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ZERO DISPERSION LIMIT OF THE CALOGERO–MOSER
DERIVATIVE NLS EQUATION

RANA BADREDDINE

Abstract. We study the zero–dispersion limit of the Calogero–Moser derivative

NLS equation

i∂tu+ ∂2
xu ± 2DΠ(|u|2)u = 0 , x ∈ R ,

starting from an initial data u0 ∈ L2
+(R) ∩ L∞(R) , where D = −i∂x , and Π

is the Szegő projector defined as Π̂u(ξ) = 1[0,+∞)(ξ)û(ξ) . We characterize the

zero–dispersion limit solution by an explicit formula. Moreover, we identify it, in

terms of the branches of the multivalued solution of the inviscid Burgers–Hopf

equation. Finally, we infer that it satisfies a maximum principle.
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1. Introduction

We consider a nonlocal nonlinear Schrödinger equation called the Calogero–Moser

derivative nonlinear Schrödinger equation

i∂tu+ ∂2
xu ± 2DΠ(|u|2)u = 0 , x ∈ R , (CM)

where D = −i∂x , and Π ≡ Π+ is the Szegő projector

Πu(x) =

∫
R

u(y)

y − x

dy

2πi
,

which is an orthogonal projector from L2(R) into the Hardy space

L2
+(R) := {u ∈ L2(R) , supp û ⊆ [0,+∞[ }

∼= {u ∈ Hol(C+) , sup
y>0

∫
R
|u(x+ iy)|2dx < +∞} ,
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2 RANA BADREDDINE

with C+ := {z ∈ C ; Im(z) > 0} . Typically, in Fourier transform, Π can be read as

Π̂u(ξ) = 1[0,+∞)(ξ) û(ξ) . (1.1)

This equation comes in two versions: one with the “+” sign in front of the nonlinearity,

referring to the focusing equation, and the other with the “−” sign, referring to the

defocusing equation. Through this paper, the ± and ∓ symbols will be interchanged

based on the following rule: the upper sign will correspond to the focusing case and

the lower sign to the defocusing case.

It is known since the work of [GL22] that the focusing (CM)–equation is globally

well–posedness in Hk
+(R) := Hk(R)∩L2

+(R) , k ∈ N≥1 for small initial data (∥u0∥L2 <√
2π) . This was achieved by establishing a uniform Hk–bound of the solution u(t)

over time. The same line of arguments enable the global well–posedness of the

defocusing equation in Hk
+(R) , k ∈ N≥1 for any initial data u0 . Subsequently, the

case on the torus (x ∈ T) has been investigated by the author under the name

of Calogero–Sutherland DNLS equation [Ba23a, Ba23b] , where the GWP has been

established in Hs
+(T) , s ≥ 0 in the focusing and defocusing cases, with small initial

data in the focusing case. Later, [KLV23] extended the GWP results on R , from the

high regularity spaces [GL22] up to the scaling–critical space L2
+(R) . More recently,

[HK24] established the blow–up of the Hs–norm’s solution, in a time T ∈ (0,+∞]

for initial data u0 ∈ H∞
+ (R) satisfying ∥u0∥2L2 = 2π + ε , for any ε > 0 .

From a physical standpoint, the scenarios described by the Calogero–Moser

DNLS equation share notable similarities with the Benjamin–Ono equation. In

both cases, they characterize weakly nonlinear dispersive internal waves located at

the interface between two fluid layers of different densities, with the lower layer

having infinite depth [BLS08, Sa19, Pe95]. In the context of the Benjamin–Ono

equation, the solution delineates the progression of these internal waves. On the

other hand, concerning the (CM)–equation, it illustrates a model for the envelope of

approximately monochromatic waves within the aforementioned settings.

Recently, Gérard [Ge23] studied the Benjamin–Ono equation with small disper-

sion ε > 0 , described as {
∂tu

ε + ∂x((u
ε)2) = ε|D|∂xuε

uε|t=0 = u0

, (BO-eps)

where he established that the weak limit in L2 of uε , as ε approaches 0 , is char-

acterized in terms of the branches of the multivalued solution of the inviscid

Burgers–Hopf equation. Novelty, this characterization holds for any u0 ∈ L2(R) ,
with u0 is a C1 function tending to 0 at infinity as well as its first derivative [Ge23] .

Observe that one can discern the emergence of the Burgers equation by formally tak-

ing the limit in (BO-eps) as ε → 0 . The act of neglecting the dispersion component

in the equation is commonly acknowledged in the literature as the “zero-dispersion
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limit” or “semiclassical limit”. In the following, we will use the terminology of

‘zero-dispersion limit” . Additionally, we will refer to the weak L2–limit of uε when

ε → 0 , as “the weak zero–dispersion limit solution”. It’s important to note that the

selection of initial data, represented by u0, remains independent of ε .

In this paper, we propose to investigate the zero–dispersion limit problem for

the Calogero–Moser DNLS equation. Thus, we consider the rescaled version of (CM)

with small dispersion ε > 0 ,{
i∂tu

ε + ε ∂2
xu

ε ± 2DΠ(|uε|2)uε = 0

uε|t=0 = u0

. (CM-eps)

The aim is to write the weak limit in L2 of the solution uε of (CM-eps) , as ε → 0 , in

terms of the branches of the multivalued solution of the Burgers equation. However,

here, it is less evident compared to the Benjamin–Ono case, why the Burgers equation

emerges in this context. For this purpose, observe that when formally taking ε → 0 ,

the (CM-eps) becomes

i∂tu ± 2DΠ(|u|2)u = 0 . (CM–zero)

Consequently, if u solves the previous equation, then v = |u|2 solves the Burgers

equation

∂tv = ±2v ∂xv (1.2)

as

∂tv =2Re(∂tuū)

=± 4Re(∂xΠ(|u|2)|u|2)

=± 2
(
∂xΠ(|u|2) + ∂xΠ(|u|2)

)
|u|2

=± ∂x|u|4 = ±∂xv
2

=± 2v ∂xv .

But before proceeding, it is essential to prove the existence of a weak zero

dispersion limit for (CM) . The upcoming theorem seeks to establish this existence

and even to characterize this L2–weak limit explicitly as an element of the Hardy

space. The notation ZD+[u0] represents the weak zero-dispersion limit solution in

the focusing case for (CM), and ZD−[u0] corresponds to the one in the defocusing

case.

Theorem 1.1. Given an initial data u0 ∈ L2
+(R) ∩ L∞(R) (with ∥u0∥L2 <

√
2π 1 in

the focusing case), the weak (in L2–space) zero-dispersion limit solution ZD±[u0] of

(CM) exists, and is characterized via the following explicit formula

ZD±[u0](t, z) =
(
Id ∓ 2tTu0Tū0(X

∗ − z)−1
)−1

u0(z) , t ∈ R , z ∈ C+ , (1.3)

1The constant
√
2π is to ensure the GWP of (CM) in the focusing case.
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where the operators Tv and X∗ are defined respectively at (2.2) and (2.3) . In addition,

we have

∥ZD±[u0](t)∥L2 ≤ ∥u0∥L2 .

