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Abstract. Lua (Ierusalimschy et al., 1996) is a well-known scripting
language, popular among many programmers, most notably in the gam-
ing industry. Remarkably, the only data-structuring mechanism in Lua,
is an associative array called a table. With Lua 5.0, the reference im-
plementation of Lua introduced hybrid tables to implement tables using
both a hash table and a dynamically growing array combined together:
the values associated with integer keys are stored in the array part, when
suitable. All this is transparent to the user, which has a unique simple in-
terface to handle tables. In this paper we carry out a theoretical analysis
of the performance of Lua’s tables, by considering various worst-case and
probabilistic scenarios. In particular, we uncover some problematic situ-
ations for the simple probabilistic model where we add a new key with
some fixed probability p > 1

2
and delete a key with probability 1 − p:

the cost of performing T such operations is proved to be Ω(T log T ) with
high probability, instead of linear in T .

1 Introduction

When implementing the standard algorithms and data structures of a new pro-
gramming language, engineers usually follow the classical solutions that have
been validated by both practice and theory. Sometimes, however, they innovate
and propose new ideas that fit best with the internal implementation of the
language or that behave better with the typical data of their intended audi-
ence. For example, this was the case for the sorting algorithm TimSort used
in the main implementation of Python.3 This new, elegant and powerful sort-
ing algorithm was quickly adopted by several other languages, including Java.4

After a decade of existence, computer scientists started analyzing its efficiency,

⋆ The work of the first author has been supported by funds from project MOTION
(Project PID2020-112581GB-C21) of the Spanish Ministry of Science & Innovation
MCIN/AEI/10.13039/501100011033.

3 https://github.com/python/cpython/blob/main/Objects/listsort.txt
4 https://docs.oracle.com/javase/7/docs/api/java/util/Arrays.html

https://github.com/python/cpython/blob/main/Objects/listsort.txt
https://docs.oracle.com/javase/7/docs/api/java/util/Arrays.html


2

helped fixing some issues and confirmed its excellent performances at a theo-
retical level [1,2,3]. The actual principal implementation of the language Lua
revisits the way maps, i.e. associative arrays, are structured internally, in a new
and innovative structure named table. Studying this novel way of structuring
data from a theoretical point of view is the main purpose of this article.

Lua5 is a scripting programming language [4] created in the early nineties
adopted by many programmers, especially for the development of gaming ap-
plications; it keeps a base of tens of thousands of users worldwide. Like many
scripting languages, Lua is characterized by its simplicity and extensibility, with
the aim to help integrate code written in different programming languages.

The only data-structuring mechanism in Lua are so-called tables: this was a
design decision which made the language simple, yet flexible and powerful. If H
is a Lua table then the assignment H[x] = y associates the value y to the key x,
for whatever x and y, and regardless of their types. If x was already a key in H
then the value associated to H is updated and changed to y. If x was not present
then the instruction inserts the pair x 7→ y in the table H. The expression H[x]
actually returns a reference to the place where the value associated to x is stored
or the special value nil if the key is not present in the table; the reference can
be the used to obtain the sought value or to assign a new value. To delete a pair
x 7→ y from H it is enough to assign nil to H[x]. Everything is transparent to
the user, including how the table grows to accommodate more and more pairs,
or how unused space is returned back to the memory heap for future use.

Until Lua 4.0, tables were implemented strictly as hash tables: all pairs x 7→ y
were explicitly stored in a single hash table, irrespective of the type of the keys
x. Lua 5.0 brought on a new implementation of the tables in order to optimize
their use as arrays: pairs with integer keys are stored in a separate actual array,
without storing their keys, provided that the index (=integer key) falls within
the current range [1, . . . , n] of the array [5]. The value n changes dynamically so
that the array always contains ≥ n/2 non-nil values. All other pairs, when the
key is not an integer or it is outside the current range of the array are stored in
the hash table as usual. The new Lua (hybrid) tables thus have two parts called
the hash-part or hashmap6 and the array-part or array.

