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Structural-Acoustic Vibration Reduction Using Switched 
Shunt Piezoelectric Patches: A Finite Element Analysis

In this paper, we present a finite element formulation for vibration reduction in structural-acoustic systems using passive or 
semipassive shunt techniques. The coupled system consists of an elastic structure (with surface-mounted piezoelectric patches) filled 
with an inviscid linear acoustic fluid. An appropriate finite element formulation is de-rived. Numerical results for an elastic plate 
coupled to a parallelipedic air-filled interior acoustic cavity are presented, showing the performances of both the inductive shunt and 
the synchronized switch shunt techniques.

Keywords: vibration reduction, structural-acoustic, piezoelectric patches, switch, shunt, finite element method

1 Introduction

A considerable amount of research is actually devoted to the

study and design of new noise reduction strategies to improve

acoustic comfort. Noise reduction can be practically achieved us-

ing passive sound absorbing materials such as foams or fibrous

materials �1�. These materials generally provide adequate absorp-

tion at medium and high frequencies but bulky in mass and vol-

ume in the low frequencies range where the absorption increases

with the thickness of the absorber. For these reasons and despite a

complexity of the design and the external power required, a new

trend is to use active techniques to reduce noise and vibrations

particularly in applications in which the lightness of the structure

is a necessity. In this context, many research focused on control

systems with piezoelectric patches, bonded or embedded in struc-

tural elements, and shunted in a specific electric circuit �2�.
A finite element model to study the response of a piezoelectric

smart structure for a cabin noise problem is presented in Ref. �3�.
The active control system implemented was a negative feedback.

In Ref. �4�, a methodology based on the impedance technique to

synthesize a predesignated acoustic response from a structure

driven by multiple piezoelectric transducer �PZT� patches is pre-

sented. The influences of the PZT mass and stiffness on the acous-

tic radiation of the host structure are investigated for vibroacoustic

control. Lefèvre and Gabbert �5� presented the theoretical back-

ground of a new finite element software tool for solving 3D
electromechanical-acoustical field problems. Numerical investiga-
tions were performed using a modal reduction technique based on

the uncoupled modes of the system. Another approach to the

sound and vibration controls is to combine active and passive

devices. Some works have dealt with this subject. Ro and Baz �6�,
for instance, presented a paper in which the sound radiation from