Furthermore, if un
0 → u0 strongly in L2 as n → ∞ , with supn ∥un

0∥L∞ < +∞ , then

for all T > 0,

sup
t∈[−T,T ]

|ZD±[u
n
0 ](t)− ZD±[u0](t)| −−⇀

n→∞
0 in L2(R) .

Usually, when considering the scenario of zero-dispersion limit, the emergence

of shocks can be observed. These shocks manifest as we begin to neglect dispersive

effects, allowing the nonlinear term to dominate. With the existence of the weak zero-

dispersion limit established in the previous theorem, our objective in the following

theorem is to highlight these shocks, by addressing the connection between this

zero-dispersion limit solution of (CM) and the branches of the multivalued solution

of the inviscid Burgers equation, which is known for its tendency to exhibit shock

formations.

Theorem 1.2. Let u0 ∈ L2
+(R) (with ∥u0∥L2 <

√
2π in the focusing case), such that

u0 is a C1 function tending to 0 at infinity, with a bounded derivative in L∞(R) .2

Then, for every time t ∈ R , and for almost every x ∈ R , the algebraic equation

y ∓ 2t|u0(y)|2 = x (1.4)

has an odd number of simple real solutions y0 := y0(t, x) < . . . < y2ℓ := y2ℓ(t, x) ,

and the zero–dispersion limit of (CM) is given by

ZD±[u0](t, x) = eiφ(t,x)
(
∓i

|t|
t

)ℓ 2ℓ∏
k=0

|u0(yk)|(−1)k , (1.5)

where

φ(t, x) = arg(u0(x)) +
1

2π

∫ +∞

0

1

s
log

(
s∓ 2t|u0(x+ s)|2

−s∓ 2t|u0(x− s)|2

∏2ℓ
k=0(x− s− yk)∏2ℓ
k=0(x+ s− yk)

)
ds .

Remark 1.1. When ℓ > 0 , then any solution yk := yk(t, x) , k ∈ {0 , . . . , 2ℓ} satisfying

the algebraic equation (1.4), represents a branch of the multivalued solution of the

Burgers equation (1.2) at a time t beyond the shock time, and at a position x .

Remark 1.2. Observe that if we start from a rational initial data u0 , then in view

of identity (1.5) , the weak zero–dispersion limit is also a rational function. This

outcome does not seem to be evident by solely examining the identity (1.3) obtained

in Theorem 1.1 .

2 Note that any function in Hs
+(R) := Hs(R) ∩ L2

+(R) , s > 3
2 satisfies these conditions.
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Remark 1.3. By taking the modulus of (1.5) , we deduce

log|ZD±[u0](t, x)| =
2ℓ∑
k=0

(−1)k log|u0(yk)| .

This result should be compared to the one obtained by [Ge23] for the (BO)–equation,

where he found : for all t ∈ R , for almost every x ∈ R , and under the same condition

of smoothness on the initial data of Theorem 1.2, the zero–dispersion limit of (BO)

is given as

ZD(BO)[u0](t, x) =
2ℓ∑
k=0

(−1)ku0(y
BO
k ) , (1.6)

where the (yBO
k )0, ... 2ℓ , ℓ = ℓ(x) ∈ N≥0 , are real solutions for the algebraic equation

y + 2tu0(y) = x .

A consequence of the previous Theorem, is the existence of a maximum Principle.

Corollary 1.3 (A Maximum Principle). Let u0 ∈ L2
+(R) ∩ L∞(R) (with ∥u0∥L2 <√

2π in the focusing case). For all t ∈ R ,

∥ZD±[u0]∥L∞ ≤ ∥u0∥L∞ .

Related works. Zero dispersion limit of the KdV equation. The problem of zero

dispersion limit was first investigated by Lax and Levermore [LL83] for the KdV

equation on the real line

∂tu− 3∂x(u
2) + ε2∂3

xu = 0 , uε(0, x) = u0(x) , (KdV)

describing, thus, the weak zero dispersion limit for nonpositive initial data decaying

sufficiently fast at infinity. In contrast with the Benjamin–Ono equation [Ge23]

and the Calogero–Moser DNLS equation, the zero dispersion limit for the KdV

equation is expressed implicitly, as it is characterized by a quadratic minimum

problem with constraints. Lax–Levermore’s work initiated a series of papers. One

can cite [Ve87, Ve91, GK07, CG09, CG10a, CG10b] , where in all these works the

inverse scattering theory, the spectral theory of the Lax operator and the associated

Riemann–Hilbert problem are the main keys.

Zero dispersion limit of the Benjamin–Ono equation. We have previously refer-

enced the research by [Ge23], which characterized the zero-dispersion limit of the

Benjamin-Ono equation as an alternative sum (1.6). However, this formula traces

back to the work of [MX11, MW16] and [Ga23a, Ga23b] who had already derived

this sum (1.6) for specific examples of initial data and by using scattering theory or

the spectral theory.

Acknowledgments. The author would like to thank her Ph.D. advisor Patrick

Gérard for proposing this research problem and providing valuable comments on this

paper.
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2. The explicit formula of the zero dispersion limit of (CM)

This section aims to establish the existence of a weak (in L2) zero–dispersion

limit solution to the Calogero–Moser DNLS equation (CM) . Additionally, it seeks

to properly characterize this weak limit for all time t , through an explicit formula.

However, before proceeding, it is necessary to revisit some properties regarding the

(CM) equation.

It is a completely integrable PDE in the following two senses : First, it possesses

a Lax Pair structure (Lu, Bu) that satisfies the Lax equation

dLu

dt
= [Bu , Lu] , [Bu , Lu] := BuLu − LuBu

for enough regular u satisfying the (CM)–equation [GL22]. The Lax operators for

(CM) are given by

Lu = D ∓ TuTū , Bu = ±TuT∂xū ∓ T∂xuTū + i(TuTū)
2 , (2.1)

where Tv is the Toeplitz operator of symbol v defined as

Tvf = Π(vf) , f ∈ L2
+(R) , (2.2)

and Π denotes the Szegő projector (1.1) . Second, the complete integrability manifests

through the finding of an explicit formula of the solution of the (CM)–equation

[KLV23] . To introduce this formula, specific notation needs to be presented. Thus,

we consider on L2
+(R) , the contraction semigroup

S(η)h(x) = Π(eixη h(x)) , η > 0 .

And we denote by X its infinitesimal generator

Xh(x) = −i
d

dη
∣∣∣η=0

(S(η)h(x)) = xh(x) ,

of domain

Dom(X) = {h ∈ L2
+(R) ; xh ∈ L2(R)}

= {h ∈ L2
+(R) ; ĥ ∈ H1

(
[0,+∞)

)
, ĥ(0) = 0} .