Main contributions & Plan of the paper. In this paper we provide a theo-
retical analysis covering some aspects of the performance of Lua hybrid tables7.
First we consider the hashmaps (Section 2). We review how Lua hashmaps work,
and discuss their performance in the absence of deletions. Our main result is in
Subsection 2.4 where we develop a simple probabilistic model which applies
in many reasonable practical scenarios and show that Lua might significantly
deviate from the desirable expected constant amortized time per insertion (The-
orem 1). It is important to remark that in our analysis we are not assuming

5 From the Portuguese “lua”, meaning moon.
6 We will sometimes also refer to the hashmap as the hash table.
7 All detailed descriptions in the remaining of the paper and our analysis refer to
version 5.4.4 of Lua (the most recent).
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worst-case hypothesis such as a bad hash function or that we have to perform a
sequence of operations designed by an adversary.

After that, in Section 3, we investigate the performance of the hybrid table
as a whole, this time focusing in sequences of insertions involving integer keys,
which should exploit, as much as possible, the array component of Lua’s hybrid
tables. We show first that a carefully crafted sequence of n insertions will require
super-linear cost (Example 2 and Proposition 2). We also show that less adverse
scenarios, in particular, some that may arise naturally in practice, will need
expected constant amortized time per insertion, however the array part will be
empty for most part of the time (Theorem 2), and thus the advantages of the
hybrid scheme can become blurred. Finally, in the conclusions (Section 4), we
present some experiments and propose some easy and classical solutions to avoid
the drawback of the hybrid table’s implementation.

2 Hashmaps in Lua

2.1 Description of the hashmap algorithms

When non-empty, a hashmap in Lua consists of an array of size M = 2m for
some m ≥ 0. Each slot contains a key, a value and the index next of the next
element (nil if there is no successor in the search sequence). When both the
key and the value are nil the slot is empty; for slots that have been deleted
the value has been set to nil, but the key is retained; the slots that contain the
actual elements of the table have both their keys and their value fields non-nil.
Throughout the article, a slot is said to be used, deleted or free when it contains
a pair key/value, a pair key/nil or a pair nil/nil, respectively.

In addition to the array, the data structure also keeps an index last free

pointing to the first slot that must be checked when looking for a free slot in a
downwards scanning of the array. Initially, we set last free ← M − 1, and it
can only decrease.
Search. The search of a key x simply consists in computing its hash value then
following the next links until we find the key x and return the associated value
(success) or the end of the list (failure).
Deletion. To delete a key x, its position in the table, if it exists, is found as
for the search and then its associated value is set to nil. The next field remains
unaltered to maintain the chaining.
Insertion. If one wants to set x 7→ y and the key x is already in the table,
even with a deleted status, we just update its associated value to y. If x is not
already there, let i be the position corresponding to the hash value of x (the
main position of x, in Lua parlance). If the slot i is free or deleted, the key x
and its value y are put there, with a nil next-link. Otherwise, there is a collision
with another pair x′ 7→ y′ at the position i. We distinguish two cases. If x′ is at
its main position, a free slot is found for x 7→ y and the chaining is updated so
that x 7→ y is on the second position in the linked list starting at index i. This is
easily done by updating the two next-links at index i and at the free slot. If x′
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is not at its main position, it is moved to a free slot, which requires a list scan
starting from the hash value of x′ to find its predecessor in its chaining. Then
x 7→ y is set at index i, with a nil next-link.

Looking for a free slot is accomplished by scanning the table from right to
left starting at position last free until a free slot. Importantly, deleted slot are
ignored during this process in Lua (to avoid problems with the chainings). If no
free slot is found, i.e. last free exits the left boundary of the array, then a
rehash occurs: the number of used keys n is determined, then a new hashmap of
size 2m is allocated, where m is the smallest integer such that n + 1 ≤ 2m. All
pairs keys 7→values and the pair x 7→ y are then inserted into the new map.

So in any case, just after its insertion, x 7→ y is at the first or second place
in its chain. Examples of insertions in a Lua hashmap are depicted in Fig. 1.

0 1 2 3 4 5 6 7

k1v1•
k2v2•

k3v3•
ℓ
w•

last free

insert key k4 (hash=2) with value v4
collision with k1, in its main position

0 1 2 3 4 5 6 7

k1v1•
k2v2•

k3v3•
k4v4•

ℓ
w•

last free

insert key x (hash=4) with value y

collision with k4, not in main position

0 1 2 3 4 5 6 7

k1v1•
k2v2•

k3v3•
k4v4•

ℓ
w•

x
y
•

last free

Fig. 1: If there is no deleted value and
if there is a collision with a key that is
in its main position, the new inserted
element is placed in a free spot and is
at the second position in its chaining.
If the colliding key is not at its main
position, the new element is put there,
and the colliding element is placed in
the free spot.

