispensable. This customization is essential for achieving tailored reactivity towards
efficient and selective catalytic transformations. Yet one big limitation of this field is the
limited number of synthetic routes available to access Al/M compounds. The prevailing
synthetic approach commonly employed involves salt metathesis between either Al(III)
halide reagents and transition metal –ate complexes, or via aluminyl Al(I) anions which
emerged recently in the literature. However, these methodologies exhibit inherent limi-
tations. Challenges include the intricate control of ligand redistribution phenomena, the
difficulty to control the final species’ nuclearity, and the complications associated with isolat-
ing the desired compounds from salt co-products formed during the process. Additionally,

Inorganics 2024, 12, 72. https://doi.org/10.3390/inorganics12030072 https://www.mdpi.com/journal/inorganics

https://doi.org/10.3390/inorganics12030072
https://doi.org/10.3390/inorganics12030072
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/inorganics
https://www.mdpi.com
https://orcid.org/0000-0001-7744-1048
https://orcid.org/0000-0002-5436-2467
https://orcid.org/0000-0001-8528-0731
https://doi.org/10.3390/inorganics12030072
https://www.mdpi.com/journal/inorganics
https://www.mdpi.com/article/10.3390/inorganics12030072?type=check_update&version=2


Inorganics 2024, 12, 72 2 of 13

the preparation of low-valent aluminum species is very challenging, the latter being stable
only under a limited spectrum of ligand frameworks and experimental conditions [21–23].

An alternative proficient strategy to synthesize heterobimetallic complexes involves
the alkane elimination reaction [24–28] between a transition metal hydride derivative
and alkyl aluminum reagents [9,10,29–33]. This reaction can be conceptualized as an
electrophilic hydride abstraction process. Although less frequently used, this method
has proved to be a powerful synthetic tool for preparing original Al/M species, often
featuring metal–metal bonds. An inherent advantage of this synthetic route lies in the
release of alkane volatile coproducts, which is a thermodynamic driving force, gener-
ally resulting in clean, easy to work-up reactions. Representative literature precedents
are shown in Scheme 1. The group of Hey-Hawkins investigated the reaction between
Cp2′MoH2 (Cp’ = C5H4Me) and HAlR2 (R = iBu or Et) [29]. This resulted in a complex
reaction process involving H2 and alkane elimination, alongside C-H activation of the
cyclopentadienyl ligand, leading to the formation of a pseudo “tuck-over” tetranuclear
compound featuring a direct aluminum–molybdenum bond (Scheme 1a). Caulton and
coworkers reported the reaction of d0 rhenium pentahydrides with Al2Me6 (Scheme 1b),
quickly releasing methane at 25 ◦C and leading to the formation of the heterobimetallic
complexes ReH4AlMe2P3 (P = PMe2Ph and PMePh2), in which the Al and Re atoms are
hold at close distance (2.508(2) Å) by bridging hydrides [30]. Another typical example is
the reaction of a trinuclear ruthenium pentahydride cluster which, upon treatment with
trimethylaluminum, cleanly leads to the incorporation of a triply bridging ethylaluminum
ligand into the Ru3 core (Scheme 1c) [31].
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through alkane elimination from (a) molybdenum [29], (b) rhenium [30], (c) ruthenium [31] and
(d) iridium [9,10,32]) polyhydrides.

As part of our ongoing research focus on designing novel heterobimetallic architec-
tures [26,28,34–37], we thus chose to explore the reactivity of alkylaluminum reagents with
transition metal hydrides, hopping to trigger alkane elimination reactions. Prior work
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within our group has demonstrated the capability of an iridium polyhydride complex,
Cp*IrH4, to react with isobutyl aluminum derivatives, yielding heterobimetallic assemblies.
Our research reveals that the steric environment surrounding the aluminum alkyl moiety
plays a crucial role in dictating the nuclearity of the resultant species. A binuclear complex
is exclusively formed when employing a bulky aryloxide ligand within the coordination
sphere of the aluminum metal (Scheme 1d) [9]; conversely, the absence of such bulky ligands
leads to the formation of clusters with higher nuclearities [10]. Since the Cp*Mo(CO)3H
complex is known to have an acidic hydride [38,39], we thought it would be an ideal
candidate for our study, as part of our quest to explore more sustainable metal alternatives
to iridium. The results of these investigations are detailed in the following discussion.

