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A bijection for nonorientable general maps

Jérémie Bettinelli

Abstract. We give a different presentation of a recent bijection due to Chapuy and Dołęga for
nonorientable bipartite quadrangulations and we extend it to the case of nonorientable general
maps. This can be seen as a Bouttier–Di Francesco–Guitter-like generalization of the Cori–
Vauquelin–Schaeffer bijection in the context of general nonorientable surfaces. In the particular
case of triangulations, the encoding objects take a particularly simple form and this allows us to
recover a famous asymptotic enumeration formula found by Gao.
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1. Introduction

1.1. Motivation

This paper is an improved extended version of [8]. The study of maps has seen tremen-
dous developments in the past few decades. One of the reasons is that they provide
natural discrete versions of a given surface. In particular, when taken according to
a well-chosen natural probability distribution, it has been shown for several mod-
els that a random map converges (after scaling, in a certain sense) toward a limiting
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object. This limiting object is a random metric space and has (almost surely) the same
topology as the surface on which the considered maps are drawn. It is called the Brow-
nian sphere or Brownian map when the surface is the sphere, and the Brownian � for
a general orientable surface � .

In the most-studied case of the sphere, it has been shown [30,34] for example that
a uniform quadrangulation (map with all faces of degree 4) with n faces converges
to the Brownian sphere as n!1. See also [1–3, 6, 11, 32] for other natural models
of maps drawn on the sphere that exhibit the same behavior. An important aspect of
these results is that the limiting object is universal, in the sense that it is always the
Brownian sphere (up to a scale constant), independently of the model one considers.

The case of a more general compact orientable surface (with a boundary allowed)
has been studied, mostly in the context of uniform quadrangulations: partial conver-
gence has been established in a series of papers ending with [9], and full convergence
is under investigation [13]. The full convergence in the particular case of the disk has
recently been shown in [12], where many more models are also considered.

All the previously mentioned results strongly rely on powerful bijective encod-
ings of the considered maps. It turns out that quadrangulations are particularly well
behaved with respect to these bijective encodings and this is the main reason why
they are usually the first to be studied. However, if one wishes to study other mod-
els and, in particular, surfaces with a boundary, one needs more general bijective
encodings. In the case of compact orientable surfaces, the so-called Schaeffer-like
bijections [5,15,20,21,33,36] allow one to conduct most studies. Note that, in certain
cases, bijections of a different kind (blossoming bijections) [4, 22, 25, 31, 35, 37] have
also been used [2, 3].

Until very recently, no such bijections were known in the case of a nonorientable
surface. In [19], Chapuy and Dołęga took the first step by exhibiting a bijection
allowing to encode nonorientable bipartite quadrangulations. In this work, we give
a bijection inspired by their construction, which provides an explicit construction
for pointed nonorientable general maps.1 We use a rather different presentation than
in [19], which will be more suited for our generalization: in particular, we introduce
the notion of level loop, which replaces the notion of dual exploration graph used
in [19]. These works lay the bases for the future study of nonorientable Brownian
surfaces [10]. Figure 1 shows an example of a pointed bipartite map of the Klein
bottle.

Another cause of interest for maps is their remarkable enumerative properties.
In fact, although maps are intricate objects by nature, many classes of them possess

1A pointed map is a map given with a distinguished vertex. From a combinatorial point of
view, it might not seem to make much difference, but the bijections for pointed maps turn out
to be better behaved for probabilistic applications.
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v�

Figure 1. A pointed bipartite map of the Klein bottle with 16 faces. The root (see below) is the
oriented corner symbolized by the gray half arrowhead.

a quite simple enumerative structure. Thanks to different involved enumeration tech-
niques (generating functions, matrix integrals, algebraic combinatorics), many classes
of maps have been enumerated and map enumeration has become over the years a full-
fledged research domain.

In the case of the sphere, Tutte [38] gave a very simple closed formula for the
number of rooted maps with a given number of edges. A bijective proof of this formula
was given by Cori and Vauquelin [21] and later popularized by Schaeffer [36]. It relies
on their so-called Cori–Vauquelin–Schaeffer bijection encoding quadrangulations of
the sphere with trees whose vertices carry integer labels satisfying local constraints.
For more general surfaces, Bender and Canfield [7] showed that the number of rooted
maps with n edges on a given surface (orientable or not) is asymptotically equal to
a constant times n5.h�1/=212n, where h is the type of the considered surface and the
constant depends on the surface. Extending the Cori–Vauquelin–Schaeffer bijection,
a combinatorial interpretation of this fact in the orientable case was given by Chapuy,
Marcus and Schaeffer [20]. Their approach relies on a bijection between bipartite
quadrangulations (it is a classical simple fact that bipartite quadrangulations are in
bijection with general maps) and one-face maps of the same surface, whose vertices
carry integer labels satisfying some local constraints.

In parallel, Bouttier, Di Francesco and Guitter [15] extended the original Cori–
Vauquelin–Schaeffer bijection to encode maps of the sphere with an arbitrary face
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degree distribution. Unifying both aforementioned extensions, Chapuy [17] proved
similar asymptotic enumeration results for more families of maps of an orientable
surface.

Nonorientability does not cause too much difficulties for generating function ap-
proaches. In addition to Bender and Canfield’s results, we may cite the work of Gao,
who showed [26] that the number of rooted triangulations with n edges on a given
surface (orientable or not) is asymptotically equal to a constant (depending on the
surface) times n5.h�1/=2.12

p
3/n. He also studied the algebraicity of the generating

function of rooted maps of a given surface with face degree constraints [27].
In their recent work [19], Chapuy and Dołęga extended the construction of [20] to

bipartite nonorientable quadrangulations. In this paper, we give a different construc-
tion of their bijection and extend it by an approach reminiscent of [15]. In order to
achieve this goal, we somehow fix a local orientation of the surface via a global pro-
cess, in the sense that the process uses the information of the whole map. As a result,
the constraints satisfied by the labels of the encoding objects are also global and this
prevents us from giving a simple characterization of these objects. In the very par-
ticular case of bipartite quadrangulations, the global constraints can be expressed as
local constraints and the encoding objects (so-called well-labeled unicellular maps)
take a simple form. This allowed Chapuy and Dołęga [19] to give a combinatorial
interpretation of Bender and Canfield’s asymptotic formula. In the particular case of
triangulations, the same miracle occurs and we are able to give a combinatorial inter-
pretation of the results of [26].

1.2. First definitions

In the present paper, we work on a compact surface without boundary. Recall that,
by the classification theorem, it is either orientable and homeomorphic to the surface
obtained by adding h handles to the sphere for some h 2 ¹0; 1; : : :º (sphere, torus,
double torus, etc.), or nonorientable and homeomorphic to the surface obtained by
adding 2h cross-caps to the sphere for some h 2 ¹1=2; 1; 3=2; : : :º (projective plane,
Klein bottle, etc.). The number h is called the type of the surface.

From now on and until the end of the paper, we fix such a surface � , orientable
or not.

A map is a cellular embedding of a finite graph (possibly with multiple edges
and loops) into � , considered up to homeomorphisms. Cellular means that the con-
nected components of the complement of edges, called faces, are homeomorphic to
2-dimensional open disks. Note that, although � might not be orientable, each face
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is orientable, so it will make sense to follow the border of a face, provided a start-
ing orientation is given. A corner is an angular sector determined by two consecutive
half-edges incident to the same vertex and to the same face. The degree of a face is
its number of corners. By convention, all the maps we consider are rooted, that is,
given with a distinguished oriented corner called the root, usually denoted by E� (for
a general map) or E� (for a unicellular map). It will be represented by a small angu-
lar sector with an arrow on the pictures. The (nonoriented) corner corresponding to
the root will be called the root corner, the vertex incident to the root will be called
the root vertex and the edge incident to the root will be called the root edge; see
Figure 2.

E�

v

r
e

E

Ec

�.Ec/

'.Ec/

Figure 2. Left. The (gray) root E�, the (yellow) root corner r , the (blue) root vertex v and the
(red) root edge e. The root of the root flipped map is E
 (in orange). Right. An oriented corner
and its images by � and '.

An oriented corner gives a local orientation to the vertex to which it is incident
and to the face that contains it (as it is homeomorphic to a disk by definition). For
an oriented corner Ec, we denote by �.Ec/ the subsequent oriented corner around the
vertex incident to Ec, in the orientation given by Ec. We also denote by '.Ec/ the ori-
ented corner subsequent to Ec in the contour of the face containing Ec, in the orientation
given by Ec. We will use the following involution we call a root flip: from a map m

rooted at E�, we define the root flipped map Nm by rerooting m at the oriented corner
' ı ��1.E�/; see Figure 2. We let opp.Ec/ be the oriented corner corresponding to the
same corner as Ec, with the opposite orientation. We use the classical notation V.m/
to denote the vertex set of a map m and we denote by dm the graph metric on V.m/.
This means that dm.u; v/ is the length of a shortest path linking the vertex u to the
vertex v.

An important combinatorial feature a map can have is to be bipartite: a map is
bipartite if its vertex set can be partitioned into two subsets such that every edge links
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a vertex from one subset to a vertex from the other subset. Equivalently, a map is
bipartite if and only if every cycle made of edges in the map has an even number of
edges.2

1.3. Aim of the paper

In this work, we present a bijection between the set of pointed bipartite maps of �

and pairs consisting of what we call a well-labeled unicellular mobile and a param-
eter " 2 ¹C;�º. A well-labeled unicellular mobile is a one-face map with green or
white vertices whose white vertices carry positive integer labels satisfying certain
compatibility relations, which need a bit more background to be properly stated (Def-
inition 2.6).

If the surface � is orientable, we recover the orientable generalization of the
famous Bouttier–Di Francesco–Guitter bijection [15, 20] (see also [17]), and the fol-
lowing basic properties continue to hold in the nonorientable case (Proposition 4.1).
If .m; v�/ is a pointed bipartite map and ..u; l/; "/ denotes the corresponding pair,
then

(i) V.m/ n ¹v�º corresponds to the white vertices of u and the label of a white
vertex is given by its distance to v� in m;

(ii) the faces of m correspond to the green vertices of u: moreover, the degree
of a face of m is twice the degree of the corresponding green vertex;

(iii) the maps m and u have the same number of edges;

(iv) for each white corner of u, exactly one edge of m links the incident vertex
to a vertex that is closer to v�.

Property (i) is absolutely crucial from a metric point of view, as the labeled uni-
cellular map somehow captures part of the metric information of the map, namely all
the distances to the distinguished vertex v�.

Our construction is based on a rule that gives an orientation to every corner of
the map. We introduce what we call level loops; these can be thought of as contour
lines in topography, where the height of a given vertex is its distance to the distin-
guished vertex v�. The orientation of the root gives a canonical orientation to all these
level loops. Using these local orientations, we then apply rules similar to those in the
orientable case in order to complete the construction.

2This is a classical fact in graph theory. If a graph is bipartite, the vertices along any cycle
alternate between the two subsets, so the cycle must have even length. Conversely, the parity of
the distances to a fixed vertex of the graph gives a satisfactory partition: indeed, if the distances
to the fixed vertex of two neighboring vertices had the same parity, we would have an odd-length
cycle.
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The inverse construction uses the same mechanism as in the orientable case. One
adds first an extra vertex labeled 0 inside the unique face of the map. Then, for each
corner of the unicellular map incident to a white vertex, one adds an edge linking
it to the next corner incident to a white vertex with label strictly smaller (the vertex
possibly being the extra label 0-vertex). Finally, one removes the initial edges and only
keeps the added edges. The whole point in the nonorientable case is to understand
how the labels interact with each other and to define the boldfaced word “next” of the
previous sentence. Our construction will give, also from the orientation of the root,
orientations to all the corners incident to white vertices. The word “next” will then be
understood from these local orientations.

As we are working with rooted one-faced maps, the orientation of the root gives
a natural orientation to all the corners simply by following the contour of the unique
face. Although it would be tempting to perform the mapping with this orientation
for the corners, we can see that it would not be satisfactory. Consider for instance
a degree 2-green vertex whose white neighbors are labeled 1 and 2 and suppose that,
in the contour of the unique face in the vicinity of the green vertex, the vertex labeled 2
is visited right before the vertex labeled 1 from both sides. We then would expect that
both extra edges have to be drawn from the vertex labeled 2 to the vertex labeled 1.
This creates a degree 2-face corresponding to the degree 2-green vertex, hence vio-
lating property (ii) above; see Figure 3. As a result, we will have to deal with two
orientations on our maps, these two orientations being the same in the orientable case.

2

1

Figure 3. The natural orientation of the corners given by the contour of the unique face cannot
work. The half arrowheads indicate the direction of the contour given by the orientation of the
root.

Note. The orientation process for the level loops we present in this work differs from
that of the extended abstract [8]. It is a bit more complicated to describe but has the
benefit of making the encoding maps simpler to describe.

We will then see how to extend our bijection to general maps, which are not neces-
sarily bipartite. In the case of triangulations, that is, maps with only faces of degree 3,
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the encoding mobiles happen to have a particularly simple structure. This allows us
to recover the following enumeration result ([26, Theorem 1]; see also [23]).