Its adjoint X∗ has the following domain

Dom(X∗) = {f ∈ L2
+(R) ; ∃ c > 0 , ∀h ∈ Dom(X) , |⟨f |Xh⟩| ≤ c ∥h∥L2}

= {f ∈ L2
+(R) ; f̂ |(0,+∞) ∈ H1

(
(0,+∞)

)
} ,

and is defined for all ξ > 0 as

X̂∗f(ξ) = i∂ξf̂(ξ) .

That is, for all f ∈ Dom(X∗) ,

X∗f(x) = xf +
1

2πi
f̂(0+) . (2.3)
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The following theorem aims to recall the explicit formula of (CM) defined for any

u0 ∈ L2
+(R) [KLV23] , and to extend the global well–posedness result in Hk

+(R) :=
Hk(R) ∩ L2

+(R) , k ∈ N≥1 obtained by [GL22] , to L2
+(R) [KLV23] .

Theorem 2.1 ([KLV23]). Let u0 ∈ L2
+(R) (such that ∥u0∥L2 <

√
2π in the focusing

case). Then there exists a unique global solution u ∈ CtL2
+(R) such that for any

(u0
n) ⊆ H∞

+ (R) , (xu0
n) ⊆ L2 , u0

n → u0 in L2 , we have for all T > 0 ,

un → u in CtL2
+([−T, T ] ,R) .

Additionally, for all z ∈ C+ := {z ∈ C , Im(z) > 0} ,

u(t, z) =
1

2πi
I+((X

∗ + 2tLu0 − z)−1u0) , (2.4)

where I+ denotes

I+(f) := f̂(0+) , ∀f ∈ Dom(X∗) . (2.5)

As a consequence, ∥u(t)∥L2 = ∥u0∥L2 .

Remark 2.1. The explicit formula on L2
+(T) was earlier derived in [Ba23a][Proposition

3.4]. This is not the first instance of discovering an explicit formula for a completely

integrable PDE; for previous examples, we refer to [GG15, Ge22, GP23] .

In what follows, we consider the rescaled version of the (CM)–equation with

initial data u0 ∈ L2
+(R) ∩ L∞(R) : For all ε > 0 ,{

i∂tu
ε + ε ∂2

xu
ε ± 2DΠ(|uε|2)uε = 0 ,

uε|t=0 = u0 .
(CM–ε)

Our primary focus is on establishing the existence of a weak zero dispersion limit

for (CM); that is, determining whether the (CM–ε) equation has a weak limit in

L2 as ε tends to 0. The following theorem addresses this question. We recall that

the considered initial data u0 is independent of the parameter ε , and that ZD+[u0]

represents the weak zero-dispersion limit solution in the focusing case, and ZD−[u0]

corresponds to the one in the defocusing case.

Theorem. 1.1. Given an initial data u0 ∈ L2
+(R) ∩ L∞(R) , (with ∥u0∥L2 <

√
2π in

the focusing case), the weak (in L2–space) zero-dispersion limit solution ZD±[u0] of

(CM) exists and is characterized via the following explicit formula

ZD±[u0](t, z) =
(
Id ∓ 2tTu0Tū0(X

∗ − z)−1
)−1

u0(z) , t ∈ R , z ∈ C+ . (2.6)

In addition, we have

∥ZD±[u0](t)∥L2 ≤ ∥u0∥L2 . (2.7)

Furthermore, if un
0 → u0 strongly in L2 as n → ∞ with supn ∥un

0∥L∞ < +∞ , then

for all T > 0,

sup
t∈[−T,T ]

|ZD±[u
n
0 ](t)− ZD±[u0](t)| ⇀ 0 in L2(R) . (2.8)
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Proof. In view of Theorem 2.1 we have for all ε > 0 ,

∥uε(t)∥L2 = ∥u0∥L2 ,

where uε(t) is the solution of (CM–ε) . Hence, by Banach’s theorem, we deduce that

there exists ZD±[u0] ∈ L2
+(R), such that, up to a sequence, uε(t) ⇀ ZD[u0](t) in L2

as ε → 0 , and

∥ZD±[u0](t)∥L2 ≤ lim inf
ε→0

∥uε(t)∥L2 = ∥u0∥L2 .

To characterize ZD±[u0] , we will use the explicit formula of Theorem 2.1 . However,

first observe that when u is a solution of (CM) for an initial data u0 , then
√
εu(εt, ·) ≡√

εS(εt)[u0] is a solution to (CM–ε) for an initial data
√
εu0 , where S(t) denotes

the flow of (CM) . That is

uε(t, z) :=
√
εS(εt)

[
u0√
ε

]
is a solution to (CM–ε) for an initial data u0 . Therefore, starting from an initial

data u0 , one deduces by (2.4) and (2.1) that the solution of (CM–ε) in the focusing

and defocusing case is explicitly given, for all ε > 0 , by

uε(t, z) :=
1

2πi
I+((X

∗ + 2tεD ∓ 2tTu0Tu0 − z)−1u0) , z ∈ C+ . (2.9)

The next step is to pass to the limit ε → 0 in the above formula. For this purpose,

we rewrite (2.9) as follows

uε(t, z) =
1

2πi

(
Id ∓ 2te−iεtD2

Tu0Tū0e
iεtD2

(X∗ − z)−1
)−1

u0 .

Indeed, by using the Fourier transform, for all ξ > 0 ,

̂(X∗ + 2tεD)f(ξ) = eitξ
2

i∂ξ(e
−itξ2 f̂(ξ)) ,

(2.9) becomes

uε(t, z) =
1

2πi
I+

(
(eiεtD

2

X∗ e−iεtD2 ∓2tTu0Tu0 − z)−1u0

)
=

1

2πi
I+

(
eiεtD

2

(X∗ ∓ 2t e−iεtD2

Tu0Tu0 e
iεtD2 −z)−1 e−iεtD2

u0

)
Thus, by definition of I+ in (2.5) , we deduce

uε(t, z) =
1

2πi
I+

(
(X∗ ∓ 2t e−iεtD2

Tu0Tu0 e
iεtD2 −z)−1 e−iεtD2

u0

)
=

1

2πi
I+

((
X∗ − z

)−1 ·
(
Id ∓ 2t e−iεtD2

Tu0Tu0 e
iεtD2

(X∗ − z)−1
)−1

e−iεtD2

u0

)
Now, using the fact that

I+
(
(X∗ − z)−1 f

)
= lim

ε→0

〈
(X∗ − z)−1 f ,

1

1− iεx

〉
= lim

ε→0

〈
f , (X − z̄)−1

(
1

1− iεx

)〉
= lim

ε→0

〈
f, (x− z)−1

(
1

1− iεx

)〉
= 2πif(z), (2.10)
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we infer,

uε(t, z) =
(
Id ∓ 2t e−iεtD2

Tu0Tu0 e
iεtD2

(X∗ − z)−1
)−1

e−iεtD2

u0(z) . (2.11)

Observing first that ∥ e−iεtD2
u0∥L2 = ∥u0∥L2 , and second, e−iεtD2

Tu0Tu0 e
iεtD2

(X∗ −
z)−1 is a bounded operator as u0 ∈ L∞ , we infer by passing to the limit ε → 0 in

(2.11) ,

ZD±[u0](t, z) :=
(
Id ∓ 2tTu0Tu0(X

∗ − z)−1
)−1

u0(z) .