a vibrating flat plate coupled with an acoustic cavity is controlled

using a single piezoelectric patch with an active control and pas-

sive constrained layer damping treatments. A finite element model

is developed to study the fundamental phenomena governing the

coupling between the dynamics of treated plates and acoustic cav-

ity. The model is used to compute frequencies, mode shapes, and

sound radiation for different control gains. Close agreements are

obtained between theoretical predictions and experimental mea-

surements. An attempt to control noise in a cabin is presented in

the work of Gopinathan et al. �7�. Here, the authors have pre-

sented a finite element/boundary element formulation for model-

ing and analysis of the active-passive noise control system. The

method considered for the numerical applications is a cubic cavity

in which one of the walls is assumed to be a flexible panel, which

radiates sound into the cavity. The piezoelectric patches are at-

tached to the panel at a predetermined location. The sensor

patches generate a voltage, then amplified, and put in feedback

into the actuator using an optimal feedback controller. The interior

of the flexible vibrating panel is covered with a sound absorber. A

formulation to calculate the coupled response of composite shells

with embedded piezoelectric layers and an enclosed acoustic fluid

is presented in the paper of Kaljevic and Saravanos �8�. The meth-

odology consists of three parts: the formulation for the electrome-

chanical response of the piezoshell, the formulation of the 3D

acoustic response of the enclosed fluid, and finally the combina-

tion of the previous formulation to calculate the coupled smart

structure acoustic fluid response. They adopted a mixed field lami-

nate theory with a layerwise approximation for the electric poten-

tial. A boundary element formulation is developed to calculate the
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acoustic response of the enclosed fluid. A different approach to the
noise reduction in sound radiating into a cavity is presented by
Guyomar et al. �9�. The work deals with the semipassive approach
in which the synchronized switch technique is implemented. The
piezoceramics are continuously switched from the open circuit
state to a specific electric network synchronously with the strain.
The authors describe the experimental results with the analytical
prediction. The experiment consists in exciting the plate via the
loudspeaker and detects the noise level of the sound wave trans-
mitted in the external environment. The measurement is made and
compared in three cases: without control, with an inductive
switched shunt, and with a voltage driving inductive switched
shunt. The theoretical and experimental results are in good con-
cordance; anyway, some discrepancies are observed, in particular,
for the first mode. An attenuation of 15 dB on the transmitted
wave pressure is obtained with the efforts of an amplification
voltage driving source. Alternative active control procedure has
also been derived �10�, and experimental assessment of smart
damping materials may be found in Ref. �11�.

The present paper concerns a finite element formulation for
vibration reduction in structural-acoustic systems using passive or
semipassive shunt techniques. The coupled system consists of an
elastic structure �with surface-mounted piezoelectric patch� filled
with an inviscid, compressible, and barotropic fluid, gravity effect
being neglected. Let us first recall that the general three-
dimensional piezoelectric structure completely filled with acoustic
fluid has already been discussed in Ref. �12�. On the other hand,
an original procedure adapted to the vibrations of an elastic struc-
ture with shunted piezoelectric patches has been derived in Ref.
�13�. The originality of the present paper is to extend the previous
one to the structural acoustic case. Numerical results �in the low
frequency domain� are analyzed, showing the performance of both
the inductive shunt and the synchronized switch shunt techniques.

2 Finite Element Formulation of the Structural-

Acoustic Problem With Piezoelectric Patches

First, we briefly recall the variational formulation of a fluid/
piezoelectric-structure interaction problem in terms of structural

mechanical displacement ui, electric potential in the structure �,

and fluid pressure p of the inviscid acoustic fluid �for more details,
we refer the reader to Ref. �12��. Second, this coupled formulation
is adapted to the general case of an elastic structure equipped with

P piezoelectric patches �see Fig. 1�, as done for structural vibra-
tions in Ref. �13�. This modified formulation allows taking into
account realistic electrical boundary conditions such as equipoten-
tiality on patches electrodes and prescribed global charges. Fi-
nally, the resulting finite element formulation is applied to a struc-
tural acoustic problem with one piezoelectric patch connected to

an RL series shunt circuit.
It should be noted that the standard indicial notations are

adopted throughout the paper: Subscripts i, j, k, and l denote the

3D vectors and tensor components, and repeated subscripts imply
summation. In addition, a comma indicates a partial derivative.

2.1 Variational Formulation of the Fluid/Structure/
Piezoelectric-Patch Coupled System. We consider a piezoelec-

tric structure occupying the domain �S filled with an inviscid

linear acoustic fluid occupying the domain �F. We denote by �
the fluid-structure interface and by ni

S and ni
F the unit normals

external to �S and �F, respectively.

The structure is clamped on a part �u and subjected �i� to a

given surface force density Fi
d on the complementary part �� of its

external boundary and �ii� to a pressure field p due to the presence

of the fluid on its internal boundary �. The electric boundary

conditions are defined by a prescribed electric potential �d on ��

and a surface density of electric charge qd on the remaining part

�D. Thus, the total structure boundary, denoted ��S, is such that

��S=�u�����=�D��� with �u�����=����D=�.

The linearized deformation tensor is �ij =
1

2
�ui,j +u j,i�, and the

stress tensor is denoted by �ij. Concerning the electric field vari-

ables, Di is the electric displacement verifying the electric charge

equation for a dielectric medium Di,i=0 in �S and the electric

boundary conditions Dini
S=−qd on �D; Ei denotes the electric field

vector such that Ei=−�i.
The linear piezoelectric constitutive equations write

�ij�u,�� = cijkl�kl�u� − ekijEk��� �1�

Di�u,�� = eikl�kl�u� + �ikEk��� �2�

where cijkl denotes the elastic moduli at constant electric field, ekij

denotes the piezoelectric constants, and �ik denotes the dielectric

permittivities at constant strain. Moreover, we denote by �S the
mass density of the structure.