0 1 2 3 4 5 6 7

k1v1•
k2−•

k3−•
ℓ
w•

z
−•

last free

insert key x1 (hash=7) with value y1
collision with k2 having no value

0 1 2 3 4 5 6 7

k1v1•
x1
y1•

k3−•
ℓ
w•

z
−•

last free

insert key x2 (hash=7) with value y2
collision with x1, in its main position

0 1 2 3 4 5 6 7

k1v1•
x1
y1•

k3−•
x2
y2•

ℓ
w•

z
−•

last free

Fig. 2: If the main position of the newly
inserted key has a deleted value, it is
just put there. If it is used, then the in-
sertion proceeds as previously, consid-
ering the deleted spot as occupied for
the search of a free spot. Observe that
at the end, the hash values of 2 and 7
share the same chain, which could not
happen with no deletion.

The insertion al-
gorithm and other
auxiliary functions in
pseudo-code can be
found in Appendix ??.
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2.2 Settings and analysis when there is no deletion

Designing accurate hash functions is a whole field on its own, and it is not the
topic of this paper. So, throughout the article, we consider that for a hashmap
of length M , the hash values of different keys are independent uniform random
integers of {0, . . . ,M − 1}. They are sampled again when a rehash occurs. This
is the standard assumption for such analysis that do not go into the details of
specific hash functions [7] (it is called simple uniform hashing).

In the absence of deletions, Lua’s hashmaps behave as separate chaining
hashing [7]. If N is the number of elements in the table and M the size of the
table, the load factor is α = N/M ≤ 1. The average cost (measured as the
number of slots inspected) of successful searches (SN ) and unsuccessful searches
(UN ) is [7, §6.4, p. 525], as N and M tends to infinity: SN ≈ 1 + α

2 and UN ≈
1 + α2

2 . Note that it may seem strange that UN ≤ SN , but it is because of the
implicit conditioning that successful searches do not consider free slots.

Classically, the rehashing procedure by doubling the capacity has a constant
amortized cost, as the pointer last free cannot be decreased more than M
times. In conclusion, everything is well known when there is no deletion, and the
expected amortized cost of an insertion is O(1).

2.3 General Analysis: an Unlikely Worst-Case Scenario

When we insertN elements into a Lua table, we have seen that the total expected
amortized cost is O(N). We show that the situation changes significantly when
we consider deletions. We estimate the time taken by the whole process by
counting the number of times the function to insert a key is called: it is called
once when an insertion is performed , unless a rehash occurs, in which case it
is also called once for every key having an assigned value. Clearly this number
of calls is a lower bound for the complexity of the whole process. Keys are not
integers, only the hash-part is studied in this section.

Example 1 (Alternation of deletion-insertion on a full hashmap). If we delete
an element from a full hashmap of size M = 2m and then perform an insertion
of a new element, we rehash the whole table into the same size and the hash is
going to be full again. Each rehash costs Θ(M) calls to the insertion function of
Lua. If we keep this alternation of delete-insert for M times, the cost is huge:
for Θ(M) operations we obtain a quadratic cost Θ(M2).

One can legitimately object that this scenario is too unlikely to question the
implementation. Users normally alternate a number of insertions with deletions
in a more complex pattern. In the next section we present a simple, yet natural,
probabilistic model for insertions-deletions.

2.4 General Analysis: An Average-Case Scenario

In this section we consider a simple probabilistic model in which we start with
an empty hashmap, and then perform a large number T of operations. Each
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operation consists in inserting a new key to the hash table, with probability
p ∈ ( 12 , 1), or deleting the value associated with a key in the table with probability
1 − p (unless the hash table contains no value, in which case only an insertion
is possible). The parameter p is fixed, and chosen to be greater than 1

2 so that
the hash table tends to grow linearly in size with T . When a key is deleted, it
is taken uniformly at random amongst the assigned keys currently in the hash
table. We choose this model as it is a simple yet natural way to describe a mix
of insertions and deletions in a data structure. Keys are not integers, only the
hash-part is studied in this section.