2. Results and Discussion

The reaction of triisobutylaluminum with complex Cp*Mo(CO)3H in n-pentane at
35 ◦C furnishes the tetranuclear compound [Cp*Mo(CO)(µ-CO)2Al(iBu)2]2, (1), as a brown-
yellow crystalline solid in 74% isolated yield (Scheme 2).
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Compound 1 is diamagnetic. The simplicity of the 1H Nuclear Magnetic Resonance
(NMR) spectrum of 1 in deuterated benzene (C6D6) indicates a symmetrical structure in so-
lution on the NMR timescale. Specifically, the spectrum exhibits a singlet at δ = 1.93 ppm for
the Cp* ligands and one set of signals for the iBu moieties with a doublet at 0.43 ppm for the
methylene group, a doublet at 1.22 ppm for the methyl groups and a multiplet at 2.18 ppm
corresponding to the iBu β-H. In the 13C NMR spectrum of 1, a single set of signals for the
Cp* ligands on molybdenum is observed (δ = 106.0 and 11.3 ppm) and a characteristic broad
signal is found for the carbonyl groups at δ = 253.4 ppm. This value is in agreement with
that found in compounds featuring both terminal and bridging isocarbonyls [25,40], which
most likely are in fast dynamic exchange on the NMR timescale. The Diffuse Reflectance
Infrared Fourier Transform (DRIFT) spectrum of compound 1 reveals ν(CO) bands at 1961,
1917, 1663 and 1615 cm–1. The stretching modes of bridging carbonyls are assigned to the
last two bands, in agreement with the literature [25,40–42]. The terminal ν(CO) bands are
observed, on average, at slightly higher energy (2015 and 1936 cm−1) in the molybdenum
precursor complex, Cp*Mo(CO)3H. This indicates a weakening of the terminal carbonyl
C-O bonds in compound 1. This weakening suggests an increased backdonation from the
molybdenum center in compound 1, implying an augmentation in the electron density at
the formally Mo(0) site as a result of hydride loss and aluminum ligation to isocarbonyls.
Note that the Mo-H vibration, found at 1796 cm−1 in Cp*Mo(CO)3H, is noticeably absent
in the DRIFT spectrum of compound 1, as expected.

The dimeric structure of 1 is clearly revealed by single crystal X-Ray Diffraction (XRD),
in which two sets of the MoAl moiety are connected through isocarbonyl coordination
(Mo−CO→Al), forming a [Mo−C−O−Al−O−C−]2 twelve-membered linkage (Figure 1).
Compound 1 crystallizes in the triclinic space group P-1. The molecule is placed on the
inversion center, located at the center of the metallacycle. The isocarbonyl ligands are
characterised by elongated C-O distances (1.216(2) Å and 1.222(2) Å) with respect to the
terminal C1-O1 isocarbonyl bond (1.141(3) Å), in agreement with the literature [23,40]. The
Al–O bond distances (Al1–O2 1.8562(15) Å and Al1–O3 1.8701(15) Å) are rather long, as ex-
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pected, and in the range of other isocarbonyl compounds [13,23,43,44], for eg. 1.852(2) Å in
[(OC)3Co(µ-H)2Al{(NDippCMe)2CH}(µ-CO)Co(CO)3] [44]. The two isocarbonyl linkages
differ strongly in their Al–O–C angles: the Al1–O3–C3 angle is more acute than the Al1–O2–
C2 angle (128.4(1) vs. 142.8(1), respectively). Note that deviation from linearity is a typical
occurrence in such systems [25,44]. The metrical parameters for the Al(iBu) moieties are as
expected [10,45] and the molybdenum atoms exhibit an approximate tetrahedral geometry.
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Figure 1. Solid-state molecular structure of compound 1. Ellipsoids are represented with 30%
probability. The color scheme utilized is as follows: carbon atoms are depicted in grey, oxygen atoms
in red, aluminum atoms in pink, and molybdenum atoms in green. Hydrogen atoms have been
omitted for clarity. Selected bond distances (Å) and angles (◦) for 1: Mo1-C2 1.8785(19), Mo1-C3
1.8809(19), Mo1-C1 1.992(2), Al1-O3 1.8701(15), Al1-O2 1.8562(15), O1-C1 1.141(3), O2-C2 1.216(2),
O3-C3 1.222(2), C2-Mo1-C3 85.50(8), C2-Mo1-C1 91.42(8), C3-Mo1-C1 88.99(8).