Let us introduce the admissible spaces Cu and C� of regular

functions ui and � defined in �S. We then consider the following

subspaces: Cu
�= �ui�Cu �ui=0 on �u�, C�

d = ���C� ��
=�d on ���, and C�

� = ���C� ��=0 on ���.
The variational formulation, corresponding to the response of

the piezoelectric structure subjected to the prescribed boundary

conditions and to the pressure field p on the interface �, writes the
following.

Find ui�Cu
� and ��C�

d such that

�
�S

cijkl�kl	�ijdv −�
�S

ekijEk	�ijdv + �S�
�S

�
2ui

�t2
	uidv

=�
��

Fi
d	uids +�

�

pni
F	uids ∀ 	ui � Cu

� �3�

where 	�ij =
1

2
�	ui,j +	u j,i�, �kl and Ek being the functions of ui and

�, and

�
�S

eikl�kl	Eidv +�
�S

�ikEk	Eidv =�
�D

qd	�ds ∀ 	� � C�
�

�4�

where 	Ei=−	�,i, �kl and Ek being the functions of ui and �.
This formulation must be completed by appropriate initial

conditions.
We consider now the special case of an elastic structure �do-

main �E� equipped with P piezoelectric patches and completely

filled with an internal fluid �domain �F�. Each piezoelectric patch
has the shape of a plate with its upper and lower surfaces covered
with a very thin layer of conducting material to obtain electrodes.

The pth patch �p� �1, ¯ , P�� occupies a domain ��p� such that

��E ,��1� , ¯ ,��P�� is a partition of all the structure domain �S.

A set of hypotheses that apply to a wide spectrum of practical
applications is now formulated.

ΩF ΩS

Σ
Fi
d Γσ

Γu

Piezoelectric

patches

Fig. 1 Fluid/piezoelectric-structure coupled system
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• The piezoelectric patches are thin, with a constant thickness

denoted h�p� for the pth patch.
• The thickness of the electrodes is much smaller than h�p� and

is thus neglected.
• The piezoelectric patches are polarized in their transverse

direction �i.e., the direction normal to the electrodes�.
• The electric field vector of components Ek is normal to the

electrodes and uniform in the piezoelectric patch, so that for

all p� �1, ¯ , P�:

Ek = −
V�p�

h�p� nk in ��p� �5�

where V�p�=�
+

�p�
−�

−

�p�
is the potential difference between the up-

per and the lower electrode surfaces of the pth patch, which is

constant over ��p�, and nk is the kth component of the normal unit
vector to the surface of the electrodes.

Under those assumptions and by considering successively each

of the P+2 subdomains ��F ,�E ,��1� , . . . ,��P��, the variational

formulation of the fluid/structure/piezoelectric-patch coupled sys-
tem can be written in terms of the structural mechanical displace-

ment ui, the electric potential difference V�p� constant in each pi-

ezoelectric patch, and the fluid pressure p:

• Mechanical equation

�
�S

cijkl�kl	�ijdv + 	
p=1

P
V�p�

h�p��
��p�

ekijnk	�ijd�

+ �S�
�S

�
2ui

�t2
	uidv −�

�

pni
F	uids

=�
��

Fi
d	uids ∀ 	ui � Cu

� �6�

• Electrical equation

	
p=1

P

	V�p�C�p�V�p� − 	
p=1

P
	V�p�

h�p� �
��p�

eikl�klnid�

= 	
p=1

P

	V�p�Q�p�
∀ 	V�p�

� R �7�

where C�p�=�33S�p�
/h�p� defines the capacitance of the pth

piezoelectric patch �S�p� being the area of the patch and

�33=�iknink being the piezoelectric material permittivity in

the direction normal to the electrodes�, and Q�p� is the global
charge in one of the electrodes �see Ref. �13��.