In the following, we say that a property holds with exponentially (resp. super-
polynomially) high probability in T when the probability that it does not hold
is less than exp(−cT ) (resp. exp(−cT d)) for some positive constants c (and d).

Our main result of this section is a negative result, emphasizing that Lua’s
hash table behaves badly for this simple and natural probabilistic model.

Theorem 1. Let p ∈ ( 12 , 1). Starting from an empty hashmap, if T operations
of insertions with probability p and deletions with probability 1−p are performed,
then with super-polynomially high probability in T , the insertion function of Lua
is called Ω(T log T ) times. As a consequence, the expected time complexity of the
process is in Ω(T log T ).

21 25 29 213 217
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size of new hashmap M = 2m
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Fig. 3: Total number of rehashes (y-axis)
producing a hashmap of a given size
M (x-axis) during a run of T = 107

operations. The plot is logarithmic in
M(x-axis). Plots correspond to p = 0.6
(green), p = 0.75 (red) and p = 0.9
(blue). Each point is the average result
of 100 simulations directly using Lua.

In our proof, we establish that Lua spends a lot of time rehashing almost
full hashmaps without increasing the size, impairing the efficiency of the data
structure. This also shows on our simulation, see Fig. 3.See Appendix ?? for

the proofs of the lem-
mas.

Before going on with the proof of Theorem 1, let us clarify our notations
for this section: 1) T denotes the number of operations performed in total; at a
given moment t ∈ {0, . . . , T} operations have been performed; t is often referred
to as time; 2) at any time t, the hash table has size Mt, and contains εt free
cells, δt deleted cells (keys with no values), and νt used cells8 (keys with values).
Notice that, at any time t, εt + δt + νt = Mt: every cell is in one of the three
states; 3) at time t = 0, the hash table is empty: M0 = ε0 = δ0 = ν0 = 0.

First observe that since an insertion is performed with probability p and a
deletion with probability 1 − p, the number of used keys in the table increases
by 2p − 1 > 0 in expectation with each operation. This can be turned into

8 We use the Greek letter ν for consistency with the other notation in this section, νt
corresponds to N when no deletions occur.
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a statement with exponentially high probability using classical concentration
inequalities, yielding the following lemma.

Lemma 1. Let c be a constant with 0 < c < 2p−1. If at a given moment s there
are νs used cells in the hash table, then after t more operations, the hashmap
contains more than νs + ct keys with exponentially high probability in t.

Set β = 2p−1
3 and assume that T is sufficiently large. A first consequence

of Lemma 1 is that, with exponentially high probability in T , at some moment
the hashmap will have size M with β

2T < M ≤ βT , and some time after the
hashmap will reach size 2M . We will establish that between these two moments,
the insert function is called Ω(T log T ) times.

Let th be any time in which we just rehash into a hashmap of size M , where
M is the unique power of two such that β

2T < M ≤ βT . It is not necessarily
the first time we rehash into a hash table of size M . As we just rehashed, we
have δth = 0, and M = νth + εth . As long as the hash table is not empty (this
would force an insertion; but it is exponentially unlikely that we reach an empty
table) and that there is no rehash (a rehash will happen at some point with
exponentially high probability), we have for t ≥ th:

δt+1 =


δt − 1 with probability pδt

M [insertion in a deleted key],

δt with probability p
(
1− δt

M

)
[insertion in a free cell],

δt + 1 with probability 1− p [deletion].

(1)

In Eq. (1), we see that δt tends to increase when pδt/M < 1− p and it tends
to decrease when pδt/M > 1 − p. So the equilibrium point is at δt ≈ 1−p

p M .
Fortunately for the analysis, we show that a rehash occurs before δt reaches this
value, with exponentially high probability. Let τ denote the time of the next
rehash. We can prove the following lemma.

Lemma 2. For any positive d > 1
2p−1 , with exponentially high probability in εth ,

we have τ ≤ th + dεth and at any time t between th and τ we have pδt
M ≤ 1− p.

Let t0 = ⌊ 1−p
p εth⌋ < εth . It is easy to check that no rehash could have

occurred and that the hashtable was never empty when we reach time th + t0.
We are now interested in estimating the value of δth+t0 . As δt increases by at
most 1 at each operation, we have δt ≤ 1−p

p εth for any t such that th ≤ t ≤ th+t0.