□

3. Link with the multivalued solution of the Burgers equation

The aim of this section is to prove Theorem 1.2 , which describes the weak zero

dispersion limit solution of (CM) starting from an initial data u0 ∈ L2
+(R) ∩ C1

tending to 0 at infinity and satisfying u′
0 ∈ L∞(R), in terms of the branches of the

multivalued solution for the Burgers equation (1.2) . However, before proving this

theorem for such initial data u0 , we will first focus on proving it for rational initial

data in the Hardy space

u0(y) =
P (y)

Q(y)
, Q(y) := (y + p0) . . . (y + pN−1) , pk ̸= pj , k ̸= j . (3.1)

where pk ∈ C , Im(pk) < 0 for all k = 0, · · · , N −1 , and P (y) =
∑N−1

n=0 any
n , an ∈ C .

Proposition 3.1. Let u0 be a rational function defined in (3.1) . Then for every

time t ∈ R , and for almost every x ∈ R , the algebraic equation

y ∓ 2t|u0(y)|2 = x (3.2)

has an odd number of simple real solutions y0 := y0(t, x) < . . . < y2ℓ := y2ℓ(t, x) ,

and the zero–disperion limit of (CM) is given, for almost every x ∈ R , by

ZD±[u0](t, x) = eiφ(t,x)
(
∓i

|t|
t

)ℓ 2ℓ∏
k=0

|u0(yk)|(−1)k (3.3)

where

φ(t, x) = arg(u0(x)) +
1

2π

∫ +∞

0

1

s
log

(
s∓ 2t|u0(x+ s)|2

−s∓ 2t|u0(x− s)|2

∏2ℓ
k=0(x− s− yk)∏2ℓ
k=0(x+ s− yk)

)
ds .

To prove the previous proposition, we split the proof into the following lemmas.

Lemma 3.2. Let u0(y) = P (y)
Q(y)

be a rational function defined as in (3.1) . Then,

for all t ∈ R , x ∈ R\Kt , where Kt is a finite set in R , the algebraic equation (3.2)

admits an odd number of simple real solutions

y0 := y0(t, x) < . . . < y2ℓ := y2ℓ(t, x) .
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Furthermore, the function γt(y) := y∓2t|u0(y)|2 is increasing near y2k , k = 0 , · · · , ℓ ,
and decreasing near y2k+1 , k = 0 , · · · , ℓ− 1 .

−8 −6 −4 −2 2 4 6 8

−5

5

y

x

Figure 1. For an initial data u0(y) :=
1

y+i , we have in red the graph of

γ2(y) := y− 2 · 2|u0(y)|2 = y− 2·2
y2+1

. In green, we have the graph of x = 1 .

The abscissa of the intersection of the axe x = 1 with the graph of γ2(y)

corresponds to the unique real solution y0 of γ2(y) = 1 . In blue, we have the

graph of x = −3 . The abscissas of the intersection of the graph γ2(y) with

x = −3 correspond to the points y0 < y1 < y2 solutions to the algebraic

equation γ2(y) = −3 .

Proof. Given u0(y) =
P (y)
Q(y)

as in (3.1) , we introduce 3

y ∈ C 7−→ v0(y) :=
P (y)P (y)

Q(y)Q(y)
.

Our goal is to study the real solutions of the algebraic equation (3.2) . Observe that,

y is a real solution of (3.2) , if and only if, y is a real solution of

y ∓ 2tv0(y) = x , t ∈ R ,

that is, if and only if, y is a real solution of the polynomial equation of degree 2N +1 ,

(y − x)Q(y)Q(y) ∓ 2tP (y)P̄ (y) = 0 . (3.4)

Now, focusing on (3.4), one notices y ∈ C\R is a solution to (3.4) , if and only if, its

complex conjugate ȳ is a solution to (3.4) . Therefore, the polynomial equation (3.4)

of degree 2N + 1 admits an odd number of real solutions

y0 := y0(t, x) ≤ . . . ≤ y2ℓ := y2ℓ(t, x) .

Discarding a finite set of critical values4 x of the function γt(y) := y∓ 2t|u0(y)|2 for a
given t , one may assume that these real solutions yk are simple and that the function

3 Observe that when y ∈ R , v0(y) = |u0(y)|2 .
4 We mean by critical values of a function γt, the γt–image of the critical points of γt , i.e. the

γt–images of the points where γ′
t(y) = 0 .
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γt is increasing in a neighborhood of the points y2k , k = 0, . . . , ℓ , and decreasing

in a neighbor of the points y2k+1 , k = 0 , . . . , , ℓ− 1 , as y 7−→ γt(y) is a continuous

function behaving like

γt(y) ∼
y→±∞

y .

□

Lemma 3.3. Let u0(y) =
P (y)
Q(y)

be the rational function and (pk)k=0 , ··· , N−1 be the

complex constants defined in (3.1) . Moreover denote, for almost every x ∈ R ,

y0 := y0(t, x) , · · · , y2N := y2N(t, x) the solutions of the equation

y ∓ 2t
P (y)P (y)

Q(y)Q(y)
= x , t ∈ R . (3.5)

Then, the zero–dispersion limit of (CM) is given by

ZD±[u0](t, x) =

u0(y0)u0(y2) . . . u0(y2N)

∣∣∣∣∣∣∣∣∣∣
1 1

y0+p0
1

y0+p1
. . . 1

y0+pN−1

1 1
y2+p0

1
y2+p1

. . . 1
y2+pN−1

...

1 1
y2N+p0

1
y2N+p1

. . . 1
y2N+pN−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
1 u0(y0)

y0+p0

u0(y0)
y0+p1

. . . u0(y0)
y0+pN−1

1 u0(y2)
y2+p0

u0(y2)
y2+p1

. . . u0(y2)
y2+pN−1

...

1 u0(y2N )
y2N+p0

u0(y2N )
y2N+p1

. . . u0(y2N )
y2N+pN−1

∣∣∣∣∣∣∣∣∣∣

.

