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Abstract
Recently popularized self-supervised models appear as a solution to the problem of low data avail-
ability via parsimonious learning transfer. We investigate the effectiveness of these multilingual
acoustic models, in this case wav2vec 2.0 XLSR-53, for the transcription task of the Ewondo
language (spoken in Cameroon). The experiments were conducted on 24 minutes of speech con-
structed from 103 read sentences. Despite a strong generalization capacity of multilingual acoustic
model, preliminary results show that the distance between XLSR-53 embedded languages (En-
glish, French, Spanish, German, Mandarin, . . . ) and Ewondo strongly impacts the performance
of the transcription model. The highest performances obtained are around 70.8% on the WER and
28% on the CER. An analysis of these preliminary results is carried out and then interpreted; in
order to ultimately propose effective ways of improvement.
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I INTRODUCTION

Self-supervised learning is a deep learning method for learning robust representations from un-
labeled data. the main idea is to automatically generate labels for a simple pretext task, enabling
the model to better understand the given structure, and then to use this learned information for
a more complex target task. This method has recently been widely illustrated in speech pro-
cessing, notably by the multilingual acoustic model wav2vec 2.0 XLSR-53 [8], which delivers
impressive results for automatic speech recognition (ASR) tasks, even on small datasets. By
these fact this model presents itself as a solution for low ressources languages for which auto-
matic speech processing tasks are difficult to address by deep learning, due to the difficulty of
building a large dataset. Ewondo, language from central Cameroon falls into this category of
language.

Our aim is to evaluate effectiveness of multilingual acoustic model on Ewondo, which has the
particularity of being tonal. To achieve this goal, we have built several ASR models based on
wav2vec 2.0[7] in various configurations, we have evaluated the performance on word error
rate (WER) and character error rate (CER). Our contribution in this paper is twofold: 1) The
construction of a basic speech recognition model for Ewondo 2) Preliminary performance eval-
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uation of a multilingual acoustic model for Ewondo, which allows us to outline paths for the
construction of a robust model.

The rest of the paper is structured as follows. In section 2 we briefly introduce and discuss the
background related to this work. Section 3 presents our approach. In section 4 we describe the
experiments and discuss the results. Finally, we conclude in section 4.

II BACKGROUND

2.1 Ewondo language

Ewondo is a bantue language of central Cameroon, it is spoken by the Ewondo people in
Cameroon, predominantly in the central and southern regions. It derived from the Fang-Beti
language, which belong to the extensive Bantu language family, known for its diversity and
widespread presence across sub-Saharan Africa.

The linguistic and cultural landscape of Ewondo is deeply rooted in the traditions and heritage
of the Ewondo people. This language serves as a vital means of communication within the
community, reflecting the rich history and social intricacies of its speakers. With its prevalence
in urban areas, particularly in the capital city, Yaoundé, Ewondo plays a crucial role in daily
interactions, commerce, and cultural expression.

The phonetics of Ewondo involve a set of distinctive consonants and vowels, contributing to its
unique sound system. Pronunciation nuances, intonation patterns, and rhythmic elements are
integral to conveying meaning accurately in spoken Ewondo. The language also incorporates a
range of tones, a common feature in many Bantu languages, which further adds depth and com-
plexity to its oral expression. In fact Ewondo is a tonal language, meaning that word meanings
differ according to pitch, even if the consonants and vowels are the same [1] (Table 2 shows
pairs of words of this type). The Ewondo language has 8 tones (Table 1), divided into punctual
tones, which are tones for which the pitch remains invariable from the beginning to the end of
the pronunciation, and modular tones, which vary in pitch.

Efforts to document and preserve Ewondo, both in written and oral forms, contribute to safe-
guarding the linguistic diversity of Cameroon. Like all Cameroonian languages, Ewondo uses
the GACL1 [4] alphabet (general alphabet of Cameroonian languages) based on the Latin al-
phabet. As with many endanged languages, Ewondo faces challenges such as globalization,
urbanization, and the dominance of major languages. However, initiatives to promote language
education, cultural exchange, and community engagement are crucial for the continued vitality
of Ewondo and its significance in the mosaic of Cameroon’s linguistic heritage; this work is also
in line with this aim. Despite of efforts and like all the languages of Cameroon, Ewondo remains
a low ressource language, i.e. numerical resources are almost non-existent. This constitutes a
major difficulty for deep learning approaches to solving tasks such as speech recognition. How-
ever, recent approaches based on self-supervised models make it possible to tackle this type of
language.