• Acoustic equation

1

�F
�

�F

p,i	p,idv +
1

�FcF
2�

�F

�
2p

�t2
	pdv +�

�

�
2ui

�t2
ni

F	pds

= 0 ∀ 	p � Cp �8�

The first two equations are directly derived from Eqs. �3� and
�4�, using the procedure described in Ref. �13�. The last equation
corresponds to the variational formulation of the Helmholtz equa-

tion in the acoustic cavity p,ii= �1 /cF
2���2p /�t2� in �F together

with the boundary condition p,ini
F=−�F��2ui /�t2�ni

F on �. This

last relation expresses the continuity of the normal displacements

of the inviscid fluid and the structure on �. cF is the constant

speed of sound in the fluid, and �F is the mass density of the fluid.

Cp is the admissible space of regular functions p defined in �F.
Thus, the variational formulation of the fluid/structure/

piezoelectric-patch coupled problem is written as follows: given

�Fd ,�d ,qd�, find �ui�Cu
�, ��C�

d , and p�Cp� such that Eqs.

�6�–�8� are satisfied. The formulation must be completed by ap-
propriate initial conditions.

Remarks. This formulation, with only a couple of electric vari-
ables per patches, is well adapted to practical applications since �i�
realistic electrical boundary conditions such that equipotentiality
on the electrodes and prescribed global charges naturally appear,
�ii� the global charge/voltage variables are intrinsically adapted to
include any external electrical circuit into the electromechanical
problem and to simulate shunted piezoelectric patches. We will
not discuss in this paper the various symmetrization of the formu-
lation using additional fluid variable such as fluid displacement
potential, neither the regularization of the formulation for the limit

static case, which necessitates the following constraint: 
�F
pdv

+�FcF
2
��F

uini
Fds=0. This relation will be useful for the construc-

tion of a reduced order model of dynamic substructuring type. We
refer to Refs. �12,14,15� for more details.

• Note that 	ui, 	�, and 	p are time independent and conse-

quently, t is a parameter for the corresponding admissible
spaces.

2.2 Finite Element Formulation of the Fluid/Structure/

Piezoelectric-Patch Coupled System. Let us introduce U and P

corresponding to the vectors of nodal values of ui and p, respec-

tively, and Q= �Q�1�Q�2�¯Q�P��T and V= �V�1�V�2�¯V�P��T the

column vectors of electric charges and potential differences. The
submatrices corresponding to the various linear and bilinear forms
involved in Eqs. �6�–�8� are defined by

�
�S

cijkl�kl	�ijdv ⇒ 	UTKuU �9a�

�
�S

�Sui	uidv ⇒ 	UTMuU �9b�

	
p=1

P
V�p�

h�p��
��p�

ekijnk	�ijd� ⇒ 	UTCuVV �9c�

	
p=1

P
	V�p�

h�p� �
��p�

eikl�klnid� ⇒ 	VTCuV
T U �9d�

�
�

pni
F	uids ⇒ 	UTCupP �9e�

�
�

uini
F	pds ⇒ 	PTCup

T U �9f�

1

�F
�

�F

p,i	p,idv ⇒ 	PTKpP �9g�

1

�FcF
2�

�F

p	pdv ⇒ 	PTMpP �9h�

	
p=1

P

	V�p�C�p�V�p�
⇒ 	VTKVV �9i�

�
��

Fi
d	uids ⇒ 	UTF �9j�
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p=1

P

	V�p�Q�p�
⇒ 	VTQ �9k�

where Mu and Ku are the mass and stiffness matrices of the struc-

ture, CuV is the electric-mechanical coupled stiffness matrix, KV

=diag�C�1�C�2�¯C�P�� is a diagonal matrix filled with the P ca-

pacitances of the piezoelectric patches, Mp and Kp are the mass

and stiffness matrices of the fluid, Cup is the fluid-structure

coupled matrix, and F is the applied mechanical force vector.
Thus, the variational equations �6�–�8� for the fluid/structure/

piezoelectric-patch coupled problem can be written, in discretized
form, as the following unsymmetric matrix system:

�
Mu 0 0

0 0 0

Cup
T 0 Mp

��Ü

V̈

P̈
� + �

Ku CuV − Cup

− CuV
T KV 0

0 0 Kp

��
U

V

P
� = �

F

Q

0
�

�10�

with appropriate initial conditions.

