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Abstract I

Gaussian Processes (GPs) are semi-parametric models commonly employed in various
applications such as statistical modeling, sensitivity analysis and Bayesian optimization. GPs are
particularly useful in the context of small data. However, GPs suffer particularly from the curse
of dimensionality: at a fixed number of data points, their predictive capability may decrease
dramatically after 40 dimensions.

In this talk, we investigate such a phenomenon in details. We illustrate the loss of performance
with increasing dimension on simple quadratic functions and analyze its underlying symptoms,
in particular a tendency to become constant away from the data points.

We show that the fundamental problem is one of learning and not one of representation
capacity: maximum likelihood, the dominant loss function for such models, can miss regions of
optimality of the GP hyperparameters. Failure of maximum likelihood is related to statistical
model inadequacy: a model with constant trend is sensitive to dimensionality when fitting
quadratic functions while it much better handles dimension growth for linear functions or
Gaussian trajectories generated with the right covariance. Our experiments also show that the
leave-one-out loss function is less prone to the curse of dimensionality even for inadequate
statistical models.
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Abstract II

A first step towards analyzing the curse of dimensionality in this context is taken. It considers a

uniform sampling of the data points. As dimension increases, the cross-covariance terms

concentrate around a mean value. This mean value is calculated and defines a limit

iso-covariance. The iso-covariance GP model has closed-form expressions for its prediction,

likelihood and leave-one-out error. It allows to explain why the a priori mean must increase with

dimension.
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The kernel model

A classical model for small data (x i , yi) , i = 1, . . . , n, n ≤ O(1000):

m(x) = µ(x) + [k(x , x1) . . . k(x , xn)]K−1

y1 − µ(x1)
. . .

yn − µ(xn)


where Ki ,j = k(x i , x j)

Example: m(x),
mean of a kriging (con-
ditionned Gaussian pro-
cess) model
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Why we like kernel-based predictions

Simple and efficient : Best Linear Unbiased Estimator knowing
(x i , yi) , i = 1, . . . , n

Classical. Similar forms appears in: weighted least squares,
Bayesian linear model, radial basis function, Support Vector
Machine, kernel based regression.

It is a pre-trained model: has interpolation as a structural
property

(contracted notation)

m(x) = µ(x) + k(x ,X)k(X,X)−1(y − µ(X))

where X ≡ {x1, . . . , xn}
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how does GP mean perform in high-dimension?

(GP ≡ Gaussian Process)

dimension = dimension of x , written d

Known to work well in low dimension (d ≤ 10), still an open
question beyond:
[Binois and Picheny, 2024, Durrande et al., 2012] for GPs,
[Le Riche and Picheny, 2021] for GPs in optimization.

⇒ this talk is an investigation of this question
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Default GP model

A pragmatic choice, corresponding to a typical default:

The kernel k is the isotropic Matérn 5/2

kθ(x , x
′) =

(
1 +

√
5‖x−x ′‖
θ

+ 5‖x−x ′‖2

3θ2

)
exp
(
−
√

5‖x−x ′‖
θ

)
where θ is the “length-scale”

µ(x) = µ = constant

2 hyperparameters: θ, µ. We can plot maps

The 2 hyperparameters, θ & µ, are learned by minimizing minus
the log-likelihood
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Default tests

A pragmatic choice, corresponding to a typical default:

Number of data points : n = 100 (costly setting, e.g., CFD)

Design of Experiments : uniform sampling within [0, 1]d

Sphere functions to start with:

y05(x) =
√
‖x − 0.5× 1d‖2 , y0(x) =

√
‖x‖2

(isotropic like the GP)

Figure of merit : Q2 = 1−
∑ntest

i=1 (y test
i −m(x test

i ))
2∑ntest

i=1 (y test
i −y test)

2
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A curse of dimensionality (1/3)

Prediction quality of the default GP for the (square root of) sphere
with a minimum at the corner (y0) or at the center (y05):
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A curse of dimensionality (2/3)

Why such a collapse in prediction only because of a translation
in the quadratic function?
The intrinsic dimension of the problem does not change.

Can we do something simple and general to avoid it ?
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A curse of dimensionality (3/3)

The collapse in Q2 when d grows

also happens for the Ackley and Rastrigin functions in 5D
extended to any dimension by inactive variables
f (x) = f (x1, . . . , x5) ⇒ a geometrical effect ?

also happens for other design of experiments : Latin Hypercube
Sampling, balanced uniform sampling within nested slices of
same volume.

does not happen for linear functions, well-specified GPs (here
with a constant a priori mean and Matérn 5/2 covariance), for
misspecified GPs (exponential covariance) but the Q2 is very
quickly low.

The phenomenon is general but our examples will only use the simple
sphere case with uniform sampling.
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Representability question (1/2)

Is there a GP model, i.e., a choice of (µ, θ), i.e., a mean and
covariance choice within the parameterized set, that correctly
represents y05 (0.95 ≤ Q2 ≤ 1) when n = 100 uniform and d = 50 ?

If yes, how to find the right (µ, θ) ?

