N

N

Variational Formulations of Interior Structural-Acoustic
Vibration Problems
Jean-Francois Deii, Walid Larbi, Roger Ohayon

» To cite this version:

Jean-Francois Deii, Walid Larbi, Roger Ohayon. Variational Formulations of Interior Structural-
Acoustic Vibration Problems. Computational Aspects of Structural Acoustics and Vibration, 505,
Springer, pp.1-21, 2008, CISM International Centre for Mechanical Sciences, 978-321-189-650-1.
10.1007/978-3-211-89651-8 1 . hal-04484115

HAL Id: hal-04484115
https://hal.science/hal-04484115v1
Submitted on 29 Feb 2024

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est

archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-04484115v1
https://hal.archives-ouvertes.fr

Variational Formulations of Interior
Structural-Acoustic Vibration Problems

Jean-Francois Deti and Walid Larbi and Roger Ohayon

Structural Mechanics and Coupled Systems Laboratory
Conservatoire National des Arts et Métiers
Case 353, 292 rue Saint-Martin, 75141 Paris Cedex 03, France

Abstract It is proposed to present appropriate variational formula-
tions for linear vibration of elastic structure coupled with an inter-
nal acoustic fluid. Hybrid passive/active damping treatments will
be investigated for noise and vibration reduction problems.

1 Introduction

It is proposed to present appropriate variational formulations for linear vi-
bration of elastic structure coupled with an internal inviscid, homogeneous,
compressible fluid (liquid or gas), gravity effects being discarded in the pres-
ence of a free surface. Hybrid passive/active damping treatments will be
investigated for noise and vibration reduction problems. It should be noted
that generally, active structural treatments (using for example piezoelec-
tric smart materials) are effective in the low frequency range, while passive
structural treatments (such as viscoelastic materials, porous insulation...)
are effective for higher frequency domain.

In all the analyzed variational formulations, the structure will be de-
scribed by a displacement field (the piezoelectric structure being described
by an additional electric potential field). Concerning the fluid, instead of
a description through a displacement field (for which we refer for example
to (Bermudez and Rodriguez, 1994; Park et al., 2001)) we will choose a
scalar description through a pressure and/or a displacement potential field
(Morand and Ohayon, 1995; Ohayon, 2004a,b).

Dissipative behavior is introduced through a fluid-structure wall damp-
ing modeling by local impedance connected with a viscoelastic Kelvin-
Voigt type of constitutive equation. When taking into account dissipative
structural-acoustic behavior through a local impedance constitutive equa-
tion, the problem becomes strongly frequency dependent (Kehr-Candille
and Ohayon, 1992). In this presentation, we will use a simplify but rather
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general constitutive model of Kelvin-Voigt type through the introduction
of a scalar interface variable which allows the problem to be reduced to a
classical vibration damping problem (Deii et al., 2006; Larbi et al., 2006).
This impedance model, though local, may represent relatively satisfactory
porous medium (on a rigorous manner, a precise three-dimensional descrip-
tion of the porous medium at the fluid-structure interface would be neces-
sary through Biot type approach (Davidsson and Sandberg, 2006)).

For piezoelectric structures (active treatments), structural-acoustic con-
servative formulation are extended in order to take into account electro-
mechanical contributions. Here also, appropriate choice of variables has
been investigated and leads to the introduction of the electric potential as
an additional variable (Deii et al., 2008; Larbi et al., 2007).

For all the formulations, finite element discretization is discussed. Nu-
merical results are then presented in order to illustrate the accuracy and
versatility of the methodologies.

2 Conservative Structural-Acoustic Coupled Problem

Let us considered the free vibrations of an elastic structure completely filled
with a homogenous, inviscid and compressible fluid, neglecting gravity ef-
fects. We establish in this section the variational formulation of the spectral
problem and the corresponding matrix equations.

2.1 Local Equations

We consider an elastic structure occupying the domain Qg at the equi-
librium. The structure is subjected to a prescribed displacement u? on a
part I',, and to surface force density F on the complementary part I', of
its external boundary. The interior fluid domain is denoted by Qp and the
fluid-structure interface by ¥ (see Figure 1).

The structure is supposed to be relevant of classical linearized elasticity
theory. Therefore, the stress tensor o;; is related to the linearized deforma-
tion tensor €;; by the constitutive law

0ij = Cijki€kl (1)

where c;ji; are the coefficients of elasticity. We denote by pg the mass
density of the structure and n the unit normal external to Q.