The reactivity of compound 1 towards Lewis bases is then investigated in an attempt
to dissociate the tetranuclear assembly and obtain discrete binuclear complexes. Treatment
of 1 with stoichiometric amounts of pyridine (1 equiv. of pyridine per Al center) leads to
the clean formation of adduct [Cp*Mo(CO)2(µ-CO)Al(Py)(iBu)2], 2, in which a pyridine
molecule is N-bound to the Al(III) center (Scheme 3). Note that conducting the reaction
with only 0.5 equivalents of pyridine per aluminum center yields an equimolar mixture
of compounds 1 and 2. Conversely, when an excess of pyridine is employed (4 equiv.
or more), a mixture of novel compounds is obtained; however, their identification and
isolation proved unfruitful in our hands.

NMR and DRIFT data for compound 2 closely resemble those of compound 1, showcas-
ing similar features, besides additional signals originating from the pyridine ligand, such as
νC-H bands at 3079 cm−1, characteristic of Csp2-H bonds. The XRD structure of complex 2
is shown in Figure 2, confirming its dinuclear nature. The Al center is four-coordinated
to two carbons from the isobutyl ligands, one nitrogen from the pyridine ligand and one
oxygen from an isocarbonyl ligand bridging the Al and Mo sites. As in 1, the isocarbonyl
C1-O1 distance (1.251(6)◦Å) is elongated compared to the terminal carbonyl C2-O2 and
C3-O3 bond lengths (1.163(7)◦Å and 1.160(7)◦Å, respectively). These carbonyl (terminal
and bridging) C-O bond lengths are slightly elongated in monomer 2 vs. dimer 1. The
C1-O1-Al1 angle is bent (138.8(4) ◦), and the Al1-O1 distance (1.836(4) Å) is rather long,
in agreement with literature data for Al isocarbonyl complexes [13,23,43,44]. It should be
noted that the Al1 center and the Mo1 center are separated by more than 4.6 Å, precluding
any possibility of metal–metal interaction.
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Figure 2. Solid-state molecular structures of compounds 2 (top) and 3 (bottom). Ellipsoids are
represented with 30% probability. The color scheme utilized is as follows: carbon atoms are depicted
in grey, oxygen atoms in red, aluminum atoms in pink, nitrogen atoms in blue and molybdenum
atoms in green. Hydrogen atoms have been omitted for clarity. In compound 3, the isobutyl moieties
attached to the aluminum sites are represented in wireframe format to enhance clarity. Selected
bond distances (Å) and angles (◦) for 2: Mo1-C1 1.850(6), Mo1-C2 1.962(6), Mo1-C3 1.957(6), Al1-O1
1.836(4), Al1-N1 1.973(5), Al1-C19 1.958(6), Al1-C23 1.948(6), C1-Mo1-C2 87.5(2), C1-Mo1-C3 93.4(2),
C3-Mo1-C2 88.2(3), O1-Al1-N1 98.64(19), O1-Al1-C23 109.6(2), C19-Al1-N1 106.8(2), C23-Al1-C19
121.9(3), C1-O1-Al1 138.8(4).

In agreement with Pearson’s Hard-Soft Acid-Base concept, the hard aluminum center
prefers to bind to the hard carbonyl oxygens rather than the molybdenum center through
unsupported metal–metal bonding (as in Scheme 1a). This suggests that the Mo site in
[Cp*Mo(CO)3]- is a weak nucleophile. Unfortunately, attempts to photochemically labilize
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the CO ligands in 1 or 2 to generate metal–metal bonded species—a strategy that proved
effective in some studies [46]—did not succeeded in our hands, leading to intractable
mixtures of unidentified species.