Remarks. Open circuit case Q=0: Using the second row of Eq.
�10�, the degrees of freedom associated with the electric potential
difference can be expressed in terms of structure displacements as

V = KV
−1CuV

T U �11�

Thus, after substitution of V into Eq. �10�, we get the following

problem in terms of U and P:

Mu 0

Cup
T Mp

�Ü

P̈
� + Ku + KA − Cup

0 Kp

�U

P
� = F

0
� �12�

where the “added-stiffness matrix” KA, which is due to the elec-
tromechanical coupling �16�, is given by

KA = CuVKV
−1CuV

T �13�

Note that KV being a diagonal matrix, KV
−1 is easily computed.

Short circuit case V=0: This case is obtained when the piezoelec-

tric coupling constants are set to zero, i.e., KA=0, and lead to the

classical �ui , p� fluid-structure system:

Mu 0

Cup
T Mp

�Ü

P̈
� + Ku − Cup

0 Kp

�U

P
� = F

0
� �14�

Electromechanical modal coupling factor: The open circuit and
short circuit normal modes are harmonic solutions of Eqs. �12�
and �14�, respectively, with F=0. These natural frequencies are
used to calculate the generalized electromechanical modal cou-

pling factor, for the system nth mode, defined by Refs. �17,18�:

kn =��
n
OC�2 − �
n

SC�2

�
n
SC�2

�15�

where 
n
OC and 
n

SC, respectively, are the open circuit and short

circuit nth system natural frequencies �i.e., with all piezoelectric
patches short circuited or open circuited�. This parameter charac-
terizes the energy exchanges between the mechanical structure
and the piezoelectric patches.

2.3 Structural-Acoustic Problem With One Piezoelectric

Patch Connected to RL Series Shunt Circuit. The above dis-
cretized formulation �Eq. �10�� can be used for a wide range of
applications of mechanical structures coupled with acoustic do-
main and associated with piezoelectric patches. It is particularly
adapted to the case where the piezoelectric patches are “shunted,”
that is to say connected to a passive electrical network �19�. In this

case, neither V nor Q are prescribed by the electrical network, but
the latter imposes only a relation between them. In the case of a
resonant shunt connected to one patch and composed of a resis-

tance R and an inductance L in series �Fig. 2�, we have this addi-

tional relation between the electrical potential difference V and the

electric charge Q:

LQ̈ + RQ̇ + V = 0 �16�

Due to the direct piezoelectric effect, the piezoelectric patch con-
verts a fraction of the mechanical energy of the vibrating structure
into electrical energy, which can be dissipated through the resis-

tive components of the RL circuit. It is well known that the damp-
ing effect due to this circuit is in maximum when the resonance

circular frequency 1 /�LC of the shunt circuit is tuned on the
circular frequency of the structural-acoustic eigenmode to be con-

trolled. The resistance R and the inductance L can be adjusted and
properly chosen so as to maximize the damping effect �see Sec.
3.2�.

Using the second row of Eq. �10� and noting that in the case of

a single piezoelectric patch KV=C, the degrees of freedom asso-

ciated with the electrical potential difference V can be expressed

in terms of structural displacements U and electric charge Q as

V =
1

C
CuV

T U +
Q

C
�17�

Thus, after substitution of V into Eq. �16� and using Eq. �10�, we
get the following electromechanical-acoustic system:

C

R

L

Shunt circuit
Piezoelectric

patch

Fig. 3 PZT equivalent electrical circuit scheme within a
switched shunt architecture

Acoustic

cavity

Plate

Piezoelectric

patch

R

L

V

RL series

shunt circuit

x

yz

External

load

Fig. 2 Vibrating plate coupled with an acoustic cavity and
connected to a RL shunt circuit
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�
Mu 0 0

0 L 0

Cup
T 0 Mp

��Ü

Q̈

P̈
� + �

0 0 0

0 R 0

0 0 0
��U̇

Q̇

Ṗ
�

+ �
Ku +

1

C
CuVCuV

T 1

C
CuV − Cup

1

C
CuV

T 1

C
0

0 0 Kp

��U

Q

P
� = �

F

0

0
� �18�

with appropriate initial conditions. Note that this �U ,Q ,P� formu-

lation is well suited for switch shunting applications.