2.2 ASR with Self-supervised models

Self-supervised learning is a machine learning paradigm where a model learns to make predic-
tions about certain aspects of the input data without explicit supervision from labeled examples.

1https://www.silcam.org/fr/resources/archives/32295
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Table 1: Tones in Ewondo language

Pontuel tone Modular tone
DenominationNotation DenominationNotation
Low[Tb] [51v, v́]
High[HT] [44v, v́] High-

Low[HLT]
[51v, v̂]

Medium[MT] [33v, v̄]
M-Low
[MLT]

[|v]

Supra-
High[SHT]

[55v] Low-
High[LHT]

[15v, v̌]

Infra-
LOW[SIL]

[12v]

Table 2: Words that differ only in tone

Words Translation Words Translation
minkud bag minkúd cloud

zám raffia zàm good taste
bám to scold bam to worry
bóg to pil up bog to extract
tag to rejoice tág to classify

First the NLP (Natural language processing) plume this approach has gained popularity for its
ability to use large amounts of unlabeled data, often abundant in real-world scenarios. In fact,
in self-supervised learning, the learning algorithm creates its own supervision signal through a
carefully designed pretext task. The pretext task is a task that is generated from the input data
itself and doesn’t require external annotations. the model is trained to solve this pretext task,
and the acquired knowledge can then be transferred to downstream tasks where labeled data
might be scarce.

The literature is replete with a number of self-supervised acoustic models (for the review of
these model the reader can refers to [14]), but we have chosen to exploit the XLSR-53 a crosslin-
gual version of wav2vec 2.0 [7] for its promising results on languages with small amounts of
data. This model uses a pre-training task similar to BERT[5], illustrated in Fig 1. This pre-
training task consists of randomly masking words in sentences and asking the model to find the
correct words. In the case of speech, parts of the signal are masked.

III WAV2VEC2.0 FOR EWONDO

We can divide our model in two parts; the cross-lingual speech representations (XLSR-53) [8]
as a feature extractor and connectionist temporal classifier(CTC) [2] as a classifier. This section
present the overall design of the model and different configurations used during experiments.

3.1 The Model

Our work is based on the Wav2Vec 2.0 [2] model. Overall, the Wav2vec 2.0 uses an auxiliary
task similar to BERT [13], where certain parts of the signal are masked in order to be recon-
structed by the system, it is trained by predicting speech units for masked parts of the audio. As
shown in Figure 3 we use as feature extractor the cross-lingual speech representations (XLSR-
53)[8] version which is a multilingual representation model pre-trained on 53 languages. The
multilingualism of the model increases its generalization capabilities, and this need for general-
ization is further exacerbated in our context where the small amount of data forces us to freeze
the weights of the extraction model, i.e. the weights of XLSR-53 will not be modified during
training. Our architecture is a same as [13], an encoder-decoder architecture where XLSR-53
acts like a encoder so it produce the latent representation of speech which is use by a decoder,
connectionist temporal classifier (CTC) in this case. The CTC decoder model is a simple linear
transformation followed by a softmax normalization. This layer should project output vector of
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Figure 1: Left. Example of a BERT pre-training task with the sentence "m n abum" (I’m pregnant), the
word "n" is hidden and the model must predict it. Rigth. The same concept is applied to the audio signal,
where certain portions are masked and wav2vec 2.0 must predict them.

encoder into the dimensionality of the output alphabet for each position in the output sequence.
The main feature of this decoder is that it does not require strict alignment between the audio
signal and its transcription, i.e. it only needs the input vectors (produced by XLSR-53) and
the overall output sentence for training rather than a strict correspondence between input vector
segments and output sentence segments. Let’s take a closer look at the formal description of the
fonctionnement of each part of our model.