Since the hash table is more than half filled just after a rehash, we have εth < M
2

and pδt
M ≤ 1−p

2 , for th ≤ t ≤ th+ t0. Hence, until time th+ t0, we can bound from
below the process δt by a process that increases with probability 1−p, decreases
with probability 1

2 (1− p) and does not change otherwise.

Lemma 3. At time th + t0, with t0 = ⌊ 1−p
p εth⌋, with exponentially high proba-

bility in t0 we have δth+t0 ≥
(1−p)2

3p εth .
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Thanks to Lemma 2, we know that, with exponentially high probability, the
probability that the number of deleted elements decreases at any given step is
smaller than the probability it increases. So δt remains linear in εth after time
th + t0 and until a rehash occurs, as formalized in the following statement.

Lemma 4. With exponentially high probability in εth there is a rehash at some
time τ ≤ th + dεth , for any d > 1

2p−1 . Moreover, there exists some constant

γ ∈ (0, 1) such that, just before the rehash, δτ−1 ≥ γ εth .

We can now conclude the proof of Theorem 1: with exponentially high prob-
ability in T , the hashmap reaches the capacity M . When it is the first time it
reaches this size, and as we only insert elements one at a time, the hash table
contains M/2+1 used cells and ε0 := M/2−1 free cells. By Lemma 4, after some
time another rehash occurs, with at least γ ε0 deleted cells just before rehashing.
So the newly created hash table has capacity M (it is exponentially unlikely to
decrease) and contains at least γ ε0 empty cells. Then we apply Lemma 4 again,
and there is another rehash into a hash table of capacity M , with at least γ2 ε0
empty cells, etc. We continue while γi ε0 ≥

√
T , that is, a logarithmic (in T )

number of times. At each rehash we have to insert all the used keys, and there
are a linear number of them, so it globally costs Ω(T log T ) calls to the insertion
function: Ω(log T ) rehashes each costing Θ(T ) calls. It is very likely that such
a sequence of rehashes will occur, since at some point we reach a capacity of
2M with exponentially high probability by Lemma 1. To conclude the proof,
we just have to observe that when we sum the probabilities of error (by the
union bound), we sum a logarithmic number of error terms, which are all in

O(exp (−c
√
T )), so it is super-polynomially unlikely it does not happen.

3 Hybrid tables in Lua

Recall that when keys are integers, Lua stores their values in the array part of
the hybrid table [5,6]. The array-part corresponds to a range [1, 2a] of keys, or
∅ at the beginning. To avoid wasting memory, Lua makes sure that more than
half of the keys are being used at any one time. When associating a value to a
key into the table, if the key is an integer within the range of the array-part, the
value is simply inserted there. Otherwise, the pair key/value is inserted into the
hashmap as explained in Section 2.1. If the insertion into the hashmap provokes
a rehash, we first compute the largest a′ ≥ 0 such that [1, 2a

′
] contains at least

2a
′−1 + 1 keys from the hybrid table.9 Then A′ = 2a

′
will be the new size of

the array-part, and the values of the keys within its range are placed there.
The rest of the keys are placed in the hashmap, which has size M = 2m, where
m is chosen so that the total number of elements it contains is between 2m−1

(strictly) and 2m. The insertions after the rehash are performed in the order of
their position in the previous hashtable, each key going either to the hash-part
or to the array-part if it is an integer smaller than or equal to A′.

9 This is done in linear time by counting the number of integer keys between 2ℓ−1 and
2ℓ for each ℓ, for 1 ≤ 2ℓ ≤ M .
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3.1 Settings for the analysis

In all the following analysis of Lua hybrid tables, we consider that only insertions
of pairs key/values are performed. This setting is sufficient to exhibit some unfor-
tunate behavior in natural models, and it can only become worse if we also have
deletions. Rather than being interested in what happens between two rehashes,
as in the previous section, we study what happens when a rehash occurs.

We consider a sequence of n insertions y = (y1, . . . , yn) of integers (keys) into
an initially empty Lua table. We write t0, t1, t2, . . . , tℓ for the sequence of rehash
times, setting t0 = 0, letting ti be the time of the i-th rehash. Let ℓ = ℓ(y) be
the total number of rehashes. More precisely, the insertion of yti induces the i-th
rehash. Denote by βi the size of the hashmap after the i-th rehash.