Since the compressible fluid is assumed to be inviscid, instead of de-
scribing its motion by a fluid displacement vector field, which requires an
appropriate discretization of the fluid irrotationality constraint (Bermudez
and Rodriguez, 1994), we use the pressure scalar field p. Let us denote by
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Figure 1. Structural-acoustic coupled system.

cp the constant speed of sound in the fluid, by ppr the mass density of the
fluid at equilibrium, and by n; the unit normal external to Qp.

The local equations of the spectral structural-acoustic coupled problem
described in Figure 1 are given by

0ij.(u) +wpsu; =0 in Qg (2a)
oi;(u) nf =0 onl, (2b)
u; =0 onl, (2¢)
oi;(u) nJS =pn; onX (2d)
w2
Pii+—5p=0 inQp (3a)
F
ping = wzppui n; on Y (3b)

Equation (2a) corresponds to the classical elastodynamic equation ex-
pressed in terms of u; Equations (2b) and (2c) are the prescribed mechani-
cal boundary conditions; Equation (2d) results from the action of pressure
forces exerted by the fluid on the structure; Equation (3a) is the Helmholtz
equation; and Equation (3b) expresses the continuity of the fluid and struc-
tural normal displacement components at the interface:

un; —n =20 on (4)

where 7 represents the normal component of the fluid displacement field u/
(n = uf n;).
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In addition, the following constraint must be added
2 _
pch/uinids—&—/ pdv =0, (5)
b Qp

in order to ensure that Equations (3a) and (3b) are well posed for w = 0
due to the scalar description of the fluid. From a physical point of view, this
constraint ensures the satisfaction of mass conservation equation for w = 0.
Moreover, if we consider the static response of the fluid to a prescribed
deformation of the boundary 3, the constraint (5) allows to find the static
pressure: )
p° = i u;n; ds (6)
Q2e] Jx
Alternatively, considering the structure, the solution w = 0 is of course
excluded due to Equation (2c¢) (the structure is fixed on I';, which eliminates
any rigid body motion).

2.2 Variational Formulation

In order to obtain the variational formulation associated with the local
equations of the coupled structural-acoustic system given in Equations (2)-
(3), the test-function method is applied. We proceed in two steps, succes-
sively considering the equations relating to the structure (subject to fluid
pressure actions) and the equations relating to the fluid (subject to a wall
displacement).

First, we introduce the space C,, of sufficiently regular functions u; de-
fined in Qg and C; = {u; € C,, |u; =00onT,}. Multiplying Equation (2a)
by any test-function du; € C7, then applying Green’s formula, and finally
taking Equations (2b) and (2d) into account, leads to

/ Cijricrl(w)ei; (du) dv — WQPS/
Qs

w; Ou; dv — / pn;ou;ds =0 (7)
Qs o

Secondly, we consider the space C), of sufficiently regular functions p
defined in Qp. Multiplying Equation (3a) by any test-function ép € C,,
applying Green’s formula, and taking Equation (3b) into account, we obtain

1 w?

— P 0p,;dv — 5 / pépdv—wQ/uini(Spds:O (8)
PF JOr PFCE JQp b

Finally, we have the following constraint for the static case

ch%/uinids—i—/ pdv=0 (9)
= Qp
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Thus, the variational formulation of the structural-acoustic spectral prob-
lem consists in finding w € RY and (u;,p) € (Cy, Cp), such that V(du;, dp) €
(C*,Cy), Equations (7), (8) and (9) are satisfied.

2.3 Finite Element Discretization

Let us introduce U and P corresponding to the vectors of nodal values of
u; and p respectively, and the matrices corresponding to the various bilinear
forms involved in Equations (7)-(8) defined by

/ Cijklgkl(u)sij (511,) dv = 5UTKUU (10&)
Qs
ps / u; du; dv = sUTM, U (10b)
Qs
/ pn;du; ds = 5UTCupP (10¢)
by
/ u;n; opds = SPTC, U (10d)
by
1
— | pidp;dv=PTK,P (10e)
PF Jap
1
5 / popdv = 6PTMpP (10f)
PFCEr Jar

where M,, and K, are the mass and stiffness matrices of the structure;
M, and K, are the mass and stiffness matrices of the fluid; C,,, is the
fluid-structure coupled matrix.