The analogous THF adduct could not be isolated since compound 1 is found to be
unstable in THF at 30 ◦C. When conducting the reaction in pentane using stoichiometric
quantities of tetrahydrofuran (1 equiv. of THF per aluminum center), a reaction intermediate,
presumably corresponding to the THF adduct A, is detected by 1H NMR spectroscopy.
However, this intermediate is unstable in these experimental conditions and cannot be
isolated. It is only when the reaction is carried out in neat THF (i.e., with a large excess)
that the main decomposition product can be isolated in satisfactory yields (80%). The latter
is successfully identified by X-ray crystallography as a tetranuclear Al/Mo compound,
namely [Cp*Mo(CO)3(µ-CH2CH2CH2CH2O)Al(iBu)2]2, 3 (Scheme 3, bottom), that contains
an alkoxy-alkyl bridge derived from the ring opening of THF. Although the quality of the
single crystal XRD data for 3 is insufficient to discuss the metrical parameters in great detail
(Figure 2—bottom), it is satisfactory enough to prove the atom connectivity and confirm
the ring opening of THF. Note that the formation of the bridging C4H8O moiety is also
unequivocally validated through 1D and 2D NMR spectroscopy. Specifically, the 1H NMR
spectrum displays a triplet at δ = 3.89 ppm (CH2-O), two quintets at δ = 1.98 and 1.87 ppm
corresponding to the methylene groups situated at the center of the carbon chain, and a
triplet at δ = 1.04 ppm for the CH2-Mo unit.

The cleavage of tetrahydrofuran by monometallic organometallic reagents, resulting
in analogous alkoxy-bridged structures, has been documented in a few instances in the lit-
erature [47,48]. Such a transformation typically occurs under stringent reducing conditions,
as outlined in Scheme 4a. Furthermore, the Mulvey group [49] and our own group [27]
have independently demonstrated that the collaborative action of two distinct metals can,
in some cases, facilitate a more pronounced degradation of THF. This process results in
the removal of the ether oxygen, accompanied by the generation of vinyl or butadiene
anions, as depicted in Scheme 4b. The observed cleavage of tetrahydrofuran promoted
by compound 1, which occurs under mild conditions without the requirement of external
strong reducing agents, is thus noteworthy.
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Scheme 4. Relevant literature precedents for the cleavage of THF by (a) monometallic
complexes (M = Zr [47]; La [48]) under stringent reducing conditions and (b) heterobimetallic
(M/M’ = Na/Mn [49]; Ta/Ir [27]) complexes.

In fact, the reactivity observed here is more evocative of the ring opening of cyclic
ethers by Frustrated Lewis Pairs (FLPs, Scheme 5a), wherein ether activation by a Lewis
acid is followed by nucleophilic attack. In these examples, the nucleophile is typically a
phosphine, amine, carbene or halide and the Lewis acidic partner is classically a main group
element (typically boron) [50–57] though examples involving hard metal centers such as
titanium [58], yttrium [59], zirconium [60], tantalum [61], thorium [62] or uranium [63] have
been described as well. These THF ring-opening reactions share conceptual similarities
with the reactivity observed herein. Interestingly, during the preparation of this manuscript,
Mankad and coworkers reported a tungsten aluminum isocarbonyl species closely related
to our investigation (Scheme 5) [64]. Their study revealed that this [Al](µ-CO)[W] complex
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behaves as a masked Metal-Only FLP [65–67] and is able to ring open propylene oxide with
a regioselectivity which confirms that it occurs via the nucleophilic attack of the liberated
[CpW(CO)3]− anion. Note that the same group reported an Al/Fe sister compound active
in the ring opening of THF, yet in this case THF cleavage is proposed to occur via a radical-
pair mechanism as a result of the homolysis of the Al-Fe bond [68] By analogy with these
literature precedents, we propose a similar mechanism for the cleavage of THF promoted
by compound 1, as depicted in Scheme 5c.
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Scheme 5. (a) THF ring opening by classical Frustrated Lewis Pairs [54,56]. (b) Recently reported ring
opening of propylene oxide by a related aluminum tungsten isocarbonyl complex [64], behaving as a
masked Metal-Only Frustrated Lewis Pair. (c) Proposed mechanism for THF ring opening promoted
by complex 1, by analogy.