(3.6)

Proof. The main component is to use the explicit formula (1.3) of ZD±[u0] , which

can be be reexpressed using (2.10) as

ZD±[u0](t, z) =
1

2πi
I+
[
(X∗ ∓ 2tTu0Tu0 − z)−1u0

]
, z ∈ C+ , (3.7)

where I+ is defined in (2.5) . The goal is to transform (3.7) into (3.6) . For that, we

decompose u0 in terms of its partial fractional decomposition u0(y) =
∑N−1

k=0
ck

y+pk
,

ck ∈ C , to infer by (2.2) and (2.3) ,

(X∗ ∓ 2tTu0Tu0 − z)f(y) = (y ∓ 2t|u0(y)|2 − z)f(y) +
1

2πi
I+(f)

± 2tu0(y)
N−1∑
k≥0

ck
y + pk

f(−pk) . (3.8)

Indeed, for all f ∈ L2
+(R) ,

Tu0f(y) =
N−1∑
k=0

Π+

(
ck

y + pk
f(y)

)
= u0(y)f(y)−

N−1∑
k=0

ck
y + pk

f(−pk) .
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Thus, for all f ∈ L2
+(R) ,

Tu0Tu0f(y) = |u0(y)|2f(y)− u0(y)
N−1∑
k≥0

ck
y + pk

f(−pk) .

Now, observe since formula (3.8) is valide for any f ∈ L2
+(R) , then one can extended

it to any holomorphic function f in C+ whose trace on R is in L2(R) . That is, if we
denote by

y ∈ C 7−→ v0(y) :=
P (y)P̄ (y)

Q(y)Q(y)
,

then the following identity holds

(X∗ ∓ 2tTu0Tu0 − z)f(y) = (y ∓ 2tv0(y)− z)f(y) +
1

2πi
I+(f)

± 2tu0(y)
N−1∑
k≥0

ck
y + pk

f(−pk) , (3.9)

for all y ∈ C+ , and for all holomorphic function f on C+ whose trace is in L2 .

In particular, for f(y) = ft,z(y) := (X ∓ 2tTu0Tu0 − z)−1u0(y) ∈ L2
+(R) , we infer

by (3.7) ,

u0(y) = (y ∓ 2tv0(y)− z)ft,z(y) + ZD±[u0](t, z) ± 2tu0(y)
N−1∑
k≥0

ck
y + pk

ft,z(−pk) ,

or

ft,z(y) =

u0(y)− ZD±[u0](t, z) ∓ 2tu0(y)
N−1∑
k≥0

ck
y + pk

ft,z(−pk)

y ∓ 2tv0(y)− z
. (3.10)

However, recall y 7→ ft,z(y) is a holomorphic function in the upper–half complex

plane. This means that the zeros in C+ of the denominator of ft,z must cancel its

numerator. Therefore, the next step is to find the zeros of the algebraic equation

y ∓ 2tv0(y) = z on C+ , with the note that, at the end of the day, z ∈ C+ will be

replaced by x ∈ R almost everywhere, as ZD±[u0] belongs to the Hardy space L2
+(R)

thanks to (2.7) .

Let x ∈ R . In view of Lemma 3.2 , the algebraic equation y∓ 2tv0(y) = x admits

an odd number of real solutions 5

y0 := y0(t, x) < . . . < y2ℓ := y2ℓ(t, x) .

Moreover, we denote by

y2ℓ+1 := y2ℓ+1(t, x) , . . . , y2N := y2N(t, x) ,

5 We recall that the real solutions y of the equation y ∓ 2tv0(y) = x are the same real solutions

of y ∓ 2t|u0(y)|2 = x as v0(y) = |u0(y)|2 when y is real.
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the remaining solutions of y ∓ 2tv0(y) = x belonging to the complex plane, where

thanks to (3.4) we notice y2p−1 = y2p for all p = ℓ+ 1 , · · · , N ; and in what follows,

we suppose Im(y2p) > 0 for all p = ℓ+ 1 , · · · , N .

By moving x = z slightly up to the upper half–complex plane, one proves by

using the implicit function theorem in its holomorphic version, that z 7→ yk(t, z) is a

holomorphic function and thus satisfies the Cauchy–Riemann equations

∂ Im(yk)

∂ Im(z)
=

∂ Re(yk)

∂ Re(z)
.

Besides, recall for all k = 0 , . . . ℓ , j = 1 , . . . , ℓ ,

∂ Re(y2k)

∂ Re(z)
> 0 ,

∂ Re(y2j−1)

∂ Re(z)
< 0 ,

since by Lemma 3.2 the function γt(y) := y ∓ 2tv0(y) is increasing near y2k , k =

0 , · · · , ℓ , and decreasing near y2k+1 , k = 0 , · · · , ℓ − 1 . As a result, for all k =

0 , . . . N , j = 1 , . . . , N ,

∂ Im(y2k)

∂ Im(z)
> 0 ,

∂ Im(y2j−1)

∂ Im(z)
< 0 .

That is (y2k)k=0 ,...N ⊆ C+ , and thus, at these points, the numerator of (3.10)

must vanish. Consequently, one deduces the following linear system of unknowns

ZD[u0](t, z) , and (ft,z(−pj))j=1,...,N−1 ,

u0(y2k) = ZD±[u0](t, z) ± 2tu0(y2k)
N−1∑
j≥0

cj
y2k + pj

ft,z(−pj) , k = 0, · · · , N .

Applying the Cramer rule, one finds for all z ∈ C+ ,

ZD±[u0](t, z) =

u0(y0)u0(y2) . . . u0(y2N)

∣∣∣∣∣∣∣∣∣∣
1 1

y0+p0
1

y0+p1
. . . 1

y0+pN−1

1 1
y2+p0

1
y2+p1

. . . 1
y2+pN−1

...

1 1
y2N+p0

1
y2N+p1

. . . 1
y2N+pN−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
1 u0(y0)

y0+p0

u0(y0)
y0+p1

. . . u0(y0)
y0+pN−1

1 u0(y2)
y2+p0

u0(y2)
y2+p1

. . . u0(y2)
y2+pN−1

...

1 u0(y2N )
y2N+p0

u0(y2N )
y2N+p1

. . . u0(y2N )
y2N+pN−1

∣∣∣∣∣∣∣∣∣∣

.

(3.11)

Hence, for almost every x ∈ R , identity (3.6) holds, as ZD±[u0](t) belongs to

the Hardy space L2
+(T) for all t , since it is a holomorphic function, exhibiting a

finite trace in L2(R) thanks to inequality (2.7) .

□
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Lemma 3.4 (Solving the determinants of Lemma 3.3). Under the same conditions

and notations as in Lemma 3.3 , the zero–dispersion limit of (CM) associated with

u0 =
P (y)
Q(y)

defined in (3.1) , is given for almost every x ∈ R by

ZD±[u0](t, x) =
P (x)

N∏
k=1

(x− y2k−1)

. (3.12)

Proof. We recall from Lemma 3.3 , for almost every x ∈ R ,

ZD±[u0](t, x) =

u0(y0)u0(y2) . . . u0(y2N)

∣∣∣∣∣∣∣∣∣∣
1 1

y0+p0
1

y0+p1
. . . 1

y0+pN−1

1 1
y2+p0

1
y2+p1

. . . 1
y2+pN−1

...

1 1
y2N+p0

1
y2N+p1

. . . 1
y2N+pN−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
1 u0(y0)

y0+p0

u0(y0)
y0+p1

. . . u0(y0)
y0+pN−1

1 u0(y2)
y2+p0

u0(y2)
y2+p1

. . . u0(y2)
y2+pN−1

...