Thus, the variational equations (7)-(8) for the structural-acoustic spec-
tral problem can be written, in discretized form, as the following unsym-
metric matrix system:

(5 ) () (e w)(p)-(3) o

with the following relation which is related to the discretization of Equa-
tion (9)
LIuv+1ipP=o0 (12)
This scalar relation is obtained by the discretization of the variational
form of Equation (9) with constant test-functions. Therefore, Ly and Lo
are obtained from Equations (10d) and (10f) with constant JP

L, =6P"C],
Ly, = 6PTM,,
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From a computational point of view, this formulation has the advan-
tage of only introducing one unknown per node to describe the fluid. On
the other hand, the matrix system is non-symmetric needed to use partic-
ular eigenvalue solvers. In order to avoid this drawback, various symmetric
formulations have been derived. The symmetrization is carried out at the
continuum level through the description of the fluid by two scalar fields,
namely pressure p and displacement potential ¢ (ul" = ¢ ;). This displace-
ment potential is defined up to an additive constant. It should be noted
that one of the scalar variables can be eliminated through generalized added
mass or added stiffness operators (Morand and Ohayon, 1995).

3 Dissipative Structural-Acoustic Coupled Problem

In this section, we propose to investigate the effect of introducing a thin
layer of absorbing material (for example porous insulated material) at the
fluid-structure interface in order to damp the elastoacoustic energy. In the
present analysis, we suppose that this physical interface can be modeled by
a massless geometric surface. Therefore, this interface will be described by
a particular constitutive law through the introduction of a dissipative wall
acoustic impedance Z(w) (Ohayon and Soize, 1998). As a consequence, the
equation (4) must be replaced by:

p=iwZ(w)(un; —n) (14)

which quantify the normal displacement discontinuity at the interface.

In many situations, it has been verified that Z(w) can be approximated
by a viscoelastic Kelvin-Voigt model (see Figure 2), i.e. by the sum of
a constant real part and an imaginary part inversely proportional to the
frequency: Z(w) = d! + ik!/w. The constant parameters k! and d! are
associated respectively to the elastic and viscous contributions of the ab-
sorbing layer. Equation (14) then writes:

p=—(k" —iwd")(uin; — ) (15)

We establish here (i) the variational formulation of the structural-acoustic
problem with damping interface using a Kelvin-Voigt model and (ii) the
corresponding matrix equations resulting for instance from a finite element
discretization.

3.1 Local Equations in Terms of (u;,7,p)

The local equations of the spectral coupled problem with damping in-
terface are expressed in terms of the structural displacement field u;, the
normal fluid-structure interface displacement 7, and the fluid pressure p
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Figure 2. Structural-acoustic coupled system with damping interface.

0ij.j (u) + prgui =0 in Qg (163,)
oi;(u) nf =0 onT, (16b)
u; =0 onT, (16¢)
oij(u) nf = — [kl(umi —-n) — iwdl(uini - 17)] g on (16d)
W2
pii+ zp=0 inQp (17a)
o
PN = W2 prn onXx (17b)
—p = kl(umi —-n) — iwd (uin; — n) on Y (18)

Equation (16d) represents the force equilibrium at the interface; Equa-
tion (17b) represents the continuity condition between the fluid and the
damping interface; and Equation (18) expresses the constitutive law of the
interface: the first term is proportional to the normal displacement compo-
nent and accounts the elastic behavior of the interface material, the second
one is proportional to the normal velocity and models the viscous damping.

A relationship similar to Equation (9) must be added to ensure the well
position of the fluid part of the problem for w = 0. For sake of simplicity,
we do not introduce this constraint in the sequel (this analysis is the subject
of current investigations).

3.2 Variational Formulation

The variational formulation of the structural-acoustic spectral problem
with damping interface is obtained using the test-function method.
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Multiplying Equation (16a) by any test-function du; € C}, then applying
Green’s formula, and finally taking Equations (16b), (16d) into account,
leads to

/ Cijricrl(u)eq; (0u) dv — w2p3/ w; Ou; dv — kI/ nm;ou; ds

Qs Qg ¥

+ k! / (uin;)n;ou; ds + iwdl/ nnidu; ds — iwd” / (uin;)n;ou; ds =0
) b))

P
(19)

Similarly, multiplying Equation (17a) by any test-function ép € Cp, ap-
plying Green’s formula, and taking Equation (17b) into account, we obtain

2

1
— D, 0p ;i dv — w2 / pépdv—wQ/népds:O (20)
PF JOr PFCE Jar b

Finally, we consider the space C;, of sufficiently regular functions n de-
fined on ¥. Multiplying Equation (18) by én € C,), we have:

krl/nénds—k‘l/umiénds—iwdl/nénds—i—iwdl/umiénds
b b » b

—/pénds:O (21)
b

Thus, the variational formulation of the structural-acoustic spectral prob-
lem with damping interface consists in finding w € C% and (u;,n,p) €
(Cy,Cy,Cp), such that V(0u,, n,dp) € (Cy,Cy,Cp), Equations (19)-(21)
are satisfied.