3. Materials and Methods
3.1. General Considerations

Unless otherwise stated, all reactions were conducted under an atmosphere of purified
argon (<1 ppm O2/H2O) using either an MBraun inert atmosphere glovebox, or standard
Schlenk line techniques. Glassware and cannulas were preconditionned in an oven at
approximately 100 ◦C for a minimum of 12 h before utilization. THF and n-pentane were
purified by a solvent purification system consisting in passing through an activated alumina
column, dried over Na/benzophenone, vacuum-transferred to a storage vessel and freeze-
pump-thaw degassed before usage. Hexane and C6D6 were dried over Na/benzophenone,
vacuum-transferred to a storage vessel and freeze-pump-thaw degassed before usage.
Pyridine was dried over CaH2, vacuum-transferred to a storage vessel and freeze-pump-
thaw degassed prior to use. Compound Cp*Mo(CO)3H was synthesized according to the
literature procedure [69]. All other reagents were acquired from commercial sources and
used as received.

3.2. Analytical Methods

Diffuse Reflectance Infrared Fourier Transform (DRIFT) spectroscopy: prior to analysis,
the samples were meticulously prepared under an argon atmosphere in a glovebox and were
diluted in potassium bromide (KBr) salt to enhance measurement accuracy. Subsequently,
the power was introduced and sealed under argon in a DRIFT cell equipped with KBr
windows. The analyses were conducted using a Nicolet 670 FT-IR spectrometer (Thermo
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Fisher Scientific, Waltham, USA), and the obtained spectra were processed using the
OMNIC software (V 7.2).

Elemental analyses were conducted under inert atmosphere at Mikroanalytisches
Labor Pascher, Remagen, Germany to determine the elemental composition of the samples.

Solution NMR spectra were acquired using Bruker AV-300, AVQ-400 and AV-500
spectrometers (Bruker Biospin, Billerica, USA). Chemical shifts were determined by refer-
encing the peaks of residual solvents to an external tetramethylsilane (TMS) standard set at
0.00 ppm. To confirm 1H and 13C NMR spectra assignments, the samples were subjected to
further analysis through 1H−1H correlation spectroscopy (COSY) and 1H−13C heteronu-
clear single quantum coherence (HSQC) experiments. The NMR data is reported in the
following format: chemical shift (δ) [multiplicity, relative integral, assignment, coupling
constant(s) J (Hz) if any]. Multiplicity was denoted as follows: s = singlet, d = doublet,
t = triplet, m = multiplet, or combinations thereof.

X-ray structural determinations: while a suitable single crystal for complex 1 and
2 could be selected, only multi-crystals were found for complex 3 which explains the
relatively bad statistics. However, its structure could be solved and was confirmed by
other experimental techniques. The data collection for these complexes was carried out
on Xcalibur Gemini kappa-geometry diffractometer equipped with an Atlas CCD detector
and a Copper X-ray source (λ = 1.54184 Å). Intensities were collected at 150 K by means
of the CrysalisPro software (Version 1.171.40.67a) [70]. Reflection indexing, refinement of
unit-cell parameters, Lorentz-polarization correction, peak integration and background
determination were carried out with the CrysalisPro software [70]. An analytical absorption
correction was applied using the modeled faces of the crystal [71]. The resulting set of
hkl was used for structure solution and refinement. The structures were solved with the
ShelXT [72] structure solution program using the intrinsic phasing solution method, with
Olex2 [73] serving as the graphical interface. Model refinement was conducted using ShelXL
version 2018/3 [74] via least-squares minimization. CCDC 2,330,941 to 2,330,943 contain
the supplementary crystallographic data for this paper. These data are provided free of
charge by the Cambridge Crystallographic Data Centre. Tables reporting crystallographic
parameters for compounds 1, 2 and 3 are provided in the Supplementary Materials.