Proposition 1.1. The number of (rooted) triangulations of � with 2n faces (and
thus 3n edges and nC 2� 2h vertices, by the Euler characteristic formula) is asymp-
totically equivalent to

c� n
5.h�1/=2.12

p
3/n;

where h is the type of � and c� is a constant that depends on � .

The constants c� for various � have been the focus of several studies: they are uni-
versal in the sense that they appear for many different classes of maps [28] and may be
computed through nonlinear recursions [7]. Their generating series, properly rescaled,
has been shown to satisfy a simple ODE [16, 29]. See also [18] for an intriguing link
with Voronoï cell sizes of tessellations of a Brownian surface (in the orientable case).
From our bijection, we obtain for c� a formula involving a summation over cubic
maps (Proposition 5.7). The values for h � 1 are given in Table 1.

Orientable Nonorientable

h � c� h � c�

0 sphere

p
6
p
�

1

2
projective plane

2�3=4 35=4

�.3=4/

1 torus
1

8
1 Klein bottle

3

2

Table 1. Value of the constant c� from Proposition 1.1 for h � 1.

For small values of h, the generating function of triangulations can also be com-
puted: we recover [26, Theorem 3] and we add the case of the Klein bottle.

Proposition 1.2. The generating function of triangulations counted with weight x per
vertex is given by

1

2
�3.1 � �/.1 � 4� C 2�2/ if � is the sphere;

1

2
.1 � 2�/.1 � � C �2/ �

1

2

p
1 � 6� C 6�2 if � is the projective plane;

1

2
�.1 � �/.1 � 6� C 6�2/�2 if � is the torus;

and

3�.1 � �/.1 � 6� C 6�2/�2.7 � 30� C 30�2 � 6.1 � 2�/
p
1 � 6� C 6�2/
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if � is the Klein bottle, where � is an algebraic function of x given by

x D
1

2
�.1 � �/.1 � 2�/; �.0/ D 0:

See (5.4) for a combinatorial interpretation of � . In the orientable case, our bijec-
tion is the previously known orientable generalization of the Bouttier–Di Francesco–
Guitter bijection and Propositions 1.1 and 1.2 are obtained by the method we use
without needing our general bijection. As we did not find this in the literature, even
in the easy case of the sphere, we fully treat it here. Note however that, in the case
of the sphere, a computation that is similar in spirit was done in [14] and, in the ori-
entable case, Chapuy [17] used the same method in order to obtain similar formulas
for maps with face degrees belonging to a given subset of 2N (he also derived results
in the more general context of m-constellations and m-hypermaps). Finally, the ana-
log of Proposition 1.1 was obtained by the same method for quadrangulations on an
orientable surface in [20], as well as on a nonorientable surface in [19].

Unfortunately, the constraints on the labels of a well-labeled unicellular mobile in
general are too intricate to derive similar enumeration results. In fact, the labels satisfy
global constraints instead of just local constraints as soon as the maps we consider
are neither triangulations nor quadrangulations.

The remainder of the paper is organized as follows. We first focus on bipartite
maps. We define in Section 2 the encoding objects we call well-labeled unicellular
mobiles and present the inverse bijection. In Section 3, we introduce level loops and
present our bijection. Section 4 is devoted to the proof that the mappings presented
in the previous sections are bijections that are inverse one from another. We then
extend our bijection to general maps in Section 5, focusing on the particular case of
triangulations in Section 5.2. In Appendix A, we come back to the particular case
of bipartite quadrangulations by giving an alternate orientation process for the level
loops. Finally, in Appendix B, we give alternate figures using the useful representation
of a unicellular map as a polygon with paired sides.

2. Well-labeled unicellular mobiles

We now describe in more detail the encoding objects.

2.1. Encoding objects for quadrangulations

In the case of quadrangulations, an encoding object is particularly simple to describe.
It is a so-called well-labeled unicellular map, which is a rooted one-face map of � ,
whose vertices carry positive integers that differ by at most 1 for neighboring vertices,
and with minimal value equal to 1.
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2.2. Labeled unicellular mobiles

Definition 2.1 (Labeled unicellular mobile). A pair .u; l/ is a labeled unicellular
mobile if it satisfies the following conditions:

• u is a rooted one-face map of � whose vertex set is partitioned into V�ı.u/t Vı.u/
in such a way that every edge links a vertex from V�ı.u/ to a vertex from Vı.u/;

• lWVı.u/! N is a function with minimum 1;

• the root vertex belongs to Vı.u/.

The integer l.v/ is called the label of v; a corner c or an oriented corner Ec incident
to v is also said to have label l.c/D l.Ec/ WD l.v/. The elements of V�ı.u/will be called
green vertices and those of Vı.u/ will be called white vertices. A corner incident to
a white vertex (resp. green vertex) is called a white corner (resp. green corner). As u

has a unique face, all its corners inherit a canonical orientation from the root E� and
are naturally arranged in the order E�; '.E�/; '2.E�/; : : : ; '2#E.u/�1.E�/. This orientation
of the corners will be called their root-induced orientation and this arrangement will
be called the root-induced contour order.

In what follows, unless explicitly mentioned, we will only consider white
corners of u, that is, corners that are incident to vertices of Vı.u/.

The encoding objects will be labeled unicellular mobile whose labels satisfy extra
interaction constraints. In the orientable case, these constraints are the following.

Orientable case. If � is orientable, the condition of [15] reads: a labeled unicellular
mobile .u; l/ is well labeled if, for every corner c, the label of the first subsequent cor-
ner is greater than or equal to l.c/� 1. This condition can be restated in the following
way, which better fits our definition in the nonorientable case. The labeled unicellular
mobile .u; l/ is well labeled if, for every corner c, the label of the first subsequent
corner with label strictly smaller than l.c/ is equal to l.c/ � 1.

The former definition is more compact and simpler to manipulate, especially if
one is interested in enumeration, but the latter definition better shows an important
property on which the Bouttier–Di Francesco–Guitter bijection is based. Namely, one
obtains from the encoding mobile .u; l/ the edges of the original map by linking each
corner of u to the first subsequent corner with strictly smaller label. The vertices of
the original map are the vertices of Vı.u/ (with the addition of one extra vertex) and,
in the end, the labeling function gives graph distances to a fixed vertex. As a result, the
labels of two neighboring vertices in the original map have to differ by at most one;
this may only happen if the labeling is such that the unicellular mobile is well labeled.
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This condition has the advantage of being local, in the sense that one only needs
to look at the labels of pairs of subsequent corners in order to see whether a labeled
map is well labeled or not. This is fortuitous; in general, it is not to be expected that
the interaction constraints become local. This is because they rely on local orienta-
tions coming from a global process, which cannot be rendered local, by essence of
nonorientability. More precisely, for the phrase “the first subsequent corner with label
strictly smaller than l.c/” to make sense, one needs to orient the corner c. This will
be done in accordance with a global orientation process.

2.3. Coherent orientation of the corners

The idea is that we cannot orient all the corners separately; all the corners of what
we call a corner cycle should be oriented in accordance. In order to orient the corners
of a given corner cycle, we will use the orientation given by the root: more precisely,
we will take the first corner of the corner cycle in the root-induced contour order and
orient it according to its root-induced orientation, hence forcing the orientation of the
whole corner cycle.

To define a corner cycle, we need a starting point, namely a corner. We also need
an arbitrary starting orientation: we use the root-induced orientation for convenience
but taking the opposite orientation would yield the same result.

Recall the definitions of the mappings � and ' on oriented corners depicted on
Figure 2. Let us now explain how to orient a corner c of a labeled unicellular mobile
.u; l/, constructing its corner cycle in the process. We first temporarily orient c by
letting Ec be the corner c oriented according to its root-induced orientation. We then
algorithmically construct a list of white and green oriented corners as follows. We ini-
tialize the process by letting Eccurrent be the oriented corner Ec and by letting the list be
empty. Then, iteratively, we add the corner corresponding to Eccurrent to the list and,

• if Eccurrent is white, then we update Eccurrent to the green oriented corner '.Eccurrent/;

• if Eccurrent is green, then

– if l.'.Eccurrent// � l.c/, then we update Eccurrent to '.Eccurrent/;

– if l.'.Eccurrent// < l.c/, then we update Eccurrent to �.Eccurrent/.

We stop when Eccurrent is updated to Ec.

Lemma 2.2. The above algorithm terminates and outputs a list that does not contain
both a corner Ea and its opposite opp.Ea/.

Proof. First note that, whenever Eccurrent is white, its label is larger than or equal to l.c/.
Let us consider the first time Eccurrent is updated either to an oriented corner that belongs
to the current list or to the opposite of such an oriented corner. Let Ea be the value
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of Eccurrent at this time and Eb be the preceding value of Eccurrent. As there is a finite
number of corners, this time always exists and it suffices to show that Ea D Ec.

We denote by update.�/ the function mapping an oriented corner to its update
and by L the list right before the considered time (when Eccurrent D Eb). We thus have
Ea D update.Eb/ and it is easy to check that we also have opp.Eb/ D update.opp.Ea//.
This implies that opp.Ea/ … L as this would imply opp.Eb/ 2 L, a contradiction with
the definition of Eb.

As a result, Ea 2 L. Let us argue by contradiction and assume that Ea ¤ Ec. Then
there exists Eb0 ¤ Eb such that Ea D update.Eb0/. The only possibility is that one of Eb, Eb0

is white, say Eb0, and the other is green. Then l.'.Eb// < l.c/ and Ea D '.Eb0/ D �.Eb/.
The latter equality implies that l.Eb

0
/ D l.'.Eb//, a contradiction with the observation

that the label of Eccurrent is always larger than or equal to l.c/.

Now, consider the smallest integer i � 0 such that either 'i .E�/ or opp.'i .E�//
appears in the above output list. If it is 'i .E�/ that appears in the list, then we keep for c
its temporary orientation; otherwise, we reverse the orientation of c and we modify
the list by reversing each of its elements, as well as the whole list (by rewriting it back-
wards); see Figure 4. Note that the previous lemma implies that 'i .E�/ and opp.'i .E�//
cannot both belong to the output list.

4

2
3

3

3

3

3
4

4

Figure 4. Coherently orienting four corners with label 4. There are two corner cycles in the
figure. The first corner in the root-induced contour order of each corner cycle is in red. One
corner run containing one white corner and two green corners is highlighted at the top of the
figure.
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Remark. Considering only odd i ’s, which amounts to considering only green cor-
ners, in the above process produces the same output. This is due to the fact that every
white corner that appears in the list is preceded and succeeded by its neighboring
green corners.

Definition 2.3 (Coherent orientation). The above orientation of the corner c is called
its coherent orientation.

Definition 2.4 (Corner cycle). See Figure 4.

• We call oriented corner cycle of c the above list made into an oriented cycle, that
is, considered up to cyclic shift.

• The (nonoriented) corner cycle of c is its oriented corner cycle without the data
of the orientation, that is, the cycle, considered up to reversing, consisting of the
corners corresponding to the oriented corners of the oriented corner cycle.

• A corner run of a corner cycle is a subset of a corner cycle between two consecu-
tive applications of � in the above algorithm.

Note that a corner run always starts and ends with a green corner and may be
reduced to a single green corner: in this case, it will be called trivial. In the algorithm
defining the corner cycles, the property that Ea is updated to Eb if and only if opp.Eb/ is
updated to opp.Ea/ yields that the corner cycles do not depend on the orientation of the
root, only the oriented corner cycles do.

Remark. The corner cycle of any corner with label l.c/ that appears in the corner
cycle of c is the same. As a result, one can actually orient all these corners at once.
Furthermore, the corner cycle of a corner labeled 1 consists in the contour of the face
of u: as a result, the corners labeled 1 are coherently oriented in their root-induced
orientation.

Definition 2.5 (Successor). Let c be a corner with label l.c/� 2. Along the face of u,
in the order given by the coherent orientation of c, the first subsequent corner with
label strictly smaller than l.c/ is called the successor of c; it is denoted by succ.c/.

Formally, if Ec is the corner c coherently oriented, then succ.c/ is the corner corre-
sponding to 'i .Ec/, where i WD min¹j 2 2NW l.'j .Ec// < l.c/º.

We may now define the encoding objects.

Definition 2.6 (Well-labeled unicellular mobile). A well-labeled unicellular mobile
is a labeled unicellular mobile such that, for every corner c with label l.c/ � 2, we
have l.succ.c// D l.c/ � 1.

Known cases. Plainly, in the orientable case, Definition 2.6 generalizes the notion of
well-labeled unicellular mobile, as the coherent orientation coincides with the root-
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induced orientation. In the case of quadrangulations, as explained in the introduction,
all the green vertices have degree 2 and can thus be discarded. Then Definition 2.6 is
equivalent to the property that the labels of neighboring vertices differ by at most one.
Indeed, if this property holds, then the condition of Definition 2.6 is automatically
fulfilled, no matter how the corners are oriented. Conversely, suppose that there are
two neighboring vertices whose labels differ by at least 2. Then consider an oriented
corner Ec incident to the larger label vertex and such that '.Ec/ is incident to the smaller
label vertex. Using the notation j � j to denote the corner corresponding to an oriented
corner, the corner cycle of jEcj will thus contain jEcj and j�.Ec/j next to each other.
The labels read l.Ec/ D l.�.Ec// > l.'.Ec// C 1, so that either j'.Ec/j D succ.jEcj/ or
j��1 ı '.Ec/j D succ.j�.Ec/j/. In both cases, this is in contradiction with Definition 2.6.

