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Minimum-volume set-membership state estimation of LTV constrained
systems with sporadic measurements

Yasmina BECIS-AUBRY and Nacim RAMDANI

Abstract— This paper presents a recursive ellipsoidal set-
membership state estimation algorithm for discrete-time linear
time-varying (LTV) models with additive bounded disturbances
affecting state evolution and sporadic measurement equations.
The state vector is subject to linear equality and/or inequality
constraints, which are mathematically viewed as additional
measurements. A novel approach is developed considering the
unprecedented fact that, owing to equality constraints, the
ellipsoid characterizing all possible values of the state vector
has a zero volume and its shape matrix is non invertible. A new
size criterion, the pseudo-volume, is introduced and minimized
in both the prediction and correction phases.

I. INTRODUCTION

Many physical systems are subject to equality constraints
(e.g. target tracking, 2D restrictions in 3D motion,
fixed speed for a robotic arm) or state space inequality
constraints (e.g. motors maximum speed), owing to
relevant physical laws, geometric considerations, and
kinematic limits. Nonetheless, constrained classical state
estimation, such as the Kalman Filtering (KF), has
historically attracted limited interest, [1], [2], most likely
because of challenging modeling limitations and increased
computational costs. And interestingly, there are even fewer
constrained problems, when it comes to set-membership
state estimation (explained below). As a result, (in)equality
constraints are frequently ignored in typical state estimation
applications. However, taking into account such constraints
has a significant impact on the estimation process (the
constrained estimate may differ significantly from the
unconstrained one) and consequentially reduces the state
bounding set (roughly viewed as the confidence region)
by projecting it onto a state subspace of lower dimension.

Set-membership estimation approaches differ from classical
(stochastic) methods (such as the KF) in the fact that the
stochastic information on the disturbances and the initial
estimate, in the former, are replaced by sets, i.e., known
bounds, in the latter and instead of the point-wise estimate,
we have a bounding set. This bounding set can have differ-
ent shapes. Four main set characterizations share research
interests in set-membership state estimation: those using
intervals or boxes (balls for the ∞−norm), parallelotopes
(affine injective or bijective maps of boxes), zonotopes
(surjective affine maps of boxes) and ellipsoids (affine maps
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*The authors are with Univ. Orléans, INSA CVL, PRISME EA 4229,
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of balls for the 2−norm). The techniques using zonotopes
are more precise than those using ellipsoids, as stated in the
comparative review of set-membership approaches (because
the complexity of the ellipsoid is fixed by the dimension of
the state to estimate, while the complexity of the zonotope
is flexible according to the chosen accuracy). But it was
also mentioned that the ellipsoidal methods have lower
computational complexity. The use of zonotopes involves
costly convex optimization problems, which, in the case of
LTV systems, should be solved at each step during real-
time operation (the review covered only linear time-invariant
models). Furthermore, the volume of the state bounding
set appears to be the most meaningful, but at the same
time, the most computationally expensive cost function to be
minimized, which involves solving an optimization problem
when using zonotopes. Therefore, the volume optimization
criterion was not included in the above-mentioned study.
Our goal in this note is to demonstrate that, even for
time-varying systems (which require online computations),
volume minimization can be completely undemanding when
using ellipsoidal bounding sets for state characterization,
and that equality and inequality constraints are not more
computationally expensive than conventional bounded noise
measurements. In order to address the challenging issue of
the equality constraints, a new concept of pseudo-volume is
introduced, leading to a number of new results.
The remainder of this paper is organized as follows. After
this introduction, which is completed with some notations
and definitions, the second section recaptures the constrained
set membership state estimation problem with sporadic mea-
surements. The third section deals with the time prediction
stage, and the measurement correction stage of the estimation
algorithm is detailed in the forth section. The pseudo-
volumes of the predicted and corrected ellipsoids were
minimized in both steps. Some aspects of the convergence
are addressed in the fifth section. The sixth section of this
paper presents some numerical simulations, and the paper is
briefly concluded in the seventh section.

A. Notations and definitions

1. IR := ]−∞,+∞[ and IR∗
+ := ]0,+∞[; IN = {0, 1, 2 . . .},

IN∗ = IN − {0}. Lowercase letters are used for scalars,
uppercase ones for matrices, bold lowercase ones for
vectors and calligraphic capital ones for sets.

2. a := [a1. . .an]T ∈ IRn (bold) and A :=
[
aj

]m
j=1
∈ IRn×m.