3.3. Syntheses

Synthesis of [Cp*Mo(CO)(µ-CO)2Al(iBu)2]2, 1. Triisobutylaluminum (329.0 mg, 1.66 mmol)
was dissolved in 15 mL of n-pentane. To this colorless solution, 10 mL of a reddish-brown
n-pentane solution of Cp*Mo(CO)3H (526.9 mg, 1.67 mmol) were added. The resulting
deep red-brown solution was stirred and heated at 35 ◦C for 2 days, resulting in a brown-
yellow color. Then, the volatiles were removed under vacuum yielding a yellow-brown
powder. This solid was dissolved in 20 mL of a n-pentane:hexanes (17:3) mixture, filtered
and stored at −40 ◦C in a freezer inside the argon glovebox for 3 days. This yielded 560 mg
of single yellow block crystals that were recovered by filtration and dried under vacuum
(74% isolated yield). Single crystals suitable for X-ray diffraction were grown similarly.
1H-NMR (500 MHz, C6D6, 293 K) δ 2.18 (m, 4H, CHiBu), 1.93 (s, 30H, Cp*), 1.22 (d, 24H,
CH3-iBu, 3JHH = 6.4 Hz), 0.43 (d, 4H, CH2-iBu, 3JHH = 7.0 Hz). 13C{1H}-NMR (125 MHz,
C6D6, 293 K) δ 253.4 (µ-CO), 106.0 (CCp*), 28.33 (CH3-iBu), 26.0 (CHiBu), 21.4 (CH2-iBu),
11.3 (CH3-Cp*). DRIFTS (KBr cell) σ 2947 (s, νCH), 2916 (s, νCH), 2860 (s, νCH), 1961 (s,
COterminal stretching), 1917 (s, COterminal stretching), 1663 (s, µ-CO stretching), 1615 (s, µ-
CO stretching). Elemental analysis calcd (%) for C42H66Al2Mo2O6: C 55.26, H 7.29. Found:
C 55.37, H 7.39.

Synthesis of [Cp*Mo(CO)2(µ-CO)Al(Py)(iBu)2], 2. A 1 mL colorless pentane solution
of pyridine (23.3 mg, 0.295 mmol, 2 eq.) was added dropwise into a 9 mL yellow pentane
solution of 1 (135.5 mg, 0.148 mmol, 1 eq.), at room temperature. Instantly, the solution
turned to a deep orange color. The reactional medium was stirred at room temperature for
15 min. Then, pentane volatiles were removed under vacuum yielding a yellow powder.
This solid was dissolved in the minimum amount of pentane (3 mL), filtered, and stored
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at −40 ◦C for 18 h. This yielded compound 2 as yellow needle-shaped crystals that were
recovered by filtration and dried under vacuum (130 mg, 82% yield). Single crystals
suitable for X-ray diffraction were grown similarly. 1H NMR (500 MHz, C6D6, 293 K) δ
8.13 (dt, 2H, CHortho-Py, 3JHH = 4.9 Hz, 5JHH = 1.6 Hz), 6.73 (tt, 1H, CHpara-Py, 3JHH = 7.9 Hz,
5JHH = 1.6 Hz), 6.51 (m, 2H, CHmeta-Py, 3JHH = 6.4 Hz), 2.09 (m, 2H, CHiBu), 2.09 (s, 15H,
CH3Cp*), 1.17 (d, 12H, CH3-iBu,3JHH = 6.6 Hz), 0.38 (d, 4H, CH2-iBu, 3JHH = 7.0 Hz). 13C{1H}
NMR (125 MHz, C6D6, 293 K) δ 146.7 (CHortho-Py), 141.5 (CHpara-Py), 125.8 (CHmeta-Py), 103.3
(CCp*), 28.4 (CH3-iBu), 26.3 (CHiBu), 21.3 (CH2-iBu), 11.8 (CH3-Cp*). DRIFTS (KBr cell) σ
3079 (s, νCH), 2967 (s, νCH), 2788 (s, νCH), 1950 (s, COterminal stretching), 1816 (s, COterminal
stretching), 1615 (s, µ-CO stretching). Elemental analysis calcd (%) for C26H38AlMoNO3: C
58.31, H 7.15, N 2.62. Found: C 57.97, H 7.10, N 2.54.