A similar simplification will also happen in the case of triangulations; see Sec-
tion 5.2.

2.4. Mapping from well-labeled unicellular mobiles to pointed bipartite maps

Now that we have the definition of the encoding objects, we can easily describe the
inverse of our encoding bijection. It goes as in the orientable case, once every cor-
ner is coherently oriented. We consider a well-labeled unicellular mobile .u; l/ and
a parameter " 2 ¹C;�º. We add inside the unique face of u a new vertex v� with label
l.v�/ WD 0, and we extend the definition of successor by defining the successor of any
corner with label 1 as the unique corner incident to v�. Then, for every corner, we add
a new edge, called black edge, linking it to its successor.

We claim that there is a unique way to do so in such a way that the added edges
do not intersect with each other or with the edges of u, except at their extremities.
We consider the embedded graph m whose vertex set is Vı.u/[¹v�º and whose edges
are the added edges. We root it at the oriented corner preceding, in the orientation of
the root of u, the added edge linking the root corner of u to its successor; see Figure 5.

We set the output of our mapping to be

‰..u; l/;�/ WD .m; v�/ and ‰..u; l/;C/ WD . Nm; v�/;

where Nm denotes the root flipped version of m (we will see in Proposition 2.7 that m

is actually a map). Figures 6 and 29 show an example of the mapping.
It remains to prove the claim that the new edges may be drawn in a noncrossing

fashion. Let us consider a corner c with label l.c/ � 2 and the chain of edges of u in
the contour of the face of u, from c to succ.c/ in the coherent orientation of c. Then
the edge linking c to succ.c/ must be drawn in such a way that v� lies outside the
disk delimited by the above chain and the added edge; this is because there is at least
one corner labeled 1 outside of this region. Now, with this extra constraint, there is
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`
`�1

Figure 5. Setting the root of m, in gray, from the root of u, in green. The root of the root flipped
map Nm is in orange.
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Figure 6. The bijection, from a well-labeled unicellular mobile to a pointed bipartite map (on
the Klein bottle). See also Figure 29 for a polygon representation of the same figure where the
oriented corner cycles are depicted.

a unique way to add the desired edges as long as the corners to be linked lie in the
same face of the map consisting of u together with the previously added edges.

Let us then argue by contradiction and assume that the corner c is to be linked
to the corner succ.c/ (possibly incident to v�) and that they do not lie in the same
face. If l.c/ � 2, we consider the interval I of corners of u from c to succ.c/ in the
coherent orientation of c (c and succ.c/ excluded). Then there is a previously added
edge linking a corner d of I to a corner d 0 outside of I [ ¹c; succ.c/º. As all the
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corners of I have label larger than l.c/, we have l.d/ � l.c/, and, by construction,
l.d 0/ D l.d/˙ 1.

• If l.d 0/D l.d/C 1, then d is, in the coherent orientation of d 0, the first subsequent
corner of d 0 with label strictly smaller than l.d 0/. This is not possible as either c
or succ.c/ arrive before d in this order and they both satisfy the label requirement.

• If l.d 0/ D l.d/ � 1, then d 0 D succ.d/. This can only happen if l.d/ D l.c/

and d is coherently oriented in the opposite direction as the coherent orientation
of c. But this is not possible, as d would thus belong to the corner cycle of c.

Finally, if l.c/ D 1, then there is a previously added edge linking a corner d to a cor-
ner d 0 such that, in the coherent orientation of d , the first subsequent corner of d
with label strictly smaller than l.d/ is d 0, and c belongs to the interval of corners
between d and d 0. This is impossible as c has minimal label. This proves the claim.

Proposition 2.7. The output of the above mapping‰..u; l/;˙/ is a pointed bipartite
map.

Proof. It will be enough to show that m is a bipartite map, as this immediately implies
that Nm is also a bipartite map.

Let us consider two adjacent corners c and c0 of u, that is, two subsequent white
corners in the contour of the face of u, assuming l.c/� l.c0/. Let also Ec be the oriented
corner corresponding to c oriented toward c0. Then, the first l.c/ � l.c0/ � 1 iterate
successors of c are necessarily coherently oriented in the opposite direction as Ec and
the coherent orientation of the .l.c/� l.c0//-th iterate successor c00 of c is the same as
the coherent orientation of c0. The first observation comes from the fact that the labels
of these successors are strictly larger than l.c0/ and the second observation is due to
the fact that c00 and c0 belong to the same corner cycle. As a result, either c00 D c0 or
c00 ¤ c0 and succ.c00/ D succ.c0/ (if l.c/ D l.c0/, we are necessarily in the second
case). Considering the black edges linking the corners to their successors, we thus
obtain a chain of black edges linking any two adjacent corners.

We now consider a connected component of the complement of m. It consists
of a finite union of connected components delimited by two green edges incident
to the same green vertex and by the chain of black edges considered above. These
components are glued together at the green edges incident to the same green vertex
and we obtain that the considered connected component is homeomorphic to a disk
and contains only one green vertex. As a result, m is a map and it is bipartite as every
black edge links a vertex with odd label to a vertex with even label.
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3. Level loops

Throughout this section, we fix a pointed bipartite map .m; v�/.

3.1. Definition

The notion of level loop plays a crucial part in this work. The level loops of .m; v�/
lie on the sides of its edges and may cross some edges near their extremities. First, we
define the labeling function lWV.m/! ZC by

l.v/ WD dm.v
�; v/; v 2 V.m/; (3.1)

and we call label of v the integer l.v/. We extend the definition to a corner c and to an
oriented corner Ec by setting their label to be the label of the incident vertex, denoted
by l.c/ and l.Ec/. Note that, as the map m is bipartite by hypothesis, the labels of two
neighboring vertices differ by exactly 1. It will be convenient to canonically orient the
edges of m in such a way that the label of the head is one less than the label of the
tail: this orientation will be called the geodesic orientation.

We pick an arbitrary oriented corner of m and denote by i its label. We start from
this oriented corner and look at the incident edge:

• if it leads to a vertex with label smaller than or equal to i , we move along its side
up to the subsequent corner of the face;

• if it leads to a vertex labeled i C 1, we cross it.

We then iterate the process (with the same i ), in the sense that, whenever we encounter
an edge, we either move along its side if it leads to a vertex of label smaller than or
equal to i or we cross it if it leads to a vertex labeled i C 1, until we come back to the
initial corner and close the loop.

Plainly, the resulting loop does not depend on the orientation of the initial corner.

Definition 3.1 (Level loop). We call level loop issued from the corner c the loop
defined by the above process with c as the initial corner. Its level is the nonnegative
integer l.c/.

Let us state some immediate properties about level loops. First, the same level
loop cannot visit the same corner twice, and two different level loops at same level
cannot both visit the same corner. Next, the labels of the corners visited by a loop
at level i are all smaller than or equal to i , and at least one is equal to i . There is
only one loop that circles around a vertex: it is the level loop at level 0 and it circles
around v�. Indeed, if a loop circles around a vertex labeled i , it means that the vertex
is only connected to vertices labeled i C 1; the only such vertex is v�. A level loop
that does not cross any edge follows the contour of a face; its level is the maximal
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Figure 7. Level loops of a pointed bipartite map. For each face, we did not represent the max-
imal level loop, which follows its contour. The red loop is at level 0, the pink and green loops
are at level 1, the dark red and orange loops are at level 2 and the blue and purple loops are at
level 3.

label among those of the corners of the face. Such loops will be called maximal level
loops. Figure 7 shows all the level loops except the maximal level ones of a pointed
bipartite map.

Proposition 3.2. Let c be a corner of a face f . Let i denote the label of c and j � i
denote the maximum label of the corners of f . Then the corner c is visited by exactly
j � i C 1 different level loops, one for each level from ¹i; i C 1; : : : ; j º.

Note. On the figures, the level loops with higher level will always be drawn further
away from the edges than the loops with lower level. This ensures that they do not
intersect, since, whenever two loops encounter the same edge, if the lower level one
moves along its side, then so does the higher level one.

Figure 8 shows the situation around a typical vertex and inside a face.

Proof of Proposition 3.2. Let us consider a level loop at level k that visits the corner c.
As a level loop only visits corners whose labels are smaller than its level, we have
k � i . Moreover, if k > j , then the definition forces the loop to follow the contour
of f . This is not possible as this loop would not visit any corner labeled k, thus
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Figure 8. Left. Parts of level loops at level ` around a vertex with label `. The geodesic orien-
tation of the edges is represented by full arrowheads. Right. Parts of level loops in a face. For
instance, the blue loop is at level 4; it crosses edges whose extremities are labeled 4 and 5, and
it moves along edges with extremities both labeled 4 or less. Note that two parts of level loops
at the same level may meet outside the face and thus belong to the same loop.

contradicting the definition. As a result, there is at most one level loop that visits c for
each level from ¹i; i C 1; : : : ; j º.

Now, let k 2 ¹i; i C 1; : : : ; j º. Let us arbitrarily orient c and consider the next
corner with label k in the contour of f . Then the level loop issued from this corner is
at level k and visits c.

Let us consider an oriented corner Ec not incident to v�. Let us also consider the
level loop issued from Ec, oriented in the orientation given by Ec. The first oriented
corner with label l.Ec/ � 1 after Ec visited by the loop will be of interest: we call it the
parent corner of Ec and denote it by par.Ec/; see Figure 9.

3.2. Orienting the level loops

We need a canonical way to orient all the level loops. Through the bijection, the
level loops will correspond to the corner cycles of the encoding unicellular mobile.
Our orientation process for the level loops thus has to match the orientation process
of the corner cycles of the encoding mobile. There are several options; the one we
present in this work corresponds to the coherent orientation of the corners described
in Section 2.3. We proposed in [8] a different option: it was simpler to describe but its
counterpart on the encoding objects was harder to comprehend. We will present the
latter option in the particular case of bipartite quadrangulations in Appendix A. Before
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Figure 9. Iterative parent corners of the oriented corner E�.

explaining in details the orientation process, let us give some insights that should help
the reader.

In regard to the way we defined the coherent orientation, we will need to explore
the unique face of the encoding map in its root-induced contour order. We will actually
build this cyclic order on the fly while constructing the encoding unicellular map.
We will orient the loops one after the other. The orientation of a loop will allow us
to “break” the loop into several pieces by adding on it marks called stops, which will
correspond to the edges of the encoding mobile. We will then need to go from a stop
to the next one in what corresponds to the root-induced contour order of the encoding
mobile. A portion of level loop in between consecutive stops will correspond to a run
of successive corners that appears in the corner cycle corresponding to the level loop.
The way this run of corners is to be explored is dictated by the global orientation of
the face of the encoding mobile and not by the orientation of the level loop.

We break the orientation process into two main operations.
Definition of stops after orientation (Figure 10). Whenever we orient a level loop

at level i , we add on it stops at the locations of the corners labeled i the loop visits
right after visiting a corner labeled i � 1. Equivalently, for each face visited by the
loop, there is a stop at each corner labeled i except for the first one.

Update of the current oriented corner (Figure 11). This step will allow us to go
from a white corner of the encoding unicellular mobile to the subsequent one in the
root-induced contour order, orienting several level loops along the way. We break it
into three substeps. We consider an oriented corner Ec such that l.'.Ec// < l.Ec/.

Turning around the initial vertex. If the level loop � issued from �.Ec/ has not
already been oriented, then we orient it in the orientation of �.Ec/ and define its stops



A bijection for nonorientable general maps 753

1

2
3

3

2

3
4

4

Figure 10. Definition of the stops (symbolized by small rectangles of the same color as the
loop) of a level loop from its orientation. This loop is at level 3; it thus has stops at the corners
labeled 3 directly preceded by corners labeled 2.

�

Ec

�

Ec

�j .Ec/

�j .Ec/

�j .Ec/ (a)

(b)

(c)

'�k ı �j .Ec/

'�k ı �j .Ec/

'�k ı �j .Ec/

(d)

'�k ı �j .Ec/

�j .Ec/

'�k ı �j .Ec/ upd.Ec/

Figure 11. Updating the current corner. All the possibilities are represented. Left. We turn
around the initial vertex until we reach a stop (the light gray arrow indicates where the process
continues). On the top, the loop � may or may not have been oriented before. On the bottom, it
has been oriented before. Middle and top right. We follow the contour of the face until we reach
a stop. The orientations of the gray loop in (a) and the red loop in (c) do not intervene at this
stage; they may or may not have been oriented before. In (b) and (c), the purple loop may be
oriented both ways, either at this stage or before (if at this stage, necessarily in the orientation
of �j .Ec/). In (d), the gray loop may have been oriented before or at this stage. Bottom right.
We turn around the final vertex until we reach an edge that brings us closer to v�.
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as explained above. Then we consider the smallest positive integer j such that � has
a stop at the location of �j .Ec/. (Note that j D 1 if the level loop was not oriented
before.) Next, we orient, in the orientation of �j .Ec/, each level loop visiting �j .Ec/
that has not already been oriented, and we define its stops.

Moving along the contour of the face. We consider the smallest positive integer k
such that

• either there is a stop at the location of '�k ı �j .Ec/;

• or the level loop issued from '�k ı �j .Ec/ has not yet been oriented and orienting
it in the orientation of '�k ı �j .Ec/ yields a stop at the location of '�k ı �j .Ec/.