3. 0n ∈ IRn, 0n,m ∈ IRn×m are vector and matrix of zeros.



4. AT , A−1, A†, rank(A), N (A), R (A), and |A| are resp.
the transpose, inverse, pseudoinverse, rank, kernel, range,
and determinant of A.

5. The matrix M ∈ IRn×n is SPD (SPSD) i.e. Symmetric
Positive (Semi-) Definite, if and only if ∀x ∈ IRn–{0n},
xTMx > 0 (resp. xTMx ≥ 0).

6. ∥x∥ := ∥x∥2 =
√
xTx; ∥x∥∞ := max

1≤i≤n
|xi|.

7. Bn2 := {z ∈ IRn| ∥z∥2 ≤ 1} and
Bn∞ := [−1, 1]n are unit balls in IRn: cen-
tered unit hypersphere and hypercube resp.

8. S1 ⊕ S2 := {x ∈ IRn|x = x1 + x2,x1 ∈ S1,x2 ∈ S2}.
9. E(c, P ) := {x ∈ IRn|x = c+Mz, z ∈ Bn

2 , P = MMT }
is an ellipsoid in IRn. If P is SPD, then we have also
E(c, P ) := {x ∈ IRn| (x− c)TP−1(x− c) ≤ 1}.

10. Z(c, L) := {x ∈ IRn| x = c+Lz, z ∈ Bm∞} a zonotope.

II. PROBLEM FORMULATION

Consider the following discrete time, LTV system:
xk = Ak−1xk−1 +Bk−1τ k−1 +Rk−1wk−1, (1a)

where x0 ∈ E(x̂0, ς0P0)=: E0 ⊂ IRn and wk ∈ Bmk
∞ , (1b)

k ∈ IN∗ is the time step, xk ∈ IRn is the unknown state
vector to be estimated, τ k ∈ IRl is a known control vector
and wk ∈ IRmk is an unobservable bounded process noise
vector with unknown statistical characteristics and its size
m :=mk is possibly time varying1. E0 is a known ellipsoid,
of center x̂0 (the initial estimate of xk) and of shape matrix
ς0P0 (P0 is an SPD matrix, ς0 is a scaling positive scalar
which can be set to 1). Ak ∈ IRn×n and Bk ∈ IRn×l are
known state and input matrices, resp. and Rk ∈ IRn×m is
the generator matrix that defines the zonotope bounding the
unknown input vector Rkwk∈Z(0n, Rk). Now, we consider
the following inequalities that represent the observations of
the system (1):

¯
yki ≤ fT

ki
xk ≤ ȳki , i ∈ {1, ..., pk} = Dk ∪ Gk ∪Hk, (2a)

defining a polyhedral constraint on the state vector, Pk ∋ xk,
formed by:

• Intersecting strips (for i ∈ Dk):
¯
yki

and ȳki
are both

available: −∞ <
¯
yki

< ȳki
< +∞. For such an i, (2a)

represents a typical measurement with a bounded noise.
• Halfspaces (for i ∈ Gk): only one bound, either

¯
yki or

ȳki , is available (ȳki = +∞ or
¯
yki = −∞, resp.). For

such an i, (2a) models a linear inequality constraint on
the state vector.

• Hyperplanes (for i ∈ Hk): both bounds are equal

¯
yki

= ȳki
. For such an i, (2a) represents a linear equality

constraint on the state vector.

The observation matrix Fk :=
[
fkj

]pk

j=1
∈ IRn×pk is time

varying as is the number of its columns, p := pk ∈ IN, which1

can sometimes be zero (in the absence of measurements).
Indeed, the measurements are available in varying amounts,
at not all but some sporadic time steps k ∈ K:

K := {k ∈ IN|pk ̸= 0}. (2b)

1All variables defined from now on are time varying but the subscript
k will be skipped on some of them for an improved readability.

