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This document represents the proceedings of the XCSP? Competition 2023. The website
containing all detailed results of this international competition is available at:

https://www.cril.univ-artois.fr/ XCSP23

The organization of this 2023 competition involved the following tasks:
e adjusting general details (dates, tracks, ...) by G. Audemard, C. Lecoutre and E. Lonca
e selecting instances (problems, models and data) by C. Lecoutre

e receiving, testing and executing solvers on CRIL cluster by E. Lonca

validating solvers and rankings by C. Lecoutre and E. Lonca

developping the 2023 website dedicated to results by G. Audemard

Important: for reproducing the experiments and results, it is important to use the set of
XCSP? instances used in the competition. These instances can be found in this archive. Some
(usually minor) differences may exist when compiling the models presented in this document
and those that can be found in this archive.

Revision (*) of December 2023: some models in this document have been simplified while
using new possibilities offered by Version 2.2 of PyCSP3. As mentioned above, note that in
order to reproduce results and/or to make fair new comparisons with respect to solvers engaged
in the 2023 competition, you have to use the very same set of XCSP? instances, as in the 2023
competition.


https://www.cril.univ-artois.fr/XCSP23/
https://www.cril.univ-artois.fr/~lecoutre/compets/instancesXCSP23.zip
https://www.cril.univ-artois.fr/~lecoutre/compets/modelsXCSP23.zip
https://www.cril.univ-artois.fr/~lecoutre/compets/instancesXCSP23.zip
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Chapter 1

About the Selection of Problems
in 2023

Remember that the complete description, Version 3.1, of the format (XCSP?) used to represent
combinatorial constrained problems can be found in [6]. As usual for XCSP? competitions, we
have limited XCSP? to its kernel, called XCSP3-core [7]. This means that the scope of the
XCSP? competition is restricted to:

e integer variables,
e CSP (Constraint Satisfaction Problem) and COP (Constraint Optimization Problem),
e a set of 24 popular (global) constraints for main tracks:

— generic constraints: intension and extension (also called table)

— language-based constraints: regular and mdd

— comparison constraints: allDifferent, allEqual, ordered, lex and precedence
— counting/summing constraints: sum, count, nValues and cardinality

— connection constraints: maximum, minimum, element and channel

— packing/scheduling constraints: noOverlap, cumulative, binPacking and knapsack

— circuit, instantiation and slide
and a small set of constraints for mini tracks.

Note that XCSP3-core has been extended in Version 3.1 so as to accept precedence,
binPacking and knapsack.

For the 2023 competition, 36 problems have been selected. They are succinctly presented
in Table 1.1. For each problem, the type of optimization is indicated (if any), as well as the
involved constraints. At this point, do note that making a good selection of problems/instances
is a difficult task. In our opinion, important criteria for a good selection are:

e the novelty of problems, avoiding constraint solvers to overfit already published problems;

e the diversity of constraints, trying to represent all of the most popular constraints (those
from XCSP3-core) while paying attention to not over-representing some of them;

e the scaling up of problems.
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CSP Problems

Global Constraints

AnotherMagicSquare allDifferent, sum

AntimagicSquare allDifferent, maximum, minimum, sum
BinaryPuzzle regular, sum, table (%)

CalvinPuzzle allDifferent, count, table (x)
Coloring

CoveringArray allDifferent, channel, table
Dominoes allDifferent, table

Fischer

MagicSquare allDifferent, mdd, sum
NonogramTernary table

NonTransitiveDice maximum, sum

PegSolitaire

Primes sum

PythagoreanTriples nValues

Slant count, sum

Soccer allDifferent, sum, table
SquarePackingSuite cumulative, noOverlap
WordDesignDNA mdd, lex, sum, table

COP Problems Optimization Global Constraints

Aircraft AssemblyLine min SUM cumulative, noOverlap

BeerJugs max VAR table

Benzenoide min SUM count, lex, precedence, sum, table (x)
CarpetCutting min VAR cumulative, element, noOverlap, table
GBAC min SUM binPacking, cardinality, maximum, table
GeneralizedMKP max VAR knapsack, sum

HCPizza max VAR sum, table

HSP min VAR allDifferent, maximum, noOverlap, table
KidneyExchange max SUM allDifferent, binPacking, element, precedence
KMedian min SUM allDifferent, element, minimum, sum
LargeScaleScheduling min MAXIMUM cumulative, maximum

ProgressiveParty min SUM allDifferent, channel, element, sum
PSP min SUM count, element, sum

RIP min SUM cumulative

RuleMining max VAR allDifferent, count, table (%)

Sonet min SUM lex, sum, table (%)

SRFLP min SUM allDifferent, sum, table

TSPTW min SUM allDifferent, circuit, element

Table 1.1: Selected Problems for the main tracks of the 2023 Competition. VAR/EXPR means
that a variable/expression must be optimized. When extension is followed by (), it means
that starred tables are involved.



Novelty. Almost all problems are new in 2023, with models directly written in PyCSP3.
Three problems have been submitted, in response to the call.

Scaling up. It is always interesting to see how constraint solvers behave when the instances of
a problem become harder and harder. This is what we call the scaling behavior of solvers. For
most of the problems in the 2023 competition, we have selected series of instances with regular
increasing difficulty. It is important to note that assessing the difficulty of instances was mainly
determined with ACE [19], which is the reason why ACE is declared to be off-competition (due
to this strong bias).

Selection. This year, the selection of problems and instances has been performed by Christophe
Lecoutre. As a consequence, the solver ACE was labeled off-competition.
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Chapter 2

Problems and Models

In the next sections, you will find all models used for generating the XCSP? instances of the
2023 competition (for main CSP and COP tracks). Almost all models are written in PyCSP3
[20], Version 2.1, officially released in November 2022; see https://pycsp.org.

2.1 CSP

2.1.1 Another Magic Square

Description. This puzzle is defined at the “Fun with num3ers” website; see benvitale-
funwithnuma3ers.blogspot.com. On a square grid of size n X n, all numbers ranging from 1
to n? must be put so that the numbers surrounding each number add to a multiple of that
number.

Data. Only one integer is required to specify a specific instance: the order n of the grid. The
values of n used for generating the 2023 competition instances are:

2,3,4,5,6,7,8,9, 10, 12

Model. The PyCSP3 model, in a file ‘AnotherMagicSquare.py’, used for the competition is:

4 PyCSP? Model 1

from pycsp3 import *
n = data

# x[11[j] is the value at row i and column j
x = VarArray(size=[n, n], dom=range(l, n * n + 1))

satisfy(
Al1Different(x),

# ensuring that the numbers surrounding a number v add to a multiple of v
[Sum(x.around(i, j)) % x[il[j] == 0 for i in range(n) for j in range(n)]

)

The model involves a two-dimensional array of variable x, a constraint A11Different and
a group of constraints Sum. A series of 10 instances has been selected for the competition. For
generating an XCSP? instance (file), you can execute for example:

9
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python AnotherMagicSquare.py -data=10

2.1.2 Antimagic Square

Description. An antimagic square of order n is an arrangement of the numbers 1 to n? in a
square, such that the sums of the n rows, the n columns and the two diagonals form a sequence
of 2n + 2 consecutive integers; see wikipedia.

Data. Only one integer is required to specify a specific instance: the order n of the square.
The values of n used for generating the 2023 competition instances are:

3,4,5,6,7,8,9, 10, 11, 12

Model. The PyCSP? model, in a file ‘AntimagicQuare.py’, used for the competition is:

4 PyCSP? Model 2

from pycsp3 import *
n = data
b, ub=(n* (n+ 1)) //2, ((@*xn) * (n*xn+1)) //2

# x[i]1[j] is the value put in the cell of the matrix at coordinates (i,j)
x = VarArray(size=[n, n], dom=range(l, n * n + 1))

# y[k] is the sum of values in the kth line (row, column or diagonal)
y = VarArray(size=2 * n + 2, dom=range(lb, ub + 1))

satisfy(
# all values must be different
Al1Different(x),

# computing sums
[
[y[i] == Sum(x[i]) for i in range(n)],
[yln + j] == Sum(x[:, j]1) for j in range(n)],
y[2 * n] == Sum(diagonal_down(x)),
y[2 * n + 1] == Sum(diagonal_up(x))
1,

# all sums must be consecutive
[
AllDifferent(y),
Maximum(y) - Minimum(y) == 2 * n + 1

1,

# tag(symmetry-breaking)
# ensuring Frenicle standard form

[
x[0][0] < x[0][-11,
x[o]l[0] < x[-1][0],
x[0][0] < x[-1][-1],
x[0]1[1] < x[1][0]

The model involves two arrays of variables z and y; the second one allows us to com-
pute/record the sums of the different lines. Consecutivness is ensured by a constraint involving


https://en.wikipedia.org/wiki/Antimagic_square
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Maximum and Minimum. A series of 10 instances has been selected for the competition. For
generating an XCSP? instance (file), you can execute for example:

python AntimagicSquare.py -data=10

2.1.3 Binary Puzzle

Description. A binary puzzle (also known as a binary Sudoku) is a puzzle played on a
n X n grid; initially some of the cells may contain 0 or 1 (but this is not the case for the 2023
competition). One has to fill the remaining empty cells with either 0 or 1 according to the
following rules:

e no more than two similar numbers next to or below each other are allowed,
e cach row and each column should contain an equal number of zeros and ones,

e cach row is unique and each column is unique.

See [5].

Data. Only one integer is required to specify a specific instance: the order n of the grid. The
values of n used for generating the 2023 competition instances are:

20, 40, 60, 80, 100, 120

Model. The PyCSP3 model, in a file ‘BinaryPuzzle.py’, used for the competition is:

4 PyCSP? Model 3

from pycsp3 import *

n = data
assert n % 2 ==
m=mn// 2

# x[i]1[j] is the value in the cell of the grid at coordinates (i,j)
x = VarArray(size=[n, n], dom={0, 1})

if not variant():

satisfy(
# ensuring the same number of Os and 1s in rows
[Sum(x[i]) == m for i in range(n)],

# ensuring the same number of Os and 1s in columns
[Sum(x[:, jl1) == m for j in range(n)],

# forbidding sequences of 3 consecutive Os or 1s in rows
[Sum(x[i, j:j + 3]1) in {1,2} for i in range(n) for j in range(n - 2)],

# forbidding sequences of 3 consecutive Os or 1s in columns
[Sum(x[i:i + 3, j1) in {1,2} for j in range(n) for i in range(n - 2)]
)

elif variant("regular"):
pairs = [(j, k) for j in range(3) for k in range(3) if (j==0 and k>0) or (j>0 and k==0)]

Automaton.q
[(q(0,0,0), 0, q(0,1,0)), (q(0,0,0), 1, (q(1,0,1)))]
+ [(q(i,j,k), 0, q(i,j+1,0)) for i in range(m + 1) for j, k in pairs if j < 2]

q
t
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+ [(q(i,j,k), 1, q(i+1,0,k+1)) for i in range(m) for j, k in pairs if k < 2]
A = Automaton(start=q(0,0,0), final=[q(m,j,k) for j, k in pairs], transitions=t)

satisfy(
# ensuring valid rows
[x[i] in A for i in range(n)],

# ensuring valid columns
[x[:, j] in A for j in range(n)]

)

satisfy(
# forbidding identical rows
AllDifferentList(x[i] for i in range(n)),

# forbidding identical columns
AllDifferentList(x[:, j] for j in range(n))

This model involves 1 array of variables, and 3 types of constraints: Sum, Regular, and
AllDifferentList (which are transformed into Extension constraints for the competition, as
explained below). Actually, depending on the chosen variant, either Sum constraints are posted,
or Regular constraints are posted. Note that valid rows and columns are guaranteed by the
way automatas are constructed: we ensure that we have the same number of Os and 1s, while
forbidding sequences of 3 consecutive Os or 1s. Because Al11DifferentList is not within the
perimeter of the 2023 competition (a mistake that will be fixed in 2024), such constraints have
been translated into extensional forms (i.e., starred tables by calling the method to_table())
as in:

Al1DifferentList(x[i] for i in range(n)).to_table()

A series of 2x6 instances has been selected for the competition (6 per variant). For generating
an XCSP? instance (file), you can execute for example:

python BinaryPuzzle.py -data=100
python BinaryPuzzle.py -data=100 -variant=regular

Note that when you omit to write ‘-variant=regular’, you get the main variant.

2.1.4 Calvin Puzzle

Description. From ”An Exercise for the Mind: A 10 by 10 Math Puzzle: A Pattern Recog-
nition Game: Meditation on an Open Maze” at http://www.chycho.com. The purpose of the
game is to fill a grid of size n x n with all values ranging from 1 to n? such that:

e if the next number in the sequence is going to be placed vertically or horizontally, then
it must be placed exactly three squares away from the previous number (there must be a
two square gap between the numbers);

e if the next number in the sequence is going to be placed diagonally, then it must be
placed exactly two squares away from the previous number (there must be a one square
gap between the numbers).

Data. Only one integer is required to specify a specific instance: the order n of the grid. The
values of n used for generating the 2023 competition instances are:

5,6,7,8,9,10, 12


https://chycho.blogspot.com/2014/01/an-exercise-for-mind-10-by-10-math.html
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Model. The PyCSP? model, in a file ‘CalvinPuzzle.py’, used for the competition is:

4 PyCSP? Model 4

from pycsp3 import *
n = data

# x[i][j] is the value in the grid at row i and column j
x = VarArray(size=[n, n], dom=range(l, n * n + 1))

# possible neighbours

offsets = [(-3,0), (3,0), (0,-3), (0,3), (-2,-2), (-2,2), (2,-2), (2,2)]

N = [[[x[i + 0il[j + oj] for (oi, oj) in offsets if 0 <= i + oi < n and 0 <= j + oj < n]
for j in range(n)] for i in range(n)]

satisfy(
# putting all values from 1 to n*n in the grid
AllDifferent(x),

# tag(symmetry-breaking)
x[0][0] ==
)

if not variant():
satisfy(
# each cell must be linked to its neighbors
If(
x[i]1[j] < n * n,
Then=Exist(y == x[i][j] + 1 for y in N[i][jl)
) for i in range(n) for j in range(n)

)
elif variant("table"):

def T(i, j):
r = len(N[i] [j]) + 1
return [tuple(k if i == 0 else (k + 1) if i == j else ANY for i in range(r))
for k in range(l, n * n) for j in range(l, r)]
+ [(@ * n, *[ANY] * (r - 1))]

satisfy(
# each cell must be linked to its neighbors
(x[11[3j]1, N[il1[j]1) in T(i, j) for i in range(n) for j in range(n)

This model only involves 1 array of variables x. The list of variables defined as neighbors
of a variable x[i][j] is (computed and) given by NJ[i][j]. Depending on the chosen variant,
either Intension and Count (from Exist) constraints are posted, or Extension constraints
are posted.

A series of 2«7 instances has been selected for the competition (7 per variant). For generating
an XCSP? instance (file), you can execute for example:

python CalvinPuzzle.py -data=10
python CalvinPuzzle.py -data=10 -variant=table

Note that when you omit to write ‘-variant=table’, you get the main variant.
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2.1.5 Coloring

Description. This is the classical graph coloring problem: given an undirected graph, one
has to color the nodes of this graph such that no two adjacent nodes have the same color.

Data. As an illustration of data specifying an instance of this problem, we have:

{

"n": 450,

"nColors": 5,

"edges": [[0, 329], [0, 3661, [0, 388], ...]
}

Model. The PyCSP3 model, in a file ‘Coloring.py’, used for the competition is:

4 PyCSP? Model 5

from pycsp3 import *
nNodes, nColors, edges = data

# x[i] is the color assigned to the ith node of the graph
x = VarArray(size=nNodes, dom=range(nColors))

satisfy(
# two adjacent nodes must be colored differently
[x[i] '= x[j] for (i, j) in edges],

# tag(symmetry-breaking)
[x[i] <= i for i in range(min(nNodes, nColors))]

)

This model involves 1 array of variables and 1 type of constraints: Intension. A series of
10 instances has been selected for the competition. For generating an XCSP? instance (file),
you can execute for example:

python Coloring.py -data=graphl.json

where ‘graphl.json’ is a data file in JSON format.

2.1.6 Covering Array
This is Problem 045 on CSPLib, called the Covering Array problem.

Description (excerpt from CSPLib). A covering array C(¢,k,g,b) is a k x b array A = (a;;)
over Z; = 0,1,2,...,9 — 1 with the property that for any ¢ distinct rows 1 <r; <rp <--- <
ry < k, and any member (x1,x2...,x¢) of Z; there exists at least one column c¢ such that x;
equals the (r;, ¢)-th element of A for all 1 < i < t. Informally, any ¢ distinct rows of the covering
array must encode column-wise all numbers from 0 to g* — 1 (repetitions being allowed).

Data. Four integers are required to specify a specific instance. Values of (¢, k, g,b) used for
the instances in the competition are:

(3,4,2,8), (3,5,2,10), (3,6,2,12), (3,7,2,12), (3.8,2,12), (3,9,2,12), (3,10,2,12), (3,11,2,12),
(4,6,2,21), (4,7,2,38), (4,8,2,42), (4,9,2,50)


https://www.csplib.org/Problems/prob050/
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Model. The PyCSP? model, in a file ‘CoveringArray.py’, used for the competition is:

4 PyCSP? Model 6

from pycsp3 import *

t, k, g, b = data
n = factorial(k) // factorial(t) // factorial(k - t)
d =g *x t

T = {tuple(sum(pr[a] * g ** i for i, a in enumerate(reversed(co)))
for co in combinations(range(k), t)) for pr in product(range(g), repeat=k)}

**

pli]l [j] is one of the position of the jth value of the ith 't'-combination
p = VarArray(size=[n, dl, dom=range (b))

**

v[il [j] is the jth value of the ith 't'-combination
= VarArray(size=[n, b], dom=range(d))

<

satisfy(
# all values must be present in each 't'-combination
[Al1Different(p[i]) for i in range(n)],

[Channel(p[i], v[i]) for i in range(n)],

# computing values
[vl:, j] in T for j in range(b)]

This model involves 2 arrays of variables, and 3 types of constraints: AllDifferent,
Channel, and Extension. Note that it is possible to get the covering array from the array
of variables v. For example, v[0][0] gives the ¢ most significant bits of the first column (because
the first t-combination is for the first ¢ lines).