In the latter case (which may only happen in case (d) of Figure 11), we orient the loop
issued from '�k ı �j .Ec/ in the orientation of '�k ı �j .Ec/ and define its stops.

Turning around the final vertex. Finally, we consider the smallest nonnegative
integer l such that l.'.� l ı '�k ı �j .Ec/// D l.� l ı '�k ı �j .Ec// � 1.

We define
upd.Ec/ WD � l ı '�k ı �j .Ec/:

We may now define the orientation process. We initialize it as follows.
Initialization (Figure 12). Before we start, we look at the labels of the extremities

of the root edge: if the root vertex has a smaller label than the other extremity of the
root edge, then we replace m by its root flipped version Nm.
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Figure 12. Orienting the level loops issued from the iterate parents of the root.

Then, for each i 2 ¹1; : : : ; l.E�/º, we orient the level loop issued from the i -th
iterate parent pari .E�/ of the root in the orientation of pari .E�/.

Orientation process (Figure 13). After performing the initialization step, we let
the current oriented corner be the root and we iteratively update it using the update
step, until every level loop is oriented.
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Figure 13. Orientation of the level loops. Recall that the maximal level loops are not represented
(this bears no effects). The loops are oriented one after the other, in the order given by the letters
a, b, c, d , e, f , g.

Proposition 3.3. The above orientation process terminates: it assigns an orientation
to all the level loops.

The proof is postponed to Section 4.

3.3. Mapping from pointed bipartite maps to well-labeled unicellular mobiles

We may now present our bijection: we apply to the pointed bipartite map .m; v�/ the
following steps.

Step 1. Labeling the vertices and setting the value of the parameter ". We define the
labeling function l by (3.1). If the root vertex of m has a larger label than the other
extremity of the root edge, we set " WD �; otherwise, we replace m by its root flipped
version Nm and set " WD C.

Step 2. Constructing and orienting the level loops. We construct the level loops and
orient them by the process of Section 3.2, keeping track of the stop locations.

Step 3. Linking the stop corners to green vertices. We add an extra vertex in the
middle of each face of m: these vertices will be called green vertices, in contrast with
the original vertices of m, which we will call white vertices. Inside each face, we link
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in a noncrossing fashion by green edges the green vertex of the face to all the corners
of the face where there is a stop.

Step 4. Discarding original edges and rooting the resulting map. Finally, we consider
the embedded graph u whose vertex set consists of the union of Vı.u/ WD V.m/ n

¹v�º with the set V�ı.u/ of green vertices and whose edge set is composed of the
green edges. (Note that this definition makes sense: there are no green edges with
extremity v�, as there are no stops incident to v�.) We root it with the convention
depicted on Figure 14. The white vertices of u inherit the labels from the function l:
we set ˆ.m; v�/ WD ..u; l/; "/; see Figure 15.

Figure 14. Rooting u from the root of m. The root of m is represented in gray and the root of u

is in green. The existence of the green edge (of u) is ensured by the rules of the construction.

Note that, as with the inverse mapping of Section 2.4, it is not clear at this stage
that the output is even a map; this will be shown in Section 4.

4. The previous mappings are inverse one from another

For the surface � under consideration, we denote by B� the set of pointed bipartite
maps and by U the set of well-labeled unicellular mobiles (Definition 2.6). Recall that
we denoted by ˆ the mapping from Section 3.3 and by ‰ the one from Section 2.4.
We have not yet established that ˆ is well defined, as Proposition 3.3 has not yet
been proved. However, from a pointed bipartite map .m; v�/ 2 B�, we may always
define a labeled embedded graph .u; l/ by the construction of Section 3.3, replacing
the orientation process of Step 2 by an arbitrary orientation process.

Proposition 4.1. Let .m; v�/ 2 B� and .u; l/ be defined as above from an arbitrary
orientation process. Then

(i) V.m/ D Vı.u/ t ¹v
�º and, for v 2 Vı.u/, l.v/ D dm.v; v

�/;

(ii) the faces of m correspond to V�ı.u/: moreover, the degree of a face of m is
twice the degree of the corresponding vertex in V�ı.u/;
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Figure 15. The bijection, from a pointed bipartite map to a well-labeled unicellular mobile. The
edges of the original map have been grayed out. The stops of the not represented maximal level
loops are at all the corners with maximal label among their face.

(iii) the map m and the embedded graph u have the same number of edges;

(iv) with the edges of m oriented according to the geodesic orientation, among
the edges of m in a white corner of u, exactly one is outgoing.

Proof. Statement (i) and the fact that the faces of m correspond to the green vertices
of u are direct consequences of the construction. Let us consider a face of m and
denote by 2p its degree. We see the face as a 2p-gon and pair its sides as follows.
Let us pick a side and denote by i and i � 1 the labels of its extremities. We travel
along the boundary from the vertex labeled i to the vertex labeled i � 1, and we keep
traveling until we successively encounter a corner labeled i � 1 and a corner labeled i .
We match the side we picked with the side linking these corners (note that these two
sides are necessarily distinct and that the matching does not depend on which of the
two sides we first picked). This gives a perfect matching of the sides of our polygon.

We then consider a loop at level i that visits the face. Recall that this loop has stops
at the corners with label i that are immediately preceded by a corner labeled i � 1.
Then, by construction of the loop, if it has a stop at a corner labeled i of our face,
then the previous corner labeled i � 1 that the loop visits also belongs to our face;
we associate with the stop the side linking these two corners. Now observe that two
paired sides with labels i -1 i are visited by the same level loop at level i , one
from label i to label i � 1 and the other one from label i � 1 to label i , no matter what
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the orientation of the loop is. As a result, exactly one of these two sides is associated
with a stop. As there are p pairs of sides, there are also p stops and the green vertex
of the face has degree p.

Point (iii) is then a direct consequence of (ii): the number of edges of m is half the
sum of the degrees of its faces and the number of edges of u is equal to the sum of the
degrees of its green vertices. It is also a straightforward consequence of (iv) below.

Let us show (iv). If we consider a vertex of m and its neighbors as on the left
of Figure 8, we see that there will be exactly one stop between two consecutive out-
going edges (the location depending on the orientation of the corresponding loop).
As a white corner of u corresponds to the area between two consecutive stops around
a vertex of m, we see that there is always exactly one outgoing edge in such an
area.

Lemma 4.2. Let .m; v�/ 2 B� and .u; l/ be defined as above from an arbitrary
orientation process. Then .u; l/ is a labeled unicellular mobile.

Proof. The only thing to show is that the embedded graph u is a unicellular map.
Adapting arguments from [20], we consider the map M whose vertex set is V.m/ [
V�ı.u/ and whose edges are the edges of m together with the edges of u. We add
inside each face of this map a blue vertex and, for each edge of m, we add a blue dual
edge linking the blue vertices of the two incident faces.3 Let us see that this embedded
blue graph has only one cycle, which turns around v�. To this end, let us label each
blue edge by the minimal label of the extremities of the black edge it crosses. Let us
consider a blue cycle and denote by m the maximal label of its edges. Let us consider
a blue edge e of the cycle with label m and a neighboring edge e0 of the cycle; see
Figure 16.

Let Qe and Qe0 denote the black dual edges of e and e0. These edges are incident
to the same face of m, which is split into two connected components by e [ e0; we
denote by v the extremity of Qe labeled m and by v0 the extremity of Qe0 incident to the
same connected component as v. As all the corners whose label is a local maximum
in the contour of a face are stops of the loop issued from them, the green vertex
must belong to the connected component that does not contain v (recall that the label
of e0 is smaller than or equal to m). As a result, there are no stops in the connected
component containing v and the labels of the corners in this component are thus not
local maximums in the contour of the face. In particular, if v0 ¤ v, as the label of e0

is smaller than or equal to m, the neighboring vertex of v must be labeled m � 1.
We conduct the same reasoning with the blue edge e00 of the cycle that intersects the

3The embedded blue graph we obtain is a generalization of the dual exploration graph
appearing in [19] (and also represented in blue on the figures of this reference).



A bijection for nonorientable general maps 759

m

m–1 m–1

m+1

m

v
v0 v00

e00
e

Qe
Qe0

e0

Figure 16. Proof that u is a unicellular map. The part of level m-loop is represented in red.

other extremity of e and denote by Qe00 and v00 the counterparts of Qe0 and v0. We see
that, if v, v0 and v00 are three pairwise distinct vertices, there must exist a level loop
at level m that crosses Qe. This loop should have a stop at a corner labeled m in one of
the two faces, which is impossible. As a result, either v0 D v or v00 D v.

Without loss of generality, let us assume that v0 D v. Let us furthermore suppose
for now that the other extremity of Qe0 has labelm� 1. In this case, the level loop is still
present and we must have v00 D v. If the other extremity of Qe00 also has label m � 1,
the level loop is still present and we obtain a contradiction. We must thus have that
the other extremity of Qe00 also has label mC 1 and as a consequence, e00 has label m.
We iterate the argument with the blue edges succeeding e00 in the cycle and obtain
that every edge of the cycle has label m, a contradiction with our hypothesis that an
extremity of Qe0 has labelm� 1. In the end, we obtain that e0 has labelm and, iterating
the argument, we finally obtain that the blue cycle turns around a single vertex that is
a local minimum for the labels. This vertex is thus necessarily v�.

We can then retract to 0 each connected component of the complement of u along
the corresponding connected component of the blue graph. As a result, we obtain
that u is a map and we conclude that it is unicellular by Euler’s characteristic formula,
noting that it has v.m/ � 1 C f .m/ vertices and e.m/ edges by Proposition 4.1,
where we denoted by v.m/, f .m/ and e.m/ the number of vertices, faces and edges
of m.

We are now ready to prove that our orientation process, and thus ˆ, are well
defined.
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Proof of Proposition 3.3. Let us consider the set C of oriented corners Ec of m such
that l.'.Ec// < l.Ec/. The proposition follows from the claim that C D ¹updi .E�/;
opp.�.updi .E�///W i � 0º. Indeed, after updating the oriented corner Ec, the level loop
issued from �.Ec/ is oriented, as well as that issued from upd.Ec/, as it is the same
as that issued from '�k ı �j .Ec/, with the notation of Figure 11. As every level loop
except the one at level 0 is issued from at least one corner of C , the claim entails
that every loop is oriented by the process, which thus terminates. (Note that parl.E�/.E�/

is incident to v� so that the level 0-loop is always oriented at the beginning of the
process.)

First, observe that E� 2 C (recall that we have chosen between m and Nm the map
with this property) and that C is stable by the functions upd and opp ı� . Now our ori-
entation process orients several loops, possibly not all the loops. Consider the labeled
unicellular map .u; l/ obtained from the construction of Section 3.3, using our ori-
entation process for the loops that our orientation process orients and an arbitrary
orientation for the loops that are not oriented by our process.

From Proposition 4.1 (iv), we see that there is a one-to-one correspondence be-
tween the oriented corners of C and the white oriented corners of u and, if Ec 2 C cor-
responds to the oriented corner Ea of u, then opp.�.Ec// corresponds to opp.Ea/. Next,
with the notation of Figure 11, note that all the j black edges between Ec and �j .Ec/
belong to the same white corner of u and the same goes for the l black edges between
'�k ı �j .Ec/ and upd.Ec/. Furthermore, as there are no stops between �j .Ec/ and '�k ı
�j .Ec/ along the contour of the face of m, by construction, the stops at �j .Ec/ and
'�k ı �j .Ec/ will be linked to the corresponding green vertex during Step 3 with-
out any green edges in between. As a result, the oriented corner of u corresponding
to upd.Ec/ is '2.Ea/. Consequently, the sequence of oriented corners of u correspond-
ing to updi .E�/, i � 0 are the white corners of the unique face (Lemma 4.2) of u,
arranged in the root-induced contour order. Consequently, every oriented corner of u

or its opposite is of this form. The claim follows.

We may now state our main theorem.

Theorem 4.3. The mappings ˆWB� ! U � ¹C;�º and ‰WU � ¹C;�º ! B� are
bijections, which are inverse one from another.

Using Proposition 4.1, we obtain the following specialization of Theorem 4.3.
For an integer finite sequence ˛ D .˛1; : : : ; ˛n/, we denote by B�˛ the set of pointed
bipartite maps of � with n faces marked 1; 2; : : : ; n such that, for 1 � i � n, the face
marked i has degree 2˛i . We also denote by U˛ the set of well-labeled unicellular
mobiles with n green vertices marked 1; 2; : : : ; n and such that, for 1 � i � n, the
green vertex marked i has degree ˛i .
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Corollary 4.4. The restrictions of ˆ to B�˛ and of ‰ to U˛ � ¹C;�º are bijections,
which are inverse one from another.

Proof of Theorem 4.3. It is sufficient to show that

(a) If .u; l/ 2 U, " 2 ¹C; �º and .m; v�/ D ‰..u; l/; "/, then ˆ.m; v�/ D
..u; l/; "/.

(b) If .m;v�/2B� and ..u; l/; "/Dˆ.m;v�/, then .u; l/2U and‰..u; l/; "/D
.m; v�/.

Let us show (a). Let .u; l/ 2U and let us denote by .m; v�/ WD ‰..u; l/;�/. It is
enough to show that ˆ.m; v�/ D ..u; l/;�/. Indeed, ‰..u; l/;C/ D . Nm; v�/ and the
previous fact immediately implies that ˆ. Nm; v�/ D ..u; l/;C/.