Note that the typical output equation
yk = FT

k xk +Dkvk, vk ∈ Bpk
∞ (2c)

is a particular case of (2a), where yki
=

ȳki
+
¯
yki

2 and Dk

is a diagonal matrix with dii =
ȳki

−
¯
yki

2 , i ∈ {1, . . . , pk}.
However, (2c) is limited to cases where both bounds
ȳki

and
¯
yki

are known and finite, i.e., i ∈ Dk ∪ Hk

and cannot represent the inequality constraints on the state
vector, where either ȳki

or
¯
yki

is unavailable (i ∈ Gk).
First, we aim to quantify, at each time step k, the “optimal”
set containing all possible occurrences of the state vector
and then express the conditions of convergence of such a
set. Let Ek := E(x̂k, ςkPk) be the ellipsoid containing all
possible values of the true state vector xk. As the matrix
Pk is decreasing2 during the measurement correction stage,
it should be noted that the parameter ςk is used to model the
possibly non-monotonic part of the ellipsoid shape matrix
Ek. It can be viewed as the upper bound of a squared
weighted estimation error norm, (xk − x̂k)

TP †
k (xk − x̂k).

The progression law for the ellipsoid Ek is established in the
following while a chosen size criterion is optimized.

III. TIME PREDICTION STAGE

In the first paragraphs of this section, important tools are
established in view of the development of an optimal pre-
diction algorithm in § III-B. This tools represent the first
main contribution of this paper.

A. Minimal pseudo-volume predicted ellipsoid

The following lemma gives the parameterized family of
ellipsoids E⊕(µ), which contains the Minkowski sum of
the ellipsoid AE(c, ςP ) := {Ax|x ∈ E(c, ςP )} and the line
segment Z(0n, r) = E(0n, rr

T ).
Lemma 3.1 ([3]): Let c,u, r ∈ IRn−{0n}, A ∈ IRn×n and
P ∈ IRn×n SPSD. then
AE(c, ςP )⊕Z(u, r)⊂E⊕(µ) := E

(
c⊕, ςP⊕(µ)

)
, where

c⊕ :=Ac+ u, (3a)

P⊕(µ) := (1 + µ)Q+ 1+µ
ςµ rrT , with Q :=APAT . (3b)

In the next paragraph, the positive scalar parameter µ is
chosen so that the size of E⊕(µ) is minimized.
1) Pseudo-volume: The volume, one of the most meaningful
measures of a bounded set’s size, is minimized. Since the
eigenvalues of ςP⊕(µ) are the squared semi-axes lengths of
E⊕(µ), the (squared) volume is proportional to their product,
i.e., to |ςP⊕(µ)|. As explained in § IV, every equality
constraint on the state vector, modeled by a measurement
i ∈Hk, is very likely to cause the ellipsoid shape matrix Pk

to lose rank by one during the correction stage. This results
in zero axes lengths and therefore a zero volume of Ek. We
will then introduce a generalized volume, the pseudo-volume
of an ellipsoid, whose usual volume can be zero.
First, note that when P ∈ IRn×n is SPD, the usual volume
of an ellipsoid, vol(·), is: vol

(
E(c, P )

)
=: vol(Bn2 )

√
|P |,

where vol(Bn2 ):=
π

n
2

Γ(n2 + 1)
, [4], where Γ is the Euler

Gamma-function.

2A SPSD matrix Pk is said to be decreasing if Pk−1 − Pk is SPSD.



Definition 3.1: For any SPSD matrix P and any c ∈ IRn,
the SPV (squared pseudo-volume) of the ellipsoid E

(
c, P ) is

spv
(
E(c, P )

)
=: vol2(Bq2)|P |†,

where q := rank(P ) and |P |† =: lim
t→0

|P+tIn|
tn−q is the pseudo-

determinant of P (the product of all its nonzero eigenvalues).
The pseudo-volume of E(c, P ) is nothing but the volume of
the orthogonal projection of E(c, P ) onto R (P ).
2) Optimal value of the parameter µ and one-rank up-
dates: The rank and pseudo-determinant expressions of the
ellipsoid’s SPSD shape matrix, prior to its minimization,
are provided in the following result, as one-rank update
expressions.
Proposition 3.2: ∀Q ∈ IRn×n SPSD, ∀r ∈ IRn, ∀a, b ∈ IR∗

+,
if Q+ := b

(
Q+ arrT ), then

i. rank
(
Q+

)
=: q+ =

{
q := rank(Q), if v = 0n,

q + 1, otherwise.
(4a)

ii. |Q+|† =

{
bq|Q|†

(
1 + arTu

)
, if v = 0n;

bq+1|Q|†avTv, otherwise;
(4b)

where u :=Q†r and v := (In −QQ†)r. (4c)
Proof. cf. Appendix A.2 in [5]. ❑

Theorem 3.3: E⊕(µ), defined in (3), has the minimum
pseudo-volume if µ = µ∗ := argminµ∈IR∗