Formation of [Cp*Mo(CO)3(µ-CH2CH2CH2CH2O)Al(iBu)2]2, 3. Compound 1 (176.0 mg,
0.19 mmol) was dissolved in 7 mL of THF. The resulting reddish solution was stirred for
8 days at 30 ◦C yielding a deep brown solution. THF volatiles were removed under vacuum
yielding a brown solid. This solid was dissolved in the minimum amount of pentane (3 mL),
filtered, and stored at −40 ◦C for 16 h, yielding orange crystals that were recovered by
filtration and dried under vacuum (160 mg, 0.15 mmol, 80% yield). Single crystals suitable
for X-ray diffraction were grown similarly. Compound 3 was unambiguously identified
and characterized by XRD and NMR spectroscopy. Nevertheless, despite numerous efforts
and attempts, its separation from reaction co-products proved difficult, which hindered
the acquisition of a satisfactory elemental analysis. 1H NMR (500 MHz, C6D6, 293 K) δ
3.89 (t, 4H, CH2-O, 3JHH = 7.8 Hz), 2.19 (m, 4H, CHiBu), 1.98 (quintet, 4H, 3JHH = 7.3 Hz,
CH2), 1.87 (quintet, 4H, 3JHH = 8.2 Hz, CH2), 1.49 (s, 30H, CH3Cp*), 1.26 (d, 24H, CH3-iBu,
3JHH = 6.5 Hz), 1.04 (t, 4H, CH2-Mo, 3JHH = 8.8 Hz), 0.40 (d, 8H, CH2-iBu, 3JHH = 7.1 Hz).
13C{1H} NMR (125 MHz, C6D6, 293 K) δ 146.66 (CHortho-Py), 141.47 (CHpara-Py), 125.84
(CHmeta-Py), 103.33 (CCp*), 28.37 (CH3-iBu), 26.28 (CHiBu), 21.33 (CH2-iBu), 11.78 (CH3-Cp*).
13C{1H}-NMR (125 MHz, C6D6, 293 K): δ 231.9 (CO), 104.0 (CCp*), 64.0 (CH2-O), 39.6 (CH2),
32.1 (CH2), 28.8 (CH3-iBu), 26.3 (CHiBu), 24.9 (CH2-iBu), 12.4 (CH2-Mo), 10.0 (CH3-Cp*).

4. Conclusions

We have shown that molybdenum-aluminum heterobimetallic complexes can be
prepared in high yields from an alkane elimination reaction between the acidic molyb-
denum hydride complex Cp*Mo(CO)3H and triisobutylaluminum. The new complex
[{Al(iBu)2[Mo(Cp*)(CO)3]}2, (1), is tetranuclear in the solid state and exhibits two Al(iBu)2
units which are linked by two bridging isocarbonyl groups to two [Mo(Cp*)(CO)3] anions.
This results in the formation of a centrosymmetric, 12-membered C4O4Mo2Al2 ring. Inter-
estingly enough, we have demonstrated the possibility to dissociate this tetranuclear dimer
1 into a discrete and well-defined binuclear complex, [Cp*Mo(CO)2(µ-CO)Al(Py)(iBu)2],
(2), using pyridine as a Lewis base. Switching to an oxygenated Lewis base such as THF
under mild conditions drastically changed the related chemistry where the THF analogous
adduct of 2 could not be isolated and evolved into a mixture of species. Gratifyingly,
we identified the major compound resulting from the reaction of 1 with THF as being a
tetranuclear Al2Mo2 complex, [Cp*Mo(CO)3(µ-CH2CH2CH2CH2O)Al(iBu)2]2, (3). This
complex features a bridging alkoxybutyl fragment bridging the Al and the Mo centers,
originating from the ring opening of THF. Such reactivity is quite unexpected, as no ex-
ternal reducing agents or aggressive experimental conditions were used, and therefore
adds to the very rare occurrences of THF scission by heterobimetallic complexes. While
the exact mechanism remains unidentified, it is reminiscent to that of a masked metal-only
frustrated Lewis pair. This highlights the high reactivity of these Al/Mo assemblies, which
hold promise for future investigations. Note, however, that these species do not feature
unsupported direct Mo–Al interactions. To get around this limitation, we are currently
exploring alternative strategies to prepare molybdenum-based heterobimetallic binuclear
species in the absence of carbonyl ligands, wishing to augment the metal–metal interactions
in the resulting compounds.
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/inorganics12030072/s1, Figures S1–S11: NMR spectra for com-
pounds 1–3; Figures S12 and S13: DRIFT spectra; Table S1: Crystallographic parameters for com-
pounds 1, 2 and 3.
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