In the process, the cost introduced by the insertions of elements in the array-
part is small: as we only consider insertions in this section, the size of the array-
part can only increase, and the amortized cost of an insertion in such a dynamic
array is O(1), so the overall cost is O(n). Hence, the cost of interest for us
is the one induced by the rehashes, and we denote by C the cost defined by
C :=

∑
βi. This exactly estimates the over-cost induced by rehashes, and is our

main parameter of study in this section. It is an accurate estimation of the total
number of calls to the Lua insertion function, up to a multiplicative constant.

3.2 Rehashing into the array-part

In this section we show a simple example of how the hybrid mechanism may lead
to super-linear costs C = Ω(n log n). Moreover, we prove that O(n log n) is the
worst case possible for a sequence n insertions into an initially empty Lua table.

Example 2. Consider inserting (−(2k − 1),−(2k − 2), . . . , 0, 1, 2, . . . , 2k) into an
empty Lua table. We claim that this induces exactly k rehashes in which we
systematically reinsert 2k entries into a renewed hash-part of size 2k.

Non-positive integers go into the hash-part of the table. Thus (−(2k−1),−(2k−
2), . . . , 0 go into the hashmap, which is going to be full and of size M = 2k.
Then inserting 1, induces a rehash. However 1 goes immediately to the array-
part. Continuing, we rehash and double the size of the array-part when inserting
1, 2, 3, 5, 9, . . ., in short for 1 and (2i + 1)i=k−1

i=0 . The remaining positive keys go
directly into a free spot of the array-part and do not induce a rehash.

It is therefore possible for a sequence of n = 2k+1 integers to yield a cost
C = Ω(n log n). This is the worst possible case:

Proposition 1. When performing n insertions into an initially empty Lua ta-
ble, the insertion function is called O(n log n) times in the worst-case.

Proof (Proof sketch.). We want to show that the cost C :=
∑ℓ

i=0 βi isO(n log n).
For this, we distinguish the βi’s that correspond to an increase of the array- See Appendix ?? for

the full proof.part size from the other ones. When the array-part increases in size, at the very
least it doubles in size. Hence the total number of rehashes in which the array-
part increases is O(log n). The hashmap does not increase when the array-part



10

does, as elements are added one at a time. Since βi ≤ 2n for all i, the overall
contribution of these βi’s to C is at most O(n log n).

At this point we show that the remaining rehashes, in which the hash-part
grows, only contribute to a total of O(n), which concludes the proof.

Remark 1. If not all of the n insertions are positive integers, we may refine the
result. Let n′ be the total number of positive integers. Then the worst case for
C is O(n+ n log(1 + n′)), as long as only insertions are performed.

3.3 Inserting permutations in Lua Tables

In Example 2 we showed a sequence of n insertions of integers leading to a
cost C = Θ(n log n). Some of the integers were negative, so they could only
ever be in the hashmap. In this subsection we show that this worst case is
still attainable on a very natural setting involving only positive integers: the
sequence y is a permutation of [n] := {1, . . . , n}. This setting, a priori, gives
the array-part the best chance possible of being exploited, while not repeating
keys. We present both the worst-case (this subsection) and the case of a random
permutation (Subsection 3.4). Though presented in terms of permutations, these
settings apply whenever the keys are consecutive integers but do not appear in
increasing order, for instance during the marking of the transversal of a graph
of vertex set [n].

Proposition 2. Inserting n elements given by the order of a permutation π of
[n] requires Ω(n log n) calls to the insertion function of Lua in worst-case.

Proof (Proof sketch.). Consider first n = 3 × 2k for some k > 0. Define theThe full proof is avail-
able in Appendix ??. permutation

π =
(

1 2 ··· 2k 2k+1 2k+2 ... 3·2k
2·2k+1 2·2k+2 ... 3·2k 1 2 ... 2·2k

)
.

The integer keys 2·2k+1, . . . 3·2k cannot be on the array-part, unless we have
inserted more than t = 2k+1 elements of π. Thus, after inserting π(1), . . . , π(2k),
the hash-part has size M = 2k and it is full. Then, the insertion of π(2k + 1)
and π(2k + 2j + 1), as long as j < k, induces a rehash that increases the size of
the array. Each of the k rehashes we have just described has a cost of at least
2k. Hence we obtain a cost that is Ω(2k × k) = Ω(n× log n). For general n, pick
the largest k with 3 · 2k ≤ n, and complete the permutation π above.