+
|P⊕(µ)|† :

µ∗ :=

{
1
2q

√
(q − 1)2h2 + 4qh− q−1

2q h, if v = 0n,
1
q , otherwise;

(5a)

u, v given in (4c), q := rank(Q) and h := ς−1rTu. (5b)
Proof. cf. Appendix A.3 in [5]. ❑

It is important to note that minimizing the volume of
E⊕(µ) requires the pseudoinverse of the matrix P . In the
following proposition, we present the one-rank update of
the pseudoinverse of an ellipsoid’s shape matrix, allowing
to derived it recursively.
Proposition 3.4: If Q+ := b

(
Q+ arrT ), then

Q†
+ = 1

b

(
Q† +∆

)
, where (6a)

∆ :=

{
1

∥r∥2

(
c

∥r∥2vvT − uvT − vuT
)
, if v ̸= 0n;

− 1
cuu

T , otherwise.
(6b)

where c := 1+arTQ†r
a and u and v are defined in (4c).

Proof. Obtained by using Thm 1 and Thm 3 of [6]. ❑

B. The time prediction algorithm

Let Ek+1/k be the superset of the “reachable set” of every
possible value of xk ∈ Ek evolving according to the
plant dynamics eq. (1a) and subject to (1b). The parame-
terized (by µ) family of the ellipsoids Ek+1/k that contain
AkEk ⊕ Z(0n, Rk) is given in the following theorem.
Theorem 3.5 ([3]): If xk ∈ Ek, obeying to (1), then
∀µi ∈ IR∗

+, ∀i ∈ {1, · · · ,m}, xk+1 ∈ Ek+1/km
, where

Ek+1/ki
:= E(x̂k+1/k, ςkQi) ⊇ Ek+1/ki−1

⊕Z(0n, rki
),

x̂k+1/k :=Akx̂k +Bkτ k, (7a)

Qi := (1 + µi)
(
Qi−1 +

1
µiςk

rki
rTki

)
, (7b)

Q0 :=AkPkA
T
k ; (7c)

where rki
is the ith column of Rk.

Proof. cf. Appendix A.4 in [5] (Thm 3.6). ❑

Given the ellipsoid Ek at the time step k, Thm 3.5 pro-
vides the predicted ellipsoid Ek+1/k := E(x̂k+1/k, ςkPk+1/k)
whose center is computed as in (7a) and whose shape matrix
(up to the factor ςk), Pk+1/k :=Qm, is given, by the recursive
formula (7b)-(7c), which depends on µi, for i ∈ {1, . . . ,m}.
Now, the results of § III-A.1 are employed in order to express
on one hand, the optimal value, µ∗ := argminµi∈IR∗

+
|Qi|†,

that minimizes the pseudo-volume of Ek+1/ki
; and on the

other hand, the recursive formulas of the pseudoinverse and
the rank of Pk+1/k, needed for the computation of µ∗.

Theorem 3.6: Ek+1/ki
(cf. Thm 3.5) has the minimum

pseudo-volume if µi = µ∗, given by (5a), where
q :=κi−1, h := ς−1

k rTki
u, (8a)

u :=Θi−1rki , v := rki −Qi−1u, (8b)

κi :=

{
κi−1, if v = 0n,

κi−1 + 1 otherwise (κi = rank(Qi));
(8c)

κ0 :=

{
qk if rank(Ak) = n;

rank(Q0), otherwise;
(8d)

where qk := rank(Pk)(cf . (12f)) and qk+1/k :=κm, (8e)
Θi :=

1
1+µi

(
Θi−1 +∆i

)
, i ∈ {1, . . . ,m} (Θi :=Q†

i ), (8f)

Θ0 :=Q†
0 =

(
AkPkA

T
k

)†
, (8g)

∆i =:∆ is given by (6b), (8h)
where r := rki and c := ςkµi + rTki

u.

Proof. Direct consequence of Thm 3.3 and Prop. 3.4 where
a := 1

µiςk
and b := 1 + µi. ❑

Algorithm 1 reproduces Thms 3.5, 3.6 that compute Ek+1/k

from Ek.