2.4 Application to Shunt Synchronized Switch Damping
on Inductance. The synchronized switch damping on inductor
�SSDI� technique is a semipassive approach that was developed to
address the problem of structural vibration damping �18,20–22�.
This particular nonlinear technique consists of adding a switching
device in parallel with the piezoelectric patch. This device is com-

posed of a switch, an inductance L, and a resistance R connected
in series. Since the internal inductance and resistance of the pi-
ezoelectric material are very low in comparison to the inductance
and resistance of the shunt circuit, the patch can be modeled by a

capacitance C, as shown in Fig. 3. The switch is nearly always
open, except when a displacement extremum occurs; at this mo-

ment, the switch is closed. The capacitance C of the piezoelectric

patch and the inductance L thus constitute an electric oscillator.

The switch is kept closed until the voltage V on the piezoelectric
element has been inversed. It corresponds approximately to a time

T=��LC equal to a half pseudoperiod of the electric shunt circuit.
There is no particular value to which the inductance should be

tuned, but it is chosen to get an inversion time T roughly between
10 and 50 times lower than the mechanical vibration period of
interest �18,22�. When the switch is open and if no load is con-
nected, the outgoing piezocurrent is null and then the voltage and
the displacement vary proportionally. In Fig. 4, the typical voltage
and displacement waveforms are shown with a zoom on the volt-
age inversion.

The synchronized switch damping technique provides more ro-

bustness if compared with the inductive shunt. The main advan-
tages of this technique can be summarized with the following
points:

• no need of large tuned inductor
• large band pass
• low sensitivity to environmental drifts
• good performance in transient regime
• no power amplifier and power supply needed
• no complex control logic
• simple and cheap hardware

3 Numerical Examples

We present in this section the analysis of an interior damped
structural-acoustic systems using �i� an inductive shunt and �ii� a
synchronized switch damping technique, according to the finite
element formulation described in Sec. 2. First, the modal analysis
of the electromechanical-acoustic problem is presented. Then, the
inductive shunt and switched techniques are compared in terms of
attenuation of vibration and sound pressure level.

We consider a 3D acoustic cavity of size A=0.5 m, B=0.3 m,

and C=0.4 m along the directions x, y, and z, respectively. The

cavity is completely filled with air �density=1.225 kg /m3; speed

of sound=340 m /s�. The cavity walls are rigid except the top
one, which is a flexible aluminum plate of thickness �1 mm�
clamped at its edges. The density of the plate is 2700 kg /m3, the
Young modulus is 72 GPa, and the Poisson ratio is 0.35. On the
top surface of the plate, a PZT patch is bonded, whose in plane

dimensions are 0.12�0.10 m2 along x and y and 0.5 mm thick
�see Fig. 5�. The mechanical characteristics of the piezoelectric
material �PZT-5H�, related to the constitutive relations �1� and �2�,
are given in Table 1.

Concerning the finite element discretization, we have used, for
the structural part, 400 four-node membrane-shear-bending plate
elements �based on the first-order shear deformation theory� with
five degrees of freedom per node and a selective reduced integra-
tion on the transverse shear. The portion of the plate covered by

Acoustic

cavity

Plate

Piezoelectric

patch

x

yz

0.5 m
0.3

m

0.4 m

0.001 m

0.0005 m 0.1 m

0.12 m
0.1m

0.06 m

(b)(a)

Fig. 5 Fluid/piezoelectric-structure coupled system: „a… geo-
metrical data and „b… mesh „to scale…

f = 230.66 Hz f = 262.86 Hz f = 332.42 Hz f = 338.96 Hz f = 341.10 Hz

f = 76.77 Hz f = 99.35 Hz f = 155.86 Hz f = 181.06 Hz f = 207.32 Hz

Fig. 6 Fluid-structure coupled modes: fluid pressure level and
plate total displacement