1 u0(y2N )
y2N+p0

u0(y2N )
y2N+p1

. . . u0(y2N )
y2N+pN−1

∣∣∣∣∣∣∣∣∣∣

.

By expanding the determinants, one finds

ZD±[u0](t, x) =
2N∏
k=0

u0(y2k)

N∑
k=0

(−1)k ∆k

N∑
k=0

(−1)k
1

u0(y2k)
∆k

where ∆k is the minor obtained after removing the first column and the kth–row of

the matrix in the numerator of (3.12) . Therefore, observing that ∆k is a Cauchy

determinant, one infers that

ZD±[u0](t, x) =

N∑
k=0

(−1)k
N−1∏
j=0

(y2k + pj)
∏

0≤j<j′≤N
j,j′ ̸=k

(y2j′ − y2j)

N∑
k=0

(−1)k
1

u0(y2k)

N−1∏
j=0

(y2k + pj)
∏

0≤s<s′≤N
s,s′ ̸=k

(y2s′ − y2s)

=:
R

D
.

(3.13)
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First, by using the Vandermonde determinant, one can rewrite R in (3.13) as

R :=
N∑
k=0

(−1)k
N−1∏
j=0

(y2k + pj)
∏

0≤j<j′≤N
j,j′ ̸=k

(y2j′ − y2j)

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

N−1∏
j=0

(y0 + pj) 1 y0 . . . yN−1
0

N−1∏
j=0

(y2 + pj) 1 y2 . . . yN−1
2

...
N−1∏
j=0

(y2N + pj) 1 y2N . . . yN−1
2N

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
which is equivalent to

R =

∣∣∣∣∣∣∣∣∣
yN0 1 y0 . . . yN−1

0

yN2 1 y2 . . . yN−1
2

...

yNN−1 1 y2N . . . yN−1
2N

∣∣∣∣∣∣∣∣∣
thanks to the property of the determinant. Hence, applying once more the Vander-

monde determinant, we conclude that

R = (−1)N
∏

0≤m<n≤N

(y2n − y2m) . (3.14)

Second, moving to the expression of D in (3.13) . Observe that by definition of the

polynomial Q in (3.1) , we have

1

u0(y2k)

N−1∏
j=0

(y2k + pj) ≡
Q(y2k)

u0(y2k)
. (3.15)

In addition, recall that the (y2k)k=0 ,...N are solutions of the algebraic equation (3.4) .

Hence, for all k = 0 , · · · , N ,

Q(y2k)

u0(y2k)
= ∓2t

P (y2k)

x− y2k
,

which can be rewritten as

Q(y2k)

u0(y2k)
= ∓2t

(
P (y2k)− P (x)

x− y2k
+

P (x)

x− y2k

)
,

to infer via (3.15)

1

u0(y2k)

N−1∏
j=0

(y2k + pj) = ∓2t

(
P (y2k)− P (x)

x− y2k
+

P (x)

x− y2k

)
. (3.16)
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Therefore, by observing that P (y2k)−P (x)
x−y2k

is a polynomial in y2k of degree less strictly

than N − 1 , one finds by (3.16) , that D defined in (3.13) is equal to,

D = ∓ 2t P (x)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1

x− y0
1 y0 . . . yN−1

0

1

x− y2
1 y2 . . . yN−1

2

...
1

x− y2N
1 y2N . . . yN−1

2N

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Consequently, by using the Vandermonde determinant,

D = ∓2tP (x)
N∑
k=0

(−1)k

x− y2k

∏
0≤m<n≤N

m,n ̸=k

(y2n − y2m) ,

which can be rewritten as

D = ∓2t (−1)N P (x)

∏
0≤m<n≤N

(y2n − y2m)

N∏
k=0

(x− y2k)

, (3.17)

thanks to the partial fractional decomposition of

∏
0≤m<n≤N

(y2n − y2m)

N∏
k=0

(x− y2k)

=
N∑
k=0

∏
0≤m<n≤N

(y2n − y2m)

N∏
j=0 ,j ̸=k

(y2k − y2j)

x− y2k

=
N∑
k=0

∏
0≤m<n≤N

(y2n − y2m)

(−1)N−k
∏

0≤j<k

(y2k − y2j)
∏

k<j≤N

(y2j − y2k)

x− y2k

=
N∑
k=0

(−1)N−k

x− y2k

∏
0≤m<n≤N

m,n ̸=k

(y2n − y2m) .

Consequently, substituting (3.14) , (3.17) in (3.13) , one infers that

ZD±[u0](t, x) =

N∏
k=0

(x− y2k)

∓2tP (x)
. (3.18)
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Furthermore, if we take into account that (yk)k=0 , ··· , 2N are solutions to (3.5) , thus

also to the polynomial equation (3.4) , we can write

2N∏
k=0

(y − yk) = (y − x)Q(y)Q(y)∓ 2tP (y)P (y) , (3.19)

and when y = x in the above equation, we obtain
2N∏
k=0

(x−yk) = ∓2tP (x)P (x) , which

implies that (3.18) can be replaced by

ZD±[u0](t, x) =
P (x)∏N

k=1(x− y2k−1)
. (3.20)

□

Now, equipped with Lemma 3.4 , let us prove Proposition 3.1.

Proof of Proposition 3.1. We recall from Lemma 3.4 , that for almost every x ∈ R ,

ZD±[u0](t, x) =
P (x)∏N

k=1(x− y2k−1)
, (3.21)

where the (yk)k=0 , ··· , 2ℓ are the real solutions of the algebraic equation (3.2) , and

the (yp)p=2ℓ+1 , ··· , 2N are the complex solutions of (3.5) with y2p−1 = y2p for all

p = ℓ+ 1 , · · · , N . We rewrite (3.21) as

ZD±[u0](t, x) =u0(x)
Q(x)∏N

k=1(x− y2k−1)
(3.22)

=
u0(x)∏ℓ

k=1(x− y2k−1)

Q(x)∏N
p=ℓ+1(x− y2p−1)

.

The goal is to get rid of Q(x)∏N
k=ℓ+1(x−y2k−1)

, in order to express ZD±[u0] only in terms of

y0 , · · · , y2ℓ , thereby ensuring that ZD±[u0] can be expressed exclusively in terms

of the branches of the multivalued solution of the Burgers equation (1.2) .

For that, we recall from (3.19) , for all y ∈ C ,

2N∏
k=0

(y − yk)

Q(y)Q(y)
= y − x ∓ 2t

P (y)P (y)

Q(y)Q(y)
.