In principle, one should use complex test-functions and sesquilinear prod-
ucts involving (0u;, 6p, 1) complex conjugate quantities of (du;, op, dn). As
the next subsection deals with finite element discretization, for sake of
brevity, real test functions has been introduced but of course w is complex.

3.3 Finite Element Discretization

Let us introduce U, H and P corresponding to the vectors of nodal values
of u;, n and p respectively, and the following submatrices corresponding to
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Equations (19)-(21)

/E(uini)ni(Sui ds = éUTD,U (22a)
/2 nnidu;ds = sUTC,, H (22b)

/Z u;in; dnds = sH'C] U (22¢)

/Z nénds = sH'D,H (22d)
/Epén ds = 5HTCin (22e)

/Z népds = sPTC] H (22f)

Using Equations (10) and (22), the variational Equations (19)-(21) leads
to the following unsymmetric spectral matrix system:

K, +k'D, —k'C,, 0 U
-k'cl KD, -C,||H
0 0 K, P

dD, —d'C,, 0\ (U
—iw|-da'cl  d'D, o] |H
P

0 0 0
M, 0 O U 0
-w*[ 0 o0 o H|=(0]| (23
T
o CcIL M,/ \P 0

Remarks.

e It can be shown that the conservative (u;,p) fluid-structure system
described in Section 2 is obtained by setting d/ = 0 then k! — oo in
the previous equations.

e In order to take into account possible mass effect of the interface
(surface smeared-mass), one has to choose the impedance under the
form Z(w) =d! —i(mlw — k! /w).

e Of course, as mentioned in Section 2, symmetrization of Equation (23)
can be carried out by using an additional scalar variable to describe
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the fluid (¢), leading, after elimination procedures, to added mass and
added stiffness operators.

4 Piezoelectric Structural-Acoustic Coupled Problem

It is well known that noise reduction techniques using absorbing materials
are quite effective at relatively medium and high frequency range. In the low
frequency range, active techniques using piezoelectric materials are found
to be an attractive alternative or complementary tool. In this case, sensor
and actuator piezoelectric patches are surface-mounted or embedded in the
structure. These patches are capable of self-sensing and self-actuation for
active vibration and noise control. In this context, we present in this section
variational and finite element formulations for the free vibration analysis of
piezoelectric structural-acoustic coupled problems.

4.1 Local Equations of the Coupled Electro-Mechanical Problem

The local equations of the piezoelectric structural-acoustic problem are
given by

0+ wipsu; =0 in Qg (24a)
Oij nf =0 onTl, (24Db)
u; =0 onl, (24c)
Oij nf =pn; onY (24d)
Dii=0  inQg (25a)
Dinf =0 onTp (25b)
P =0 on Iy (25¢)
W2
D,ii + gp =0 inQp (26a)
DN = w2 ppu; n; on X% (26b)

Equation (25a) corresponds to the Gauss law of electrostatics in ab-
sence electric of charge density. We recall that D; denotes the electric
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displacement vector. Equations (25b) and (25c) are the electric boundary
conditions. These electric boundary conditions are defined by a prescribed
electric potential ¥? on I'y and a surface density of electric charge Q% on
the remaining part I'p.

The stress tensor o;; and electric displacement D; are related to the
linear strain tensor €;; and electric field Fj through the converse and direct
linear piezoelectric constitutive equations

oij = Cijricki(u) — egi; B (1) (27)
D; = ejpien(u) + € Ex(v) (28)

where c¢;j11, erij and €, denote elastic, piezoelectric and dielectric material
constants.

Moreover, we have the following gradient relations between the linearized
strain tensor eg; and the displacement uy, and between the electric field
vector Ej and the electric potential 1):

1
Eh =5 (wp, + ur k) (29)

Ep =9y (30)

We can note from the constitutive Equations (27) and (28) and from the
gradient relations (29) and (30) that the stress tensor o;; and the electric
displacement vector D; depend on the variables uy and :

oij = 0 (up, 1) (31a)
D; = D;(ug, 1) (31b)

For a detailed derivation of these classical equations, we refer the reader,
for example, to (Tiersten, 1969) for piezoelectric aspects and to (Morand
and Ohayon, 1995) for fluid-structure aspects.