3.4 Average case for insertion of permutations

Fortunately, the average case for permutations is almost linear: our main result
of this section, Theorem 2, states that, for any super-linear function h(n), with
probability tending to 1 the cost C of a random permutation is O(h(n)).

However, we will see that the array-part is not really exploited as it should.
For a random permutation, with high probability, the corresponding Lua table
does not have an array-part until the very end: for this scenario we do not really
take advantage of the hybrid data structure.
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Theorem 2. Let g : N → R>0 be an arbitrary non-decreasing function satisfy-
ing g(n) → ∞ and g(n) = o(n) as n → ∞. Then, with probability tending to 1
as n→∞, the number of calls to the insertion function, starting from an empty
table, to build the Lua table for a random permutation of [n] is O(ng(n)).

Fixing S ⊆ [n], let St = St(π) := {π(k) : k ≤ t} ∩ S, in other words, the
subset of keys from S revealed up to time t. Consider a time t ≤ cn with c < 1/2.
The following lemma tells us that, if |S| is large, then time t will not be enough
to have revealed half of the elements of S, i.e., |St| > |S|/2 is highly unlikely.
Note that the result only depends on the cardinality of S.

Lemma 5. There exist D > 0 such that if t ≤ c n, for c < 1/2, then

Pr
n
(|St(π)| > |S|/2) ≤ D · exp

(
− (1−2c)2

2 × |S|
)
, for all S ⊆ [n] with |S| ≤ n/4.

We give here a sketch of the proof of Theorem 2. First, it is enough to See Appendix ??
for the complete
proof with all of the
technical lemmas.

assume n = 2k. Otherwise we may round down to a power of two, as the integers
[2k + 1, n] can only go into the hash-part. By Lemma 5, at time t ≈ n/3 the
array-part is very small (actually O(g(n))), because the subsets [1, . . . , 2a] ⊂ [n]
are unlikely to be half-full if t/n ≤ 1/3. Thus the hash-part must have size
M = 2k−1 = n/2, as n/3 is much larger than 2k−1/2 = n/4. We do not rehash
again until t > M = 2k−1, but then the array-part takes up the whole size of the
permutation. Thus, with high probability, the array-part goes from being very
small A = O(g(n)) to being of size A = n on a single rehash. The array-part
can only grow, as there are no deletions, hence the number of rehashes in which
it actually increases is very small. These rehashes account for O(ng(n)) calls to
the insertion function. Finally we show that the rest of the rehashes, in which
the hash-part grows, can only account for O(n) calls, concluding the proof.

4 Conclusions & final remarks

The only data-structuring mechanism in Lua are tables, so it is of the upmost
importance that they be extremely efficient in time and space usage. Lua hybrid
tables work very well in many practical use-cases, for example, to create an
array of n elements filling A[1], . . . , A[n] sequentially, or creating a dictionary
in which we alternate insertions and searches but have no deletions, or when we
fill a table and then process and remove one by one its elements. But there are
some situations which may also arise in practice rather naturally where there are
noticeable inefficiencies or sub-optimal performance of the Lua hybrid tables, as
our theoretical analysis has shown. Fig.4 illustrates that this unwanted behavior
shows in practice on our simulations.

In Section 3, we have shown that the hybrid structure introduces similar
issues (see Prop. 2), even when considering only insertions. The effect is more
limited than in the case of deletions (see Prop. 1 and Thm. 2), yet the array-part
might not be exploited (to reduce memory consumption) as much as would be
expected.
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Fig. 4: Experimental plots for time against number of operations. The plot on
the right shows the average microseconds/operation. Color blue corresponds to
a probability of insertion p = 0.9, while red corresponds to p = 0.75. Each point
is the average of 100 simulations in Lua.

These problems seem to have easy fixes, the most immediate one being to
allow more room when rehashing, to avoid restarting with a new full or almost
full table. A second solution would be to implement true deletions instead of
just marking the deleted elements by setting their values to nil. Both solutions
are very classical and details can be found, for instance, in [7].
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