As .m; v�/ 2 B� (Proposition 2.7), we can apply to it the construction of Sec-
tion 3.3. First, notice that the labels of V.m/ are given by l. Indeed, l.v�/ D 0 and, if
v ¤ v�, then, as the variation of l along any black edge is 1, every black path from v�

to v has length at least l.v/. Moreover, starting from an arbitrary corner of u incident
to v and following the black edges linking it to its iterate successors provides a path
from v to v� of length l.v/. In particular, we furthermore immediately obtain that the
root vertex of m has a larger label than the other extremity of the root edge of m (as
on Figure 5), which entails that the second coordinate of ˆ.m; v�/ will be set to �.

From the proof of Proposition 2.7, we see that each face of m corresponds to
a unique green vertex of u. As the rooting conventions (Figures 5 and 14) clearly
correspond, it only remains to see that the stops of the loops of m are exactly at the
locations of the green edges of u.

Let us consider an integer i � 1 and the corner cycle of a label i C 1-corner of u.
We claim that this corner cycle corresponds to a level i -loop of m. Let us first consider
a corner run of this corner cycle. By definition, the labels of all the corners in this run
are larger than i C 1 and the first corners from both sides outside the run are labeled i
or less. Let us denote by c1 and c2 the latter corners. We also denote by e1 (resp. e2)
the green edge linking the vertex incident to c1 (resp. to c2) to the green vertex at the
corresponding extremity of the run; see Figure 17 for visual aid.

(i) Let us first assume that the run is trivial, that is, consists of a single green
vertex. As in the proof of Proposition 2.7, we consider the chain of black edges
linking c1 to c2, which consists in taking edges linking the iterate successors
of c1 and c2 until we reach a common corner. This chain of black edges is
part of the contour of the face of m that corresponds to the unique vertex of
the run and the labels along it are all smaller than or equal to i . As a result, if
there is a loop at level i in m that crosses e1, then it follows the chain of black
edges and crosses e2.
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(ii) Let us now assume that the run is not trivial. As the successor of any corner
of the run with label strictly larger than i belongs to the run or to ¹c1; c2º, the
fact that .u; l/ is well labeled ensures that the range of labels in the run is of
the form ¹i C 1; i C 2; : : : ; kº for some k � i C 1. As a result, there is at least
one corner labeled i C 1 in the run. Moreover, all the corners labeled i C 1
in the run have the same successor, which is either c1 or c2 and must have
label i . Up to exchanging roles, let us assume that c1 is this corner and let
j WD l.c2/ � i . The same reasoning as in the proof of Proposition 2.7 may be
conducted with c1 and c2, and we obtain a chain of either i � j or i � j C 2
black edges (depending on whether c2 is an iterate successor of c1 or not) that
links c1 to c2. Now there is level i -loop of m that crosses e1; it then crosses
all the black edges linking the label i C 1-corners of the run to c1 and finally
follows the chain of black edges until it crosses e2.

Crossing a green edge for a level loop amounts to applying � in the algorithm that
defines corner cycles, so that the considered corner cycle indeed corresponds to a lev-
el i -loop as claimed. Conversely, every level loop at positive level that is not at
maximal level in a face crosses at least one black edge linking a corner c to its succes-
sor. Conducting the above reasoning with the corner cycle of c, we obtain a one-to-one
correspondence between corner cycles and level loops that are not maximal level
loops (the level 0-loop corresponds to the corner cycle of the label 1-corners).

As above, we consider a nontrivial corner run and use the notation of (ii). We claim
that, once oriented, the corresponding portion of level loop visits the face of u from e1

to e2 (see Figure 17). As the labels along the chain of black edges are all strictly
smaller than i except that of c1 and possibly that of c2, the claim entails that the
portion of loop might have stops only at the locations of e1 and e2. More precisely, it
has a stop at e2 if and only if j D i . Moreover, by the same argument, for a trivial run,
the corresponding portion of level i -loop may also have stops only at the locations of
the green edges and it has one at the exiting green edge if and only if the corresponding
label is i . As the entering green edge of the considered portion of loop is the exiting
green edge of the previous portion of the same loop, the claim yields that the stops of
the loops of m are exactly at the locations of the green edges of u, as desired.

In order to show the claim, first observe that the coherent orientation process of
the corners of u may be restated as follows. Consider all the corner cycles that contain
the green corner '.E�/ (where E� is the root of u) and orient them according to it. Then,
iteratively, consider all the corner cycles that have not been oriented and that contain
the next green corner in the order '.E�/; '3.E�/; '5.E�/; : : : and orient them according
to it. Stop when all the green corners have been considered.

The first green corner '.E�/ needs a special treatment as it serves to orient all
the corner cycles that contain it, in contrast with the other green corners, which may
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Figure 17. The black edges and the portion of level loop corresponding to a corner run of a label
i C 1-corner, in the case where c2 is not an iterate successor of c1. The geodesic orientation
of the edges of m is represented by full arrowheads. The gray dashed edge represents the case
where c2 is an iterate successor of c1: in this case, the three bottom-most level loops follow this
edge instead of the top one and the pink level loop crosses it. The half arrowhead orients the
level i -loop as claimed.

only serve to orient the corner cycles such that the green corner is an extremity of
one of its runs. This special treatment corresponds to the initialization step of the
orientation process of the level loops. The corner cycles of the iterate successors of
the root E� , succ.E�/; : : : ; succl.E�/�1.E�/ are exactly the ones that contain the root corner;
their coherent orientation is thus the same as their root-induced orientation. For i 2
¹1; : : : ; l.E�/º, the loop issued from pari .E�/ (where E� is the root of m) corresponds to
the corner cycle of succi�1.E�/ and the initialization step of the orientation process of
the loops orients them as desired.

As long as the orientation of the loops matches the orientation of the corner cycles,
the green edges and the exploration of the green corners of ˆ.m; v�/ match the green
edges and the exploration of the green corners of u. Let us now consider a green
corner. Then all the level loops corresponding to the corner cycles containing the
green corner as a run extremity are considered in the update step of the orientation
process of the level loops (as depicted on Figure 11). Furthermore, if not oriented, the
level loops are oriented during this step in the desired orientation. The claim follows.

We now turn to (b). It is sufficient to consider pointed bipartite maps such that
the distance from the distinguished point to the root vertex is larger than that to the
other extremity of the root edge. Let .m; v�/ 2 B� be such a map and ..u; l/;�/ D
ˆ.m; v�/.
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We have already established that .u;l/ is a labeled unicellular mobile (Lemma 4.2)
and that there is a unique outgoing edge of m for each corner of u (by Proposi-
tion 4.1 (iv)). We claim that, for each corner of u, the corresponding outgoing edge
of m links it to its successor. This claim entails that .u; l/ is well labeled as, by def-
inition of l, the head label of an edge is one less than its tail label. Furthermore, the
construction of Section 2.4 precisely consists in linking with black edges the corners
of u to their successors, so that ‰..u; l/;�/ D .m; v�/.

The claim is obvious for corners with label 1. Let us thus fix i � 1 and consider
a level i -loop of m; see Figure 18. As it has at least one stop, it has to cross a green
edge. We consider a portion of this level loop completely included in the face of u: it
starts from a green edge e1, follows black edges, possibly crossing i i+1 black
edges along the way and finish on a green edge e2. The chain of black edges along
which the portion of loop evolves splits the face of u into two connected components;
let us focus on the one that contains the portion of loop. The boundary of this com-
ponent consists of the chain of black edges, e1, e2, and a chain of green edges whose
extremities are the green vertices incident to e1 and e2. Let us denote by c1 and c2
the white corners of u through which the portion of loop enters and exits the face
of u. By definition of a level loop, the labels along the black chain are all smaller than
or equal to i . More precisely, because of the definition of stops, we have l.c1/ � i ,
l.c2/ � i , and the other labels along the black chain are all strictly smaller than i .

If the green chain contains at least a white corner, then the portion of loop has
to cross an i i+1 black edge, as otherwise the map would not be connected or

a face would contain two green vertices. By definition of stops, all the i i+1 black
edges crossed by the portion of loop must end in c1. We know that there is an outgoing
edge of m in every corner of u; subsequently following these outgoing edges from
any corner of u yields a path with decreasing labels linking the corner to v�. Starting
from a corner on the green chain, this path must intersect the black chain and this may
only happen at c1. As a result, the range of labels on the green chain is of the form
¹i C 1; i C 2; : : : ; kº for some k � i C 1. The green chain is thus a corner run of all
the label i C 1-corners of the chain. Moreover, provided that the coherent orientation
of the run is from e2 to e1, then c1 is the successor of all these corners.

We obtain that the level loops of m correspond to the corner cycles of .u; l/.
It only remains to see that the level loops enter the face of u from the end of the
corresponding coherently oriented corner runs. Let us consider a corner cycle and the
first green corner c in the root-induced contour order it contains. It suffices to see
that the corner run of c is coherently oriented in accordance with the corresponding
portion of level loop, that is, from the exiting green edge to the entering green edge.
On the one hand, the corner run is oriented by the root-induced orientation of c. On the
other hand, observe that our orientation process for the level loops explores the green
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Figure 18. A portion of a level i -loop completely included in the face of u delimits a corner
run of label i C 1-corners. The purple crosses mean that there cannot be black edges. From
a corner c on the green chain, following the successive outgoing edges yields a geodesic to v�:
it has to cross the black chain and this may only happen at c1.

corners in the root-induced contour order and orients the newly explored loops in
the orientation opposite to that of the root E� of u. If the green corner c corresponds
to '.E�/, then the corresponding level loop is one issued from an iterate parent of the
root of m and its orientation is opposite to that of E� . Otherwise, the loop corresponding
to the considered corner cycle will be oriented when we explore c, in the orientation
opposite to the root-induced orientation of c, as desired. The claim follows.

5. General maps

5.1. The mappings

We now relax the hypothesis that the map is bipartite. We will slightly modify it in
order to be able to apply our bijection from Section 3.3. We denote by M� the set of
pointed maps of � and by M�eq its subset consisting of pointed maps such that both
extremities of the root edge are at the same distance from the distinguished vertex.

We consider a general pointed map .m; v�/ 2 M� and define lW V.m/ ! ZC
by (3.1) as before. There are now two kinds of edges: an edge will be called equi-
labeled if its extremities both have the same label. We then enlarge the map m by
adding in the middle of each equilabeled edge an extra vertex splitting the edge into
two new edges. We denote by Qm this enlarged map and we assign to each added vertex
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Figure 19. The level loops for a general map. The equilabeled edges are represented in red and
the added vertices are represented by red squares. As above, the maximal level loops are not
represented. Beware that, in this example, the root of Qm (in gray as usual) is such that the root
vertex is closer to v� than the other extremity of the root edge; one thus has to consider the
root-flipped map whose root is represented in orange.

the common label of its two neighbors plus 1. This extends the definition of l to V. Qm/
and, clearly, for v 2 V. Qm/, one has l.v/ D d Qm.v

�; v/; see Figure 19.
The map Qm is bipartite: we apply to it the construction of Section 3.3 and set

.. Qu; l/; "/ WD ˆ. Qm; v�/. Note that we necessarily have " D C in the case where

.m; v�/ 2 M�eq. We slightly modify the encoding map as follows. Every vertex of
V. Qm/ n V.m/ is by design of degree 2 and there are stops at both corners incident
to it, as their labels are local maximums along the boundaries of the incident faces.
As a result, it also has degree 2 in Qu; we suppress it and merge the two incident edges
into a single edge. We call such a resulting edge a flagged edge and we assign to it the
label of the suppressed vertex. We denote by .u; l/ the resulting map, the function l

being defined on a subset of the vertices and edges of u. Finally, if the root edge of m

is equilabeled, then the root vertex of Qu is one of the added vertices of Qm. In this case,
we transgress our usual definition of root and declare the root of u to be the edge
resulting from the suppression of the root vertex of Qu, together with the side and local
orientation induced by the root of Qu. Such a map will be called edge-rooted in what
follows; see Figure 20.
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Figure 20. The bijection for a general map. The flagged edges of the mobile have been high-
lighted and their labels are represented by the red squares. In this example, the root edge is
equilabeled; the root of the mobile is thus a flagged edge given with a side and local orientation.

We extend the definition of ˆ by setting ˆ.m; v�/ WD ..u; l/; "/. Plainly, if m

is bipartite, then Qm D m and .. Qu; l/; "/ D ..u; l/; "/ so that the definition of ˆ is
consistent with the previous definition from Section 3.3.

Definition 5.1 (Labeled generalized unicellular mobile). A labeled generalized uni-
cellular mobile is a pair .u; l/ such that

• u is a rooted or edge-rooted one-face map of � whose vertex set is partitioned into
V�ı.u/ t Vı.u/ in such a way that every edge has at least one extremity in V�ı.u/;

• if u is rooted, its root vertex lies in Vı.u/; if u is edge-rooted, its root edge belongs
to the set E ��.u/ of edges linking two vertices of V�ı.u/;

• lWVı.u/ tE ��.u/! N is a function with minimum 1.