Encoder. This XLSR-53 is a multilingual version of wav2vec 2.0 that consists of three parts:
firstly, the feature encoder, which contains a multilayer convolutional neural network to process
the raw waveform of audio speech. Secondly, the transformers, which are fed by the encoded
feature and learn a contextualized representation from it, and thirdly the quantization module
for selecting the speech unit to be learned from the latent representation space produced by the
feature encoder. The purpose of this third part is to reduce the cardinality of the representation
space and can be thought of as a function q that maps any vector x in the latent space to a vector
q(x) in a small group C of vectors called centroids. In a wav2vec, these quantized vectors are
considered as the target of a transformer. As mentioned earlier, wav2vec uses a self-supervised
strategy similar to BERT [5] for learning. This strategy involves randomly masking part of
the feature encoder’s output before sending it to the transformer, but the learning objective is
formulated in a constrastive way and requires the identification of the correct representation, not
of the encoded representation, but of the quantized latent audio representation qt in a set of K+1
quantized candidate representations q̃ ∈ Qt which include qt and K distractors for each masked
time step. The lost constrastive function can be expressed as follows: −log exp(sim(ct,qt))∑

q̃∼Qt
exp(sim(ct,q̃))

where ct is the transformer output, and sim(a, b) represents the cosine similarity. This loss is
augmented by a codebook diversity penalty to encourage the model to use all codebook entries.

To build a multilingual version of wav2vec 2.0, XLSR uses a shared quantization module on fea-
ture encoder representations, which means that feature encoder representations from different
languages can be associated with the same quantized speech units. The multilingual quantized
speech units produced by the quantization module are then used as targets for a transformer.
This process forces the model to learn how to share discrete tokens between languages, creating
a link between them that leads to a universalization of the acoustic representations obtained by
the model.
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Figure 2: (a) Steps taken by CTC to obtain the final transcription of the word "yaan" from one of its valid
alignments. Firstly, we merge the repeating characters that are not interspersed with ϵ and secondly, we
delete ϵ. (b) Examples of valid and invalid raw output for the word "fas". An alignment is valid when we
can obtain a correct final transcription after the operation described in (a)

.

Decoder. The CTC algorithm was developped by Grave and al.[2] for labeling sequence data
task. As we previously said, it is alignment-free i.e in our case it doesn’t require an alignment
between the input vector segments produce by XLSR-53 and the output sentence segments.
However, to get the probability of an output given an input, CTC works by summing over the
probability of all possible alignments between the two. To define these possibles alignments,
Grave et al. [2] introduce the ϵ symbol as a blank character in the output alphabet. This in-
troduction solves two problems: (1) it is not logical to force each input step to align with an
output in a speech recognition task; this symbol therefore marks a silence and (2) it marks the
presence of several characters in a row, as it is difficult during recognition to know whether
multiple identical letters in a row are a transcription of the same fragments or represent separate
fragments, as is shown in figure 2 (a), putting an ϵ between them allows this difference to be
made. As shown in figure 2 (a), a CTC alignment has the same length as the input, and we
get the final output after merging the repeating characters and deleting the ϵ symbol. A CTC
alignment is considered valid (figure 2 shows examples of valid and invalid CTC alignments
for the "fas" output) for a given output if we can obtain the output from this alignment after the
above-mentioned operations. CTC merges repeats characters between ϵ, so if an output has two
of the same character in a row, then a valid alignment must have an ϵ between them. Based on
previous description of alignment in CTC, during the training phase the objective is to maxi-

mize P (Y |X) =
∑
a∈A

T∏
t=1

p(at|X) where a is a possible aligment and p(at|X) is probability to

have symbol at in time t in Y knowing X . p(at|X) is given by the softmax at each time step.
During inference phase CTC pick up â = argmax

Y
(P (Y |a)) as a final alignment and give an

output after merging and remove operation.

As mentioned earlier in our model, XLSR-53 is frozen during the train process ie only the
weights of decoder are modified during the process. Once the model is trained, if we would
like to use it to find a likely transcription for a given new raw speech data (waveform), we
proceed as follow: encoded it by XLSR-53 in a vector X , then CTC decoder tent to provide
Ŷ = argmax

Y
(P (Y |X)) where P (Y |X) is the probability to have a sentence Y with X as input.

Then greedy search is used as an inference process to pick up Ŷ , meaning we take the letter
with the highest probability at each time step, until you receive the special token symbolizing
the end.
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Figure 3: ASR with self-supervised XLSR-53 Model. Speech data is passed in wavform to XLSR-
53, which provides a vector representation of it. This representation is used by the CTC to predict a
transcription.