A series of 12 instances has been selected for the competition. For generating an XCSP?
instance (file), you can execute for example:

python CoveringArray.py -data=[3,5,2,10]

2.1.7 Dominoes

Description. You are given a grid of size n X m containing numbers being parts of dominoes.
For example, for n = 7 and m = 8, the grid contains all dominoes from 0-0 to 6-6. One has to
find the position (and rotation) of each domino; see e.g., [28, 25].

Data. As an illustration of data specifying an instance of this problem, we have:

{

"grid": [
[o,5,2,2,5,4,6,5]1,
[3,6,2,2,4,4,4,1],
[3,6,1,2,3,4,6,1]1,
[0,1,4,3,0,2,2,11,
[3,5,3,0,3,1,5,6]1,
[6,4,0,3,6,0,4,11,
[1,6,0,0,2,5,5,5]

]
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Model. The PyCSP3 model, in a file ‘Dominoes.py’, used for the competition is:

4 PyCSP?® Model 7

from pycsp3 import *

grid = data

nRows, nCols, nValues = len(grid), len(grid[0]), len(grid)

dominoes = [(i, j) for i in range(nValues) for j in range(i, nValues)]
indexes = range(nRows * nCols) # indexes of cells

P = [[i * nCols + j for i in range(nRows) for j in range(nCols) if grid[i][j] == v]
for v in range(nValues)] # possible positions

# x[1]1[j] is the position in the grid of the value i of the domino i-j
x = VarArray(size=[nValues, nValues], dom=lambda i, j: indexes if i <= j else None)

# y[i][j] is the position in the grid of the value j of the domino i-j
y = VarArray(size=[nValues, nValues], dom=lambda i, j: indexes if i <= j else None)

satisfy(
# each part of each domino in a different cell
AllDifferent(x + y),

# unary constraints
[
(
x[i1[j] in P[i],
y[il[3] in P[j]

) for i, j in dominoes

1,
# adjacency constraints
[
If(
dist != nCols, # if not same column
Then=both(dist == 1, x[i][j] // nCols == y[il[j] // nCols) # then same line

) for i, j in dominoes if (dist := abs(x[i]l[j] - y[i]1[j1),)
1

This model involves 2 arrays of variables and 3 types of constraints: A11Different, Extension
and Intension. A series of 12 instances has been selected for the competition. For generating
an XCSP? instance (file), you can execute for example:

python Dominoes.py -data=grid.json

where ‘grid.json’ is a data file in JSON format.

2.1.8 Fischer

This problem has already been selected in previous XCSP competitions. The instances selected
for the 2023 competition come from a series of Fischer SMT Instances from MathSat converted
to CSP by Lucas Bordeaux. The translation is a straightforward encoding of the SMT syn-
tax in which Boolean combinations of arithmetic constraints are decomposed into primitive
constraints, using reification where appropriate. Note that the domains have been artificially
bounded, whereas in SMT theorem proving should be done over the unbounded integers.

A series of 8 instances has been selected for the competition.
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2.1.9 Magic Square

This problem has already been selected in previous XCSP competitions. A series of 14 instances
has been selected for the competition (half of the instances involving the constraint MDD).

2.1.10 Nonogram

This problem has already been selected in previous XCSP competitions. This series of instances
is from Trieu Hung Tran (when studying, in 2019, with Berthe Y. Choueiry at the University
of Nebraska-Lincoln). He has generated these instances (involving ternary tables) from those
available at xcsp.org, by using the reformulation proposed in [4]. It may be the case that these
instances take less space and can be solved more quickly that the original instances.

A series of 8 instances has been selected for the competition.

2.1.11 Non Transitive Dice

Description. A set of dice is intransitive if the binary relation “X rolls a higher number than
Y more than half the time” on its elements is not transitive. This situation is similar to that in
the game Rock, Paper, Scissors, in which each element has an advantage over one choice and a
disadvantage to the other. The problem is to exhibit such a set of dice. See wikipedia.

Data. Three integers are required to specify a specific instance: the number n of dices, the
number m of sides on each die, and the number d of possible values (from 0 to d — 1) to be
print on die sides. Values of (n,m,d) used for generating the 2023 competition instances are:

(06,06,0), (08,08,0), (08,08,3), (10,10,0), (10,10,3), (15,15,3),
(15,15,4), (20,20,3), (20,20,4), (30,30,3), (30,30,4), (40,40,0)

Model. The PyCSP? model, in a file ‘NonTransitiveDice.py’, following the model described
by Hakan Kjellerstrand, and used for the competition is:

4 PyCSP? Model 8

from pycsp3 import *

n, m, d = data # number of dice, number of sides of each die, and number of possible values
d
P

2 *xm if d == 0 else d # computing the number of possible values when 0
[(r1, r2) for rl in range(m) for r2 in range(m)]

# x[11[j] is the value of the jth face of the ith die
x = VarArray(size=[n, m], dom=range(d))

# y[i] is the number of winnings of the ith die against the i+1th die (two directions)
y = VarArray(size=[n, 2], dom=range(m * m + 1))

# gapl[i] is the dominance gap of the ith die
gap = VarArray(size=n, dom=range(l, m * m + 1))

# z is the maximal value on die sides
z = Var(dom=range(d))

satisfy(
# tag(symmetry-breaking) ordering numbers on each die

[Increasing(x[i]) for i in range(n)],

# computing dominance



xcsp.org
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[
[y[il1[0] == Sum(x[i]l[r1] > x[(i + 1) % nl[r2] for rl, r2 in P) for i in range(n)],
[y[i] [1] == Sum(x[(i + 1) % nl[r1] > x[i]l[r2] for rl, r2 in P) for i in range(n)]
g

# computing dominance gap
[gap[i] == y[i]1[0] - y[i][1] for i in range(n)],

# computing z
z == Maximum(x)

This model involves 3 arrays of variables, a stand-alone variable, and 4 types of constraints:
Increasing, Sum, Intension and Maximum. A series of 12 instances has been selected for the
competition. For generating an XCSP? instance (file), you can execute for example:

python NonTransitiveDice.py -data=[8,8,3]

2.1.12 Peg Solitaire
This is Problem 037 on CSPLib.

Description. From [17]: “Peg Solitaire is played on a board with a number of holes. In
the English version of the game considered here, the board is in the shape of a cross with 33
holes. Pegs are arranged on the board so that at least one hole remains. By making horizontal
or vertical draughts-like moves, the pegs are gradually removed until a goal configuration is
obtained. In the classic ‘central’ Solitaire, the goal is to reverse the starting position, leaving
just a single peg in the central hole.”

Data. English boards will be used (this will be acted by using the model variant ‘english’).
We then have to decide what is the position of the initial hole, as well as the the number of
moves (0 for removing all pegs but one). Three integers are then required to specify a specific
instance: the coordinates (0, 0,) of the missing peg in the initial board, and the number d of
moves. The values of (04, 04,d) used for generating the 2023 competition instances are:

(0,2,0), (0,3,0), (0,4,0), (1,2,0), (1,3,0), (1,4,0), (2,0,0), (2,2,0), (2,3,0), (2,4,0),
(2,6,0), (3,3,0)

Model. The PyCSP3 model, in a file ‘PegSolitaire.py’, used for the competition is:

4 PyCSP?® Model 9

from pycsp3 import *

from PegSolitaire_Generator import generate_boards, build_transitions
assert variant() in {"english", "french"}

origin_x, origin_y, nMoves = data

init_board, final_board = generate_boards(variant(), origin_x, origin_y)
n, m = len(init_board), len(init_board[0])

transitions = build_transitions(init_board)
nTransitions = len(transitions)
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vl sum(sum(v for v in row if v) for row in init_board)

v2 = sum(sum(v for v in row if v) for row in final_board)
horizon = v1 - v2

nMoves = horizon if nMoves == 0 or horizon < nMoves else nMoves
assert 0 < nMoves <= horizon

pairs = [(i, j) for i in range(n) for j in range(m) if init_board[i] [j] is not None]

# x[11[j]1[t] is the value at row i and column j at time t
x = VarArray(size=[nMoves + 1, n, m], dom=lambda t,i,j: {0,1} if init_board[i] [j] else None)

# y[t] is the move (transition) performed at time t
y = VarArray(size=nMoves, dom=range(nTransitions))

def unchanged(i, j, t):
valid = [k for k, tr in enumerate(transitions) if (i, j) in (tr[0:2], tr[2:4], tr[4:6])]
if len(valid) ==
return None
return conjunction(y[t] != k for k in valid) == (x[t][i][j] == x[t + 1]1[i]1[j])

def toO(i, j, t):
valid = [k for k, tr in enumerate(transitions) if (i, j) in (tr[0:2], tr[2:41)]
if len(valid) == 0:
return None
return disjunction(y[t] == k for k in valid) == both(x[t][il[j] == 1, x[t + 11[i]1[j] == 0)

def tol(i, j, t):
valid = [k for k, tr in enumerate(transitions) if (i, j) == tr[4:6]]
if len(valid) ==
return None
return disjunction(y[t] == k for k in valid) == both(x[t][i]l[j] == 0, x[t + 1]1[i]1[j] == 1)

satisfy(
# setting the initial board
x[0] == init_board,

# setting the final board
x[-1] == final_board,

# setting transitions

[
[unchanged(i, j, t) for (i, j) in pairs for t in range(nMoves)],
[to0(i, j, t) for (i, j) in pairs for t in range(nMoves)],
[to1(i, j, t) for (i, j) in pairs for t in range(nMoves)]

]

This model involves 2 array of variables and 2 types of constraints: Instantiation, and
Intension. The generator used to build boards is available on XCSP?3 website. Note how the
expressions forming intensional constraints are rather complex.

A series of 12 instances has been selected for the competition. For generating an XCSP?
instance (file), you can execute for example:

python PegSolitaire.py -data=[3,3,0] -variant=english

2.1.13 Primes

This problem has already been selected in previous XCSP competitions. The instances selected
for the 2023 competition come from a series created by Marc van Dongen: “All instances
are satisfiable. The domains of the variables consist of prime numbers and all constraints
are linear equations. The coefficients and constants in the equations are also prime numbers.
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These instances are interesting because solving them using Gausian elimination is polynomial,
assuming that the basic arithmetic operations have a time complexity of O(1). In reality
this assumption does not hold and the choice of prime numbers in the equations gives rise
to large intermediate coefficients in the equations, making the basic operations more time
consuming. It was hoped this would allow to compare the trade-off between using a GAC
approach on the original equations and the Gausian elimination approach. The translation is
a straightforward encoding of the SMT syntax in which Boolean combinations of arithmetic
constraints are decomposed into primitive constraints, using reification where appropriate. Note
that the domains have been artificially bounded, whereas in SMT theorem proving should be
done over the unbounded integers.”
A series of 8 instances has been selected for the competition.

2.1.14 Pythagorean Triples

Description (excerpt from Wikipedia). The Boolean Pythagorean triples problem is a
problem from Ramsey theory about whether the positive integers can be colored red and blue
so that no Pythagorean triples consist of all red or all blue members. The Boolean Pythagorean
triples problem was solved by Marijn Heule, Oliver Kullmann and Victor W. Marek in May
2016 through a computer-assisted proof. More specifically, the problem asks if it is possible
to color each of the positive integers either red or blue, so that no triple of integers a, b, ¢,
satisfying a? + b? = ¢? are all the same color. For example, in the Pythagorean triple 3, 4 and
5 (3% + 4% = 52), if 3 and 4 are colored red, then 5 must be colored blue. See wikipedia.

Data. Only one integer is required to specify a specific instance: the limit n of integers for
checking the property. The values of n used for generating the 2023 competition instances are:

2000, 4000, 5000, 6000, 7000, 7500, 7824, 7825

Model. The PyCSP? model, in a file ‘PythagoreanTriples.py’, used for the competition is:

4 PyCSP? Model 10

from pycsp3 import *
from math import sqrt

n = data

def conflicts():
t =10
for i in range(l, n + 1):
i2 =i % i
for j in range(i + 1, n + 1):
j2=3*7
s = i2 + j2
if s > n * n:
break
sr = int(sqrt(s))
if sr * sr == s:
t.append((i, j, sr))
return t

conflicts = conflicts()

# x[i] is O (resp., 1) if integer i is in part/subset O (resp., 1)
x = VarArray(size=n + 1, dom={0, 1})



https://en.wikipedia.org/wiki/Boolean_Pythagorean_triples_problem
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satisfy(
# setting an arbitrary value to integer 0O
x[0] == 0,

# ensuring that no Pythagorean triple is present in the same part
[NValues(x[i], x[j]l, x[k]) > 1 for i, j, k in conflicts]
)

This model involves 1 array of variables and 2 types of constraints: Intension, and NValues.
A series of 8 instances has been selected for the competition. For generating an XCSP? instance
(file), you can execute for example:

python PythagoreanTriples.py -data=4000

2.1.15 Slant

Description (from LP/CP Programming Contest 2022). From LPCP’22: “The problem
is the Slant puzzle and instances are taken/adapted from the game. The problem is about a
mission regarding islands and bridges. The objective is to cover a map with bridges, all of them
diagonals, and not necessarily connecting islands. The only requirements regard the number of
bridges reaching islands, and the avoiding of cycles.”

Data. As an illustration of data specifying an instance of this problem, we have:

-11-1-1-1-11-1
-1311-12-1-1
-12-11-1311
-1-11-1-121-1
-1-1-12-1-1-1-1
1-111-121-1
1-12223-1-1
-11-1-1-111-1

Model. The PyCSP? model, in a file ‘Slant.py’, used for the competition is:

4 PyCSP? Model 11

from pycsp3 import *

grid = data
n = len(grid)

DOWN_DIAG, UP_DIAG = 0, 1
# e[k][1] is 1 if the edge in the intermediate cell at coordinates (k,l) is an upward

downward, 0 if a downward diagonal
e = VarArray(size=[n - 1, n - 1], dom={DOWN_DIAG, UP_DIAG})

**

x[i]J[j] is the number of connected nodes (effective neighbors, or bridges) to node (i,j)
x = VarArray(size=[n, n], dom=lambda i, j: {grid[il[jl} if grid[il[j] != -1 else range(5))

**

d[i][j] is the distance of node (i,j) from the root to the chain/tree it belongs
= VarArray(size=[n, n], dom=range(n * n + 1))

o



https://github.com/lpcp-contest/lpcp-contest-2022/tree/main/problem-5
https://www.puzzle-slant.com/
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def connections_of(i, j):
# returns a list of tuples (k,l,a,ii,jj) where (ii,jj) is a possible node that
# can be reached from (i,j) by using a diagonal a on the edge (k,1)

t =[]
if i > 0:
if j > 0:
t.append((i - 1, j - 1, DOWN_DIAG, i - 1, j - 1))
if j <n - 1:

t.append((i - 1, j, UP_DIAG, i - 1, j + 1))
if i <n - 1:

if j > 0:
t.append((i, j - 1, UP_DIAG, i + 1, j - 1))
if j <n - 1:
t.append((i, j, DOWN_DIAG, i + 1, j + 1))
return t

nodes = [(i, j) for i in range(n) for j in range(n)]
connections = [connections_of(i, j) for i, j in nodes]

satisfy(
# computing the number of neighbors
[x[i]1[j] == Sum(e[k][1] == a for (k,l,a,_,_) in connections_of(i, j)) for i, j in nodes],

# isolated nodes are roots (are at distance 0)
[If(x[11[j] == O, Then=d[i][j] == 0) for i, j in nodes],

# nodes with at least 2 neighbors cannot be roots (be at distance 0)
[Tf(x[i1[j] > 1, Then=d[i][j] '= 0) for i, j in nodes],

# nodes with at least 2 neighbors have exactly 1 parent (node with the same distance - 1)
[Tf(x[i1[j] > 1, Then=Count(both(el[k][1] == a, d[i]l[j] == d[iil[jj]l + 1)
for (k, 1, a, ii, jj) in connections_of(i, j)) == 1) for i, j in nodes],

# the distance between any two neighbors is always 1
[1f(e[k][1] == a, Then=abs(d[i][j] - d[iil[jjl) == 1) for i, j in nodes
for (k, 1, a, ii, jj) in connections_of(i, j)I

This problem involves 3 array of variables and 3 type of constraints: Sum, Intension and
Count. A series of 10 instances (with data coming from LPCP’22) has been selected for the
competition. For generating an XCSP? instance (file), you can execute for example:

python Slant.py -data=instanceOl.in -parser=Slant_Parser.py

where ‘instance0l.in’ is a data file and ‘Slant_Parser.py’ is a parser (i.e., a Python file allowing
us to load data that are not directly given in JSON format). Note that for saving data in JSON
files, you can add the option ‘-export’ (or ‘-dataexport’).

2.1.16 Soccer

Description. Soccer computational problems have been studied in [11], and several instances
have been submitted to Minizinc challenges 2018 and 2020. This is related to SABIO [12], an
interactive platform that can be used to represent several soccer computational problems using
CP, and notably, “position in ranking”, which let users to impose constraints about the positions
of the teams at the end of a tournament.