V

u

t t

TV

Fig. 4 Typical voltage and displacement waveforms for SSDI
technique

Table 1 Mechanical data of piezoelectric PZT-5H material

Material properties

c �GPa� c11=c22=126, c33=117

c13=c23=84.1, c12=79.5

c44=c55=23, c66=23.3

e �C m−2� e15=e24=17, e33=23.3

e31=e32=−6.5

� �10−10 F m−1� �11=�22=150.3, �33=130

� �kg m−3� 7500
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the PZT patch and the patch itself has been modeled according to
the first-order shear deformation laminate theory �23�. As dis-
cussed in Sec. 2, only one electrical degree of freedom is used to

represent the electrical charge Q in the patch. The electromechani-

cal coupling is obtained using the submatrix CuV �see Eq. �9c� or
Eq. �9d��.

The acoustic cavity is discretized using 20�20�20 hexahedric
elements with one degree of freedom per node corresponding to
the acoustic pressure. The structural and acoustic meshes are com-
patible at the interface, and the fluid-structure coupling is realized

through the Cup matrix �see Eq. �9e� or Eq. �9f��.
It is important to note that Eq. �12� �respectively, Eq. �14�� has

been used to compute the fluid-structure normal modes in the

open circuit case �Q=0� �respectively, short circuit case �V=0��
and Eq. �18� for the switch shunt application.

3.1 Modal Analysis of the Acoustic/Structure/
Piezoelectric-Patch Coupled Problem. Table 2 presents the
eigenfrequencies in three following cases: �i� the 3D rigid acoustic
cavity, �ii� the clamped plate with the patch short circuited, and
�iii� the plate/acoustic-cavity coupled system in the short circuit
case. The first nine coupled frequencies are associated with the
first vibration modes of the structure �lower than 350 Hz�, and the
last coupled frequency corresponds to the first acoustic mode in
the rigid cavity. This can be confirmed by comparing the mode
shapes in case �iii� with those obtained in case �i� or case �ii�,
which are not shown here for the sake of brevity. Moreover, as
expected, the natural frequencies of the coupled modes �structure
dominated� are lower than those for the structure in vacuum �ex-
cept for the first mode� due to the “added-mass effect” of the fluid.

For illustration purposes, Fig. 6 shows the deformed plate and
the pressure field for the first ten vibration modes in the coupled
case. The first eight modes are clearly dominated by the structural
displacement, which induced the pressure level in the cavity. As
shown in Table 2, the frequencies of coupled modes 9 and 10 are
close to the first frequency of the acoustic mode in a rigid cavity
and to the ninth mode of the structure in a vacuum. Thus, mode
shapes �in terms of pressure and displacement� can be viewed as a
combination of the shapes of the two associated uncoupled modes.
We can also note that mode 9 is rather dominated by the structure
displacement and mode 10 by the acoustic pressure.

3.2 Transient Analysis of the Acoustic/Structure/
Piezoelectric-Patch Coupled Problem. The plate is now excited
by a normal sinusoidal force applied at its center and at the con-

sidered resonance frequency. The vibration output is detected at
the center of the plate, where the displacement reaches a maxi-
mum, while the pressure is detected in the middle of the acoustic
box. The responses in the open circuit case and in the inductive
and synchronized switch cases are plotted and compared in time
domain.

For the resonant shunt technique, the resistor and inductor in
the electrical circuit are tuned to achieve a maximum energy dis-
sipation from the mode to interest. Therefore, the optimal resis-
tance and inductance for a series resonant shunt can be calculated
by �19,18�

Ropt =
�2kn

2

C
n
SC�1 + kn

2�
�19a�

Lopt =
1

C�
n
SC�2�1 + kn

2�
�19b�

where 
n
SC is the short circuit natural frequency of the nth mode

and kn is the generalized electromechanical coupling coefficient

Table 3 Electrical parameters of the simulations

Inductive shunt Switched shunt

C �F� 956�10−9 956�10−9

L �H� 4.5 4.5�10−2

R ��� 220 50

Initial conditions

Open Circuit

Time increment

Newmark

integration

Voltage maxima

detection

Open

Circuit

Eq. (12)

Close

Circuit

Eq. (18)