In particular, for all y ∈ R ,

y ∓ 2t|u0(y)|2 − x
2ℓ∏
k=0

(y − yk)

=

2N∏
p=2ℓ+1

(y − yp)

|Q(y)|2
,
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or, since y2p−1 = y2p for all p = ℓ+ 1 , . . . , N , and as Q(y) := (y + p0) · · · (y + pN−1)

by (3.1) ,

y ∓ 2t|u0(y)|2 − x
2ℓ∏
k=0

(y − yk)

=

N∏
p=ℓ+1

|y − y2p−1|2

N−1∏
j=0

|y − pj|2
. (3.23)

Let a > 0 , the next step is to prove that the term we need to get ride of is equal to

Q(x)
N∏

p=ℓ+1

(x− y2p−1)

=
(x+ ia)ℓ

exp

(
Π+

(
log
(
(y2 + a2)ℓgt,x(y)

)))∣∣∣
y=x

, (3.24)

where

gt,x(y) :=

N∏
p=ℓ+1

|y − y2p−1|2

N−1∏
j=0

|y − pj|2
.

Indeed, by definition of gt,x ,
6

log
(
(y2+a2)ℓgt,x(y)

)
= log

(
(y + ia)ℓ

∏N
p=ℓ+1(y − y2p−1)∏N−1

j=0 (y − pj)

)
+log

(
(y − ia)ℓ

∏N
p=ℓ+1(y − y2p−1)∏N−1

j=0 (y − pj)

)
,

where one observes the first term of the right–hand side belongs to L2
+(R) as

Im(pk) < 0 , while the second term belongs to L2
−(R) 7 . Therefore, by the uniqueness

of the decomposition of any L2–function in L2
+(R) ⊕ L2

−(R) , we infer for a fixed

x ∈ R ,

Π+

(
log
(
(y2 + a2)ℓgt,x(y)

))
= log

(
(y + ia)ℓ

∏N
k=ℓ+1(y − y2k−1)

Q(y)

)
.

Applying the exponential function to both sides of the previous identity and setting

y = x , one deduces (3.24) . Now, the only task left is to compute the right–hand

side of (3.24) . To do so, we need the following classical lemma, the proof of which

will be presented later for the convenience of the reader,

Lemma 3.5. For any h ∈ L2(R) of class C1 satisfying ∥h′∥L∞ < ∞ ,

Πh(x) =
h(x)

2
− i

2π

∫ +∞

0

h(x+ s)− h(x− s)

s
ds , x ∈ R .

6 The multiplication of gt,x by (y2 + a2)ℓ aims to ensure that each term on the right-hand side

of the following identity is in L2(R)
7i.e. the space of functions having a trace in L2(R) , such that they can be holomorphically

extended to C−)
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Thus, applying this lemma with h(y) = log
(
(y2 + a2)ℓg(y)

)
, one obtains

Π+

(
log
(
(y2 + a2)ℓgt,x(y)

))
=

1

2
log
(
(y2 + a2)ℓgt,x(y)

)
− i ℓ

2π

∫ +∞

0

1

s
log

(
(y + s)2 + a2

(y − s)2 + a2

)
ds

− i

2π

∫ +∞

0

log(gt,x(y + s))− log(gt,x(y − s))

s
ds .

(3.25)

where after some computation, one finds

1

2π

∫ +∞

0

1

s
log

(
(y + s)2 + a2

(y − s)2 + a2

)
ds =

π

2
− arctan

(
a

y

)
. (3.26)

Indeed, let f(y) :=
∫ +∞
0

1
s
log
(

(y+s)2+a2

(y−s)2+a2

)
ds . By deriving f , one finds

f ′(y) =

∫ +∞

0

4(a2 + s2 − x2)(
(y + s)2 + a2

)(
(y − s)2 + a2

) ds
=

∫ +∞

−∞

2(a2 + s2 − x2)(
(y + s)2 + a2

)(
(y − s)2 + a2

) ds
= lim

R→∞

∫
ΓR

2(a2 + z2 − y2)(
(y + z)2 + a2

)(
(y − z)2 + a2

) dz
where ΓR is the contour composed of the real axis from −R to R and the upper

semicircle. Using Cauchy’s residue theorem, we infer f ′(y) = 2πa
y2+a2

. Therefore, by

integrating the previous expression and observing that f(0) = 0 , and using that

arctan(θ) + arctan(1
θ
) = π

2
, one obtains (3.26) . Consequently, (3.25) becomes

Π+

(
log
(
(y2 + a2)ℓgt,x(y)

))
=

1

2
log
(
(y2 + a2)ℓgt,x(y)

)
− iℓ π

2
+ iℓ artan

(
a

y

)
− i

2π

∫ +∞

0

log(gt,x(y + s))− log(gt,x(y − s))

s
ds ,

(3.27)

and hence,

exp

(
Π+

(
log
(
(y2 + a2)ℓgt,x(y)

)))∣∣∣
y=x

= e
−iℓ π

2

√
(x2 + a2)ℓ gt,x(x) e

iℓ arctan( a
x)

(3.28)

exp

(
− i

2π

∫ +∞

0

log(gt,x(x+ s))− log(gt,x(x− s))

s
ds

)
.
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Thus, combining (3.22) , (3.24) and (3.28)

ZD±[u0](t, x) =
u0(x)∏ℓ

k=1(x− y2k−1)

(x+ ia)ℓ√
(x2 + a2)ℓ eiℓ arctan(a/x)

ei
πℓ
2√

gt,x(x)

· exp
(

i

2π

∫ +∞

0

log(gt,x(x+ s))− log(gt,x(x− s))

s
ds

)
=

|u0(x)|∏ℓ
k=1(x− y2k−1)

(i)ℓ√
gt,x(x)

eiφ(t,x) , (3.29)

where

φ(t, x) = arg(u0(x)) +
1

2π

∫ +∞

0

log(gt,x(x+ s))− log(gt,x(x− s))

s
ds . (3.30)

Substituting gt,x in (3.29) by its value in (3.23) with y = x ,

ZD±[u0](t, x) =
|u0(x)|∏ℓ

k=1(x− y2k−1)

(i)ℓ√√√√√√
∓2t|u0(x)|2
2ℓ∏
k=0

(x− yk)

eiφ(t,x) ,

and using the fact that the yk are solutions of the algebraic equation yk∓2t|u0(yk)|2 =
x , for all k = 0 , . . . , 2ℓ , we conclude

ZD±[u0](t, x) =
1

(∓2t)ℓ
∏ℓ

k=1|u0(y2k−1)|2
(i)ℓ√√√√√√
∓2t

(∓2t)2ℓ+1

2ℓ∏
k=0

|u0(yk)|2

eiφ(t,x)

=

(
∓i

|t|
t

)ℓ

ℓ∏
k=0

|u0(y2k)|

ℓ∏
k=1

|u0(y2k−1)|
eiφ(t,x) ,

where by (3.30) and (3.23) ,

φ(t, x) = arg(u0(x)) +
1

2π

∫ +∞

0

1

s
log

(
s∓ 2t|u0(x+ s)|2

−s∓ 2t|u0(x− s)|2

∏2ℓ
k=0(x− s− yk)∏2ℓ
k=0(x+ s− yk)

)
ds .