4.2 Variational Formulation

The local equations of Section 4.1 are expressed in terms of the chosen
unknown fields of the piezoelectric structural-acoustic boundary value prob-
lem, i.e. the structural mechanical displacement wu;, the electric potential in
the structure ¢, and the fluid pressure p.

In order to obtain the variational formulation associated with the lo-
cal equations of the coupled fluid/piezoelectric-structure system given in
Equations (24)-(26), the test-function method is applied. We proceed in
three steps, successively considering the equations relating to the structure
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(subject to fluid pressure actions), the electric charge equation for a di-
electric medium, and the equations relating to the fluid (subject to a wall
displacement).

First, multiplying Equation (24a) by any test-function du; € C}, inte-
grating over g, then applying Green’s formula, and finally taking Equa-
tions (24b), (24d), (27) and (29) into account, leads to

/Cijklgkl(u)gij(5u>dv_/ exij B (1)ei (du) dv
Qs

Qs

—/pniduids—wzps/ u; du;dv =0 (32)
b Qs

Secondly, we consider the space Cy, of sufficiently regular functions
in Qs and Cj, = {¢ € Cy [y =00onTy}. Multiplying Equation (25a) by
any test-function 0¢» € C7, integrating over Qg and finally taking Equa-
tions (25b), (28) and (30) into account, we have

/Q eimten (1) i (50) dv + / e Er (1) Ei (00) dv = 0 (33)

Qs

Finally, Multiplying Equation (26a) by any test-function dp € C,, applying
Green’s formula, and taking Equation (26b) into account, we obtain

1 2
— p,i 0p,; dv — d 5 / pdpdv — w2/ u;n; opds =0 (34)
PF Jap PFC Jap b

Thus, the variational formulation of the fluid/piezoelectric-structure spec-
tral problem consists in finding w € R* and (u;,¥,p) € (C;, Cj, Cyp), such
that V(du;, 04, 0p) € (Cy, CF, Cp), Equations (32) and (34) are verified.

4.3 Finite Element Discretization

The discretization of the preceding variational formulation leads to the
following matrix equation

K, -Cuy -Cu,)\ [U M, 0 O U 0
Ccl, Ky 0 | -w'|l 0 0 O v|=1|o0
0 0 K, P Cl,, 0 M,/ \P 0

where U, ¥ and P are the vectors of nodal values of u;, ¥ and p respectively,
and where the not yet defined submatrices of Equations (32)-(34) are given
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by
/Q erij Er(¥)eij(0u) dv = dUTC,y T (36a)
S
/Q eirier(u)Ei(61) dv = 0®TCL, U (36b)
S
/Q ) i B (V) Ei(0¢) dv = 60T TK, ¥ (36¢)

K, (resp. Cyy) represents the electric stiffness (resp. the electric mechan-
ical coupled stiffness) matrix.

Remarks.

e K, is invertible because ) = 0 on I'y,. The case of I'y, = () will be the
subject of further investigations.

e The elimination of electric potential degrees of freedom W using the
second row of Equation (35), leads to

)G en ) () 6)
—w = 37
( 0 K, p cl, M,)\P o) 7
where the added-stiffness matrix K4 = Cqu;wa is due to the
electromechanical coupling.

e When the piezoelectric coupling constants are set to zero, the added
stiffness matrix K4 = 0 and we obtained the unsymmetric (u;,p)
fluid-structure system involved in Section 2.

e Asin the previous section, a symmetric formulation can be established
by introducing the fluid displacement potential as additional variable
(Deii et al., 2008).

5 Numerical Examples

We present in this section some finite element results, obtained with the
previous formulations, for the free vibration analysis of interior structural-
acoustic systems. First, a three-dimensional vibroacoustic problem with
damping interface is analyzed. The second example concerns the free vibra-
tion analysis of a piezoelectric cylinder filled with fluid.