3.2 Experiment setup

We have chosen three main axes experiments, corresponding to different configurations of the
features extractor model and data pre-processing.

Tokenization. If a token for speech recognition is the character, Rolando Coto-Solono’s
work[10] on Bribri (a Latin American language), has shown that it could be beneficial in a tonale
low ressources language context to make tones explicit in the transcriptions of texts to be recog-
nized. In fact, he proposes to introduce tones as explicit characters to be recognized. To verify
this aspect, in ours experiments we introduced two tokenization principles presented in Table 3:
TonSep where tones are explicit symbols to be recognized by the model, and ALL+tones where
a tone was associated to a character and represented as one symbol to reconized.

Table 3: Type of tokenisation

Type de Tokenisation Example Tokenisation
ToneSep ma wóg miǹtàg m|a| w|´|o|g |m|i| |̀n|t|‘ |a|g|
All+tones ma wóg miǹtàg m|a|w|ó|g|m|i|‘|n|t|à|g|

Features extractor . We have very little labelized data, so the XLSR-53 multilingual features
extraction model is frozen, which means that it provides vectors from the weights derived from
its pre-training. We propose to experiment with various XLRS-53 pre-trained models. These
models are presented in the Table 4. The model named XLSR-fb2 is the standar model [8],
LeBench3 is the Wav2vec 2.0 LeBenchmark [12] trained on data from the French language
exclusively; the remaining models (XLSR-kw and XLSR-sw) being produced from XLSR-fb
by fine turning on a specified language, in fact these models was built using standard model
weights as initial weights, then pre-training was continued using unlabeled data of a specific
language (kinyarwanda,swahili). Following this method, XLSR-kw4 is a specialized XLSR-53
model for the Kinyarwanda language and XLSR-sw5 is a specialized XLSR-53 for the Swahili
language, both of which are African bantue languages.

2https://huggingface.co/facebook/wav2vec2-large-xlsr-53
3https://huggingface.co/LeBenchmark/wav2vec2-FR-7K-large
4https://huggingface.co/lucio/wav2vec2-large-xlsr-kinyarwanda
5https://huggingface.co/Akashpb13/Swahili_xlsr
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Table 4: Features extractions models

Model Denomination Source
XLSR-fb Facebook XLSR-53 Hugging Face
LeBench Wav2vec2 LeBench-

mark
Hugging Face

XLSR-kw XLSR kinyarwanda
language

Hugging Face

XLSR-sw XLSR for swahili lan-
guage

Hugging Face

Language model. Previous ASR models required both a language model and a pronuncia-
tion dictionary to transform classified fragment sequences of audio recordings into a coherent
transcript. Recent end-to-end models have made this possible, but [7] has shown that the use of
a language model in conjunction with wav2vec 2.0 significantly improves ASR performance,
especially in low ressources contexts. As part of our experiments, we tested the ASR model
with the contribution of a bigram language model constructed from the transcriptions of the
recordings in our dataset.

IV EXPERIMENTS

The main objective of this work is to evaluate the performance of XLSR-53 for speech recogni-
tion of the Ewondo language. To achieve this goal, we collected and pre-processed speech data,
then implemented the architecture described in Section 3. the literature has helped us choose
the right tools to carry out these tasks. This section presents the details of these activities as
well as the evaluation results.

4.1 Implementation details

Dataset and preprocessing. The Ewondo language has no public dataset for the ASR task,
so we built a corpus from 103 sentences read by 5 speakers, including 4 men and one woman.
We randomly selected 11 sentences for testing (2min30s) and the remaining 92 sentences for
training (21min51s).The data was recorded at the computer science laboratory of Yaounde I,
with a magnetophone, we use audacity6 sofware for speech enhancement and artificially aug-
mented these data with speechbrain[11] toolkit which using the method described in [spec]
whose idea is to introduce noise into data using simple transformation on a signal like speed
perturbation, frequency dropout, time dropout to obtain new data.

Architecture. We used the extraction models from the hugging face repository 7 [9] as well
as the recipes proposed on the same platform for the development of the ASR model 8. The
model hyperparameters are the same as [13]. We have used the KenLM[3] framework to build
the bigram language model using transcript texts only; this model simple store the probabilities
of word pairs appearing in the transcripts.