Algorithm 1 Minimal pseudo-volume predicted ellipsoid

Input: x, P , ς , q, A, B, r1 · · · rm, τ , m
Output: x, P , q

1: Q :=APAT {cf. (7c)};
2: Θ :=Q† {cf. (8g)};
3: q := rank(Q) {skipped if rank(Ak) = n cf. (8d)};
4: for i = 1, · · · ,m do
5: u :=Θri; v := ri −Qu {cf. (8b)};
6: if v = 0n then
7: h := ςrTi u {cf. (8a)};
8: µ = 1

2q

√
(q − 1)2h2 + 4qh− q−1

2q h {cf. (5a)};
9: ∆ := − 1

ςµ+rT
i u

uuT {cf. (8h) and (6b)};
10: else
11: µ = 1

q {cf. (5a)}; q ← q + 1 {cf. (8c)};
12: V :=uvT ;

13: ∆ := 1
∥ri∥2

(
ςµ+rT

i u

∥ri∥2 vvT − V − V T

)
{cf. (8h)};

14: end if
15: Q← (1 + µ)

(
Q+ 1

µς rir
T
i

)
{cf. (7b)};

16: Θ← (1 + µ)−1
(
Θ+∆

)
{cf. (8g)};

17: end for
18: x← Ax+Bτ {cf. (7a)}; P ← Q



IV. MEASUREMENT CORRECTION STAGE

The predicted ellipsoid Ek/k−1 taking into account the mea-
surements up to time step k − 1, if any, is now intersected
with the polyhedron Pk, defined in (2). This is achieved
by successively intersecting Ek/k−1 with the sets defined by
(2a), for each i ∈ {1, . . . , p}.
The correction stage allows to find Ek ⊃ Sk, where

Sk := Ek/k−1 ∩ Pk. (9)
It is important to note that the intersection of a
n−dimensional ellipsoid E , of a q-rank shape matrix P , with
an intersecting (non parallel and non containing3) hyperplane
H results in a flattened, i.e., having some zero-length axes,
n−dimensional ellipsoid with a shape matrix of rank q − 1.
And the good news is that there is no need to circumscribe
it by another ellipsoid, as would be the case when cutting
with a strip or a halfspace, since the class of ellipsoids is the
only one, among the zonotopes, parallelotopes and intervals,
that is closed under the intersection with hyperplanes.
Now, parts of Thms 4.1, 4.2 and 4.4 of [3], which express
the ellipsoid that bounds the intersection of an ellipsoid with
a halfspace, a strip and hyperplane, resp, are summarized in
the following theorem.
Theorem 4.1 ([3]): Let c ∈ IRn, ς ∈ IR∗

+,
¯
y ≤ ȳ ∈ IR,

P ∈ IRn×n SPSD, f ∈ IRn–{0n} and let x ∈ E := E(c, ςP ).
If
¯
y ≤ fTx ≤ ȳ, where

¯
y ̸= ȳ (either

¯
y or ȳ can be infinite)

and if −
¯
ρ < ȳ < ρ̄ or −

¯
ρ <

¯
y < ρ̄, then ∀β ∈]0, 1[,

x ∈ E∩(β) := E
(
c∩(β), ς∩(β)P∩(β)

)
, where

P∩(β) :=P − αβPffTP, (10a)
c∩(β) := c+ αβδPf , (10b)

ς∩(β) := ς + αβ
(

γ2

1−β − δ2
)
, (10c)

else if
¯
y = ȳ = −

¯
ρ, then x = c− ς

1
2 (fTPf)−

1
2Pf ; (10d)

else if
¯
y = ȳ = ρ̄, then x = c+ ς

1
2 (fTPf)−

1
2Pf ; (10e)

else if −
¯
ρ <

¯
y = ȳ < ρ̄, x ∈ E(c∩(1),(ς − αδ2)P∩(1))(10f)

otherwise (if
¯
y = ȳ = ρ̄ = −

¯
ρ), x ∈ E(c, ςP ); (10g)

where
α :=

(
fTPf

)−1
, (10h)

δ := 1
2 (ν̄ +

¯
ν)− fT c = 1

2 (ν̄ +
¯
ν − ρ̄+

¯
ρ), (10i)

γ := 1
2 (ν̄ − ¯

ν), (10j)
ν̄ := min(ȳ, ρ̄),

¯
ν := max(

¯
y,−

¯
ρ), (10k)

¯
ρ :=

√
ςfTPf − cTf , ρ̄ :=

√
ςfTPf + cTf . (10l)

Proof. cf. Appendix B.2 and B.6 in [5] (Thms 4.2 and 4.4). ❑

A. Optimal value of the parameter β

In the case where the ellipsoid’s usual volume can be zero,
the optimal value for the weighting parameter β, intervening
in (10a)-(10c) and minimizing the pseudo-volume of the
ellipsoid E∩(β), is derived below.