Data. As an illustration of data specifying an instance of the “position in ranking” problem,
we have:


http://www.sabiofutbol.com/
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{
"games": [[1, 01, [2, 0], [2, 11, ..., [23, 22]],
"initial_points": [21, 21, 21, ...16],
"positions": [[0, 21], [1, 19], [2, 17], ..., [13, 3]]
}

Model. The PyCSP? model, in a file ‘Soccer.py’, based on the model submitted by Robinson
Duque, Alejandro Arbelaez, and Juan Francisco Diaz to the Minizinc challenges 2018 and 2020,
and used for the competition is:

A PyCSP? Model 12

from pycsp3 import *

games, iPoints, positions = data
nGames, nTeams, nPositions = len(games), len(iPoints), len(positions)

pt = [0, 1, 3]

1b_score = min(iPoints[i] + sum(min(pt) for j in range(nGames) if i in games[j])
for i in range(nTeams))

ub_score = max(iPoints[i] + sum(max(pt) for j in range(nGames) if i in games[j])
for i in range(nTeams))

# points[j] are the points for the two teams (indexes O and 1) of the jth game
points = VarArray(size=[nGames, 2], dom=pt)

# score[i] is the final score of the ith team
score = VarArray(size=nTeams, dom=range(lb_score, ub_score + 1))

# fp[i] is the final position of the ith team
fp = VarArray(size=nTeams, dom=range(l, nTeams + 1))

# bpl[i] is the best possible position of the ith team
bp = VarArray(size=nTeams, dom=range(l, nTeams + 1))

# wp[i] is the worst possible position of the ith team
wp = VarArray(size=nTeams, dom=range(1l, nTeams + 1))

satisfy(
# assigning rights points for each game
[(points[j][0], points[j][1]) in {(0, 3), (1, 1), (3, 0)} for j in range(nGames)],

# computing final points
[score[i]l - Sum(points[j1[0 if i == games[j]1[0] else 1] for j in range(nGames) if i in
games[j]) == iPoints[i] for i in range(nTeams)],

# computing worst positions (the number of teams with greater total points)
[wp[i] == Sum(score[j] >= score[i] for j in range(nTeams)) for i in range(nTeams)],

# computing best positions (from worst positions and number of teams with equal points)
[bp[i] == wp[i] - Sum(score[j] == score[i] for j in range(nTeams) if i != j)
for i in range(nTeams)],

# bounding final positions

(
[fp[i] >= bp[i] for i in range(nTeams)],
[fp[i] <= wp[i] for i in range(nTeams)]

),
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# ensuring different positions
AllDifferent (fp),

# applying rules from specified positions

[fp[i]l == p for i, p in positions],
[Sum(score[j] > score[i] for j in range(nTeams) if j != i) < p for i, p in positions],
[Sum(score[j]l < score[i] for j in range(nTeams) if j != i) <= nTeams + 1 - p

for i, p in positions]

This problem involves 5 array of variables and 4 type of constraints: Extension, Sum,
Intension and Al1Diferent. A series of 10 instances (data having courteously been provided
by R. Duque) has been selected for the competition. For generating an XCSP? instance (file),
you can execute for example:

python Soccer.py -data=30-20-24-1.json
where ‘30-20-24-1.json’ is a data file in JSON format.

2.1.17 Square Packing Suite

Description. The Square packing problem involves packing all squares with sizes 1 x 1 to
n X n into an enclosing container [22, 26].

Data. Only one integer is required to specify a specific instance: the order n (i.e., the largest
square to be packed). The values of n used for generating the 2023 competition instances are:

15, 18, 20, 21, 22, 23, 24, 25, 26, 27

Model. The PyCSP? model, in a file ‘SquarePackingSuite.py’, used for the competition is:

4 PyCSP? Model 13

from pycsp3 import *

n = data
assert 6 <= n <= 27 # for data (containers) below, as given in papers mentioned above

containers = [[9, 111, [7, 221, [14, 151, [15, 201, [15, 271, [19, 271, [23, 29], [22, 38],
[23, 45], [23, 55], [27, 56], [39, 46], [31, 69], [47, 53], [34, 85], [38, 88], [39,
98], [64, 681, [56, 881, [43, 1291, [70, 89], [47, 148]] # indices from 6 to 27

# initial reduction as indicated in the CP'08 paper
t = [0, [1, 2], [2, 3], [2]1 + [[3]1] * 4 + [[4]1] * 3 + [[6]] * 6 + [[6]] * 4
+ [[711 = 8 + [[8]]1 = 5 + [[9]] * 11 + [[10]]

width, height = containers[n - 6]

# x[i] is the x-coordinate where is put the ith rectangle
x = VarArray(size=n, dom=lambda i: range(width - i))

# y[i] is the y-coordinate where is put the ith rectangle
y = VarArray(size=n, dom=lambda i: range(height - i))

satisfy(
# no overlap on boxes
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NoOverlap(origins=[(x[il,y[i]) for i in range(n)], lengths=[(i+1,i+1) for i in range(n)]),

# tag(redundant-constraints)
[
Cumulative(
Task(origin=x[i], length=i + 1, height=i + 1) for i in range(n)
) <= height,

Cumulative (
Task(origin=y[i], length=i + 1, height=i + 1) for i in range(n)
) <= width
1,

# tag(symmetry-breaking)

(
[x[-1] <= (width - n) // 2, y[-1] <= (height - n) // 2],
[x[i] !'= v for i in range(n) for v in t[il],
[y[i] != v for i in range(n) for v in t[i]]

This model involves 2 array of variables, and 3 type of constraints: NoOverlap, Cumulative,
and Intension. A series of 10 instances has been selected for the competition. For generating
an XCSP? instance (file), you can execute for example:

python SqurePackingSuite.py -data=20

2.1.18 Word Design (for DNA Computing on Surfaces)
This is Problem 033 on CSPLib.

Description (excerpt from CSPLib). This problem (proposed by M. Van Dongen) on
CSPLib has its roots in Bioinformatics and Coding Theory. It is to find as large as possi-
ble a set S of strings (words) of length 8 over the alphabet W = {A, C, G, T} with the following
properties:

e each word in S contains 4 occurrences of symbols from {C, G},
e each pair of distinct words in S differ in at least 4 positions,

e cach pair of words z and y in S (where 2 and y may be identical) are such that x%
and y© differ in at least 4 positions; Here, (x1,...,78)"% = (xg,...,71) is the reverse of
(w1...,28) and (y1 ...,ys)¢ is the Watson-Crick complement of (y; ...,ys), i.e. the word
where each A is replaced by a T and vice versa and each C is replaced by a G and vice
versa.

Data. A first invariant JSON file, called ‘words.json’, indicates the possible words (each word
has 4 symbols from {1,2} = {C, G}) and is such that its reverse and Watson-Crick complement
differ in at least 4 positions):

{

"words": [
[0,0,0,0,1,1,1,17,
[0,0,0,0,1,1,1,21,
[0,0,0,0,1,1,2,11,
[0,0,0,0,1,1,2,2],


https://www.csplib.org/Problems/prob033/
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}

A second invariant JSON, called ‘mdd.json’, indicates the transitions of a MDD that can
be used to enforce the restrictions on pairs of words (it will be used for a second model):

{

"transitions": [
["root",0,"n3"],
["root",1,"n286276"],
["root",2,"n430777"],

1

}

Finally, CSP instances can be generated by setting the size n of the set S. The values of n
used for generating the 2023 competition instances are:

5, 15, 25, 35, 45, 55, 65, 75, 85, 100

Model. A first PyCSP? model, in a file ‘WordDesignl.py’, used for the competition is:

4 PyCSP® Model 14

from pycsp3 import *
words, n = data

# x[i][k] is the kth letter (0-A, 1-C, 2-G, 3-T) of the ith word
x = VarArray(size=[n, 8], dom=range(4))

# y[il[k] is the kth letter of the Watson-Crick complement of the ith word (in x)
y = VarArray(size=[n, 8], dom=range(4))

satisfy(
# computing the Watson-Crick complement of words
[x[i] [k] + y[i]l[k] == 3 for i in range(n) for k in range(8)],

# each word must be well formed
[x[i] in words for i in range(n)],

# ordering words tag(symmetry-breaking)
LexIncreasing(x, strict=True),

# each pair of distinct words differ in at least 4 positions
[Sum(x[i] [k] !'= x[j1[k] for k in range(8)) >= 4 for i, j in combinations(n, 2)1,

# each pair of distinct words are such that the reverse of the former and the Watson-Crick
complement of the latter differ in at least 4 positions
[Sum(x[i]1[7 - k] !'= y[jl[k] for k in range(8)) >= 4 for i in range(n) for j in range(n)
if i 1= j]

This first model involves 2 arrays of variables and 4 types of constraints: Intension,
Extension, LexIncreasing and Sum. A series of 10 instances has been selected for the compe-
tition. For generating an XCSP? instance (file), you can execute for example:

python WordDesignl.py -data=[words.json,n=15]
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Note how we can append a specific parameter to the data coming from a JSON file.

A second PyCSP? model, in a file ‘WordDesign2.py’, used for the competition is:

4 PyCSP? Model 15

from pycsp3 import *

words, transitions, n = data
M = MDD(transitions)

# x[i] [k] is the kth letter (0-A, 1-C, 2-G, 3-T) of the ith word
x = VarArray(size=[n, 8], dom=range(4))

satisfy(
# each word must be well-formed
[x[i] in words for i in range(n)],

# ordering words tag(symmetry-breaking)
LexIncreasing(x, strict=True),

# ensuring the validity of any pair of words
[x[i] + x[j] in M for i, j in combinations(n, 2)]

This second model involves 1 array of variables and 3 types of constraints: Extension,
LexIncreasing and MDD. A series of 10 instances has been selected for the competition. For
generating an XCSP? instance (file), you can execute for example:

python WordDesign2.py -data=[words.json,mdd.json,n=15]

Note how we can append a specific parameter to the data coming from two JSON files.

2.2 COP

2.2.1 Aircraft Assembly Line

Description. This problem has been proposed by Stéphanie Roussel from ONERA (Toulouse),
and comes from an aircraft manufacturer. The objective is to schedule tasks on an aircraft as-
sembly line in order to minimize the overall number of operators required on the line. The
schedule must satisfy several operational constraints, the main ones being:

o tasks are assigned on a unique workstation (on which specific machines are available);

e the takt-time, i.e., the duration during which the aircraft stays on each workstation, must
be respected;

e capacity of aircraft zones in which operators perform the tasks must never be exceeded;

e zones can be neutralized by some tasks, i.e., it is not possible to work in those zones
during the tasks execution.

Note that similar problems have been studied in [23], where the authors are interested in
the design of assembly lines (with similar instances).
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Data. As an illustration of data specifying an instance of this problem, we have:

"takt": 1440,
"nTasks": 199,
"nMachines": 5,
"nAreas": 48,

"areasCapacities": [1,1,..,1],

"tasksPerMachine": [
[49,50,51,52,53],
[197]

]3

"nMaxOpsPerStation": [10,10,10,10],

"neutralizedAreas": [
[12,15,24,28,31,37,39,46],
]

1,

"operators": [0,1,...,1],

"tasksPerAreas": [
[2,5,11,13],

[6,7,165,166,167]
1,
"usedAreas": [
[0,0,...,01,

1,
"durations": [0,109,...,470],
"precedences": [
[8,91,
[198,190]
1,
"nStations": 4,

"machines": [
[0,0,0,0,0],

[0,0,1,1,1]

Model. The PyCSP? model, in a file ‘Aircraft AssemblyLine.py’, used for the competition is:

4 PyCSP? Model 16

from pycsp3 import *

nMachines = len(tasksPerMachine)

takt, areas, stations, tasks, tasksPerMachine, precedences = data
nAreas, nStations, nTasks = len(areas), len(stations), len(tasks)
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areaCapacities, areaTasks = zip(*areas) # nb of operators who can work, and tasks per area
stationMachines, stationMaxOperators = zip(*stations)

durations, operators, usedAreaRooms, neutralizedAreas = zip(*tasks)

usedAreas = [set(j for j in range(nAreas) if usedAreaRooms[i][j] > 0) for i in range(nTasks)]

def station_of_task(i):
r = next((j for j in range(nMachines) if i in tasksPerMachine[j]), -1)
return -1 if r == -1 else next(j for j in range(nStations) if stationMachines[j][r] == 1)

stationOfTasks = [station_of_task(i) for i in range(nTasks)] # -1 if can be everywhere

# x[i] is the starting time of the ith task
x = VarArray(size=nTasks, dom=range(takt * nStations + 1))

# z[j] is the number of operators at the jth station
z = VarArray(size=nStations, dom=lambda i: range(stationMaxOperators[i] + 1))

satisfy(
# respecting the final deadline
[x[i] + durations[i] <= takt * nStations for i in range(nTasks)],

# ensuring that tasks start and finish in the same station
[x[i] // takt == (x[i] + max(0, duratiomns[i] - 1)) // takt
for i in range(nTasks) if duratioms[i] != 0],

# ensuring that tasks are put on the right stations (wrt needed machines)
[x[i] // takt == stationOfTasks[i] for i in range(nTasks) if stationOfTasks[i] != -1],

# respecting precedence relations
[x[i] + durations[i] <= x[j] for (i, j) in precedences],

# respecting limit capacities of areas
L
Cumulative (
Task(origin=x[t], length=durations([t], height=usedAreaRooms[t][i])
for t in areaTasks[i]
) <= areaCapacities[i] for i in range(nAreas) if len(areaTasks[i]) > 1

1,

# computing/restricting the number of operators at each station
[
Cumulative(
Task(origin=x[t], length=durations([t], height=operators[t] * (x[t] // takt == j))
for t in range(nTasks)
) <= z[j] for j in range(nStations)

1,

# no overlapping between some tasks
[NoOverlap(tasks=[(x[i], durations[i]), (x[j], durations[j1)])
for i in range(nTasks) for j in range(nTasks)
if i != j and len(usedAreas[i].intersection(neutralizedAreas[j]l)) > 0],

# avoiding tasks using the same machine to overlap
[NoOverlap(tasks=[(x[j], durations[j]) for j in tasksPerMachine[il])
for i in range(nMachines) if len(tasksPerMachine[i]) > 1]

)

minimize (
# minimizing the number of operators
Sum(z)

)

This involves 2 arrays of variables and 3 types of constraints: Intension, Cumulative and
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NoOverlap. A series of 20 instances has been selected from data files generated by Stéphanie
Roussel from ONERA (Toulouse).
For generating an XCSP? instance (file), you can execute for example:

python AircraftAssemblyLine.py -data=1-178.json -parser=Aircraft_Converter.py

where ‘1-178.json’ is a data file in JSON format, and ‘Aircraft_Converter.py’ is a converter
tool allowing us to pass from one JSON format to another that is easier to handle (with respect
to the model). See how the initial 15 data fields have been reduced to 6 data fields only. Note
that for saving data in JSON files, you can add the option ‘-export’ (or ‘-dataexport’).

2.2.2 Beer Jugs

Description (from LP/CP Programming Contest 2022). From LPCP’22: “Blue Meth,
Blue Sky, Heisenberg Blue... movie directors often like to adapt scientific (or maybe scientif-
ish) concepts in their creations. You are asked to help some of those fellas, who were impressed
by the water jugs riddle in Die Hard 3. They want to shoot a similar scene, but in a pub, using
beer instead of water (obviously, no beer will be wasted, and a drop essentially means that the
main actors drink all the beer from a jug). In order to do the scene as much comical as possible,
they ask for the longest sequence of non-repeating configurations that can be achieved using
two jugs. Given the capacities of the two jugs, A and B, the possible actions are the following;:

e drop_a, to empty the first jug;
e drop_b, to empty the second jub;
e fill_a, to fill the first jug;

fill_b, to fill the second jug;

a_to_b, to pour the second jug with the content of the first jug (either until the second
jug is full, or until the first jug is empty);

b_to_a, to pour the first jug with the content of the second jug (either until the first jug
is full, or until the second jug is empty).

Note that they don’t care if the final configuration can be achieved with a shorter sequence...

no one will note, they’ll all be drunk for a while anyway.”

Data. Two integers are required to specify a specific instance: the capacities A and B of the
two jugs. The values of (A, B) used for generating the 2023 competition instances are (some of
the LPCP’22 contest):

(3,10), (9,10), (7,12), (11,12), (11,14), (11,16), (13,16), (15,16)

Model. The PyCSP? model, in a file ‘BeerJugs.py’, used for the competition is:

A PyCSP? Model 17

from pycsp3 import *

A, B = data
MAX = 70

STOP, FILL_A, FILL_B, DROP_A, DROP_B, A_TO_B, B_TO_A = Actions = range(-1, 6)



https://github.com/lpcp-contest/lpcp-contest-2022/tree/main/problem-2
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def execute(ql, g2, action):
if action == STOP:
return -1, -1
if action == FILL_A:
return (A, q2) if ql != A else None
if action == FILL_B:
return (ql, B) if g2 != B else None
if action == DROP_A:
return (0, g2) if q1 > O else None
if action == DROP_B:
return (q1, 0) if g2 > O else None
if action == A_TO_B:
pour = min(ql, B - q2)
return (ql - pour, g2 + pour) if pour > O else None
if action == B_TO_A:
pour = min(A - qi1, q2)
return (ql + pour, g2 - pour) if pour > O else None

valid = [(ql, g2, a) for ql in range(A + 1) for g2 in range(B + 1) for a in Actions
if execute(ql, q2, a)l
T = [(-1, -1, -1, -1, -1)] + [(ql, 92, a, *execute(ql, g2, a)) for ql, g2, a in valid]

# x[t][i] is the quantity in the ith jug (i is equal to O for A and 1 for B) at time t
x = VarArray(size=[MAX+1,2], dom=lambda i,j: {0} if i==0 else range(-1,(A if j==0 else B)+1))
# y[t] is the action taken at time t (to t+1)

y = VarArray(size=MAX, dom=Actions)

# z is the time when the process is stopped
z = Var(range (MAX))
satisfy(
# ensuring that the same state is never encountered several times
I (
s1[0] !'= -1,

Then=either(s1[0] !'= s2[0], s1[1] != s2[1])
) for s1, s2 in combinations(x, 2),

# computing the consequences of each action
[(x[t]1[0], x[t1[1], y[t], x[t + 11[0], x[t + 11[1]) in T for t in range(MAX)],

# ensuring a stable state (-1, -1) when the process is finished
[(t < 2z) == (y[t] !'= STOP) for t in range(MAX)]
)

maximize (
# maximizing the length of the sequence of actions
z

This problem involves 2 arrays of variables, a stand-alone variable and 2 type of constraints:
Intension and Extension. A series of 8 instances (with data coming from LPCP’22) has been
selected for the competition. For generating an XCSP? instance (file), you can execute for
example:

python BeerJugs.py -data=[9,10]

2.2.3 Benzenoide

Description. From [8]: “The benzenoid generation problem is defined as follows: given a
set of structural properties P, generate all the benzenoids which satisfy each property of P.
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For instance, these structural properties may deal with the number of carbons, the number of
hexagons or a particular structure for the hexagon graph.” Here, we are interested in generating
benzenoids with n hexagons (including benzenoids with ‘holes’).