14 J.-F. Deii and W. Larbi and R. Ohayon

5.1 Vibration Analysis of a Plate/Acoustic Cavity with Damping
Interface

We consider in this first example the spectral problem of a 3D rectangular
acoustic cavity of size A = 0.6 m, B = 0.5 m and C = 0.4 m (see Figure 2a)
completely filled with air (pp = 1 kg/m?, cp = 340 m/s). One wall of the
cavity is a flexible plate of thickness 6 mm clamped by its whole boundary
and covered with a thin layer of absorbing material. The other walls are
considered perfectly rigid. The mechanical parameters of the plate are:
density ps = 7700 Kg/m?, Young’s modulus E = 1.44x 10'! Pa and Poisson
ratio v = 0.35. The absorbing material, which is considered massless in this
example, has two parameters: k! = 5 x 10° N/m? and d/ = 50 Ns/m?.
These parameters are average impedance coeflicients corresponding to a
typical acoustic insulating fabric (a Johns Manville glass wool of thickness
1 inch) in the frequency range (50-500 Hz) (see Figure 2b).

ﬁ mm Impedance (Pa.s/m)
Absorbing interface X 2000
\ Plate R , !
( 7 i Zw)=d +i—

w

Imag (2Z)

Coa ¥
@ 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Frequency (Hz)

(a) (b)

Figure 3. Plate/acoustic cavity system: geometrical data and acoustic
impedance.

Table 1 presents the first four eigenfrequencies (in Hz) with uniform
meshes (hexagonal element) and with increasing number of degrees of free-
dom for the 3D acoustic cavity with and without damping interface. The
first and second columns present the frequencies of the rigid cavity com-
puted from a pressure formulation and compared to the exact solution
fmnk = (cp/2)y/m2 /A2 + n2 /B2 + k2/C2. The three other columns corre-
spond to the complex frequencies of the damping cavity computed from the
proposed formulation and compared to exact solution (last column) given
in (Bermudez et al., 2001). A good agreement between exact and computed
values can be observed even for the coarse mesh. In this example, the imag-
inary part of the frequencies comes from dashpot dissipation. Moreover,
the difference between the real part (damped case) and the real value (un-
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damped case) of the frequencies is due to the spring effect. Figures 4 and 5
show the pressure field in the acoustic cavity for the damped and undamped
cases.

Table 1. Frequencies (Hz) of a 3D rigid acoustic cavity with an absorbing
wall.

undamped damped
(4096 dof) exact (1452 dof) (4352 dof) exact”
283.85 fio0 = 283.33 275.98-0.151  275.35-0.151  274.85-0.151
340.62 foro = 340.00 330.81-0.23i  330.06-0.231  329.46-0.23i
425.78 foor = 425.00 403.32- 0.551  402.59-0.541  402.00-0.54i
443.39 fi10 = 442.58 429.45-0.461  428.48-0.461  427.71-0.461

*: (Bermudez et al., 2001)

/=283.85 Hz /=340.62 Hz f=425.78 Hz f=443.39 Hz

Figure 4. First four acoustic modes for the 3D acoustic rigid cavity.

Table 5.1 presents the eigenfrequencies in four cases: (i) 3D rigid acoustic
cavity; (ii) clamped plate; (iii) plate/acoustic cavity coupled system with-
out damping; and (iv) plate/acoustic cavity coupled system with damping
interface. Note that in the third and forth cases, our results are compared
to those given in (Bermidez et al., 2001).

Firstly, it must be noted that the present results are in good agreement
with those obtained in (Bermudez et al., 2001) with a displacement formu-
lation for both domains (fluid and structure). As shown in this table, modes
A, C and E correspond to the first three vibration modes of the structure
(lower than 400 Hz) and the four others (B, D, F and G) are the first four
acoustic modes. In the damped case, notice that although the real parts
of the frequencies corresponding to the structure modes remain practically
unchanged, those associated with the fluid modes decrease between 2 and 10
%. The imaginary parts of the frequencies are almost zero for the structure
modes, which means that they are only very slightly damped. As expected,
the imaginary parts of the fluid modes are higher. Thus, the damping is
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Imaginary part
Im()=0.15Hz  Im(H=023Hz  Im()=0.54Hz  Im(f)=0.46 Hz

Real part
Re(f)=275.35Hz Re()=330.06 Hz Re(f)=402.59 Hz Re(f)=428.48 Hz

Figure 5. First four acoustic modes for the 3D acoustic cavity with an
absorbing wall (real and imaginary parts).