3If H contains E , meaning that H ⊂ R (P ), this hyperplane is
redundant and is not carrying any useful information (cf. Thm 4.4 of [3]).
Now H can be parallel to E , only if the constraint carried by this hyperplane
is faulty, which is assumed to be impossible here.

Theorem 4.2: If E∩(β) given by (10) of Thm 4.1, for which
q := rank(P ) ≥ 1, then

β∗ := arg min
β∈]0,1[

spv
(
E∩(β)

)
=

{
−a1−

√
a2
1−4a0a2

2a2
, if a0 < 0,

0, otherwise;
where a0 := qα(γ2 − δ2)− ς, (11a)

a1 := (2q + 1)αδ2 + ς − γ2α, (11b)

a2 := − (q + 1)αδ2, (11c)
Furthermore, if a0 < 0, then spv

(
E∩(β∗)

)
< spv

(
E
)
. (11d)

Proof. cf. Appendix B.4 in [5] (Thm 4.3.2). ❑

B. The output update algorithm

The state estimation algorithm’s measurement update stage
is established in the following.
Theorem 4.3: Let xk satisfy (1) and (2). ∀k ∈ IN∗,
Ek := E(x̂k, ςkPk), that contains the set Sk (cf. (9)), has the
smallest pseudo-volume possible, if and only if
∀k /∈ K (i.e. pk = 0), Ek := Ek/k−1 and (12a)
∀k ∈ K, x̂k := ξp, Pk :=Πp, ςk :=σp, qk :=κp, (12b)
ξi := ξi−1 + αiβiδiΠi−1fki

, ξ0 := x̂k/k−1, (12c)

Πi :=Πi−1 − αiβiΠi−1fki
fT
ki
Πi−1, Π0 :=Pk/k−1, (12d)

σi :=

σi−1 − αiβ
2
i δ

2
i , if

¯
νi = ν̄i ∧ −

¯
ρi ̸= ρ̄i,

σi−1 + αiβi

(
γ2
i

1−βi
− δ2i

)
, otherwise;

(12e)

κi :=

{
κi−1−1, if

¯
νi = ν̄i ∧ −

¯
ρi ̸= ρ̄i ∧ αi ̸= 0

κi−1, otherwise (κi := rank(Πi));
(12f)

i ∈ {1, . . . , pk}; σ0 := ςk−1, κ0 := qk/k−1 given in (8e),
where x̂k/k−1 and Pk/k−1 :=Qm are computed according
to Thms 3.5, 3.6 and where

αi :=

{(
fT
ki
Πi−1fki

)−1
, if Πi−1fki

̸= 0n,

0, otherwise;
(12g)

βi :=


1, if

¯
νi = ν̄i ∧ −

¯
ρi ̸= ρ̄i,

β∗, else if −
¯
ρi <

¯
νi ∨ ν̄i < ρ̄i,

0, otherwise;
(12h)

β∗ given by Thm 4.2 with α :=αi, γ := γi, δ := δi, ς :=σi−1,
δi :=

1
2 (ν̄i +¯

νi)− fT
ki
ξi−1, γi :=

1
2 (ν̄i − ¯

νi), (12i)

ρ̄i :=

√
σi−1

αi
+ fT

ki
ξi−1,

¯
ρi :=

√
σi−1

αi
− fT

ki
ξi−1, (12j)

ν̄i := min(ȳki
, ρ̄i) and

¯
νi := max(

¯
yki

,−
¯
ρi). (12k)

Proof. cf. Appendix B.7 in [5] (Thm 4.5). ❑

Thm 4.3 is reproduced in Algorithm 2, where Ek is computed
from Ek/k−1 (Algo. 1).
Remark 4.1: If one of the two hyperplanes that bound
the strip containing the state vector and representing
the measurement i ∈ Dk is outside the ellipsoid
Eki−1

:= E(ξi−1, ςki−1
Πi−1), the strip reduction at eq. (12k)