Data. Only one integer is required to specify a specific instance: the order n of the coro-
nenoide. The values of n used for generating the 2023 competition instances are:

6,7,8,9,10, 11, 12, 13, 14, 15

Model. The PyCSP3 model, in a file ‘Benzenoide.py’, used for the competition is:

4 PyCSP? Model 18

from pycsp3 import *

n = data # order of the coronenoide
w=2*n - 1 # maximal width
widths = [w - abs(n - i - 1) for i in range(w)]

symmetries = [sym.apply_on(n) for sym in TypeHexagonSymmetry]

def valid(*t):
return [(i, j) for i, j in t if 0 <= i < w and 0 <= j < widths[i]]

neighbors = [[valid(
G, j -0, G, j+1,
(1-1,j- @ if i<nelse0)), (i -1, j + (0 if i < n else 1)),
(i+1, j- (1if i >>n-1else0)), (i +1, j+ (0if i >>n - 1 else 1)))
for j in range(widths[i])] for i in range(w)]

def T1(i, j):
r = len(neighbors[i] [j1)
return [(0, O, *[ANY] * r), (1, 1, *[ANY] * r)] +
[(2, 1, *x[1 if j == i else ANY for j in range(r)]) for i in range(r)] +
[(v, 1, *[v - 1 if j == i else {0}.union(range(v - 1, n + 1)) for j in range(xr)])
for v in range(3, n + 1) for i in range(r)]

T2 = [(1,1,1,1,1,1,1)] + [(ANY, *[0 if j == i else ANY for j in range(6)]) for i in range(6)]

# x[i]J[j] is 1 iff the hexagon at row i and column j is selected
x = VarArray(size=[w, w], dom=lambda i, j: {0, 1} if j < widths[i] else None)

# y[i]l[j] is the distance (+1) wrt the root of the connected tree
y = VarArray(size=[w, w], dom=lambda i, j: range(n + 1) if j < widths[i] else None)

satisfy(
# only one root
Count (y, value=1) == 1,

# ensuring connectedness
[(y[il[j], x[i1[j]1, y[neighbors[il[jl1) in T1(i, j)

for i in range(w) for j in range(widths[i])],

# exactly n hexagons
Sum(x) == n,

# ensuring no holes
[(x[i][j], x[neighbors[i][j]]) in T2 for i in range(w)
for j in range(widths[i]) if len(meighbors([i][j]) == 6],
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# tag(symmetry-breaking)
[
[LexDecreasing(x, [x[row] for row in sym]) for sym in symmetries],
[Precedence(y, values=(1, v)) for v in range(2, n + 1)]
]
)

minimize (
Sum(x[i] [j] * ((n-i) * w + (n-j)) for i in range(w) for j in range(w) if j < widths[il)

)

This model involves 2 arrays of variables, and 5 types of constraints: Count, Extension, Sum,
LexDecreasing and Precedence. A series of 10 instances has been selected for the competition.
For generating an XCSP? instance (file), you can execute for example:

python Benzenoide.py -data=10

2.2.4 Carpet Cutting

Description. From [24]: “The carpet cutting problem is a two-dimensional cutting and pack-
ing problem in which carpet shapes (also called items or objects) are cut from a rectangular
carpet roll with a fixed roll width and a sufficiently long roll length. The goal is to find a non-
overlapping placement of all carpet shapes on the carpet roll, so that the waste is minimized or
in other words the utilization of used carpet material is maximized while meeting all additional
constraints. In our case the objective is to minimize the carpet roll length.”

Data. Twenty instances have been selected in several Minizinc challenges (in 2011, 2012, 2016
and 2021); see minizinc-benchmarks. The structure of a data file in JSON format is as follows:

{
"roll_wid": 315,
"max_roll_len": 20000,
"roomCarpets": [
{
"rectangleIds": [0],
"possibleRotations": [0, 1],
"maxLength": 181,
"mawWidth": 131
},
1,
"rectangles": [
{
"length": 181,
"width": 131,
"x0ffsets": [0, O, -1, -1],
"yOffsets": [0, 0, -1, -1]
},
1,

"stairCarpets": []

Model. The PyCSP? model, in a file ‘CarpetCutting.py’, based on the Minizinc model, used
for the competition is:


https://github.com/MiniZinc/minizinc-benchmarks/tree/master/carpet-cutting
https://github.com/MiniZinc/minizinc-benchmarks/blob/master/carpet-cutting/cc_base.mzn
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A PyCSP? Model 19

from pycsp3 import *

rollWidth, maxRollLength, roomCarpets, rectangles, stairCarpets = data
roomRectangles, possibleRotations, maxLengths, maxWidths = zip(*roomCarpets)
rectLengths, rectWidths, xO0ffsets, yOffsets = zip(*rectangles)
stairLengths, stairWidths, nCoveredSteps, minCutSteps, maxCuts = zip(*stairCarpets)
if len(stairCarpets) > 0 else ([1, [1, [1, [I, [1)
nRoomCarpets, nRectangles, nStairCarpets = len(roomCarpets),len(rectangles),len(stairCarpets)

RC, SC = range(nRoomCarpets), range(nStairCarpets)
RO, R90, R180, R270 = Rotations = range(4) # 0 - 0, 1 - 90, 2 - 180, and 3 - 270

stairOffsets = [sum(nCoveredSteps[:i]) for i in SC]
stairRanges = [range(sco, sco + nCoveredSteps[i]) for i, sco in enumerate(stairOffsets)]

nSteps = sum(nCoveredSteps)
stepLengths =[stairLengths[i]//nCoveredSteps[i] for i in SC for
stepWidths = [stairWidths[i] for i in SC for

_ in range(nCoveredSteps[i])]

_ in range(nCoveredSteps[i])]

totalArea = sum(l * w for (1, w, _, _) in rectangles) + sum(stairLengths[i] * stairWidths[i]
for i in SC)

minRollLength = (totalArea // rollWidth) + (1 if totalArea J rollWidth > O else 0)

totalLength = sum(max(maxLengths[i], maxWidths[i]) for i in RC) + sum(stairLengths)

maxRollLength = min(maxRollLength, totalLength)

rectSizes = range(min(min(l, w) for (1, w, _, _) in rectangles), max(max(l, w)
for (1, w, _, _) in rectangles) + 1)

nexts = [next(j for j in RC if i in roomRectangles[j]) for i in range(nRectangles)]

**

z is the carpet roll length
z = Var(dom=range(minRollLength, maxRollLength + 1))

# x[i] is the x-coordinate of the ith room carpet
x = VarArray(size=nRoomCarpets, dom=range(maxRollLength + 1))

**

y[i] is the y-coordinate of the ith room carpet
y = VarArray(size=nRoomCarpets, dom=range(rollWidth + 1))

# r[i] is the rotation of the ith room carpet
r = VarArray(size=nRoomCarpets, dom=Rotations)

# rOor180[is] is 1 if the rotation of the ith room carpet is 0 or 180 degrees
rOor180 = VarArray(size=nRoomCarpets, dom={0, 1})

# rOor90[is] is 1 if the rotation of the ith room carpet is O or 90 degrees
rO0or90 = VarArray(size=nRoomCarpets, dom={0, 1})

# xr[j] is the x-coordinate of the jth rectangle
xr = VarArray(size=nRectangles, dom=range(maxRollLength + 1))

# yr[j] is the y-coordinate of the jth rectangle
yr = VarArray(size=nRectangles, dom=range(rollWidth + 1))

# 1r[j] is the length of the jth rectangle (considering a possible rotation)
1r = VarArray(size=nRectangles, dom=rectSizes)

# wr[j] is the width of the jth rectangle (considering a possible rotation)
wr = VarArray(size=nRectangles, dom=rectSizes)
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if nSteps > O:
# xs[k] is the x-coordinate of the kth step of the stair
xs = VarArray(size=nSteps, dom=range(maxRollLength + 1))

# ys[k] is the y-coordinate of the kth step of the stair
ys = VarArray(size=nSteps, dom=range(rollWidth + 1))

# 1p[il[j] is 1 if the jth covered step by the ith stair carpet is the last step of a part
(of the partition of the stair carpet)
1p = VarArray(size=[nStairCarpets, nCoveredSteps], dom={0, 1})

1s, ws = steplLengths, stepWidths

else:
xs =ys =1p =1s = ws = []

X, Y, L, W=2xr + xs, yr + ys, 1r + 1s, wr + ws

satisfy(
# computing lengths and widths of rectangles
[
(
1r[i] == rectWidths[i] + (rectLengths[i] - rectWidths[i]) * rOor180[nexts[il],
wr[i] == rectLengths[i] + (rectWidths[i] - rectLengths[i]) * rOor180[nexts[i]]
) for i in range(nRectangles)

]9

# enforcing room carpets to stay within limits
L
(
x[i] + maxWidths[i] + (maxLengths[i] - maxWidths[i]) * rOor180[i] <= z,
y[i] + maxLengths[i] + (maxWidths[i] - maxLengths[i]) * rOor180[i] <= rollWidth
) for i in RC

1,
# enforcing rectangles (of room carpets) to stay within limits
[

(

xr[j] + 1r[j] <= z,
yr[jl + wrljl <= rollWidth
) for i in RC for j in roomRectangles[il]

1,
# handling possible rotations of room carpets
[

(

r[i] in possibleRotations[i],

r0or90[il == (r[il in {RO, R90}),

rOor180[i] == (r[i] in {RO, R180})
) for i in RC

1,
# computing the coordinates of the rectangles in room carpets
[

(

xr[j] == x[i] + xO0ffsets[j][r[il],
yr[j] == y[i] + yOffsets[jl[r[il]
) for i in RC for j in roomRectangles[i]

1,

# enforcing stair steps to stay within limits
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L
(
xs[j] + stepLengths[j] <= z,
ys[j] + stepWidths[j] <= rollWidth
) for i in SC for j in stairRanges[i]
P
# breaking symmetries between steps of a stair carpet tag(symmetry-breaking)
[
(
ys[jl <= ys[j + 11,
If(ys[jl >= ys[j + 1], Then=xs[j] + stepLengths[j] <= xs[j + 1])
) for i in SC for j in stairRanges[i] if j + 1 in stairRanges[il
1,
# computing the last steps in the parts of the partitions of the stair carpets
L
[1p[i] [nCoveredSteps[i] - 1] == 1 for i in SCI,
[
1p[il [j] == either(
yslk]l < yslk + 11,
xs[k] + stepLengths[j] < xs[k + 1]
) for i, offset in enumerate(stairOffsets) for j in range(nCoveredSteps[i] - 1)
if [k := j + offset]
]’
[
I (
xs[k] + 2 * stepLengths[k] > z,
Then=1p[i] [j]
) for i, offset in enumerate(stairOffsets) for j in range(nCoveredSteps[i])
if [k := j + offset]
1,
[Sum(1p[i] [:nCoveredSteps[i]]) <= maxCuts[i] + 1 for i im SCI,
[1p[il[j] == 0 for i in SC if minCutSteps[i]l > 1 for j in range(minCutSteps[i]l - 1)1,
L
£ (
1p[il (31,
Then=1p[il [k] ==
) for i in SC if minCutSteps[i] > 1 for j in range(minCutSteps[i]-1,nCoveredSteps[i])
for k in range(j - minCutSteps[il + 1, j)
]
15

# respecting roll length
Cumulative(origins=X, lengths=L, heights=W) <= rollWidth,

# respecting roll width
Cumulative(origins=Y, lengths=W, heights=L) <= z,

# non-overlapping
NoOverlap(origins=zip(X, Y), lengths=zip(L, W))
)

minimize (
# minimizing the carpet roll length
z

This model involves many arrays of variables, and 5 types of constraints: Intension,
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Extension, Cumulative, NoOverlap and Element. A series of 20 instances has been selected
for the competition. For generating an XCSP? instance (file), you can execute for example:

python CarpetCutting.py -data=testOl.json

where ‘test01.json’ is a data file in JSON format.

2.2.5 Generalised Balanced Academic Curriculum Problem (GBACP)
This is Problem 064 on CSPLib.
Description. From CSPLib: “This is a generalisation of the Balanced Academic Curriculum

Problem (BACP) proposed by Marco Chiarandini, Luca Di Gaspero, Stefano Gualandi, and
Andrea Schaerf at University of Udine. With respect to BACP, GBACP adds:

e several curricula that can share courses,
e soft constraints, in particular for teacher preferences for not teaching during some terms.
The detailed description, data, best results, and a solution validator can be found at opthub.uniud.it”.

See also [13].

Data. Ten historical instances come from the School of Engineering of University of Udine;
see opthub.uniud.it. The structure of a data file in JSON format is as follows:

{
"nYears": 3,
"nPeriodsPerYear": 3,
"loadBounds": {"min": 2, "max": 6},
"courselLoads": [6, 5, 5, ..., 1],
"curricula": ...,
"precedences": [[121, 3], [121, 6], ...],
"undesiredPeriods": [[257, 1], [240, 2], ...]
}

Model. The PyCSP3 model, in a file ‘GBACP.py’, used for the competition is:

4 PyCSP? Model 20

from pycsp3 import *

nYears, nPeriodsPerYear, loadBounds, courseloads, curricula, precedences, uPeriods = data
nPeriods, nCourses, nCurricula = nYears * nPeriodsPerYear, len(courselLoads), len(curricula)
loadRange = range(loadBounds.min, loadBounds.max + 1)

max_load = sum(courseLoads)
total_load = [sum(courseLoads[i] for i in c¢) for c¢ in curricula]
ideal_floor = [total_load[c] // nPeriods for c in range(nCurricula)]
ideal_ceil = [ideal_floor[c] + (0 if total_load[c] 7% nPeriods == 0 else 1)
for ¢ in range(nCurricula)]
distinctCurricula = [curricula[i] for i in range(nCurricula)
if all(curriculal[j] != curriculali] for j in range(i))]

# x[i] is the period for the ith course
x = VarArray(size=nCourses, dom=range (nPeriods))



https://www.csplib.org/Problems/prob064
https://opthub.uniud.it/problem/timetabling/gbac
https://opthub.uniud.it/problem/timetabling/gbac
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# ylc]l[p] is the load in period p of curriculum c
y = VarArray(size=[nCurricula, nPeriods], dom=range(max_load + 1))

# dlc]l[p] is the delta between the ideal and effective loads in period p of curriculum c
d = VarArray(size=[nCurricula, nPeriods], dom=range(max_load + 1))

satisfy(
# respecting authorized loads of courses for all periods and curricula
[Cardinality(x[crm], occurrences={p: loadRange for p in range(nPeriods)})
for crm in distinctCurriculal,

# respecting prerequisites
[x[i] < x[j] for i, j in precedences],

# computing loads
[BinPacking(x[crm], sizes=courseLoads[crm], loads=y[c]) for c,crm in enumerate(curricula)]

)

if not variant():
satisfy(
# computing deltas
d[c] [p] == Maximum(y[c] [p] - ideal_ceil[c], ideal_floor[c] - y[c]([pl)
for ¢ in range(nCurricula) for p in range(nPeriods)

)

elif variant("table"):
T = [[(max(v - ideal_ceill[c], ideal_floor[c] - v), v) for v in range(max_load + 1)]
for ¢ in range(nCurricula)]

satisfy(
# computing deltas

(dlcllpl, ylcllpl) in T[c] for c in range(nCurricula) for p in range(nPeriods)
)

minimize(
# minimizing preference violations and unbalanced loads
Sum(d[c][p] * d[c][p] for c in range(nCurricula) for p in range(nPeriods))
+ Sum(x[i] == v + k*nPeriodsPerYear for i, v in uPeriods for k in range(nPeriodsPerYear))

)

This model involves 3 arrays of variables, and 5 types of constraints: Cardinality, Intension,
BinPacking, Maximum and Extension. Actually, depending on the chosen variant, either
Maximum constraints are posted, or Extension constraints are posted. Note that x[crm] is
a shortcut for [x[i] for i in crm].

A series of 2 % 10 instances has been selected for the competition (10 per variant). For
generating an XCSP? instance (file), you can execute for example:

python GBACP.py -data=UDO1.json
python GBACP.py -data=UDO1.json -variant=table

where ‘UDO01.json’ is a data file in JSON format. Note that when you omit to write ‘-
variant=table’, you get the main variant.

2.2.6 Generalized MKP

Description (excerpt from Wikipedia). In this variation of the knapsack problem, the
weight of knapsack item ¢ is given by a D-dimensional vector w; = (wj,,...,w;,) and the
knapsack has a D-dimensional capacity vector (Wi,...,Wp). The target is to maximize the
sum of the values of the items in the knapsack so that the sum of weights in each dimension d
does not exceed Wy. See Wikipedia.


https://en.wikipedia.org/wiki/Knapsack_problem
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Data. As an illustration of data specifying an instance of this problem, we have:

{
"profits": [504, 803, 667, ..., 632],
"wmatrix": [

[42, 41, 523, ..., 298],

[5609, 883, 229, ..., 850],

[806, 361, 199, ..., 4471,

[404, 197, 817, ..., 322],

[475, 36, 287, ..., 635]],
"capacities": [11927, 13727, 11551, 13056, 13460],
"pmatrix": [

[866, 690, 813, ..., 717],

[1022, 959, 510, ..., 813],

[866, 1022, 654, ..., 625],

[855, 853, 811, ...4, 932],

[826, 654, 636, ..., 640]]

}

Data are from the Chu and Beasley series coming from ResearchGate.

Model. The PyCSP? model, in a file ‘GeneralizedMKP.py’, used for the competition is:

A PyCSP? Model 21

from pycsp3 import *

profits, WM, capacities, PM = data # Weight and Profit Matrices
nltems, nBins = len(profits), len(capacities)

# x[i] is 1 if the item i is packed
x = VarArray(size=nItems, dom={0, 1})

**

wl[j] si the total weight in the jth bin
w = VarArray(size=nBins, dom=lambda j: range(capacities[j] + 1))

**
N

is the general profit
= Var(range (sum(profits) + 1))

N
I

satisfy(
[Knapsack(x, weights=W, wlimit=w[j], profits=PM[j]) >= z for j, W in enumerate(WM)],

# computing the objective value
z == profits * x

)

maximize (
# maximizing the profit of packed items
z

This problem involves 2 arrays of variables, a stand-alone variable and 2 types of con-
straints: Knapsack, and Sum. A series of 15 instances has been selected for the competition.
For generating an XCSP? instance (file), you can execute for example:

python GeneralizedMKP.py -data=0R05x100-25-1.json

where ‘OR05x100-25-1.json’ is a data file in JSON format.


https://www.researchgate.net/publication/271198281_Benchmark_instances_for_the_Multidimensional_Knapsack_Problem
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2.2.7 HC Pizza
This is Pizza Practice Problem for Hash Code 2017.