Table 2. Computed frequencies (Hz) of the structural-acoustic coupled system.

undamped damped

Mode F.(i) S. (ii) FSI” FST (iii) FSI* FSI (iv)

4096 dof 980 dof 5076 dof 5332 dof
A - 158.13  156.61 158.18 156.91-0.00i  158.18-0.00i
B 283.85 - 280.90 281.91 273.43-0.171  275.30-0.181
C - 290.24  294.37 291.95 294.07-0.011  291.75-0.001
D 340.62 - 338.01  339.93 326.64-0.311  330.43-0.22i
E - 362.83  375.80 363.19 375.97-0.01i  375.80-0.01i
F 425.78 - 422.97 425.89 394.04-1.30i  403.49-0.551
G 443.39 - 441.91 443.07 417.79-1.721  429.21-0.461

*: (Bermudez et al., 2001)
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stronger for the acoustic modes. For illustration purposes, Figure 6 shows
the deformed plate and the pressure field for the first vibration mode (A)
in the coupled case.

Fluid pressure level Plate displacement

Figure 6. First coupled mode without damping interface: fluid pressure
level and plate total displacement.

5.2 Free Vibration of a Piezoelectric Cylindrical Shell Filled with
Fluid

This second example concerns the free vibration analysis of a simply-
supported piezoelectric cylindrical shell filled with air. Results are computed
via a specific Matlab program developed for axisymmetric geometries. The
structure is discretized using a laminated piezoelectric conical shell element.
This two-node element is based on the Kirchhoff-Love theory and combines
an equivalent single layer approach for the mechanical behavior with a layer-
wise representation of the electric potential in the thickness direction. The
fluid domain is discretized with quadrilateral axisymmetric elements. More-
over, a semi-analytical procedure combining the finite element method and
Fourier series expansion in the circumferential direction is used. For more
details, the reader is referred to (Larbi et al., 2007).

In this example, the geometrical properties are L =1 m, R = 0.2 m and
h = 0.001 m (Figure 7). Moreover, the piezoelectric material is the PZT-5H
whose properties are given in (Deii and Larbi, 2006) and the considered fluid
has a mass density pr = 1.21 kg/m? and a speed of sound cr = 343 m/s.

Table 3 presents the eigenfrequencies (given for the two first circumfer-
ential harmonics) of the coupled system computed by our finite element ap-
proach and those given by an exact three-dimensional solution proposed by
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Figure 7. Geometrical data and meshes of the piezoelectric shell filled with
fluid.

the authors (Deii and Larbi, 2006). This exact solution is based on a mixed
state-space approach previously developed for the free-vibration analysis of
laminated piezoelectric plates actuated by transverse shear mechanisms.

Table 3. Frequencies (Hz) of a piezoelectric cylindrical shell filled with a com-
pressible fluid: Comparison with an exact state space solution (Deii and Larbi,
2006).

Short circuited Open circuited

n  present exact error % present exact error %

1 430.9 431.9 0.23 455.9 457.3 0.31
1081.3  1080.7 -0.06 1140.5  1139.9 -0.05
1393.6  1390.1 -0.25 1393.6  1390.1 -0.25
1585.9  1583.9 -0.13 1665.6  1662.9 -0.16
1848.4  1843.7 -0.25 1918.6  1915.5 -0.16

2 178.2 178.6 0.22 192.4 192.8 0.21
561.0 561.1 0.02 602.7 602.9 0.03
1006.9 1014.1 0.71 1054.3  1055.8 0.14
1300.0  1297.0 -0.23 1393.3  1390.1 -0.23
1541.2  1536.1 -0.33 1655.3  1650.5 -0.29

As it can be observed from this table, there is a very good agreement be-
tween finite element and exact solutions for different electric boundary con-
ditions corresponding to short-circuited (¢ = 0 on 9€g) or open-circuited
(Q4 = 0 on 90Ng) configurations. These boundary conditions are prescribed
on the inner and outer surface of the piezoelectric shell. Note that the error
committed by the finite element approximation is lower than 1 %, validating
the finite element electro-mechanical-acoustic formulation.

We can observe that the frequency of the third mode for n = 1 (1393.1
Hz) is not influenced by the electric boundary conditions. This is due to the
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n=1

Figure 8. First five coupled mode shapes of the cylindrical shell for har-
monic n = 1 and n = 2 in the open circuited case.

fact that this axial mode (Figure 7) does not induce any electromechanical
coupling due to the radial electric polarization. For the other modes, as
expected, the natural frequencies are higher in the open-circuit case than
in the closed-circuit one. This weak difference should not be neglected. It
might be used to assess the piezoelectric effect through the so-called effective
modal electromechanical coupling coefficient.