(line 7 of Algo. 2) significantly reduces the size of the
resulting ellipsoid, according to [7].
Remark 4.2: The computational complexity of this algo-
rithm is O(n2). All of the operations are, in fact, simple
sums and products. Because they were optimized in this way,
they are suitable for systems with a high dimensional state
vector (big n), a large number of measurements (big pk)



and a large number of unknown bounded inputs (big mk).
In order to perform redundant vector and matrix operations
only once, the intermediate variables α, θ, η and φ were
added. Additionally, rather than multiplying potentially high
dimensional vectors, in (12g), (12j), (12i) and (12d)-(12e),
scalar arithmetic is used, at lines 5, 6, 8 and 24 resp. It should
be noticed that fT

ki
ξi−1 = 1

2 (ρ̄i−
¯
ρi) allowed to reformulate

δi and
¯
ρi.

Remark 4.3: In the case where Hk ̸= ∅, the matrix Πi loses
rank with each intersecting hyperplane (equality constraint),
for i ∈Hk, thusly entailing the progressive flattening of the
ellipsoid Eki

. Depending on the rank of the matrix Rk, the
rank of Pk+1/k can be restored at the time-update phase.
The value of the rank of Ek’s shape matrix is needed at the
prediction phase. Therefore, this parameter is tracked through
a simple relation, (8c), during the time update and is decre-
mented, by (12f), at each hyperplane intersection, during the
observation update. Hence, provided that rank(A0P0A

T
0 ) is

given, there is no need to recalculate this rank at each step i.
Remark 4.4: Setting either αi = 0 or βi = 0 causes Eki−1

to freeze, meaning that the corresponding measurements
fki

,
¯
νi, ν̄i do not bring any useful information. This also

allows to consider the scenario in which the measurement
{fki ,¯

νi, ν̄i} is aberrant, preventing the update of the ellipsoid
Eki−1 .

V. ESTIMATION ALGORITHM AND STABILITY ANALYSIS

A. The overall state estimation algorithm

The prediction stage given by Thms 3.5 and 3.6 and the
correction stage, given by Thm 4.3, are concatenated to form
the whole state estimation algorithm, presented in Algo. 3,
where N is the number of samples (time steps k). Please
note the normalization carried out on the line 5: Pk would
thereby represent the shape matrix of the ellipsoid Ek up to
a constant factor ς−1

0 . ς0 is used, instead of ςk and ςk−1, as
inputs to Algo. 1 and 2 resp. ςk is only used to track its
evolution.

B. Stability analysis

In this section, we’ll show the boundedness of the pseudo-
volume of Ek.
Theorem 5.1: Consider the system (1) subject to (2) and its
state estimation algorithm given by Thms 3.5, 3.6 and 4.3.

FC :=

{
[fki

]i∈Ck
∈ IRn×pC , ∀k ∈ KC ,

0n,pC , ∀k /∈ KC

(13a)

where KC = {k ∈ IN∗|pC ̸= 0} and pC := Card(Ck),
cf. (9). If Ak is invertible and the pairs {Ak, F

T
C } and

{Ak, Rk} are sporadically observable and uniformly con-
trollable resp.4, then
1. the pseudo-volume of the ellipsoid Ek := E(x̂k, ςkPk)

is bounded, i.e., 1
vk

spv(Ek) is nonincreasing and
spv(Ek) ≤ vk spv(E0), where v0 = 1 and

vk :=
∏k−1

j=0

∣∣∣ΛjPjP
†
j

∣∣∣2
†

∣∣∣Φ†
jΦj +

(
Φ†

j + In − Φ†
jΦj

)
Wj

∣∣∣
†
;

Φj :=ΛjPjΛ
T
j ; Λj :=

∏m
i=1

√
1 + µiAj , µi ∈]0, 1[;

4cf. Definitions A.1 and A.3 in [8].

Algorithm 2 Minimal pseudo-volume corrected ellipsoid

Input: x, P , ς , q, f1, . . .fp, ȳ,
¯
y, p

Output: x, P , ς , q
1: if p ̸= 0 then
2: for i = 1, . . . p do
3: φ :=Pfi; θ :=fT

i φ; η := (ςθ)
1
2 ; {new variables}

4: if θ ̸= 0 then
5: α := θ−1; {cf. (12g)};
6: ρ̄ := η + fT

i x;
¯
ρ := 2η − ρ̄; {cf. (12j)};

7: ȳ := min(ȳi, ρ̄);
¯
y := max(

¯
yi,−

¯
ρ); {cf. (12k)};