Description. From HC’17: “The pizza corresponds to a 2-dimensional grid of n rows and
m columns. Each cell of the pizza contains either mushroom or tomato. A slice of pizza is a
rectangular section of the pizza delimited by two rows and two columns, without holes. The
slices we want to cut out must contain at least L cells of each ingredient and at most H cells of
any kind in total. The slices being cut out cannot overlap, and do not need to cover the entire
pizza. The goal is to cut correct slices out of the pizza maximizing the total number of cells in
all slices.”

Data. As an illustration of data specifying an instance of this problem, we have:

{
"minIngredients": 2,
"maxSize": 6,
"pizza": [
1, 1,0, 1,1, 1,1, 1, 1, 0],
[0, 1, o, 0o, 1, 0o, 1, 0, 0, 11,
1, 0, 0, 1, 0, 1, 1, 0, 0, 0]
]
}

Model. The PyCSP? model, in a file ‘HCPizza.py’, used for the competition is:

¢ PyCSP® Model 22

from pycsp3 import *

minIngredients, maxSize, pizza = data

n, m = len(pizza), len(pizzal[0]) # nRows and nColumns

patterns = [(i, j) for i in range(l, min(maxSize, n)+1) for j in range(l, min(maxSize, m)+1)
if 2 * minIngredients <= i * j <= maxSize]

nPatterns = len(patterns)

def possible_slices():
_overlaps = [[[] for _ in range(m)] for _ in range(n)]
_possibles = [[[False for _ in range(nPatterns)] for _ in range(m)] for
for i, j, k in product(range(n), range(m), range(nPatterns)):
height, width = patterns[k][0], patterns[k][1]
n_mushrooms, n_tomatoes = 0, O
for ib, jb in product(range(i, min(i + height, n)), range(j, min(j + width, m))):
if pizzal[ib] [jb] == O:
n_mushrooms += 1
else:
n_tomatoes += 1
if n_mushrooms >= minIngredients and n_tomatoes >= minIngredients:
_possibles[i] [j]1[k] = True
for ib, jb in product(range(i, min(i + height, n)), range(j, min(j + width, m))):
_overlaps[ib] [jb] .append((i, j, k))
return _overlaps, _possibles

in range(n)]

overlaps, slices = possible_slices()



https://www.academia.edu/31537057/Pizza_Practice_Problem_for_Hash_Code_2017
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def pattern_size(i, j, k):
return (min(i + patterns[k][0], n) - i) * (min(j + patterns[k][1], m) - j)

**

x[11[j1[k] is 1 iff the slice with left top cell at (i,j) and pattern k is selected
x = VarArray(size=[n, m, nPatterns],
dom=lambda i, j, k: {0, 1} if slices[i][j][k] else None)

**

s[i][j1[k] is the size of the slice with left top cell at (i,j) and pattern k (0 if the
slice is not selected)
VarArray(size=[n, m, nPatterns],

dom=lambda i, j, k: {0, pattern_size(i, j, k)} if slices[i][j][k] else None)

2]
1]

# z is the number of selected pizza cells
z = Var(dom=range(n * m + 1))

satisfy(
# computing sizes of selected slices
[(x[11[j1[k], s[il[j1[k]) in {(O0, 0), (1, pattern_size(i, j, k))}
for i, j, k in product(range(n), range(m), range(nPatterns)) if slices[i][j][k1],

# ensuring that no two slices overlap
[Sum(x[t]) <= 1 for i in range(n) for j in range(m) if len(t:=overlaps[il[jl) > 1],

# computing the number of selected pizza cells

Sum(s) == z

)

maximize (
# maximizing the number of selected pizza cells
z

)

This problem involves 2 arrays of variables, 1 stand-alone variable and 2 types of constraints
Extension and Sum. A series of 10 (randomly generated) instances has been selected for the
competition. For generating an XCSP? instance (file), you can execute for example:

python HCPizza.py -data=10-10-2-6.json

where ‘10-10-2-6.json’ is a data file in JSON format.
Or, you can use the random generator ‘HCPizza_Random.py’:

python HCPizza.py -parser=HCPizza_Random.py 20 20 2 8 2

Note that for saving data in JSON files, you can add the option ‘-export’ (or ‘-dataexport’).

2.2.8 Hoist Scheduling Problem (HSP)

Description. From [2]: “we consider a facility with a single handling resource (a hoist). The
hoist has to perform a sequence of moves in order to accomplish a set of jobs, with varying
processing requirements, while satisfying processing and transport resource constraints. The
objective is to determine a feasible schedule (i.e., a sequence) that minimizes the total processing
time of a set of jobs (i.e., the makespan), while, at the same time, satisfying surface treatment
constraints.” See also [30].

Data. As an illustration of data specifying an instance of this problem, we have:

"cuves": [[50, 114], [80, 184], [60, 145], [80, 1911, [28, 6711,



42 CHAPTER 2. PROBLEMS AND MODELS

"E: 12,
Ilell: 8

Model. The PyCSP? model, in a file ‘Hsp.py’, used for the competition is:

4 PyCSP?® Model 23

from pycsp3 import *
intervals, 1ld, ud = data # loaded and unloaded time for one move

min_dips, max_dips = zip(*intervals) # min and max dip durations
nTanks = len(intervals) + 1
horizon = sum(min_dips) + 1d * nTanks + ud * nTanks + 1

# t[i] is the time when the product is picked from the ith tank
t = VarArray(size=nTanks, dom=range(horizon - 1d - ud))

# o[i] is the order in which the picking operation of the ith tank is executed
o = VarArray(size=nTanks, dom=range(nTanks))

# d[i] is the dip duration in the ith tank (plus 1d)
d = VarArray(size=nTanks, dom=lambda i: range(min_dips[i - 1] + 1d, max_dips[i - 1] + 1 + 1d)
if i != 0 else {0}) # i-1 because of special tank O

# time of the cycle
z = Var(range(nTanks * (1d + ud), horizon))

def duration_limit(i, j, delta):
return 1d + ud * (abs(j - i) + delta)

satisfy(
# we start the cycle by putting a product in the first tank
[t[0] == 0, o[0] == 0],

# taking into account the time of going back to tank 0O
[t[i] <= horizon - 1d - (i + 1) * ud for i in range(l, nTanks)],

# operations are executed in some order
AllDifferent (o),

# order of picking operations must be compatible with their picking times
[(o[i] < o[j1) == (t[i]l < t[j]) for i, j in combinations(nTanks, 2)],

# ensuring a minimal duration between any two tanks
NoOverlap(origins=t, lengths=1d + min(ud, min(min_dips))),

# computing the time of the cycle
z == Maximum(t[i] + 1d + (i + 1) * ud for i in range(l, nTanks)),

# ensuring a duration limit between any two tanks

[
(
If(o[j] - ol[il == 1, Then=t[j] - t[i] >= duration_limit(i, j, -1)),
If(o[i] - o[j] == 1, Then=t[i] - t[j] >= duration_limit(i, j, +1))
) for i, j in combinations(nTanks, 2)
]
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if not variant():

satisfy(
# computing the dip duration of each product
d[i] == ift(o[i] < o[i-1], z + t[i] - t[i-1], t[i] - t[i-1]) for i in range(l, nTanks)
)
else:
assert variant() in ("aux", "table")

# gli] is the gap (distance) between t[i] and t[i+1]
g = VarArray(size=nTanks - 1, dom=range(-horizon, horizon))

satisfy(
# reducing the domain of auxiliary variables
(
gli]l < horizon - 1d - (i + 2) * ud,
gli] > -horizon + 1d + (i + 2) * ud
) for i in range(1, nTanks - 1)

)

if variant("aux"):

satisfy(

# computing the gap/distance between the picking time concerning two successive tanks
[gli] == t[i + 1] - t[i] for i in range(anTanks - 1)],

# computing the dip duration of each product
[d[i] == ift(gli - 1] < 0, z + gl[i - 1], gli - 1]) for i in range(1, nTanks)]
)

elif variant("table"):

T1 = [(v2 - v1, v2, v1) for v2 in t[2].dom for vl in t[1].dom if v2 - vl in g[1].dom]
T2 = [[(vt + vg if vg < O else vg, vg, vt) for vg in g[i - 1].dom for vt in z.dom

if (vt + vg if vg < O else vg) in d[il.dom] for i in range(l, nTanks)]
satisfy(

# computing the gap/distance between two successive tanks
[(glil, t[i + 11, t[i]) in T1 for i in range(nTanks - 1)1,

# computing the dip duration of each product
[(d[il, gli - 1], 2z) in T2[i - 1] for i in range(l, nTanks)]
)

minimize(

# minimizing the time of the cycle
z

This problem involves 3 arrays of variables, a stand-alone variable (z) and 5 types of con-
straints: Intension, Al1Different, NoOverlap, Maximum and Extension. Actually, the con-
straints Extension are only posted when the chosen variant is ‘table’. A series of 63 instances
has been selected for the competition (6 per variant). For generating an XCSP? instance (file),
you can execute for example:

python Hsp.py -data=10405. json
python Hsp.py -data=10405.json -variant=aux
python Hsp.py -data=10405.json -variant=table

where ‘10405.json’ is a data file in JSON format.

Note that when you omit to write ‘-variant=aux’ or ‘-variant=table’, you get the main
variant.
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2.2.9 Kidney Exchange

Description. From Wikipedia: “Optimal kidney exchange is an optimization problem faced
by programs for kidney paired donations (also called Kidney Exchange Programs). Such pro-
grams have large databases of patient-donor pairs, where the donor is willing to donate a kidney
in order to help the patient, but cannot do so due to medical incompatibility. The centers try
to arrange exchanges between such pairs. For example, the donor in pair A donates to the
patient in pair B, the donor in pair B donates to the patient in pair C, and the donor in pair
C donates to the patient in pair A. The objective is to find an optimal arrangement of such
exchanges.”

Data. As an illustration of data specifying an instance of this problem, we have:

{
"weights": [
(-¢, -1, -1, -1, 1, -1, ¢, -1, -1, -1, -1, -1, -1, -1, -1, -1, 0, -1],
(-, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, -1, 1, -1, 0, -1],
(-¢, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]],
llkll: 4
}

The data files used for the competition were generated by John Dickerson (see [10]), and
are available at PrefLib.

Model. The PyCSP?3 model, in a file ‘KidneyExchange.py’, used for the competition is:

4 PyCSP? Model 24

from pycsp3 import *

weights, k = data
n = len(weights)

# x[i] is the successor node of node i (in the cycle where i belongs)
x = VarArray(size=n, dom=range(n))

**

y[i] is the cycle (index) where the node i belongs
y = VarArray(size=n, dom=range(n))

satisfy(
Al1lDifferent(x),

# ensuring correct cycles
[y[i]l == y[x[i]] for i in range(n)],

# disabling infeasible arcs
[x[i] !'= j for i in range(n) for j in range(n) if i != j and weights[i] [j] < 0],

# each cycle has k as maximum length
BinPacking(y, sizes=1) <= k,

# tag(symmetry-breaking)
Precedence(y)

)

maximize (



https://en.wikipedia.org/wiki/Optimal_kidney_exchange
https://www.preﬂib.org/dataset/00036
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# maximizing the sum of arc weights of selected cycles
Sum(weights[i] [x[i]] for i in range(n))

)

Here, the model is equivalent to the one proposed by Edward Lam and Vicky H. Mak-Hau
at the Minizinc challenge 2019. See also [21]. This model involves 2 arrays of variables and
5 types of constraints: AllDifferent, Element, Intension BinPacking and Precedence. A
series of 18 instances has been selected for the competition (coming from data at PrefLib). For
generating an XCSP? instance (file), you can execute for example:

python KidneyExchange.py -data=4-001.json
where ‘4-001.json’ is a data file in JSOn format.

2.2.10 K-Median Problem

Description. From Wikipedia: “The k-median problem (with respect to the 1-norm) is the
problem of finding k& centers such that the clusters formed by them are the most compact.
Formally, given a set of data points, the k centers ¢; are to be chosen so as to minimize the
sum of the distances from each data point to the nearest ¢;.” See also [3], as well as the results
in Chapter 11 of [29].

Data. As an illustration of data specifying an instance of this problem, we have:

{
"distances": [
[0, 30, 76, ..., 88],
[30, O, 46, ..., 118],
[88, 118, 98, ..., 0]
1,
"k 5
}

Model. The PyCSP? model, in file ‘KMedian.py’, used for the competition is:

4 PyCSP? Model 25

from pycsp3 import *

distances, k = data
n = len(distances)

# x[i] is the ith selected node
x = VarArray(size=k, dom=range(n))

satisfy(
# selected nodes must be all different
AllDifferent(x),

# tag(symmetry-breaking)
Increasing(x, strict=True)

)

if not variant():



https://www.preﬂib.org/dataset/00036
https://en.wikipedia.org/wiki/K-medians_clustering

46 CHAPTER 2. PROBLEMS AND MODELS

minimize(
# minimizing the minimal distances between nodes and the selected ones
Sum(Minimum(distances[c] [j] for ¢ in x) for j in range(n))

)
elif variant("aux"):

# d[i]l [j] is the distance between the ith selected node and the jth node
d = VarArray(size=[k, n], dom=distances)

satisfy(
# computing distances
d[il[j] == distances[:, jl[x[il] for i in range(k) for j in range(n)

)

minimize (
# minimizing the minimal distances between nodes and the selected ones
Sum(Minimum(d[:, j1) for j in range(n))

)

For the variant ‘aux’ (used for the competition), this model involves 2 arrays of variables
and 5 types of constraints: Al1Different, Increasing, Element, Minimum and Sum. A series
of 15 instances has been selected for the competition, coming from the data set ‘p-median -
uncapacitated’ at OR-Library. For generating an XCSP? instance (file), you can execute for
example:

python KMedian.py -data=pmedOl.json -variant=aux

where ‘pmed0O1.json’ is a data file in JSON format.

2.2.11 Large Scale Scheduling

Description. Large scale scheduling instances have been built to show the interest of a scal-
able time-table filtering algorithm for the Cumulative Constraint [14].

Data. As an illustration of data specifying an instance of this problem, we have:

{
"limit": 100,
"durations": [1460, 6048, 8129, ..., 12471],
"heights": [17, 6, 40, ..., 19]

}

Data files can be found at BeCool - Belgian Constraints Group @ UCLouvain.

Model. The PyCSP? model, in a file ‘LargeScaleScehduling.py’, used for the competition is:

A PyCSP? Model 26
from pycsp3 import *

limit, durations, heights = data
nTasks = len(durations)

horizon = sum(durations) + 1 # Trivial upper bound on the horizon

# x[i] is the starting time of the ith task



http://people.brunel.ac.uk/~mastjjb/jeb/orlib/pmedinfo.html
http://becool.info.ucl.ac.be/pub/resources/large-scale-scheduling-instances.zip
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x = VarArray(size=nTasks, dom=range(horizon))

satisfy(
# resource cumulative constraint
Cumulative(origins=x, lengths=durations, heights=heights) <= limit

)
minimize (

Maximum(x[i] + durations[i] for i in range(nTasks))

)

This model involves 1 array of variables and 2 types of constraints: Cumulative, and
Maximum (in the objective). A series of 9 instances has been selected for the competition.
For generating an XCSP? instance (file), you can execute for example:

python LargeScaleScheduling.py -data=03200-0.json

where ‘03200-0.json’ is a data file in JSON format.

2.2.12 Progressive Party

This is Problem 013 on CSPLib.

Description (excerpt from CSPLib). “The problem is to timetable a party at a yacht club.
Certain boats are to be designated hosts, and the crews of the remaining boats in turn visit the
host boats for several successive half-hour periods. The crew of a host boat remains on board
to act as hosts while the crew of a guest boat together visits several hosts. Every boat can only
hold a limited number of people at a time (its capacity) and crew sizes are different. The total
number of people aboard a boat, including the host crew and guest crews, must not exceed the
capacity. A table with boat capacities and crew sizes can be found below; there were six time
periods. A guest boat cannot not revisit a host and guest crews cannot meet more than once.
The problem facing the rally organizer is that of minimizing the number of host boats.”

Data. As an illustration of data specifying an instance of this problem, we have:

{
"nPeriods": 5,
"boats": [
{"capacity": 6, "crewSize": 2},
{"capacity": 8, "crewSize": 2},
{"capacity": 10, "crewSize": 3}
]
}

Model. The PyCSP? model, partly developed from [27], in a file ‘ProgressiveParty.py’, used
for the competition is:


https://www.csplib.org/Problems/prob013
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4 PyCSP? Model 27

from pycsp3 import *

nPeriods, boats = data
nBoats = len(boats)
capacities, crews = zip(*boats)

def minimal_number_of_hosts():

nPersons = sum(crews)

cnt, acc = 0, O

for capacity in sorted(capacities, reverse=True):
if acc >= nPersons:

return cnt

acc += capacity
cnt += 1

h[b] indicates if the boat b is a host boat
h = VarArray(size=nBoats, dom={0, 1})

F*

**

s[b] [p] is the scheduled (visited) boat by the crew of boat b at period p
= VarArray(size=[nBoats, nPeriods], dom=range(nBoats))

2]

**

glb1l [p] [b2] is 1 if s[bil[p] = b2
g = VarArray(size=[nBoats, nPeriods, nBoats], dom={0, 1})

satisfy(
# identifying host boats
[h(b] == (s[bl[p] == b) for b in range(nBoats) for p in range(nPeriods)],

# identifying host boats (from visitors)
[b[s[b]l[p]] == 1 for b in range(nBoats) for p in range(nPeriods)],

# channeling variables from arrays s and g
[Channel(g[b] [p], s[b]l[p]) for b in range(nBoats) for p in range(nPeriods)],

# boat capacities must be respected
[gl:, p, bl * crews <= capacities[b] for b in range(nBoats) for p in range(nPeriods)],

# a guest boat cannot revisit a host
[Al1Different(s[b], excepting=b) for b in range(nBoats)],

# guest crews cannot meet more than once
[Sum(s[b1] [p] == s[b2] [p] for p in range(nPeriods)) <= 1
for bl, b2 in combinations(nBoats, 2)],

# tag(redundant-constraint)
# ensuring a minimum number of hosts
Sum(h) >= minimal_number_of_hosts()

)

minimize (
# minimizing the number of host boats
Sum(h)

This problem involves 3 arrays of variables and 5 types of constraints: Intension, Element,
Channel, Sum and A11Different. A series of 7 instances has been selected for the competition.
For generating an XCSP? instance (file), you can execute for example:

python ProgressiveParty.py -parser=ProgressiveParty_rally-red.py 42 12

where ‘ProgressiveParty rally-red.py’ is a generator based on the instance ‘rally-red’ that allows
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us to specify the number of boats and the number of periods. Note that for saving data in
JSON files, you can add the option ‘-export’ (or ‘-dataexport’).

