A bijection for nonorientable general maps
Résumé
We give a different presentation of a recent bijection due to Chapuy and Dołęga for nonorientable bipartite quadrangulations and we extend it to the case of nonorientable general maps. This can be seen as a Bouttier-Di Francesco-Guitter-like generalization of the Cori-Vauquelin-Schaeffer bijection in the context of general nonorientable surfaces. In the particular case of triangulations, the encoding objects take a particularly simple form and this allows us to recover a famous asymptotic enumeration formula found by Gao.
Domaines
Mathématiques [math]Origine | Fichiers éditeurs autorisés sur une archive ouverte |
---|