Switch

Fig. 7 Flowchart for the integration method used for the
switch shunt system

Table 2 Computed frequencies „Hz… of the structural-acoustic coupled system

Fluid in a rigid cavity Structure without fluid Coupled problem Type of coupled mode
a

340.35 69.27 76.77 S
425.44 100.14 99.35 S
544.82 156.25 155.86 S
567.25 182.43 181.06 S
661.52 208.42 207.32 S
682.80 232.04 230.66 S
709.06 263.81 262.86 S
804.49 333.17 332.42 S
854.00 341.05 338.96 S
887.69 352.60 341.10 F

a
S for structure mode and F for fluid mode.
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Fig. 8 Mechanical transverse displacement at the center of the plate under the first mode excitation frequency

Fig. 9 Mechanical transverse displacement at the center of the plate under the fourth mode excitation
frequency

Fig. 10 Pressure level in the middle of the acoustic cavity under the first mode excitation frequency
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given in Eq. �15�.
Table 3 presents the electrical parameters adopted in the nu-

merical simulation of the inductive shunt and the switched shunt

devices. In the resonant shunt case, R and L are obtained using
their optimal values �Eqs. �19a� and �19b�� associated with the
first mode and with the electromechanical coupling coefficient

k1=0.072 �
1
SC=2��76.77 rad s−1 and 
1

OC=2��76.97

rad s−1�. In the switched shunt case, the chosen inductance is L

=Lopt
/100, corresponding to a switching period T=20 times lower

than the mechanical period of the first mode. Moreover, the resis-
tance value is chosen more than four times lower than the optimal
resistance of the passive shunt case. Here, this choice is somewhat
arbitrary, but in practical applications, the optimal value can be
obtained using a numerical optimization procedure.

Since the working principle of the switched shunt system is
characterized by fast state variations, due to the electric circuit
quick commutation times, the system behavior will suffer a con-
tinuous transient regime. Thus, a direct transient response analysis
is needed. A computation in the time domain is performed using a
direct implicit numerical scheme of the Newmark family algo-
rithm. The output is computed assuming that the electrical circuit
is closed or open �see Fig. 7�.

In Figs. 8–11, the mechanical transverse displacement at the
center of the plate and the sound pressure level in the middle of
the acoustic cavity are plotted in three cases: �i� open circuit con-
dition, �ii� inductive shunt, and �iii� switched shunt control. These
time plots are obtained for two frequencies of the external sinu-
soidal excitation corresponding to the frequency of the first and
fourth modes of the open-circuited coupled system.

Even if the steady state is not reached in the open circuit case,
due to the fact that no mechanical damping has been introduced in
the model, we can observe from these first results the effect of the
attenuation performed by the two electrical systems.

The effects of the inductive shunt are evident just for the first
mode �Figs. 8 and 10�. The reason is due to the fact that the
inductive shunt is tuned on the resonance frequency to be con-
trolled, in the same way as the dynamic vibration absorber �or
tuned-mass damper�. So the electrical parameters should be
changed according to the frequency of interest.

On the other hand, the switched shunt damping system shows
wide band performances since the amplitude of both modes have
been successfully reduced. Moreover, it is important to highlight
that these results have been obtained with a very low inductor and
a low resistor that give to the control system a higher thermal
stability, very useful in aerospace applications. Finally, no external
power supply has to be added to the system.

4 Conclusion

We have presented in this paper a finite element formulation of
structural-acoustic problems with shunted piezoelectric patches.
Two different kinds of vibration reduction techniques have been
tested on an acoustic cavity coupled with an elastic plate and with
a surface-mounted piezoelectric patch: the passive inductive shunt
and the semipassive switched shunt. The numerical results show
reduction in amplitudes achieved in a low frequency range with
the switch control using only one piezoelectric patch and without
any signal amplification. Moreover, attenuations are obtained, in
the present example, without an optimization process to determine
the best position of the patch. The results show the versatility of
the proposed approach. Among future possible investigations, let
us cite the problem of the experimental validation of the presented
results, the analysis of more complex systems using appropriate
reduced order models, and the optimization of the size and loca-
tion of the piezoelectric patches in order to achieve high perfor-
mances.
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