2.2.13 Pigment Sequencing Problem (PSP)

This is a particular case of the Discrete Lot Sizing Problem (DLSP); see Problem 058 on
CSPLib.

Description (excerpt from CSPLib). “Discrete Lot Sizing and Scheduling Problem (DLSP)
is a production planning problem which consists of determining a minimal cost production
schedule (production costs, setup costs, changeover costs, stocking costs, etc.), such that ma-
chine capacity restrictions are not violated, and demand for all products is satisfied. The plan-
ning horizon is discrete and finite. The variant PSP is a multi-item, single machine problem
with capacity of production limited to one per period. There are storage costs and sequence-
dependent changeover costs, respecting the triangle inequality. Each order consisting of one
unit of a particular item has a due date and must be produced at latest by its due date. The
stocking (inventory) cost of an order is proportional to the number of periods between the due
date and the production period. The changeover cost ¢; ; is induced when passing from the
production of item 7 to another one j with ¢; ; = 0,Vi. The objective is to assign a production
period for each order respecting its due date and the machine capacity constraint so as to
minimize the sum of stocking costs and changeover costs.”

See [16, 15].

Data. As an illustration of data specifying an instance of this problem, we have:

{
"nOrders": 50,
"changeCosts": [
[0, 45, 10, 34, 36, 37, 10, 13, 35, 26],
[18, 0, 47, 32, 30, 32, 49, 30, 40, 31],
[26, 21, 34, 22, 48, 45, 31, 25, 22, 0]
],
"stockingCosts": [21, 38, 25, 10, 48, 42, 22, 24, 44, 38],
"demands": [
[O: O: 0) cees 1]9
[o, o, o, ..., 11,
[0, 0, 0, ..., 0]
]
}

Model. A first PyCSP? model, in a file ‘PSP1.py’, used for the competition is:

A PyCSP? Model 28

from pycsp3 import *

nOrders, changeCosts, stockingCosts, demands = data
nItems, horizon = len(demands), len(demands[0])

# x[t][i] is 1 when item i is produced at time t



https://www.csplib.org/Problems/prob058
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x = VarArray(size=[horizon, nItems], dom={0, 1})

**

y[t]1[i] is 1 if the machine is ready to produce i at time t
y = VarArray(size=[horizon, nItems], dom={0, 1})

**

c[t][i] is 1 if the configuration changes from i to j at time t

¢ = VarArray(size=[horizon, nItems, nItems], dom=lambda t, i, j: {0, 1} if t != 0 and i != j
else None)
# s[t][i] is the number of items of type i stored at time t

2]

= VarArray(size=[horizon + 1, nItems], dom=lambda t, i: range(sum(demands[i]) + 1))

satisfy(
# the stock of every item is empty at startup
s[0] == o,

# when an item is produced, it is either delivered or stocked for later delivery
[x[t]1[i] + s[tl[i] == demands[i][t] + s[t + 1][i] for t in range(horizon)
for i in range(nItems)],

# consistency between production and machine setup
[x[t]1[i] <= y[t]1[i] for t in range(horizon) for i in range(nItems)],

# only 1 unit of one item is produced at each time
[Sum(y[t]) == 1 for t in range(horizon)],

# consistency between machine setup and changeover
[c[t]1[i1[j]1 >= y[t - 11[i] + y[t]1[j] - 1 for t in range(l, horizon) for i in range(nItems)
for j in range(nltems) if i != j]

minimize (
Sum(changeCosts[i] [j] * Sum(cl:, i, j1)
for i in range(nItems) for j in range(nIltems) if i != j)
+ Sum(stockingCosts[i] * Sum(s[:, i]) for i in range(nItems))

)

A second PyCSP? model, in a file ‘PSP2.py’, used for the competition is:

4 PyCSP?® Model 29

from pycsp3 import *

nOrders, changeCosts, stockingCosts, demands = data
nltems, horizon = len(demands), len(demands[0])

required = [[sum(demands[i]l[:t + 1]) for t in range(horizon)] for i in range(nItems)]

# x[t] is the item produced at time t
x = VarArray(size=horizon, dom=range(nItems))

**

plil[t] is 1 if the ith item is produced at time t
p = VarArray(size=[nItems, horizon], dom={0, 1})

**

z[t] is the changeover cost incurred at time t
= VarArray(size=horizon - 1, dom=changeCosts)

N

satisfy(
# channeling variables
[pl[i]l [t] == (x[t] == i) for i in range(nltems) for t in range(horizon)],
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# ensuring that deadlines of demands are respected
[Sum(p[il[:t + 1]) >= required[i][t] for i in range(nItems) for t in range(horizon)
if t == 0 or required[i][t - 1] != required[i] [t]],

# computing changeover costs
[z[t] == changeCosts[x[t], x[t + 1]] for t in range(horizon - 1)1,

# tag(redundant-constraints)
[Count (x, value=i) >= required[i] [-1] for i in range(nItems)]

)

minimize(
Sum(stockingCosts[i]l * (Sum(p[il[:t + 1]1) - required[il[t])
for i in range(nItems) for t in range(horizon))
+ Sum(z)

)

These models can be, e.g., compared to the one written by Xavier Gillard; see GitHub. The
second model above involves 3 arrays of variables and 4 types of constraints: Intension, Sum,
Element and Count. A series of 8 x 2 instances has been selected for the competition (8 per
model), from data files available in the Supplementary Material of paper [15]. For generating
an XCSP3 instance (file), you can execute for example:

python PSP1.py -data=001.json
python PSP2.py -data=001.json

where ‘001.json’ is a data file in JSON format.

2.2.14 Resource Investment Problem (RIP)

The Resource Investment Problem (RIP) is also known as the Resource Availability Cost Prob-
lem (RACP).

Description From OR&S Research Group at Ghent University: “The RIP assumes that the
level of renewable resources can be varied at a certain cost and aims at minimizing this total
cost of the (unlimited) renewable resources required to complete the project by a pre-specified
project deadline.” See also [18].

Data. As an illustration of data specifying an instance of this problem, we have:

{
"horizon": 96,
"costs": [7, 7, 1, 51,
"jobs": [
{"duration": 8, "successors": [3, 8, 13], "requirements": [10, 0, O, 0]},
{"duration": 1, "successors": [5, 12, 27], "requirements": [0, 1, 0, 0]},
{"duration": 10, "successors": [6, 10, 14], "requirements": [0, 9, O, 0]},
{"duration": 1, "successors": [], "requirements": [0, O, O, 11}
]
}

Model. The PyCSP? model, in a file ‘RIP.py’, used for the competition is:


https://github.com/xgillard/mznlauncher
https://github.com/xgillard/ijcai_22_DDLNS
https://www.projectmanagement.ugent.be/research/project_scheduling/racp

52 CHAPTER 2. PROBLEMS AND MODELS

4 PyCSP? Model 30

from pycsp3 import *

horizon, costs, tasks = data

durations, successors, requirements = zip(*tasks)

nResources, nTasks = len(costs), len(tasks)

requirements = [[r[k] for r in requirements] for k in range(nResources)]

1lb_usage = [max(row) for row in requirements]
ub_usage = [sum(row) for row in requirements]

# s[i] is the starting time of the ith task
s = VarArray(size=nTasks, dom=range(horizon + 1))

# ulk] is the maximal usage (at any time) of the kth resource
u = VarArray(size=nResources, dom=lambda k: range(lb_usage[k], ub_usagel[k] + 1))

satisfy(
# ending tasks before the given horizon
[s[i] + durations[i] <= horizon for i in range(nTasks)],

# respecting precedence relations
[s[i] + durations[i] <= s[j] for i in range(nTasks) for j in successors[il],

# cumulative resource constraints
[Cumulative(origins=s, lengths=durations, heights=requirements[k]) <= u[k]
for k in range(nResources)]

)
minimize (

# minimizing weighted usage of resources
costs * u

The model involves 2 arrays of variables, and 2 types of constraints: Intension and
Cumulative. A series of 12 instances has been selected for the competition: they correspond to
applying some random perturbation on classical RCPSP instances. For generating an XCSP?
instance (file), you can execute for example:

python RIP.py -data=25-3-j060-01-01.json
python RIP.py -data=[25,3,j060-30-01] -parser=RIP_Parser.py

where ‘25-0-j060-01-01.json’ is a data file in JSON format, whereas ‘j060-30-01" is a data file in
tabular text format and ‘RIP_Parser.py’ is a parser (i.e., a Python file allowing us to load data
that are not directly given in JSON format). Note that for saving data in JSON files, you can
add the option ‘-export’ (or ‘-dataexport’).

2.2.15 Rule Mining

This series of instances has been generated by Nicolas Szczepanski from the classification rule
mining problem, which is a problem over (discrete and) imbalanced data whose distribution
greatly varies over the classes. A series of 9 instances has been selected for the competition.

2.2.16 Sonet

This is Problem 064 on CSPLib, called Synchronous Optical Networking Problem (SONET).


https://www.csplib.org/Problems/prob064
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Description. From CSPLib: “In the SONET problem we are given a set of nodes, and for
each pair of nodes we are given the demand (which is the number of channels required to carry
network traffic between the two nodes). The demand may be zero, in which case the two nodes
do not need to be connected. A SONET ring connects a set of nodes. A node is installed on
a ring using a piece of equipment called an add-drop multiplexer (ADM). Each node may be
installed on more than one ring. Network traffic can be transmitted from one node to another
only if they are both installed on the same ring. Each ring has an upper limit on the number
of nodes, and a limit on the number of channels. The demand of a pair of nodes may be split
between multiple rings. The objective is to minimize the total number of ADMs used while
satisfying all demands.”

Data. As an illustration of data specifying an instance of this problem, we have:

{
"n":6,
"m":10,
"r":3,
"connections":[[0,1],[0,2],[0,3],[2,3],[2,5],[4,5]]
}

Model. The PyCSP? model, in a file ‘Sonet.py’, used for the competition is:

4 PyCSP? Model 31

from pycsp3 import *
n, m, r, connections = data

# x[11[j] is 1 if the ith ring contains the jth node
x = VarArray(size=[m, n], dom={0, 1})

T = {tuple(l if j // 2 == i else ANY for j in range(2 * m)) for i in range(m)}

satisfy(
[(x[i] [conn] for i in range(m)) in T for conn in connections],

# respecting the capacity of rings
[Sum(x[i]) <= r for i in range(m)],

# tag(symmetry-breaking)
LexIncreasing(x)

)

minimize (
# minimizing the number of nodes installed on rings
Sum (x)

This problem involves 1 array of variables and 3 types of constraints: Extension, Sum and
LexIncreasing. A series of 16 instances has been selected for the competition, from data files
corresponding to parameters for Conjure [1]. For generating an XCSP? instance (file), you can
execute for example:

python Sonet.py -data=s3ring03.json

where ‘s3ring03.json’ is a data file in JSON format.
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2.2.17 Single-Row Facility Layout Problem (SRFLP)

Description. from [9]: “The Single-Row Facility Layout Problem (SRFLP) is an ordering
problem considering a set of departments in a facility, with given lengths and pairwise traffic
intensities. Its goal is to find a linear ordering of the departments minimizing the weighted sum
of the distances between department pairs”

Data. As an illustration of data specifying an instance of this problem, we have:

{
"lengths": [40, 20, 50, 30, 10, 50, 801,
"traffics": [
[0, 5, 2, 4, 1, 0, 0],
[5, 0, 3, 0, 2, 2, 2],
[0, 2, 5, 2, 0, 5, 0]
1
}

Model. The PyCSP? model, in a file ‘SRFLP.py’, used for the competition is:

4 PyCSP? Model 32

from pycsp3 import *

lengths, traffics = data
n = len(lengths)

ordered_lengths = sorted(lengths)
pairs = [(i, j) for i, j in combinations(m, 2) if i + 1 < j]

# x[i] is the department at the ith position
x = VarArray(size=n, dom=range(n))

H*

y[i] is the length of the department at the ith position
y = VarArray(size=n, dom=lengths)

**

d[i]l[j] is the end-to-start distance between the ith and the jth departments

d = VarArray(size=[n, n], dom=lambda i, j: range(sum(ordered_lengths[:j - i - 1]), sum(
ordered_lengths[i - j + 1:]1) + 1) if i + 1 < j else None)
satisfy(
# ensuring a linear ordering of the departments
Al1Different(x),
# computing lengths
[(x[1i], y[il) in [(j, lengths[jl) for j in range(n)] for i in range(n)],
# computing distances
[d[i]1[j] == Sum(y[i + 1:j]) for i, j in pairs]
)
minimize(

# minimizing weighted end-to-start distances
Sum(d[i] [j] * traffics[x[il, x[jl] for i, j in pairs)
)
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This model involves 3 arrays of variables and 3 type of constraints: A11Different, Extension
and Sum. A series of 15 instances has been selected for the competition, from data files in the
Supplemental Material of Paper [9]. For generating an XCSP? instance (file), you can execute
for example:

python SRFLP.py -data=Cl12.json
where ‘Cl12.json’ is a data file in JSON format.

2.2.18 TSPTW

Description. Traveling Salesman Problem with Time Windows (TSPTW) is a popular vari-
ant of the TSP where the salesman’s customers must be visited within given time windows.

Data. As an illustration of data specifying an instance of this problem, we have:

{
"distances": [
[o, 19, 17, ..., 121,
[19, 0, 10, ..., 31],
[12, 31, 29, ..., O]
1,
"windows": [[0, 408], [62, 68], [181, 2051, ..., [275, 300]]
}

Model. A first PyCSP? model, in a file ‘TSPTW1.py’, used for the competition is:

@ PyCSP?® Model 33

from pycsp3 import *

distances, windows = data

Earliest, Latest = cp_array(zip(*windows))
horizon = max(Latest) + 1

n = len(distances)

# x[i] is the customer (node) visited in the ith position
x = VarArray(size=n + 1, dom=range(n))

**

a[i] is the time when is visited the customer in the ith position
a = VarArray(size=n, dom=range (horizon))

satisfy(
# making it a tour while starting and ending at city O
[x[0] == 0, x[-1] == 0, a[0] == O],

AllDifferent(x[:-1]1),

# enforcing time windows
[
[Earliest[x[i]] <= a[x[i]] for i in range(n)],
[alx[i]] <= Latest([x[i]] for i in range(n)],
[alx[i + 111 >= a[x[i]] + distances[x[i], x[i + 1]] for i in range(n - 1)]
]
)



https://github.com/vcoppe/csrflp-dd
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minimize (
# minimizing travelled distance
Sum(distances[x[i], x[(i + 1) % n]] for i in range(n))

)

A second PyCSP? model, in a file “TSPTW2.py’, used for the competition is:

4 PyCSP? Model 34

from pycsp3 import *

distances, windows = data
horizon = max(latest for (_, latest) in windows) + 1

n = len(distances)

# x[i] is the node succeeding to the ith node
x = VarArray(size=n, dom=range(n))

# al[i] is the time when is visited the ith node
a = VarArray(size=n, dom=lambda i: range(windows[i] [0], windows[i][1] + 1))

satisfy(
# making it a tour while starting and ending at city O

al[0] == 0,

# avoiding self-loops
[x[i] != i for i in range(n)],

# forming a circuit
Circuit(x),

# enforcing time windows
L
I (
x[i] !'= O,
Then=a[x[i]] >= al[i] + distances[i] [x[i]]
) for i in range(n)
]
)

minimize (
# minimizing travelled distance
Sum(distances[i, x[i]] for i in range(n))

)

A series of 2 x 8 instances has been selected for the competition (8 per model), from data
files available in the Supplementary Material of paper [15]. For generating an XCSP? instance
(file), you can execute for example:

python TSPTW1.py -data=n020w020-1.json
python TSPTW2.py -data=n020w020-1.json

where ‘n1020w020-1.json’ is a data file in JSON format.


https://github.com/xgillard/ijcai_22_DDLNS

Chapter 3

Solvers

In this chapter, we introduce the solvers and teams having participated to the XCSP? Compe-
tition 2023.

ACE (Christophe Lecoutre)

BTD, miniBTD (Mohamed Sami Cherif, Djamal Habet, Philippe Jégou, Héléne Kanso,
Cyril Terrioux)

Choco (Charles Prud’homme)
CoSoCo (Gilles Audemard)
Exchequer (Martin Mariusz Lester)

Fun-sCOP (Takehide Soh, Daniel Le Berre, Hidetomo Nabeshima, Mutsunori Banbara,
Naoyuki Tamura)

MiniCPBP (Gilles Pesant and Auguste Burlats)

Mistral (Emmanuel Hebrard and Mohamed Siala)

Nacre (Gaél Glorian)

Picat (Neng-Fa Zhou)

RBO, miniRBO (Mohamed Sami Cherif, Djamal Habet, Cyril Terrioux)
Sat4j-CSP-PB (extension of Sat4j by Thibault Falque and Romain Wallon)

SeaPear] (Max Bourgeat, Axel Navarro, Léo Boisvert, Tom Marty, Louis-Martin Rousseau,
Quentin Cappart)

toulbar2 (David Allouche et al.)
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ACE at XCSP? Competition 2023

Christophe Lecoutre
CRIL, University of Artois & CNRS
Lens, France
lecoutre@cril.fr

Version 2.1.1 — May 23, 2023

ACE [7] is an open-source constraint solver, developed in Java. ACE focuses on:

e integer variables, including 0/1 (Boolean) variables,

e state-of-the-art table constraints, including ordinary, starred, and hybrid table constraints,
e popular global constraints (AllDifferent, Count, Element, Cardinality, Cumulative, etc.),

e search heuristics, as e.g., wdeg [3, 11], last-conflict [8], BIVS [6], solution-saving [10], and
pick/dom [2],

e mono-criterion optimization

ACE is derived from the constraint solver AbsCon that has been used as a research platform in
our team at CRIL during many years. Many (more or less promising) ideas and algorithms have been
discarded from AbsCon, so as to get a constraint solver of reasonable size and understanding.