6 Conclusions

We have presented in this lecture appropriate variational formulations for
linear vibration of elastic and piezoelectric structures coupled with an in-
ternal acoustic fluid. Moreover, a dissipative wall fluid-structure interface
model has been presented and analysed. Hybrid simultaneous passive/active
damping treatments is the subject of current investigations for noise and vi-
bration reduction problems (following the analyses carried out for structural
damping (Galucio et al., 2005)). For sake of brevity, we have not presented
fluid-structure symmetrization techniques for the introduced variational for-
mulations and we refer the reader to the cited specific references such as
(Morand and Ohayon, 1995; Deii et al., 2008).



20 J.-F. Deii and W. Larbi and R. Ohayon

Bibliography

A. Bermudez and R. Rodriguez. Finite element computation of the vibration
modes of a fluid-solid system. Computer Methods in Applied Mechanics
and Engineering, 119(3-4):355-370, 1994.

A. Bermitdez, L. Hervella-Nieto, and R. Rodriguez. Finite element compu-
tation of the vibrations of a plate-fluid system with interface damping.
Computer Methods in Applied Mechanics and Engineering, 190(24-25):
3021-3038, 2001.

P. Davidsson and G. Sandberg. A reduction method for structure-acoustic
and poroelastic-acoustic problems using interface-dependent Lanczos
vectors. Computer Methods in Applied Mechanics and Engineering, 195
(17-18):1933-1945, 2006.

J.-F. Deili and W. Larbi. A state space method for free-vibration analysis
of radially polarized laminated piezoelectric cylinder filled with fluid.
In Proceedings of the Fighth International Conference on Computational
Structures Technology, CST2006, Las Palmas de Gran Canaria, Spain,
September 12-15, 2006.

J.-F. Deii, W. Larbi, and R. Ohayon. Dissipative interface modeling for vi-
broacoustic problems - A new symmetric formulation. In C.A. Mota
Soares, J.A. Martins, H.C. Rodrigues, and J.A.C Ambrésio, editors,
Computational Mechanics — Solids, Structures and Coupled Problems,
pages 413—-428, Dordrecht, Netherlands, 2006. Springer.

J.-F. Deii, W. Larbi, and R. Ohayon. Piezoelectric structural acoustic
problems: Symmetric variational formulations and finite element result.
Computer Methods in Applied Mechanics and Engineering, 197(19-20):
1715-1724, 2008.

A.C. Galucio, J.-F. Deii, and R. Ohayon. A fractional derivative viscoelastic
model for hybrid active-passive damping treatments in time domain -
application to sandwich beams. Journal of Intelligent Material Systems
and Structures, 16(1):33-45, 2005.

V. Kehr-Candille and R. Ohayon. Elastoacoustic damped vibrations - finite
element and modal reduction methods. In O.C. Zienkiewicz P. Ladeveze,
editor, New Advances in Computational Structural Mechanics, pages
321-334, Amsterdam, Netherlands, 1992. Elsevier.

W. Larbi, J.-F. Deii, and R. Ohayon. A new finite element formulation for
internal acoustic problems with dissipative walls. International Journal
for Numerical Methods in Engineering, 68(3):381-399, 2006.

W. Larbi, J.-F. Deii, and R. Ohayon. Vibration of axisymmetric composite
piezoelectric shells coupled with internal fluid. International Journal for
Numerical Methods in Engineering, 71(12):1412-1435, 2007.



Variational Formulations of Interior Structural-Acoustic. . . 21

H.J.-P. Morand and R. Ohayon. Fluid-Structure Interaction. Wiley, New
York, 1995.

R. Ohayon. Fluid-structure interaction problems. In E. Stein, R. de Borst,
and T. Hughes, editors, Encyclopedia of Computational Mechanics, Vol-
ume 2: Solids and Structures, Chapter 21, Chichester, UK, 2004a. John
Wiley & Sons.

R. Ohayon. Reduced models for fluid-structure interaction problems. Inter-
national Journal for Numerical Methods in Engineering, 60(1):139-152,
2004b.

R. Ohayon and C. Soize. Structural Acoustics and Vibration. Academic
Press, London, 1998.

K.C. Park, C.A. Felippa, and R. Ohayon. Partitioned formulation of internal
fluid-structure interaction problems by localized Lagrange multipliers.
Computer Methods in Applied Mechanics and Engineering, 190(24-25):
2989-3007, 2001.

H.F. Tiersten. Linear piezoelectric plate vibration. Plenum Press, New York,
1969.