The edges of E ��.u/ are called flagged edges. We define the following flag split-
ting operation on the set of labeled generalized unicellular mobiles. Given a labeled
generalized unicellular mobile, we split each flagged edge into two edges by adding
a vertex in the middle and we assign to the added vertex the label of the flagged edge.
If the original map is edge-rooted, we root the resulting map at the corner incident to
the vertex added on the root edge that corresponds to the distinguished side of the root
edge, oriented in accordance with the root orientation of the original map. We obtain
by this operation a labeled unicellular mobile.
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Definition 5.2 (Well-labeled generalized unicellular mobile). A labeled generalized
unicellular mobile is called a well-labeled generalized unicellular mobile if the flag
splitting operation makes it a well-labeled unicellular mobile and the corners incident
to vertices added during the flag splitting operation are not successors of any corners.

Let .u; l/ be a well-labeled generalized unicellular mobile, let . Qu; l/ denote the
well-labeled unicellular mobile obtained by the flag splitting operation and let

. Qm; v�/ WD ‰.. Qu; l/;C/:

Let v 2 V. Qu/ n V.u/. It has degree 2 in Qu and, by definition, the two incident corners
are not successors of any corners, so that it also has degree 2 in Qm. As a result, we
may define the map m by suppressing from Qm each vertex of V. Qu/ n V.u/ and by
merging the two incident edges into a single edge. Note that neither v� nor the root
vertex of Qm are suppressed, so that the pointed map .m; v�/ is well defined.

We extend the definition of ‰ by setting ‰..u; l/;C/ WD .m; v�/ and, whenever
.u; l/ is not edge-rooted, ‰..u; l/;�/ WD . Nm; v�/. We denote by G the set of well-
labeled generalized unicellular mobiles and by Ger� G the subset of edge-rooted ones.
If .u; l/ 2 G , the generalized degree of a vertex in V�ı.u/ is defined as the number of
incident nonflagged edges plus half the number of incident flagged edges (counted
with multiplicity). We readily obtain the following theorem.

Theorem 5.3. The extended mappings ˆ and ‰ induce bijections between M�eq and
Ger � ¹Cº on the one hand, and between M� nM�eq and G n Ger � ¹C;�º on the other
hand, and these bijections are inverse one from another.

Moreover, if .m; v�/ 2M� and ..u; l/; "/ D ˆ.m; v�/, then

(i) V.m/ D Vı.u/ t ¹v
�º and, for v 2 Vı.u/, l.v/ D dm.v; v

�/;

(ii) the faces of m correspond to V�ı.u/; moreover, the degree of a face of m is
twice the generalized degree of the corresponding vertex in V�ı.u/;

(iii) the maps m and u have the same number of edges.

We may specialize this theorem by prescribing the face degrees as we did in Corol-
lary 4.4. For a finite integer sequence ˛ D .˛1; : : : ; ˛n/, we denote by M�˛ the set of
pointed maps of � with n faces marked 1; 2; : : : ; n such that, for 1 � i � n, the face
marked i has degree ˛i . We also denote by G˛ the set of well-labeled generalized uni-
cellular mobiles with n green vertices marked 1; 2; : : : ; n and such that, for 1 � i � n,
the green vertex marked i has generalized degree ˛i=2.

Corollary 5.4. The restriction ofˆ to the subset M�˛ realizes a bijection between M�˛
and .G˛ � ¹C;�º/ n .Ger � ¹�º/.
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5.2. Application to triangulations

5.2.1. The bijection. For quadrangulations, the bijections are more convenient: in
particular, the labels on the encoding objects only satisfy local constraints instead of
global ones as it is the case in general (see Appendix A). As explained at the end
of Section 2.3, the orientation of the corner cycles does not intervene in the defini-
tion of the encoding objects. In the case of triangulations, the same argument holds
and we can thus give a simpler characterization of the encoding objects and derive
enumeration results.

Let us look at the restriction ofˆ to the set T � of pointed triangulations. By Theo-
rem 5.3, every green vertex of a corresponding element of G is either exactly incident
to 3 flagged edges or exactly incident to one nonflagged edge and one flagged edge.
Moreover, the labels around a green vertex can only be of the three types depicted on
Figure 21.

Figure 21. The three possible types of face and the corresponding green vertices.

Let us denote by E the set of labeled generalized unicellular mobiles with green
vertices of generalized degree 3=2 and such that the labels around any green vertex
are of a type shown on Figure 21. We consider an element of E and apply to it the
flag splitting operation. Plainly, the label variations between adjacent corners (corners
separated by exactly one green corner) belong to ¹�1;0; 1º. As in the case of quadran-
gulations, this entails that the requirements of Definition 2.6 are fulfilled, no matter
how the corners are oriented. Moreover, the conditions on the labels entail that the first
vertices outside any corner run are original white vertices (in the sense that they were
not added during the flag splitting operation) so that the successors will always be
incident to original vertices. Denoting by Eer the set of edge-rooted mobiles from E ,
we obtain the following corollary.

Corollary 5.5. The restriction of ˆ to the subset T � realizes a bijection between T �

and .E � ¹C;�º/ n .Eer � ¹�º/. Moreover, the corresponding objects have the same
number of edges.

5.2.2. Generating functions. From now on, it will be convenient to slightly modify
the bijection of Corollary 5.5 by subtracting 1=2 from all the labels of the flagged
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edges. This will bring some symmetry and make the computation easier. Note that this
also makes sense from a metric point of view, as the labels now represent the distances
to the distinguished vertex in the metric space obtained from the triangulation by
replacing each edge by a unit length segment. We furthermore consider from now on
labeled generalized unicellular mobiles up to addition of an integer constant to all
the labels. We will decompose these mobiles into elementary pieces in order to count
them. We use the framework of [19, 20].

We first consider nonrooted plane labeled generalized unicellular mobiles with
one green vertex incident to exactly one edge and such that every other green vertex
is incident to exactly

• either 3 flagged edges with the same label

• or one flagged edge with some label i 2 ZC 1
2

and one nonflagged edge incident
to a white vertex with label i ˙ 1

2
.

We introduce the generating function F (resp. N ) counting with weight t per edge
(flagged or nonflagged) such objects with the extra condition that the isolated green
vertex is incident to a flagged (resp. nonflagged) edge. The decomposition depicted
on Figure 22 yields

F D tF 2 C 2tN and N D t C 2tNF: (5.1)

Let us call F -mobile and N -mobile the objects counted by F and N . When we
fix a representative of the labels of an F -mobile (resp. an N -mobile), we call label
of the mobile the label of the flagged edge (resp. of the white vertex incident to the
nonflagged edge) that is incident to the isolated green vertex.

i˙ 1
2

i˙ 1
2

CD CD

Figure 22. Elementary decomposition of F -mobiles and N -mobiles.

For i; j 2 Z, we introduce the generating function Ci;j of nonrooted plane gen-
eralized unicellular mobiles whose green vertices satisfy the previous itemized con-
ditions, with two distinct distinguished white vertices labeled i and j . We extend
the definition to i 2 ZC 1

2
by replacing the distinguished white vertex labeled i by

a green vertex incident to exactly one flagged edge labeled i . Similarly, we extend the
definition to every i; j 2 Z=2.

In order to compute Ci;j , we start by considering the following objects. We link
the isolated green vertices of two N -mobiles by a chain of flagged edges and we
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graft an F -mobile onto every green vertex of the chain that is incident to two flagged
edges. Every F -mobile can be grafted either on one side or on the other side of the
chain. We furthermore impose that the labels of the resulting plane mobile satisfy
the previous conditions. If we let i and j be the labels of the N -mobiles, the only
possibilities are j 2 ¹i � 1; i; i C 1º. Moreover, all the flagged edges of the chain and
all the grafted F -mobiles must have the same label, which is i C 1=2 if j D i C 1,
i � 1=2 if j D i � 1, or i ˙ 1=2 if j D i . As a result, the generating function of these
objects is tN 2=.1 � 2tF / D N 3 if j D i ˙ 1 and 2N 3 if j D i .

We then consider Motzkin words, that is, finite sequences of �1, 0 or C1. We
count them with a weight Z WD N 3 per ˙1 and 2Z per 0. Let us call increment of
a Motzkin word w1w2 : : : wn the integer

Pn
kD1 wk . We denote by U the generating

function of words w1w2 : : : wn with increment �1 and such that
Pl
kD1 wk � 0 for

1 � l < n, and by B the generating function of words with increment 0. Considering
whether the first letter is �1, 0 orC1, we obtain

U D Z C 2ZU CZU 2 and B D 1CZUB C 2ZB CZUB

so that

Z D
U

.1C U/2
; B D

1C U

1 � U
; U D

1 �
p
1 � 4Z

2Z
� 1: (5.2)

The generating function of Motzkin words with increment ` 2 Z is then equal to the
product BU j`j.

We may now explicit Ci;j . Let us first suppose that i; j 2 Z. The differences
between the labels of subsequent white vertices on the path linking the two distin-
guished vertices form a nonempty Motzkin word. Decomposition at these vertices
yields Ci;j D BU jj�i j � 1¹iDj º. Now, if i 2 ZC 1

2
, j 2 Z, we have

Ci;j D N
2.BU jj�i�

1
2 j C BU jj�iC

1
2 j/ D B

p
NU jj�i j:

Similar computations show that, for i; j 2 Z=2, we have

Ci;j D BN
1
2 j¹i;j º\.ZC

1
2 /j U jj�i j � 1¹iDj2Zº: (5.3)

5.2.3. The sphere. We may now prove Propositions 1.1 and 1.2. We start with the
particular case of the sphere, which is somehow degenerate and has to be treated
separately. It is relatively easy and has probably already been done by this method
but, as we did not find it in the literature, we do it here for future reference.

The series we consider are really series in x WD t3. Setting � WD tF and using (5.1),
we obtain that

tF D �;
N

t
D

1

1 � 2�
; x D

1

2
�.1 � �/.1 � 2�/: (5.4)
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Proof of Propositions 1.1 and 1.2 when � is the sphere. The generating function of
rooted encoding mobiles is given by N=t � 1 and the generating function of edge-
rooted encoding mobiles is given by F 2=t . By Corollary 5.5 and (5.1), the generating
function of pointed plane triangulations is thus

F 2

t
C 2

�N
t
� 1

�
D
F

t2
� 2 D

�

x
� 2:

The function � is an algebraic series in x, which has a dominant singularity at the
point .12

p
3/�1 and admits the following Puiseux expansion at its singularity:

� D
1

2
�

p
3

6
�

p
2

6
.1 � 12

p
3x/1=2 CO.1 � 12

p
3x/:

As a result, the generating function of pointed plane triangulations admits the follow-
ing Puiseux expansion at its singularity:

�

x
� 2 D 6

p
3 � 8 � 2

p
6.1 � 12

p
3x/1=2 CO.1 � 12

p
3x/:

By classical transfer theorems [24, Chapter VI.3], this implies that the number of
plane triangulations with 3n edges (and thus 2n faces and nC 2 vertices) is asymp-
totically equivalent to

�
1

n
2
p
6

n�3=2

�.�1=2/
.12
p
3/n D

p
6
p
�
n�5=2.12

p
3/n

(the factor 1=n comes from depointing). This is the statement of Proposition 1.1.
Proposition 1.2 is obtained by noticing that the generating function counting plane

triangulations with weight x per vertex is given byZ
x
��
x
� 2

�
dx D

1

2
�3.1 � �/.1 � 4� C 2�2/;

as claimed.

5.2.4. The projective plane. We now turn to the projective plane, which is also
a degenerate case.

Proof of Propositions 1.1 and 1.2 when � is the projective plane. A unicellular map
of the projective plane consists of a single cycle (whose neighborhood forms a Möbius
strip) on the vertices of which trees are grafted. We consider an encoding mobile .u; l/
and we look at the first edge e belonging to the cycle that we meet when traveling
along the face of u starting from the root. We denote by e� the extremity of e that we
met before visiting e and by eC the other extremity.

If e is nonflagged, then e� is necessarily white and eC is green. Moreover, e� is
incident to e, another edge of the cycle and two trees, one on each side of the cycle.
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We cut the cycle at e�, leaving one of the two trees grafted on each extremity of the
chain we obtain. The resulting object is similar to the objects counted by C0;0 with
the difference that the first N -mobile of the chain is rooted or edge-rooted. Noticing
that there are as many nonflagged edges as white corners in any generalized uni-
cellular mobile, we see that counting rooted mobiles twice and edge-rooted mobiles
once amounts to counting nonrooted mobiles with a weight of double their number
of edges. By Corollary 5.5, the generating function of pointed triangulations whose
corresponding mobile is as considered in this paragraph is thus

2t
dN

dt

C0;0

N
:

If e is flagged, two cases may happen. If e is not the root edge, then the mobile
consists of a chain counted by C 1

2 ;
1
2

together with a rooted or edge-rooted F -mobile.
If e is the root edge, then the mobile is obtained by gluing together (in a nonorientable
way) the extremities of a nontrivial chain counted byC 1

2 ;
1
2

. The generating function of
pointed triangulations whose corresponding mobile is as considered in this paragraph
is thus

C 1
2 ;
1
2
2t
dF

dt
C

C 1
2 ;
1
2

t
� 1:

A small computation using (5.2), (5.3) and (5.4) yields that the generating function
of pointed triangulations on the projective plane is

3

1 � 6� C 6�2

� 1 � 2�
p
1 � 6� C 6�2

� 1C 2� � 2�2
�
; (5.5)

which has a dominant singularity at .12
p
3/�1 and admits the following Puiseux

expansion:

2�3=4 35=4.1 � 12
p
3 x/�3=4

�
1CO..1 � 12

p
3 x/1=2/

�
:

By transfer theorems, the number of triangulations of the projective plane with 3n
edges (and thus 2n faces and nC 1 vertices) is asymptotically equivalent to

1

n
2�3=4 35=4

n�1=4

�.3=4/
.12
p
3/n;

as desired. The generating function of triangulations counted with weight x per vertex
is then given by integrating (5.5) with respect to x.