Important: ACE is not an official competitor for the 2023 XCSP? competition because I con-
ducted the selection of instances. Note also that ACE is run with its default behaviour without any
mechanism that could have been used to improve its performances (e.g., local search in a preprocessing
step, use of several heuristics to improve diversification of search, etc.).
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With the right classpath (after having cloned the code from Github), you can run the solver on
any XCSP3 [5, 1, 4] instance (file) by executing:

java ace <xcsp3_file> [options]
with:
o <xcsp3_file>: an XCSP? file representing a CSP or COP instance

e [options|: possible options to be used when running the solver

Of course, for generating XCSP? instances, just write and compile models with the Python library
PyCSP? [9]; see http://pycsp.org/.

Licence. ACE is licensed under the MIT License

Code. ACE code is available

e on Github: https://github.com/xcsp3team/ace
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BTD and miniBTD
A Tree-decomposition based Approach

Mohamed Sami Cherif! Djamal Habet! Philippe Jégou!

Hélene Kanso? Cyril Terrioux!

U Aix Marseille Univ, Université de Toulon, CNRS, LIS, Marseille, France
{firstname.name } Quniv-amu.fr

2 Effat University, Jeddah, Saudi Arabia
hkanso@effatuniversity.edu.sa

(mini)BTD (Backtracking on Tree-Decomposition) is an open-source constraint solver which ex-
ploits the structure of CSP instances thanks to the notion of tree-decomposition [5]. It is written in
C++ and implements the algorithm BTD-MAC+RST+Merge [3].

For the competition, we have made the following choices:

e The variable heuristic relies on Last Conflict [4] combined with a multi-armed bandit with 9
arms [1]. The i-th arm is based on CHS (for Conflict History Search [2]) with o = 0.1 % ¢ and
d = 10~%. Note that the variable heuristic is only exploited for ordering the variables inside a
cluster.

e lexico is used as value ordering heuristic.
e Generalized arc-consistency is enforced by a propagation-based system exploiting events.

e (mini)BTD relies on restarts performed according to a geometric restart policy based on the
number of conflicts with an initial cutoff set to 50 and an increasing factor set to 1.05,

e The tree-decomposition is computed thanks to the heuristic Hs-TD-WT [3].

e The first root cluster is the cluster having the maximum ratio number of constraints to its size
minus one and then, at each restart, the selected root cluster is one which maximizes the sum
of the weights of the constraints whose scope intersects the cluster.

(mini)BTD is able to handle all the constraints used in the competition.
Licence. (mini)BTD is licensed under the MIT License.
Code. The source code is available on Github: https://github.com/Terrioux/BTD-RBO.

Command line. (mini)BTD can be launched thanks to the following command line:
SOLVER TIMELIMIT BENCHNAME
where:

e SOLVER is the path to the executable BTD or miniBTD,
e TIMELIMIT is the number of seconds allowed for solving the instance,

e BENCHNAME is the name of the XML file representing the instance we want to solve.
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Choco solver
a free open-source Java library for CP

CHOCC

Charles Prud’homme
LS2N, IMT-Atlantique,
Nantes, France,
charles.prudhomme@imt-atlantique.fr

Version 4.10.13 — July, 2023

Choco solver already has a long history : the first line of code was written
in 1999 [11]. Since then, the code has been frequently re-engineered and re-
leased, up to version 4.0.8, the last current released [12]. It contains numerous
variables, many (global) constraints and search procedures, to provide wide
modeling perspectives.

Choco solver is used by the academy for teaching and research and by the
industry to solve real-world problems, such as program verification, data center
management, timetabling, scheduling and routing.

Several useful extra features are also available such as an extension that deals
with graph variables, parsers to XCSP3 and FlatZinc or a minimalist profiler.

1 A Modeling API

Choco solver comes with the commonly used types of variables: integer vari-
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ables with either bounded domain or enumerated one, Boolean variables, set
variables and graph variables. Views [13] but also arithmetical, relational and
logical expressions are supported.

Up to 100 constraints —and more than 150 propagators— are provided : from
classic ones, such as arithmetical constraints, to must-have global constraints,
such as ALLDIFFERENT or CUMULATIVE, and include less common even though
useful ones, such as TREE. One can pick some existing propagators to compose
a new constraint or create its own one in a straightforward way by implementing
a filtering algorithm and a satisfaction checker.

The library supports natively real variables and constraints also, and relies
on Ibex [3] to solve the continuous part of the problem [4].

2 Resolution Toolbox

Choco solver has been carefully designed to offer wide range of resolution con-
figurations and good resolution performances. Backtrackable primitives and
structures are based on trailing. The propagation engine deals with seven pri-
ority levels and manage either fine or coarse grain events which enables to get
efficient incremental constraint propagators.

The search algorithm relies on three components Propagate, Learn and Move
depicted in [8]. Such a generic search algorithm is then instantiated to DFS,
LNS [14], LDS [7], DDS [15] or HBFS [1].

The search process can also be greatly improved by various built-in search
strategies such as Dom/WDeg [2] and CACD variant [16], ABS [10], Failure-
based searches [9], BIVS [7], first-fail [(], etc., and by creating a problem-adapted
search strategy.

One can solve a problem in many ways : checking satisfaction, finding one
or all solutions, optimizing one or more objectives and solving on one or more
thread, or simply propagating. The search process itself is observable and ex-
tensible.

3 The code and the dev team

Structurally, Choco solver is made of 573 Java classes which represents roughly
53k source code lines. The source code is hosted on GitHub under a BSD 4-
clause licence. The project is mainly developed and maintained by Charles
Prud’homme and Jean-Guillaume Fages, they can count on attentive contribu-
tors. Tutorials, Javadoc and a user guide can be referred to, as long as a Google
group.
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CoSoCo is a constraint solver written in C+4. The main goal is to build a
simple, but efficient constraint solver. Indeed, the main part of the solver con-
tains less than 4,000 lines of code (including headers). CoSoCo is available on
github. CoSoCo recognizes XCSP3 [2] by using the C++ parser that can be
downloaded at https://github.com/xcsp3team/XCSP3-CPP-Parser. It can deal
with all XCSP3 Core constraints. The part related to all constraint propagators
contains around 5,500 lines of codes (including headers). This is the fifth par-
ticipation of CoSoCo to XCSP competitions. This year new additional features
are embeded:

— Nogoods from restarts [4]
— a new heuristic pick/dom (see CP 2023 paper [1]).

CoSoCo performs backtrack search, enforcing (generalized) arc consistency
at each node (when possible). The main components are :

— lexico as value ordering heuristic;

— le(1), last-conflict reasoning with a collecting parameter k set to 1, as de-
scribed in [5];

— a geometric restart policiy;

— a variable-oriented propagation scheme [6], where a queue @ records all vari-
ables with recently reduced domains (see Chapter 4 in [3]).

— The solution saving technque [7].
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Exchequer is a solver for constraint satisfaction and optimisation problems expressed in the XCSP3-
Core format. This version is submitted to the Mini Solver tracks of the XCSP3 Competition 2023.
Thus only a subset of XCSP3-Core is supported.

The solver works by translating an XCSP3 instance into a C program, which violates an assertion
only if the values of the variables in the program give a solution to the instance. Then it uses the
bounded model-checker CBMC [2] to attempt to verify absence of assertion violations. If CBMC finds
an assertion violation, it reports back a counterexample trace, which Exchequer turns into an instance
solution. If it finds no assertion violation, Exchequer reports that the instance is unsatisfiable.

Despite the naive approach, Exchequer 1.0.1 won the Mini CSP track in the XCSP3 Competition
2022. We attribute this to two main factors. Firstly, the version of CBMC we used was built with
CaDiCaL as the integrated SAT solver; this is much faster on harder problems than the default
solver MiniSat. Secondly, we contributed the Crypto benchmark set, which encodes the problem of
breaking a stream cipher. These instances were produced by taking a low-level SAT encoding and
translating it back into the intermediate level XCSP3 format. The resulting encoding is fairly easy
for any SAT-based solver to handle, but not necessarily for solvers based on other techniques.

Building on this success, for Exchequer 1.1.0, we have included the latest version of CBMC and
an updated SAT solver. CBMC now supports calling an external SAT solver. We use Kissat (SAT
Competition 2022 Bulky version) [1], which solved most instances in the SAT Competition 2022 An-
niversary track. On harder problems, this performs slightly better than CaDiCaL (used in Exchequer
1.0.1) and significantly better than MiniSAT (default solver in CBMC).

We have also submitted a new benchmark set, which encodes the optimisation problem of designing
a tournament timetable for a round robin sports tournament with the minimum number of breaks. (A
break is when a team plays two consecutive “home” games or two consecutive “away” games.) This
follows the encoding by Zhang and others [6], which we reproduced in JavaScript [4]. The encoding
uses pseudo-Boolean constraints, which are higher level than SAT, but still relatively low-level. Again,
we have translated this back into XCSP3.

Apart from that, Exchequer 1.1.0 has a few small but important improvements. Support for
optimisation problems was present in Exchequer 1.0.1, but it was poorly tested and there were errors in
the encoding of the objective function; these should now have been fixed. We have turned on handling
of large text nodes in XML files in the XML parser library, as these are used in some benchmark
instances. We have also switched from using logical AND/OR to bitwise AND/OR for encoding
some constraints; this seems to improve performance in some cases, although the improvement is
not consistent. Otherwise, Exchequer has the same limitations as before. It struggles with large
extension constraints used as a template. For larger problems, CBMC spends most of its time
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generating the SAT instance, not running the SAT solver. For a more in-depth examination of the
effectiveness of using C and CBMC for modelling and solving constraint problems, see our work on
the CoPTIC constraint programming system [3].

Implementation details. Exchequer is implemented as two Perl scripts: xcsp2c.pl [5] performs
the translation, while exchequer.pl is a wrapper that calls xcsp2c.pl and CBMC. Exchequer also
uses XCSP3 Tools to validate solutions before returning them.

For constraint optimisation (COP) problems, Exchequer simply calls CBMC repeatedly, trying to
find a solution incrementally better than the previous one each time. When a better solution cannot
be found, we know this is the optimum. The actual value of the objective for each solution is calculated
using XCSP3 Tools.

Usage. Download from https://gitlab.act.reading.ac.uk/ta918887/exchequer and run:
perl DIR/tool/exchequer.pl --tmpdir=TMPDIR BENCHNAME
where:

e DIR is the extracted release archive directory;

e BENCHNAME is the XML file encoding the XCSP3 instance;

e TMPDIR is the optional temporary directory to use.

If no temporary directory is given, Exchequer will use the directory containing the instance. In any
case, it will write the following files:

e a .c file encoding the instance;
e a .log file recording the output from CBMC;
e a .sol.xml file containing the solution.

For optimisation problems, it will write multiple .1log and .sol.xml files.

Licence. Exchequer, Kissat and XCSP3 Tools are distributed under the MIT License. CBMC is
distributed under a BSD-style 4-clause licence.
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1 Overview

Fun-sCOP is a SAT-based constraint programming system written in Scala, which
aims to be a re-implementation of Sugar [3] written in Java. Compared to the previ-
ous version named scop, Fun-sCOP equips the hybrid encoding integrating the order
and log encodings [2]. The following figure shows the framework of Fun-sCOP. We
explain each part of this framework in the remaining of this paper.

2 Parsing and Normalizations

XCSP3 Normalized > CNF
File Parsing CSP Propagations Formulas
and and
Normalizations Encoding SAT
A
Solution [« Model
Decoding

Solvers

Parsing is done by using the official tool XCSP3-Java-Tools 3. Fun-sCOP accepts
constraints in the XCSP3-core language®.
Normalizations are executed as follows:

— Global Constraints are decomposed into intensional constraints. We use extra pi-
geon hole constraints [3] for alldifferent constraints.

— Extensional constraints are translated into intensional constraints by using a vari-
ant of multi-valued decision diagrams. This is a difference to ones in Sugar.

— Intensional Constraints are normalized to be in the form of a conjunction of dis-
junctions of linear comparisons ) . a;x; > k where a;’s are integer coefficients,
x;’s are integer variables and k is an integer constant. Tseitin transformation is used
to avoid the combinatorial explosion.

> https://github.com/xcsp3team/XCSP3-Java-Tools

® http://www.xcsp.org/specifications
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3 Propagations and Encoding Methods

Constraint propagations are executed to the normalized CSP (clausal CSP, i.e., in the
form of CNF over linear comparisons Y ;, @iT; > k) to remove redundant values, vari-
ables, and linear comparisons. It is done by using an AC3 like algorithm.

Encoding methods are as follows:

— Order Encoding [5, 4] is an encoding method using propositional variables py>q’s
meaning x > d for each domain value d of each integer variable x. To encode linear
comparisons, Algorithm 1 of the literature [4] is used in Fun-sCOP.

— Hybrid Encoding [2] is an encoding method integrating the order and log en-
codings without channeling constraints. In the hybrid encoding, each variable is
encoded by either the order encoding or the log encoding, and each constraint is
encoded according to its variables’ encoding. The degree of hybridization can be
controlled by classifying the order-encoded and log-encoded variables. Fun-sCOP
uses the criterion domain product to classify variables as same as in [2].

4 SAT Solvers

GlueMiniSat [1] is used for the order encoding. It is a winning solver in the SAT solver
competitions, and the submitted version of GlueMiniSat uses a special propagator for
the axiom clauses of the order encoding.

Kissat 7 is used for the hybrid encoding. It is also a winning solver in the recent
SAT solver competitions, and shows a good performance in our preliminary evaluation.

7 https://github.com/arminbiere/kissat
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MiniCPBP is an open-source constraint solver ' used as a research platform by our team. It is developed in
Java on top of MiniCP[4] and extends constraint propagation with belief propagation[5]. Among other things,
it can use this extra information to guide search while solving combinatorial problems and to interface with
neural networks while building neuro-symbolic Al systems[3]. MiniCPBP features integer variables, including
0/1 (Boolean) variables, most simple constraints and their reification, a growing list of global constraints,
dedicated weighted counting algorithms for most of these constraints in order to propagate beliefs, and novel
branching heuristics exploiting the propagated beliefs about variable-value assignments (e.g. minEntropy,
maxMarginal, maxMarginalStrength)[2, 1].
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Abstract

Mistral is an open source constraint programming library written in
C++ and available on GitHub. It implements a modelling API, however,
it can also read instance files in XCSP3! or FlatZinc format. Moreover, it
is fully interfaced with Numberjack [6] which provides a Python API for
modelling and solving combinatorial optimization problems using several
back-end solvers.

Solver Engine

The solver engine relies on standard mechanisms, using a priority constraint
queue and a domain event stack to implement the propagation procedure. More-
over, it supports dynamic type change for variables: domains are initially imple-
mented using intervals or Boolean types whenever possible, and can be changed
to (bit)sets during search when a propagator requires it. The backtracking
mechanism is implemented using a trail in a standard way.

Propagators

Several classic global constraints are implemented, such as LEXORDERING [4],
bound consistency propagator for ALLDIFFERENT [10] and Gcce [9]. Moreover,
less standard constraints were implemented within the context of research ar-
ticles on constraint propagation, such as the ATMOSTSEQCARD constraint for
car-sequencing [12] or a VERTEXCOVER constraint [3] to reason about cliques,
independant set or vertex covers. Search Strategy The search heuristic used
for the XCSP3 competition is based on Last Conflict [8], using a variant of
Weighted Degree [2] as default strategy: in the case of failure raised by a propa-
gator of a global constraint, an explanation of the conflict is computed and only
the weight of the variables participating in the conflict is incremented. This
heuristic is fully described in [7]. Moreover, given the next variable x to branch

1Using Gilles Audemard’s parser.
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on, the solver chooses the value that was assigned to x in the best solution found
so far, if possible, or the minimum value in the domain of x otherwise.

Applications of Mistral

Mistral was used to implement a state-of-the-art method for disjunctive schedul-
ing which improved several best known results on classic benchmarks [5]. More
recently, some clause learning methods were implemented in Mistral, still im-
proving the results on disjunctive scheduling [11] and car-sequencing prob-
lems [1]. These methods were not used within the context of the XCSP3 com-
petition.
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Nacre [3, 4] is a constraint solver written in C+4. The main purpose of this solver is to experiment
nogood recording (with a clause reasoning engine) in Constraint Programming (CP). In particular,
the data structures of the solver have been carefully designed to play around nogoods and clauses.

Usage. You can compile and run Nacre using the following lines:

cd core && make -j

./nacre_mini_release <xcsp3_file> method [options]
with:
o <xcsp3_file>: a xcp3 file representing a CSP instance

e method: the method to use for solving the CSP instance. Possible values are:

-complete: Simple complete search
— -incng: Complete search with Increasing Nogoods [6]
— -nld: Complete search with Negative last-decision nogoods [5]

— -ca: Hybrid solving with conflict analysis, SAT-based lazy explanations [1, 2]

e [options]: possible options to be used when running the solver (e.g. —I100 for Luby sequence
where every terms is multiplied by 100 as restart policy; —em for competition verbose mode)

Competition. Nacre is enlisted in the Minitrack - CSP ; line used for the competition:

./nacre_mini_release BENCHNAME -ca -1100 -cm
Licence. Nacre is licensed under the GNU General Public License v3.0.

Code. Nacre code is available online at github.com/gglorian/Nacre!.

INew official Nacre repository, forked from previous competition sources.
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Abstract. This short paper gives an overview of the XCSP3 solver im-
plemented in Picat. Picat provides several constraint modules, and the
Picat XCSP3 solver uses the sat module. The XCSP3 solver mainly con-
sists of a parser implemented in Picat, which converts constraints from
XCSP3 format to Picat. The solver demonstrates the strengths of Picat,
a logic-based language, in parsing, modeling, and encoding constraints
into SAT. The solver submitted to the 2022 XCSP competition is based
on the one that won the 2019 XCSP competition. The high performance
of the solver also demonstrates the viability of using a SAT solver to
solve general constraint satisfaction and optimization problems.

XCSP3

XCSP3 [1] is an XML-based domain specific language for describing constraint
satisfaction and optimization problems (CSP). XCSP3 is positioned as an in-
termediate language for CSPs. It does not provide high-level constructs as seen
in modeling languages. However, XCSP3 is significantly more complex than a
canonical-form language, like FlatZinc [4]. A constraint can sometimes be de-
scribed in either the standard format or simplified format. The advanced format,
which is used by group and matrix constraints, allows more compact description
of constraints.