□

Proof of Lemma 3.5. For all x ∈ R ,

lim
δ→0+

Πh(x+ iδ) = lim
δ→0+

1

2πi

∫
R

h(y)

y − x− iδ
dy

= lim
δ→0+

1

2π

∫
R

δ h(y)

(y − x)2 + δ2
dy +

1

2πi

∫
R

h(y)(y − x)

(y − x)2 + δ2
dy
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Using the Poisson integral formula on the upper half-plane of C , we infer for all

δ > 0 ,

1

2π

∫
R

δ h(y)

(y − x)2 + δ2
dy =

h(x)

2
.

For the second term, observe that,

lim
δ→0+

∫
R

h(y)(y − x)

(y − x)2 + δ2
dy = lim

δ→0+
lim
ε→0

∫ x−ε

−∞

h(y)(y − x)

(y − x)2 + δ2
dy + lim

δ→0+
lim
ε→0

∫ +∞

x+ε

h(y)(y − x)

(y − x)2 + δ2
dy

= lim
δ→0+

lim
ε→0

(
−
∫ +∞

ε

h(x− s)s

s2 + δ2
ds+

∫ +∞

ε

h(x+ s)s

s2 + δ2
ds

)
= lim

δ→0+

∫ +∞

0

(h(x+ s)− h(x− s)) s

s2 + δ2
dy ,

where we can switch lim and integral, as
∫ +∞
0

h(x+s)−h(x−s)
s

ds is well–defined as the

principal value of h(x)
x

since ∥h′∥L∞ < ∞ . □

Now, armed with Proposition 3.1, let us proceed to prove the extended version

of the statement of this proposition to Theorem 1.2.

Proof of Theorem 1.2. Let u0 ∈ L2
+(R) ∩ C1(R) , such that u0 is tending to 0 at

infinity and u′
0 ∈ L∞(R) . For such u0 , the C1–function γt(y) := y ∓ 2t|u0(y)|2 is

asymptotically equivalent to y at ±∞ . Moreover, since u′
0 is bounded in L∞(R) ,

then for all t ∈ R , and for any x ∈ R that is not a critical value of γt , the equation

γt(y) = x has a finite number of real solutions

y0(t, x) < . . . < y2ℓ(t, x) . (3.31)

Besides, note that by the Sard theorem, the set of critical values of γt has zero

Lebesgue measure. Moreover, since

γ′
t(y) = 1 + 2t

(
|u0(y)|2

)′ −→ 1 , y → ±∞ ,

then the set of critical points {y ; γ′
t(y) = 0} is compact for a given t , so that its

image –the set of critical values of γt– is compact, and hence in particular closed.

Thus, let Ω be any open connected set (for the x variable) where (3.31) is satisfied.

The idea, at this stage of the proof, is to deduce the result from Proposition 3.1 .

Thus, by using a standard mollifier, we approximate u0 in L2(R) ∩ C1(R) by a

sequence of rational functions (uδ
0) belonging to the Hardy space. Now, take ω to

be any arbitrary open subset of Ω such that ω is compact. Therefore, for δ small

enough,

y + 2t|uδ
0(y)|2 = x , x ∈ ω ,

has 2ℓ+ 1 solutions

yδ0(t, x) < . . . < yδ2ℓ(t, x) .
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Since uδ
0 is a rational function in the Hardy space, then by Proposition 3.1 ,

ZD±[u
δ
0](t, x) = eiφδ(x)

(
∓i

|t|
t

)ℓ 2ℓ∏
k=0

|uδ
0(y

δ
k)|(−1)k ,

where

φδ(x) = arg(uδ
0(x)) +

1

2π

∫ +∞

0

1

s
log

(
s∓ 2t|uδ

0(x+ s)|2

−s∓ 2t|uδ
0(x− s)|2

∏2ℓ
k=0(x− s− yδk)∏2ℓ
k=0(x+ s− yδk)

)
ds .

By passing to the limit as δ → 0 , and using that uδ
0 → u0 in L2 ∩ C1 so that

yδk(t, x) → yk(t, x) , and by the weak limit of (2.8) , we deduce for every x ∈ ω ,

formula (1.5) . Now, since ω is chosen arbitrarily in Ω , this achieves the proof.

□

An immediate consequence of Theorem 1.2 is the following corollary.

Corollary 3.6. Let u0 ∈ L2
+(R)∩L∞(R) (with ∥u0∥L2 <

√
2π in the focusing case),

then for all t ∈ R ,

∥ZD±[u0](t)∥L∞ ≤ ∥u0∥L∞ .

Proof. In view of Theorem 1.2 , we have for any u0 ∈ L2
+(R) ∩ C1(R) , satisfying the

property that u0 is tending to 0 at infinity ,

|ZD±[u0](t, x)| =

ℓ∏
k=0

|u0(y2k)|

ℓ∏
k=1

|u0(y2k−1)|
,

where y0 < . . . < y2ℓ are solutions for the algebraic equation

x− yk = ∓2t|u0(yk)|2 .

Therefore, by the monotonicity of k 7→ yk we infer the monotonicity of k 7→ |u0(yk)|2 ,
so that we can deduce

|ZD±[u0](t, x)| ≤ max{|u0(y0)| , |u0(y2ℓ)|} ≤ ∥u0∥L∞ .

The general case of u0 ∈ L∞(R) ∩ L2(R) follows by applying a standard mollifier

to u0 like the one described to prove Theorem 1.2 and by using property (2.8) in

Theorem 1.1 . □
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appear in Annales IHP C, Analyse non linéaire. https://doi.org/10.48550/arXiv.2307.

01592

[CG09] T. Claeys and T. Grava. Universality of the break-up profile for the KdV equation

in the small dispersion limit using the Riemann-Hilbert approach. Communications in

Mathematical Physics, 286(3):979–1009, (2009).
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de mathématiques pures et appliquées 89.6 (2008): 538-566.

[Ga23a] L. Gassot. Zero-dispersion limit for the Benjamin-Ono equation on the torus with sin-

gle well initial data. arXiv:2111.06800, Communications in mathematical Physics 401,

pp.2793–2843 (2023). https://doi.org/10.1007/s00220-023-04701-0

[Ga23b] L. Gassot. Lax eigenvalues in the zero-dispersion limit for the Benjamin-Ono equation

on the torus. arXiv:2301.03919, To appear in SIAM J. Math. Analysis. (2023). https:

//doi.org/10.1137/23M154635X

[Ge22] P. Gérard. An explicit formula for the Benjamin–Ono equation. Tunisian Journal of

Mathematics 5.3 (2023): 593-603. https://doi.org/10.2140/tunis.2023.5.593

[Ge23] P. Gérard. The zero dispersion limit for the Benjamin–Ono equation on the line. ArXiv

preprint arXiv:2307.12768 (2023). To appear in Compte Rendus-Série Mathématique.

https://doi.org/10.48550/arXiv.2307.12768

[GG15] P. Gérard and S. Grellier. An explicit formula for the cubic Szegő equation. Trans-
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