5.2.5. The general case. We suppose from now on that h � 1, that is, we exclude
the already treated cases of the sphere and the projective plane. The general case is
similar to [20] (see also [19]) so we only give the main arguments and refer the reader
to these references for more detail.
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Definition 5.6 (Scheme). A scheme is a unicellular map of � with only vertices of
degree 3 or more. A normalized scheme is a pair .s; l?/, where s is a scheme and
l?WV.s/! ZC=2 is such that, if we denote by l?1 < � � � < l?

k
the values of its range,

then l?1 2 ¹0;
1
2
º and l?iC1 � l?i 2 ¹

1
2
; 1º for 1 � i < k. We denote by S the (finite) set

of normalized schemes of � .

Consider an encoding mobile .u; l/. We denote by Qs its 3-core, that is, the non-
rooted unicellular map obtained by iteratively removing from u all its vertices of
degree 1 and then replacing the chains of edges linking vertices of degree 3 or more
by single edges. Note that the vertices of Qs may be green or white and that it is possible
that several edges have both extremities that are white vertices. Note also that green
vertices of Qs necessarily have degree 3. We give labels to the vertices of Qs as follows:
to a white vertex, we give the (integer) label of the corresponding vertex in u and
to a green vertex, we give the common (noninteger) label of the three flagged edges
incident to the corresponding vertex in u. Let us denote by l1 < � � � < lk the different
values of these labels. We normalize them by replacing them with labels l?1 < � � �< l?

k

uniquely defined by l?1 2 ¹0;
1
2
º, l?iC1 � l?i 2 ¹

1
2
; 1º for 1 � i < k and l?i � li 2 Z for

1 � i � k. Let s be the same map as Qs but without distinguishing between green and
white vertices and rooted as follows. We start from the root of u and travel along its
unique face until we encounter a vertex that corresponds to a vertex of s. The root of s

is the corner that is visited at this instant, oriented according to the local orientation
we were following. The pair .s; l?/ is then a normalized scheme, which we call the
normalized scheme of .u; l/.

At this point, we fix .s; l?/ 2 S and we denote by l?1 < � � � < l?
k

the values
of the range of l? as above. We will express in terms of U the generating func-
tion P.s;l?/ of pointed triangulations whose encoding mobile has normalized scheme
.s; l?/. We start by arbitrarily associating with every half-edge of s an incident cor-
ner, and we do this in a bijective way. Let .u; l/ be a mobile encoding a triangulation
under consideration. Observe that every corner of s corresponds to a (possibly empty)
tree of u. We decompose u at the vertices corresponding to the vertices of s without
detaching the previous trees from the associated half-edge. We thus decompose .u; l/
into a collection of objects that are counted by some Ci;j ’s, one such object per edge
of s. Up to the location of the root, this gives an unequivocal decomposition of .u; l/.
As before, we need to count rooted mobiles twice and edge-rooted mobiles once,
which amounts to counting nonrooted mobiles with a weight of double their number
of edges. We let E be the edge set of s and, for every edge e 2 E, we denote by
ind-.e/, ind+.e/ 2 ¹1; : : : ; kº the indices such that l?ind-.e/

� l?ind+.e/
are the labels of

the extremities of e. We thus obtain

P.s;l?/ D
1

2 jEj
2t
d

dt

�X
l

Y
e2E

Clind-.e/;lind+.e/

�
;
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where the sum is over all labelings whose normalization is l?. The operator 2t d
dt

counts the number of edges twice and the prefactor comes from the fact that there are
2jEj possible re-rootings of s.

We define the following sets:

EıD D
®
e 2 EW l?ind-.e/ D l?ind+.e/ 2 Z

¯
;

E�ıD D
°
e 2 EW l?ind-.e/ D l?ind+.e/ 2 ZC

1

2

±
;

E¤ D
®
e 2 EW l?ind-.e/ ¤ l?ind+.e/

¯
;

V �ı D
°
v 2 V.s/W l?.v/ 2 ZC

1

2

±
:

Using (5.3) and observing that
P
e2E j¹l

?
ind-.e/

; l?ind+.e/
º \ .ZC 1

2
/j D 3jV �ıj (because

every vertex in V �ı has degree 3), we may express the previous sum as follows:X
l

Y
e2E

Clind-.e/;lind+.e/ D .B � 1/
jEıDj B jE

�ı
Dj B jE¤jN

3
2 jV
�ıj
X

l

Y
e2E¤

U lind+.e/�lind-.e/ :

Now, the sum in the right-hand side above is equal to

X
l

Y
e2E¤

ind+.e/�1Y
jDind-.e/

U ljC1�lj D

X
ı1;:::;ık�1�0

Y
e2E¤

ind+.e/�1Y
jDind-.e/

U
l?
jC1
�l?
j
Cıj

D

X
ı1;:::;ık�1�0

k�1Y
jD1

U
d.j /.l?

jC1
�l?
j
Cıj /

D

k�1Y
jD1

U
d.j /.l?

jC1
�l?
j
/

1 � U d.j /
;

where we set d.j / WD j¹e 2 E¤W ind-.e/ � j < ind+.e/ºj for 1 � j < k. Summing up
and expressing everything in terms of U with the help of (5.2), we obtain

P.s;l?/ D
2jE
ı
Dj

jEj
3x

�
d

dx

�
U jE

ı
DjC

1
2 jV
�ıj .1C U/jE j�jE

ı
Dj�jV

�ıj

.1 � U/jE j

k�1Y
jD1

U
d.j /.l?

jC1
�l?
j
/

1 � U d.j /

�
: (5.6)

According to the Euler characteristic formula, a triangulation of � with 3n edges
has nC 2 � 2h vertices. The generating functions of pointed triangulations and of
triangulations of � are thus respectivelyX

.s;l?/2S

x2�2hP.s;l?/ and
X

.s;l?/2S

Z
x1�2hP.s;l?/ dx: (5.7)
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The leading contributions in the asymptotic formula will come from normalized
schemes .s; l?/ that maximize both the number of edges of s and the cardinality of
the range of l?. It is not very hard to see that such normalized schemes are the ones
where the scheme is cubic, that is, with vertices of degree 3 only, and the labeling
function is injective. Moreover, such schemes all have 6h � 3 edges and 4h � 2 ver-
tices. See [19, Lemma 4.3] for a proof of these facts. We denote by S? � S the set
of these normalized schemes.

Proposition 5.7. We suppose here that h � 1. The constant c� of Proposition 1.1 is
given by

c� D
2�.13h�9/=2 3�5.h�1/=2

.6h � 3/ �..5h � 3/=2/

� X
.s;l?/2S?

2�jV
�ıj

4h�3Y
jD1

1

d.j /

�
:

Proof of Proposition 1.1 when .h � 1/ and of Proposition 5.7. Let .s; l?/2S and let
k denote the cardinality of the range of l? as above. The generating function P.s;l?/
admits a unique dominant singularity at xD .12

p
3/�1, which corresponds to a singu-

larity of U and at the same time to a value where U D 1. Moreover, at this singularity,
1 � U admits the following Puiseux expansion:

1 � U D 25=4 31=4.1 � 12
p
3 x/1=4 CO..1 � 12

p
3 x/1=2/:

As a result,

Œxn�P.s;l?/ �
2�.jE jC4jV

�ıjC5k�5/=4 3�.jE jCk�5/=4

jEj�..jEj C k � 1/=4/

� k�1Y
jD1

1

d.j /

�
� n.jE jCk�1/=4.12

p
3/n:

The leading contributions are thus obtained for normalized schemes that maximize
jEj C k as we claimed. The number of triangulations of � with 3n edges is thus
asymptotically equivalent to

1

n

X
.s;l?/2S

Œxn�P.s;l?/ �
2�.13h�9/=2 3�5.h�1/=2

.6h � 3/ �..5h � 3/=2/

� X
.s;l?/2S?

2�jV
�ıj

4h�3Y
jD1

1

d.j /

�
� n5.h�1/=2.12

p
3/n

as desired.

For h D 1, the expression of c� becomes

c� D
1

12

� X
.s;l?/2S?

1

2jV
�ıj d.1/

�
:
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If � is the torus, there is only one possible scheme, consisting of 3 edges linking 2 ver-
tices. In this case, d.1/D 3 for every scheme and the possible labelings, starting from
the root vertex, are .0; 1/, .0; 1

2
/, .1

2
; 1/, .1

2
; 3
2
/ and the symmetrical pairs. As a result,

c� D
1

12

2

3

�
1C

1

2
C
1

2
C
1

4

�
D
1

8
:

If � is the Klein bottle, there are two types of possible schemes obtained as fol-
lows. We consider a hexagon with sides denoted by s1; s2; : : : ; s6 in clockwise order
around it. We glue together s1 with s4 in an orientable way. The first type of schemes
is then obtained by gluing in a nonorientable way s2 with s6 and s3 with s5. The sec-
ond type of schemes is obtained by gluing in a nonorientable way s2 with s3 and s5
with s6. For the first type of scheme, d.1/ D 3 and for the second type of scheme,
there are two loops so that d.1/ D 1. In both cases, the labels can be ¹0; 1º, ¹0; 1

2
º,

¹
1
2
; 1º or ¹1

2
; 3
2
º with 6 possible rootings. All in all,

c� D
1

12
6
�
1C

1

3

��
1C

1

2
C
1

2
C
1

4

�
D
3

2
:

This completes the values given in Table 1.

Proof of Proposition 1.2 when h D 1. By (5.6) and (5.7), the generating function of
triangulations when h D 1 is

X
.s;l?/2S

3
2jE
ı
Dj U jE

ı
DjC

1
2 jV
�ıj .1C U/jE j�jE

ı
Dj�jV

�ıj

jEj .1 � U/jE j

k�1Y
jD1

U
d.j /.l?

jC1
�l?
j
/

1 � U d.j /
:

Let us start with the torus. There are 11 normalized schemes on the torus. There is one
with one vertex labeled 0 and 2 edges: its contribution in the sum is 6U 2.1 � U/�2.
The 10 remaining ones all have the same scheme with 2 vertices linked by 3 edges.
The different labelings and the corresponding contributions are presented in Table 2.

.1
2
; 1
2
/ .1

2
; 3
2
/, .3

2
; 1
2
/ .0; 1

2
/, .1

2
; 0/, .1; 1

2
/, .1

2
; 1/ .0; 0/ .0; 1/, .1; 0/

U.1C U/

.1 � U/3
U 4.1C U/

.1 � U 3/.1 � U/3
U 2.1C U/2

.1 � U 3/.1 � U/3
8U 3

.1 � U/3
U 3.1C U/3

.1 � U 3/.1 � U/3

Table 2. The contributions of all the normalized schemes on the torus except the one with only
one vertex. The labeling is given as a pair whose first coordinate is the label of the root vertex
and the second coordinate is the label of the other vertex.
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Summing these contributions, we obtain that the generating function of triangula-
tions on the torus is equal to

U.U 2 C 10U C 1/

.1 � U/4
D

�.1 � �/

2 .1 � 6� C 6�2/2
:

On the Klein bottle, the normalized schemes are as follows. There is one with
one vertex labeled 0 and two twisted edges and two with one vertex labeled 0, one
twisted edge and one straight edge. These three normalized schemes all have con-
tribution 6U 2.1 � U/�2. The remaining normalized schemes all have a scheme of
one of the two types presented before this proof. Moreover, for any such normalized
scheme, nonrooted but with a prescribed root vertex, there are three possible rootings.
The contributions of the normalized schemes of the first type are the same as for the
torus, that is, the ones in Table 2. For the normalized schemes of the second type, the
contributions are presented in Table 3.

.1
2
; 1
2
/ .1

2
; 3
2
/, .3

2
; 1
2
/ .0; 1

2
/, .1

2
; 0/, .1; 1

2
/, .1

2
; 1/ .0; 0/ .0; 1/, .1; 0/

U.1C U/

.1 � U/3
U 2.1C U/

.1 � U/4
2U 2.1C U/

.1 � U/4
8U 3

.1 � U/3
4U 3.1C U/

.1 � U/4

Table 3. The contributions of the normalized schemes of the second type on the Klein bottle.
The labeling is given as a pair whose first coordinate is the label of the root vertex and the
second coordinate is the label of the other vertex.