Picat

Picat [10] is a simple, and yet powerful, logic-based multi-paradigm programming
language. Picat is a Prolog-like rule-based language, in which predicates, func-
tions, and actors are defined with pattern-matching rules. Picat incorporates
many declarative language features for better productivity of software devel-
opment, including explicit non-determinism, explicit unification, functions, list
comprehensions, constraints, and tabling. Picat also provides imperative lan-
guage constructs, such as assignments and loops, for programming everyday
things. Picat provides facilities for solving combinatorial search problems, in-
cluding a common interface with CP, SAT, MIP, and SMT solvers, tabling for
dynamic programming, and a module for planning. Picat uses, in the XCSP3
solver, the SAT module, which generally performs better than the CP, MIP, and
SMT modules on competition benchmarks.
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Parsing

The availability of different formats in XCSP3 makes it a challenge to parse the
XCSP3 language. A parser implemented in C++ by the XCSP3 designers has
more than 10,000 lines of code. The entire Picat implementation of XCSP3 has
about 2,000 lines of code, two-thirds of which is devoted to parsing and syntax-
directed translation. As illustrated in the following example, Picat is well suited
to parsing.

%SE->TE
ex(Si,So) => term(Si,S1), ex_prime(S1,So).

SE ->+TE | -TE’ | e
ex_prime([’+’|8i],So) =>
term(Si,S1),
ex_prime(S1,S0).
ex_prime([’-’|8i],So) =>
term(Si,S1),
ex_prime(S1,S0) .
ex_prime(Si,So) => So = Si.

The parser follows the framework for translating context-free grammar into Pro-
log [5]: a non-terminal is encoded as a predicate that takes an input string (Si)
and an output string (So), and when the predicate succeeds, the difference Si-So
constitutes a string that matches the nonterminal. Unlike in Prolog, pattern-
matching rules in Picat are fully indexed, which facilitates selecting right rules
based on look-ahead tokens.

Modeling

It is well known that loops and list comprehensions are a necessity for modeling
CSPs. The following Picat example illustrates the convenience of these language
constructs for modeling.

post_constr(allDifferentMatrix (Matrix)) =>

NRows = len(Matrix),

NCols = len(Matrix[1]),

foreach (I in 1..NRows)
all_different (Matrix[I])

end,

foreach (J in 1..NCols)
all_different([Matrix[I,J] : I in 1..NRows])

end.

The allDifferentMatrix(Matrix) constraint takes a matrix that is represented
as a two-dimensional array, and posts an all_different constraint for each row
and each column of the matrix.

SAT Encoding

Picat adopts the log encoding [2] for domain variables. While log encoding had
been perceived to be unsuited to arithmetic constraints due to its hindrance to
propagation [3], we have shown that log encoding can be made competitive with
optimizations [8]. There are hundreds of optimizations implemented in Picat, and
they are described easily as pattern-matching rules in Picat. We have also shown
that, with specialization, the binary adder encoding is not only compact, but
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also generally more efficient than BDD encodings for PB constraints [9]. Picat
adopts specialized decomposition algorithms for some of the global constraints,
such as the circuit and reachability constraints [6, 7).

SAT Solving

Picat uses the kissat SAT solver.! For a satisfibility problem, Picat calls the SAT
solver, and converts the SAT solution to a solution for the decision variables if
the problem is satisfiable. For an optimization problem, Picat uses a branch-
and-bound algorithm to find the best solution, and calls the SAT solver each
time a domain bound of the objective variable is narrowed. The kissat generally
outperforms the Maple solver, which is used in the Picat XCSP3 solver submitted
to the 2019 competition.

A Note on the 2023 Edition

In addition to the addition of the required global constraints, namely, precedence,
knapsack, and binPacking, the 2023 edition also incorporates several improve-
ments, including stronger inferences of equivalences.
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(mini)RBO (Restart Based Optimizer) is an open-source constraint solver for COP instances. It
is written in C++ and implements a variant of the algorithm MAC+RST [3].
For the competition, we have made the following choices:

e The variable heuristic relies on Last Conflict [4] combined with a multi-armed bandit with 9
arms [1]. The i-th arm is based on CHS (for Conflict History Search [2]) with o = 0.1 % ¢ and
§=10"%

e Solution-saving [5] combined with lezico is used as value ordering heuristic.
e Generalized arc-consistency is enforced by a propagation-based system exploiting events.

e (mini)RBO relies on restarts performed according to a geometric restart policy based on the
number of conflicts with an initial cutoff set to 50 and an increasing factor set to 1.05,

(mini)RBO is able to handle all the constraints and objective functions used in the competition.
Licence. (mini)RBO is licensed under the MIT License.
Code. The source code is available on Github: https://github.com/Terrioux/BTD-RBO.

Command line. (mini)RBO can be launched thanks to the following command line:
SOLVER TIMELIMIT BENCHNAME
where:
e SOLVER is the path to the executable BTD or miniBTD,
e TIMELIMIT is the number of seconds allowed for solving the instance,

e BENCHNAME is the name of the XML file representing the instance we want to solve.
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Sat4j-CSP-PB is a CSP solver based on the pseudo-Boolean solver Sat4j [4].

1 Description of the solving approach

Sat4j-CSP-PB encodes the constraints it receives as pseudo-Boolean (PB) constraints of the form
St ail; A 8, where n is a positive integer, the weights (or coefficients) o; and the degree & are
integers, ¢; are literals and A€ {<,<,=,>,>}. This allows to exploit the reasoning power of PB
solvers based on the cutting planes proof system [2, 3, 5].

For some constraints, using a PB encoding is particularly convenient as it is more natural and more
succinct than the clausal encodings that would be used by regular SAT solvers. This is particularly the
case for the constraints all-different, bin-packing, cardinality, cumulative, count, knapsack,
n-values, and sum.

As PB solvers are extensions of SAT solvers, we can also use clausal encodings for other constraints
to encode, even though this often prevents PB solvers to benefit from the full inference power of the
cutting planes proof system.

There are however some constraints that are not supported yet, and will lead the solver to output
s UNSUPPORTED if one of the following features appears in the input instance:

symbolic variables

bin packing with an array of Condition
circuit

element

“smart” extension

intension constraints using pow

mdd

precedence

regular

stretch
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2 Variants of the underlying PB solver

Sat4j-CSP-PB uses one of the PB solvers implemented by Sat4j to solve the PB encoding used to
represent the input problem. The variants submitted to the competition are:

e sat4j-csp-resolution, which implements a resolution-based conflict analysis (PB constraints
are lazily encoded as clauses during conflict analysis),

e sat4j+roundingsat, which delegates the resoltuion of the PB instance to the original imple-
mentation of RoundingSat [1],

e sat4j-csp-both, which uses a portfolio of sat4j-cp and sat4j-resolution.

3 Running Sat4j-CSP-PB

Sat4j-CSP-PB is written in Java 11 and uses the Jigsaw modular system. Java 11 is thus required
to compile and execute this solver. To compile Sat4j-CSP-PB, you may run the following command
at the root of the project:

./gradlew csp

Then, you will be able to run the solver using the wrapper bash script provided along with the solver:
./exec/sat4j-csp.sh [options] <path/to/instance.xml>

where

e <path/to/instance.xml> is an XCSP3 file representing a CSP or COP instance, and
e [options] are the possible options to be used when running the solver.

4 License

Sat4j-CSP-PB is licensed under the GNU Lesser General Public License.

5 Code

The source code of Sat4j-CSP-PB is available on OW2’s GitLab.
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Abstract

SeaPearl is a flexible, research-oriented, and open-
source constraint programming solver dedicated to
help the development of learning-based approaches
inside the solving process. It is implemented in
Julia and takes its inspiration from MiniCP. The
development is still active and all the functional-
ities required for handling all the requirements of
the contest are not yet fulfilled. For its first par-
ticipation, only a standard solving process, without
learning involved, has been submitted. The code is
available on Github!.

1 Motivation behind SeaPearl

Previous works have shown the promise to use learning-based
methods inside combinatorial solvers. This has been pro-
posed for integer programming [Gasse et al., 2019], SAT
solving [Selsam and Bjgrner, 2019], and also for constraint
programming [Cappart er al., 2021]. However, integrating a
learning component inside a solver is a tricky task as stan-
dard solvers do not have support for that in a native way. To
tackle this issue, researchers have developed new tools to ease
this integration. For instance, Ecole [Prouvost et al., 2020] is
a library dedicated to work in cooperation with mixed inte-
ger linear programming solvers. No such tool was available
for constraint programming, and SeaPearl [Chalumeau e? al.,
2021] has been introduced for addressing this challenge. It is
a flexible, research-oriented, and open-source constraint pro-
gramming (CP) solver dedicated to help the development of
learning-based approaches inside the solving process. It is
implemented in Julia [Bezanson er al., 2012] and has been
greatly influenced by MiniCP [Michel et al., 2021]. The de-
sign choice of considering Julia is that this language offer
support for both mathematical computation and learning. Be-
sides, it is high-level and achieves good performances.

2 Main Characteristics

This section describes the core functionalities of SeaPearl,
that has been used for this competition. Specifically, no
learning-based algorithm is used.

"https://github.com/corail-research/SeaPearl.j1
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Solver Engine The solver is trailed-based. The fix-point
algorithm is executed on each node of the tree search.

Propagation Notable propagators used are compact-
table [Demeulenaere et al., 2016] for the extensional con-
straint, and Régin’s algorithm [Régin, 1994] for allDifferent.

Search Strategy A standard backtracking depth-first
search is used. For optimization problemss, Each time a so-
lution is obtained, a new constraint enforcing that better solu-
tions must be found is added. The variable selection follows
the first-fail principle, and the value selection heuristic con-
sists in taking the minimum value available in the variable’s
domain.

3 Conclusion

For its first participation, our goal is not to obtain state-of-the-
art results but to analyze the robustness and the efficiency of
SeaPearl, when facing a large range of combinatorial prob-
lems, both for satisfaction and optimization. Besides other
mechanisms (such as an iterated limited discrepancy search
strategy) are currently available in the solver. For the next
year, we plan to integrate our first learning components for
the competition.
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Introduction

toulbar2 is an open-source C++ solver for cost function networks (CFN). It is available at https://github.com/
toulbar2/toulbar2, with an MIT license and a documentation describing its interfaces with C++ and python.

The constraints and objective function are factorized in local functions on discrete variables. Each function returns
a cost for any assignment of its variables. Constraints are represented as functions with costs in {0, T} where T is an
upper bound cost associated with forbidden assignments. toulbar2 looks for a non-forbidden assignment of all variables
that minimizes the sum of all functions. In general, this problem is NP-hard [8].

Using on the fly translation, toulbar2 can also directly solve optimization problems on other graphical models
such as Maximum probability Explanation on Bayesian networks, and Maximum A Posteriori on Markov random
fields [13, 7]. Tt can also read partial weighted MaxSAT problems, (quadratic) pseudo-Boolean optimization problems
as well as constrained satisfaction and optimization problems (COP in XCSP3 format).

toulbar2 provides and uses by default an anytime hybrid best-first branch-and-bound algorithm (HBFS) [1] that
tries to quickly provide good solutions together with an upper bound on the gap between the cost of each solution and
the (unknown) optimal cost. Thus, even when it is unable to prove optimality, it will bound the quality of the solution
provided. It can also apply a variable neighborhood search algorithm exploiting a problem decomposition [19]. Both
algorithms are complete (if enough CPU-time is given) and they can be run in parallel using OpenMPI [3, 19]. The
variable ordering heuristic is dom/wdeg [5] combined with last conflict [15]. The value ordering heuristic exploits the
last solution found if any [11] or else EDAC existential value [10]. EDAC is also used as soft local consistency during
search to provide lower bounds and prune forbidden values [6]. A weaker relaxed version is used for pseudo-Boolean
linear constraints [17]. Stronger soft local consistencies (VAC [6] and VPWC [16]) can be applied in preprocessing
or during search. Variable elimination is performed during search and restricted to variables with at most two
neighbors [14]. More preprocessing techniques such as cost function decomposition [12] and relaxation-aware probing
heuristic (RASPS [21]) are or can be done before search and pruning by dominance is also applied during search [9].

Beyond the service of providing optimal solutions, toulbar2 can also find a sequence of diverse solutions [20] or
exhaustively enumerate solutions below a cost threshold and perform guaranteed approximate weighted counting
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of solutions. For stochastic graphical models, this means that toulbar2 will compute the partition function (or the
normalizing constant). These problems being #P-complete, toulbar2 runtimes can quickly increase on such problems.

toulbar2 was originally developped by Toulouse (INRAE, MIAT) and Barcelona (UPC, IITA-CSIC) teams, hence
the name of the solver. Additional contributions by:

e Caen University, France (GREYC) and University of Oran, Algeria for (parallel) variable neighborhood search
methods [19] ;

e The Chinese University of Hong Kong and Caen University, France (GREYC) for global cost functions [2] ;
e Marseille University, France (LSIS) for tree decomposition heuristics ;
e Ecole des Ponts ParisTech, France (CERMICS/LIGM) for INCOP local search solver [18] ;

e Université de Toulouse (IRIT) and Université du Littoral Céte d’Opale, France for iterated local search with
partition crossover [4] ;

o Artois University, France (CRIL) for the XCSP3 format reader of CSP and COP instances.

XCSP’2023 Competition Configuration Settings

For the XCSP’2023 competition, we used the following settings for toulbar2:

e For COP sequential and mini COP tracks, HBFS [1] was used with default settings ; command line:
DIR/toulbar2 -timer=TIMELIMIT -v=-1 BENCHNAME

e For COP parallel track, parallel HBFS [3] was used with the available number of cores and MPI compilation
settings ; command line:
mpirun -n NBCORE DIR/toulbar2mpi -timer=TIMELIMIT -v=-1 BENCHNAME

For lintoulbar2 (available at https://forgemia.inra.fr/pierre.montalbano/lintoulbar2), which extends toulbar2
by allowing VAC on pseudo-Boolean linear constraints and sorting periodically (every 1,000 open nodes) its HBFS
best-first priority queue with dom/wdeg heuristic values to break ties, we used the following settings:

e For COP sequential and mini COP tracks, the modified HBFS was used with VAC and RASPS [21] in prepro-
cessing ; command line:
DIR/toulbar2 -timer=TIMELIMIT -A -rasps -raspsini -v=-1 BENCHNAME
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Chapter 4

Results

In this chapter, rankings for the various tracks of the XCSP3 Competition 2023 are given.
Importantly, remember that you can find all detailed results, including all traces of solvers at
https://www.cril.univ-artois.fr/XCSP23/.

4.1 Context

Remember that the tracks of the competition are given by Table 4.1 and Table 4.2.

Problem Goal Exploration Timeout
CSP one solution sequential 40 minutes
0{0) best solution sequential 40 minutes

Fast COP  best solution sequential 4 minutes

// COP  best solution parallel 40 minutes
Table 4.1: Standard Tracks.

Problem Goal Exploration Timeout

Mini CSP  one solution sequential 40 minutes

Mini COP  best solution sequential 40 minutes

Table 4.2: Mini-Solver Tracks.

Also, note that:

e the cluster was provided by CRIL and is composed of nodes with two quad-cores (Intel
Xeon CPU E5-2637 v4 @ 3.50GHz, each equipped with 64 GiB RAM).

e Hyperthreading was disabled.
e Fach solver was allocated a CPU and 64 GiB of RAM, independently from the tracks.

e Timeouts were set accordingly to the tracks through the tool runsolver:

93


https://www.cril.univ-artois.fr/XCSP23/

94

CHAPTER 4. RESULTS

sequential solvers in the fast COP track were allocated 4 min of CPU time and
12 min of Wall Clock time,

other sequential solvers were allocated 40 min of CPU time and 120 min of Wall
Clock time,

parallel solvers were allocated 160 min of CPU time and 120 min of Wall Clock time.

e The selection of instances for the Standard tracks was composed of 200 CSP instances
and 250 COP instances.

e The selection of instances for the Mini-solver tracks was composed of 150 CSP instances
and 155 COP instances.

About Scoring. The number of points won by a solver S is decided as follows:

e for CSP, this is the number of times S is able to solve an instance, i.e., to decide the
satisfiability of an instance (either exhibiting a solution, or indicating that the instance
is unsatisfiable)

e for COP, this is, roughly speaking, the number of times S gives the best known result,
compared to its competitors. More specifically, for each instance I:

if I is unsatisfiable, 1 point is won by S if S indicates that the instance I is unsat-
isfiable, 0 otherwise,

if S provides a solution whose bound is less good than another one (found by another
competiting solver), 0 point is won by S,

if S provides an optimal solution, while indicating that it is indeed the optimality, 1
point is won by S,

if S provides (a solution with) the best found bound among all competitors, this
being possibly shared by some other solver(s), while indicating no information about
optimality: 1 point is won by S if no other solver proved that this bound was optimal,
0.5 otherwise.

Off-competition Solvers. Some solvers were run while not officially entering the competi-
tion: we call them off-competition solvers. ACE is one of them because its author (C. Lecoutre)
conducted the selection of instances, which is a very strong bias. Also, when two variants (by
the same competiting team) of a same solver compete in a same track, only the best one is
ranked (and the second one considered as being off-competition). This is why, for example,
Fun-sCOP-glue was considered as off-competition in the CSP track.

4.2 Rankings

Recall that, concerning ranking, two new rules are used when necessary:

e In case a team submits the same solver to both the main track and the mini-track for
the same problem (CSP or COP), the solver will be ranked in the mini-track only if the
solver is not one of the three best solvers in the main track.

e In case several teams submit variations of the same solver to the same track, only the
team who developed the solver and the best other team with that solver will be ranked
(possibly, a second best other team, if the jury thinks that it is relevant)

The algorithm used in practice for establishing the ranking is:



4.2. RANKINGS

1. first, off-competition solvers are discarded (this is the case for ACE in 2023)

2. second, in mini-tracks, solvers that are ranked 1st, 2nd or 3rd in the corresponding main

track are discarded (for example, in 2023, this is the case for Choco and Mistral in the

mini COP track)

3. third, any worse variation of the same solver (submitted by the same team) is discarded
(for example, this is the case of lintoulbar2 and sadj-resolution in the 2023 miniCOP

track)

Here are the rankings' for the 6 tracks.

b 4

4 Picat ? Mistral
CSp ? Fun-sCOP cop g Choco
8 Choco g CoSoCo
v Choco v Choco
Mistral // COP v Toulbar?2
CoSoCo g B
? Exchequer ? Toulbar2
Mini CSP Y miniBTD Mini COP Y Exchequer
g Nacre Sat4j-both

1The images of medals come from freesvg.org
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