8: δ := 1
2 (ȳ +

¯
y− ρ̄+

¯
ρ); γ := 1

2 (ȳ−
¯
y); {cf. (12i)};

9: if
¯
y = ȳ and −

¯
ρ ̸= ρ̄ then

10: β = 1;
11: q ← q − 1
12: else if −

¯
ρ <

¯
y or ȳ < ρ̄ then

13: a0 := qα(γ2 − δ2)− ς; {cf. (11a)};
14: if a0 ≥ 0 then
15: β := 0;
16: else
17: a1 := (2q + 1)αδ2 + ς − γ2α; {cf. (11b)}
18: a2 := − (q + 1)αδ2; {cf. (11c)};

19: β :=
−a1 +

√
a21 − 4a0a2
2a2

;

20: end if
21: else
22: β = 0;
23: end if
24: P ← P − αβφφT ; x← x+ αβδφ;

ς ← ς − αβ2δ2; {cf. (12d)–(12e)};
25: end if
26: end for
27: end if

Wj :=
1
ςj
RjDiag

(
χi

µi

)m
i=1

RT
j , χi =

∏m
j=i(1 + µj). (13b)

2. Furthermore, if ∥Ak∥ ≤ 1 (where ∥A∥ := supx ̸=0
∥Ax∥
∥x∥ )

and Rk = 0n,m, ∀k ∈ IN, then spv(Ek) is nonincreasing.
Proof. cf. Appendix C.3 in [5] (Thm 5.4). ❑

VI. NUMERICAL SIMULATIONS
For the sake of graphic illustration, the presented algorithm is
applied to a second order stable randomly generated system
with coil-shaped input for k = 0, · · · , 100. The components
of all the matrices intervening in the model (1)-(2) are
constant normally distributed pseudorandom numbers. Two
measurements are available: one with upper and/or lower
bound (of either strip or halfspace type) and the second
representing an equality constraint (hyperplane), randomly
and sporadically generated. The figures 1a – 1d show the
evolution of the ellipsoid Ek when the measurements are
taken at all 100, 90, 50 and only 20 randomly chosen time-
steps among 100, resp. E0 is red and E100 is blue. x̂k and xk

are represented by ’+’ and ’×’ resp. It is plain to see how
the ellipsoid shrinks when the measurements are available
and how it expands in their absence, under the effect of the
process noise contained in a zonotope that is added to the
ellipsoid at each time step.



a Measurements at all time steps

b Measurements at 90 steps/100

c Measurements at 50 steps/100
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d Measurements at 20 steps/100

Algorithm 3 Minimal pseudo-volume ellipsoid E(x̂k, ςkPk)

Input: x̂0, ς0, P0, N , n (size of x̂0);
Output: x̂k, ςk, Pk, k ∈ {1, . . . , N}.

1: for k = 0, 1, . . . , N − 1 do
2: Algorithm 1 (Input: x̂k, Pk, ς0, qk, Ak, Bk, Rk, τ k,

mk; Output x̂k+1/k, Pk+1/k, qk+1/k)
3: k ← k + 1
4: Algorithm 2 (Input: x̂k/k−1, Pk/k−1, ς0, qk/k−1, Fk,

ȳk,
¯
yk, pk; Output: x̂k, Pk, ςk, qk)

5: Pk ← ςk
ς0
Pk; ςk ← ς0ςk

ςk−1
;

6: end for

VII. CONCLUSION

An ellipsoidal state bounding approach was proposed for
discrete-time LTV models with sporadic measurements cor-
rupted by additive unknown process and measurement dis-
turbances and subject to equality constraints on the state
vector. The presence of equality constraints inducing the
rank loss and the noninvertibility of the state bounding
ellipsoid shape matrix makes a difference from the existing
algorithms. Special attention was given to numerical stability
and computational simplicity in terms of time and memory.
The computational complexity of the proposed algorithm is
O(n3), where each time step k comprises only one (n× n)
pseudoinverse, two (n × n) matrix products, and some n-
vector products, in addition to scalar arithmetics.
Furthermore, the proposed method—which was presented
in an optimized, detailed, and straightforward turnkey pseu-
docode—can be implemented without the use of complicated
tools, convex optimization techniques, heavy libraries or
specific expertise. Some convergence conditions were for-
mulated despite the sporadic character of the measurements
and the state constraints manifesting themselves occasionally,
not necessarily simultaneously and not at all time steps.
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