The generating function of triangulations on the Klein bottle is thus equal to

6U.13U 2 C 10U C 1/

.1 � U/4

D
3�.1 � �/.7 � 30� C 30�2 � 6.1 � 2�/

p
1 � 6� C 6�2/

.1 � 6� C 6�2/2
:

A. Alternate orientation processes

We worked in this paper with the coherent orientation but, in fact, we may consider
other orientation processes. Let us consider a triple .u; l;O/, where .u; l/ is a labeled
unicellular mobile and O is the data of an orientation for each of its corner cycles.
A corner is said to be O-oriented if it is oriented as its corner cycle and the O-
successor succO.c/ of a corner c with label l.c/� 2 is the first subsequent corner with
label strictly smaller than l.c/ in the order given by the O-orientation of c. Finally, the
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triple .u; l;O/ is a well-labeled loop-oriented unicellular mobile if, for every corner c
with label l.c/ � 2, we have l.succO.c// D l.c/ � 1.

On the other side, a loop-oriented pointed bipartite map is a triple .m; v�;O/
consisting of a pointed bipartite map .m; v�/ with the additional data of an orientation
for each of its level loops that are not maximal level loops. The sets of well-labeled
loop-oriented unicellular mobiles and loop-oriented pointed bipartite maps are in 2-
to-1 correspondence through the following bijections.

From a well-labeled loop-oriented unicellular mobile .u; l;O/ and a parameter
" 2 ¹C;�º, we define the pointed bipartite map .m; v�/ by the construction of Sec-
tion 2.4, replacing successors by O-successors. The facts that this construction is well
defined and outputs a pointed bipartite map are proved exactly as with the coherent
orientation. As noticed during the proof of Theorem 4.3, there is a one-to-one corre-
spondence between the corner cycles of .u; l/ and the level loops of .m; v�/ that are
not maximal level loops. We orient the level loops of .m; v�/ that are not maximal
level loops in accordance with the corresponding corner cycles, as in Figure 17.

From a loop-oriented pointed bipartite map .m; v�;O/, we define the unicellular
mobile .u; l/ by the construction of Section 3.3, using the O-orientation of its level
loops instead of the process of Section 3.2. The fact that the maximal level loops are
not oriented does not bear any effect as both possible orientations for a maximal level
loop set the same stops for the loop. From the proof of Theorem 4.3, the corner cycles
of .u; l/ correspond to the level loops of .m; v�/ that are not maximal level loops: we
orient the corner cycles in accordance with the corresponding level loops.

The proof that the above mappings are bijections is easily obtained from the argu-
ments of Section 4. As a result, using another orientation process for the level loops
of a pointed bipartite map may provide a bijection with a possibly different set of
encoding objects. In the case of pointed bipartite quadrangulations (see Corollary 4.4
in the case ˛ D .2; 2; : : : ; 2/), the situation is particularly nice because we obtain
well-labeled unicellular mobiles with green vertices of degree 2 (which are in direct
bijection with well-labeled unicellular maps, defined in Section 2.1). As explained
at the end of Section 2.3, the condition of being well labeled in this case does not
depend on the way the corners are oriented. Consequently, any orientation process
of the level loops of the bipartite quadrangulation yields a bijection, as long as this
orientation process is tractable on the encoding unicellular maps.

If we use the restrictions of ˆ and ‰ defined in Sections 3.3 and 2.4 in the case
of bipartite quadrangulations, some simplifications appear. There are no trivial corner
runs, as for a white oriented corner Ec, we have ' ı � ı '.Ec/ D �.Ec/ so that the labels
of Ec and of ' ı � ı '.Ec/ are equal. The level loop also has a simpler structure: when
constructing a level i -loop, if we cross an i i+1 edge and move along an i i -1
edge, it means that we are visiting a face whose labels are i � 1, i , i C 1, i , so that
the next edge we encounter is an i -1 i edge and we move along it. As a result,
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the corner labels along the level loop are several i ’s, then one i � 1, then several i ’s
and so on. The maximal level loops visit four corners, labeled i , i � 1, i , i � 1 or i ,
i � 1, i � 2, i � 1.

Instead of describing the restrictions of ˆ and ‰, let us give alternate orientation
processes for level loops and corners. This is the option we proposed in [8].

A.1. From pointed bipartite quadrangulations to well-labeled unicellular maps

Let us consider a pointed bipartite quadrangulation .q; v�/. We perform the steps of
Section 3.3, except that, in Step 2, we use the following orientation process of the
level loops instead of that of Section 3.2.

We use the root E� of the quadrangulation in order to orient, give an origin to and
order all the level loops. The first loops in our order are the ones that visit the root
corner, ordered by decreasing level (there may be 1 or 2 such loops). We orient them
in the orientation of E� and set their origin at the location of the root corner. Next,
we start from the origin of the first loop and travel on it, according to its orientation.
Every time we encounter a new loop (in the sense that we visit a corner that is also
visited by another loop that has not yet been oriented), we declare it to be the next one
in the order we are creating. We also set its origin at the location at which we are and
we orient it in the orientation induced by the loop on which we are traveling. When
we arrive back at the origin of our loop, we move to the next one in the order and
iterate the process until every loop has been oriented; see Figure 23.

This operation terminates as every loop at level i � 1 visits at least a corner visited
by a loop at level i � 1. Indeed, a loop issued from an oriented corner Ec visits the
oriented corner par.Ec/, which is visited by the loop issued from it.

Remark. If the surface we consider is orientable, all the loops are merely oriented
according to the orientation of the surface induced by the orientation of the root.

Observe that, in a so-called simple face, that is, a face with corner labels i , i C 1,
i C 2, i C 1, there are three level loops:

• one at level i that visits the corner i+1 i i+1 ;

• one at level i C 1 that visits the corners i+2 i+1 i , i+1 i i+1 and

i i+1 i+2 ;

• and one maximal level loop that visits all the corners.

Consequently, not considering the maximal level loops of the simple faces in the
above process does not change the orientations, origins, and relative order of the other
level loops. We thus discard these level loops, except possibly the one that visits the
root corner, if it is the only level loop that visits the root corner.
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Figure 23. Level loops of a pointed bipartite quadrangulation. We did not represent the 18
maximal level loops of simple faces. The letters indicate the rank of the loops in the order (not
considering maximal level loops of simple faces), the half arrowheads their orientation and the
dots their origin. Loop j is at level 0, loops e, k and l are at level 1, loops b, i and m are at
level 2 and the remaining loops are at level 3.

Finally, we remove the green vertices, which are all of degree 2. Figure 24 shows
an example of the construction.

A.2. From well-labeled unicellular maps to pointed bipartite quadrangulations

The inverse mapping constructs a pointed bipartite quadrangulation from a well-
labeled unicellular map .u; l/ and a parameter " 2 ¹C;�º as follows.

Step 1. Defining the sectors (Figures 25 and 30). We first add inside the unique face
of u a new vertex v� and assign to it the label l.v�/ WD 0. We connect all the corners
with label 1 to this vertex v� in a noncrossing fashion. We thus create a certain number
of sectors, defined as the connected components of the complement of the newly
added edges and the original edges of u. The set of corners of u belonging to a sector
is called the arc of the sector and the remaining corner of the sector is called its inner
corner.

Inside each sector whose arc contains at least three corners, we add a tempo-
rary vertex to which we connect all the corners with label 2 (note that the first and
last corners in such a sector are labeled 1 by definition, and the second and second
to last are necessarily labeled 2). The added edges delimit new sectors, defined as
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Figure 24. The bijection, from a pointed bipartite quadrangulation to a well-labeled unicellular
map.
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Figure 25. The sectors and level loops. The sector at level 2 containing the root of u is high-
lighted. See Figure 30 for a polygon representation of the same figure.

the connected components that do not contain the inner corner of the original sector.
We iterate the construction inside each created sector. The level of a sector is the min-
imal label of the corners on its arc (attained only once at each extremity of the arc, by
definition).
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Step 2. Constructing the level loops (Figures 25 and 30). A level loop is constructed
as follows. We start from the inner corner of a sector and move along one of the
two edges linking it to a corner of u. When we reach an edge of u, we cross it and
continue to move along the new edge encountered, toward the inner corner of the
sector we visit. When we reach the inner corner, we move along the side of the other
edge linking it to a corner of u, and iterate the process until we close the loop. The
level of a loop is the common level of the sectors it visits. We also add around v�

a single loop at level 0.
Before orienting the loops, we set the root E� of the future quadrangulation by the

rule depicted in Figure 5. In the eventuality that no loop visits E�, we add a loop that
circles around the middle of the green edge preceding the root of u.

Step 3. Orienting the level loops and identifying the temporary vertices. We now
orient, give an origin to and order the level loops. At the same time, we also identify
the temporary vertices with the appropriate vertices of u. More precisely, every time
we orient a loop, inside each sector it visits, we identify the temporary vertex of the
subsectors at next level with the first vertex of the sector that is visited by the portion
of the level loop inside the sector; see Figure 26.
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Figure 26. Identification of the temporary vertex of the highlighted sector of Figures 25 and 30.
When the dark red level 2-loop is oriented (from right to left on the figure), we identify the
temporary vertex of the level 3-subsectors with the extremity of the arc first visited by the
portion of loop (the one at the right on the figure).

The first loop in our order is the one that visits E�. We set its origin at the location
of E� and orient it in the orientation of E�. We do the aforementioned identifications. We
then start from the origin of the first loop and travel on it according to its orientation.
Every time we visit a temporary vertex that has not been identified, we orient the
loop visiting the sector at previous level in the same orientation as the orientation of
the loop on which we are traveling, and do the resulting identifications of temporary
vertices. After the identifications of temporary vertices, the corner we are visiting is
also visited by the loop we just oriented. We declare this loop to be the next one and
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Figure 27. The bijection, from a well-labeled unicellular map to a pointed bipartite quadrangu-
lation. Note that everything was done in such a way that the level loops correspond through the
bijection. See Figure 31 for a polygon representation of the same figure.

we set its origin at our location. Similarly, every time we visit an inner corner and
discover a new loop, we declare it to be the next one, set its origin at our location and
orient it in the orientation induced by the loop on which we are traveling. When we
arrive back at the origin of our loop, we move to the next one in our order and iterate
the process until every loop has been oriented; see Figures 27 and 31.

Step 4. Discarding the green edges. The embedded graph q made of the added edges
and rooted at the future root is a bipartite quadrangulation. If " D �, then the output
of the construction is .q; v�/, and if " D C, then the output is the root flipped version
. Nq; v�/.

A.3. Conclusion

Theorem A.1. The mappings of Appendix A are inverse bijections.

Proof. Let us consider a pointed bipartite quadrangulation .q; v�/ and orient its level
loops by the process of Section A.1. Let also .u; l/ be the well-labeled unicellular map
obtained from the construction of Section A.1. Then the well-labeled loop-oriented
unicellular mobile corresponding to .q; v�/ through the bijection described at the
beginning of Appendix A is the labeled unicellular mobile with green vertices of
degree 2 obtained from .u; l/ by adding a green vertex on every edge, and whose
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corner cycles are oriented in accordance with the corresponding level loops oriented
by the process of Section A.2.

With our orientation processes, we thus created a 1-to-1 correspondence between
pointed bipartite quadrangulations and some loop-oriented pointed bipartite quadran-
gulations, as well as a 1-to-1 correspondence between well-labeled unicellular maps
and some well-labeled loop-oriented unicellular mobile. Moreover, the two subsets of
loop-oriented pointed bipartite quadrangulations and well-labeled loop-oriented uni-
cellular mobiles are in 1-to-1 correspondence through the bijection of the beginning
of Appendix A.

Other choices of orientations, other bijections. In the previous construction, we
had the opportunity to choose the orientation of every loop and we decided to use,
by default, the orientation induced by the root or by the loop we were visiting. We
can modify this rule as follows. We fix beforehand a sequence of rules “C” or “�”
and, every time we orient a new loop, we reverse its orientation if and only if the
current rule is “�”. For every choice of sequence, we obtain a different pair of map-
pings, which are inverse one from another. In fact, any loop orientation process that is
tractable provides a bijection.

B. Representation of unicellular maps as polygons with paired sides

It is sometimes convenient to represent a unicellular map u as a polygon with twice as
many sides as the number of edges of u. In this representation, the sides of the polygon
are paired either in an orientable way or in a nonorientable way (see Figure 28).

In this appendix, we use this representation for Figures 6, 25 and 27.

Figure 28. Representation of a unicellular map as a polygon with paired sides. The red straight
lines correspond to orientable pairings and the blue dashed lines correspond to nonorientable
pairings. The letters are positioned according to the root-induced contour order.
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root of the future quadrangulation is represented in gray.



A bijection for nonorientable general maps 787

c
a

f

g

j

k

h

i
l

d

e

b

m

3

2

3

2

1

2

3

3

4

3
4

3343
2

3

3

3

2

1

2

2

3

3

2
1

1

2

1

2

3

3

2

0

3

3

4

2

1

2

3

2

3
212

Figure 31. Polygon representation of Figure 27. The bijection, from a well-labeled unicellular
map to a pointed bipartite quadrangulation.

Note on Figure 29. The oriented corner cycles and the geodesic orientation are rep-
resented. For better visibility, the side pairings are not represented. However, most of
the identifications of the corner cycles on the paired sides are represented by dashed
lines (regardless of the orientability of the pairings). Note that, in this example, there is
only one corner whose coherent orientation differs from its root-induced orientation:
it is the label 4-corner on the bottom left, in the purple corner cycle. For this reason,
it is the only corner whose coherent orientation is represented. The half-arrowheads
on the corner cycles are located at the positions of their first white or green corners in
the root-induced contour order.
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