6https://www.audacityteam.org
7https://huggingface.co
8https://huggingface.co/blog/wav2vec2-with-ngram
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4.2 Results and Discussions

Tables 6 and 5 show performances of the ASR model according to the different extraction mod-
els, but also according to the use of the language model (LM/no.LM) during decoding, and the
use of artificial data (sA/no.SA). In these two tables, we can see that the performance associated
with Lebench is by far the worst of all configurations. This discrepancy can be explained by
two facts: Lebench is a monolingual extractor trained only on French, a language linguistically
distant from Ewondo. We can also see from these tables that the use of the language model
systematically increases the performance of the ASR model, which is consistant with the re-
sults presented in [7]. We also note the counter-intuitive results of artificial data augmentation,
which degrades performance. One explanation for this contraction is to be found in the quantity
of data from which the increase is made. Indeed, being of very small quantity, the artificial data
acts as noise for the model.

Table 5: ASR model performance (%) with different feature extractors. Type of Tokenization = ALLfeat

WER CER
LM no.LM LM no.LM

sA no.sA sA no.sA sA no.sA sA no.sA
XLSR-fb 74.6 75.7 77.3 80.5 32.2 27.9 34.8 31.1
XLSR-rw 79.5 70.8 77.8 74.6 35.3 28.6 36.1 31
XLSR-sw 80 77.8 83.8 77.8 35.4 34.8 35.2 36.8
Lebench 97.3 97.3 100 100 93.9 97.3 100 100

Table 6: ASR model performance (%) with different feature extractors. Type of Tokenization = ToneSep

WER CER
LM no.LM LM no.LM

sA no.sA sA no.sA sA no.sA sA no.sA
xlsr-fb 77.3 73 89.4 82 32.7 27.6 36.2 29.8
xlsr-rw 78.4 77.3 88.8 87.1 33.6 29.8 36.5 31.2
xlsr-sw 79.5 75.1 87.1 75.1 33.2 30.2 36.2 32.3
Lebench 97.3 97.3 100 100 93.9 97.3 100 100

Table 7: Average results for each tokenization methods

WER CER
LM no.LM LM no.LM

sA no.sA sA no.sA sA no.sA sA no.sA
ToneSep 82.8 80.4 84.7 83.2 49.2 47.1 51.5 49.7
ALLfeat 83.1 80.6 91.3 86 48.3 46.2 52.2 48.3

Table 7 shows the average performance of the various ASR models in relation to the type of
tokenization chosen. We can see that ToneSep is on average higher than ALL+tones, which
means that it’s better to recognize tones separately from characters in the low ressources case,
a result in line with the recommendations of [10]. On average, the XLSR-FB standars perform
best (70.8% on WER and 28% on CER), outperforming the specialized models, which can
be explained by the richness of their representation, However, overall performance remains
low compared with the literature, which can be attributed to the extremely small amount of
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data available for training but also the distance existing between the target language and the
languages underlying the pre-training of the acoustic model.

4.3 Conclusion

The aim of this paper was to apply the multilingual acoustic model wav2vec XLSR-53 to the
Ewondo language for the transcription task. Preliminary results show overall poor performance
compared to the litterature in other languages (the best score being 70.8% on the WER and 28%
on the CER). These results can be explain by the distance existing between the target language
and the languages underlying the pre-training of the acoustic model. Although some similar
work has already been carried out on African languages, our work reveals some singularities:
firstly, the language of application, which to our knowledge is the first to be the subject of such
a study; and secondly, the extremely small size of the dataset, which calls for greater finesse in
pre-processing. In fact, in the literature working on low-resource data, datasets extend over at
least several hours. This extremely low resource has enabled us to see the generalization limits
of XLSR-53. Despite of the low performance, these experiments have enabled us to sketch
out, apart from the need for additional data collection, some paths to follow in oder to improve
the transcription model. The first is to pre-train a multilingual wav2vec XLSR-53 model on
Ewondo recordings, in order to familiarize the model with the language; the second is to pay
particular attention to the explicitness of tones in transcription, which has proved beneficial to
the model; the third is to build a more robust language model from a richer corpus of text. To
further evaluate wav2vec in the Ewondo transcription task, a comparison with others features
extractors models is a particularly interesting prospect.
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