If no,

Look at another covariance structure (like in
[Binois and Picheny, 2024, Durrande et al., 2012,
Bouhlel et al., 2016])
Look at other design of experiments
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Representability question (2/2)

A Q2 map provides the answer in our simple context, d = 50:

0 5 10 15 20 25 30

5
10

20
30

mu

th
et

a
−40000
−20000
−0.1
0.1
0.3
0.7
0.9
0.95

y05

There exists a narrow valley of good models, the best one at
(µ? = 24.8, θ? = 8.3), Q2 = 0.99. Note : µ? much larger than y05.

Gaudrie, Le Riche, Appriou GP & high-dim: an empirical study 13 / 34



MLE and the centered sphere y05 (1/2)

Why minimizing minus log-likehood does not find the right model
(empirical,d = 50) ?
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The MLE is not in the right valley
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MLE and the centered sphere y05 (2/2)

−L(µ, θ;X, y) =
1

2
(y − µ1)>K−1

θ
(y − µ1)︸ ︷︷ ︸

data fit

+
1

2
log(det(Kθ))︸ ︷︷ ︸

model complexity

+
n

2
log(2π)
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Sphere centered versus at corner, y05 vs. y0, (d=50)
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Wider Q2 optimal valley for y0.
Probabilistic model better fits y0 than y05.
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Learning the right model

Try the leave-one-out loss because

When the probabilistic model is not well specified, leave-one-out
loss function should be preferred to the negative log-likelihood
[Bachoc, 2013].

Efficient (same complexity as likelihood) formula for calculating
the leave-one-out error [Dubrule, 1983]:

yi −m(−i)(xi) =
[kθ(X,X)−1(y − µ1n)]i

[kθ(X,X)−1]i ,i

‖y −m(−·)(X)‖2 is a quadratic form, like the Q2.

Normalize it like the Q2:

QLOO = 1−
‖y −m(−·)(X)‖2

‖y − y1n‖2
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Q2 versus LOO maps (d = 50)
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The leave-one-out maps coincide closely with the Q2 maps for both
y0 and y05. Both Q2 and LOO have a quadratic form.
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Related analyses (1/2)

Work on the consistency of the ML and Cross-Validation (CV)
estimators when the underlying data comes from a GP and n is
large: [Wahba, 1985, Stein, 1990, Naslidnyk et al., 2023].

Cases when ML is superior to CV [Stein, 1990], Chap. 3 of
[Santner et al., 2003]; and vice versa [Wahba, 1985]

Modified versions of ML and CV tend towards each other: LOO
accounting for terms correlations
[Ginsbourger and Schärer, 2021] and Bayesian ML
[Fong and Holmes, 2020].
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Related analyses (2/2)

In short: when the model is well-specified, ML is more accurate,
but CV is more robust to model misspeicification [Bachoc, 2013,
Martin and Simpson, 2005, Naslidnyk et al., 2023].

Learning a GP in a non-asymtotic case in terms of data, n, is
still an open research question : [Karvonen and Oates, 2023]
show that the correlation lengths may become infinite with a
function that is a constant shift from µ(x).

Here, we provide a partial analysis for large d (and finite n) with a y
not coming from a GP.

Gaudrie, Le Riche, Appriou GP & high-dim: an empirical study 20 / 34



Concentration of covariances (1/3)

If the x i are randomly sampled (uniformly, LHS, . . . ), as d ↗, the
pairwise distances and the covariances concentrate at a given value.

Pairwise distances for a uniform distribution:

Normalized pairwise distances, d=2

dist2/sqrt(2)

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0e
+

00
1e

+
06

2e
+

06
3e

+
06

4e
+

06
5e

+
06

Normalized pairwise distances, d=100
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Xi and X ′i ∼ U([0, 1]), i = 1, . . . , d
independently

R2 :=
∑d

i=1(Xi − X ′i )
2 squared

euclidean distance between points

E[(Xi − X ′i )
2] = 1/6,

V[(Xi − X ′i )
2] = 7/180

CLT:
R2 = d × R2/d ∼

d→∞
d ×N (1/6, 7/(180d))
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Concentration of covariances (2/3)

When X ∼ U [0, 1]d , as the dimension d increases,

‖x i − x j‖ →
√

d/6 , i 6= j ,

The radial Matérn 5/2 covariance becomes

kθ(x
i , x j)

d↗−→ c(d , θ) ≡

(
1 +

√
5d

6

1

θ
+

5d

18

1

θ2

)
exp

(
−
√

5d

6

1

θ

)
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Concentration of covariances (3/3)

Tensorized Matérn 5/2 kernel : kθ(x
i , x j) =

⊗d
l=1 kj θ(x

i
l , x

j
l )

Covariances with the tensorized Matérn 5/2 kernel converge too:

Distribution of kθ(x
i , x j) when d = 50:

θ = 2 θ =
√
d ≈ 7.1
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Isocorrelation as a limit case

The limit covariance is K̂ = σ2R̂ where (c(d , θ) simplified as c)

K
d↗−→ K̂ ≡ σ2


1 c . . . c
c 1 c . . .
. . . . . . . . . . . .
c . . . c 1

 , R̂ = (1− c)I + c1n1
>
n

Calculations are analytical:

λ̂1 = σ2[1 + (n − 1)c] , λ̂2 = . . . = λ̂n = σ2(1− c)

v̂ 1 = 1n/
√
n , v̂ i = [1 0 . . . 0 −1

i−th
0 . . . 0]>/

√
2

R̂−1 =
1

1− c

(
I − 1

1 + (n − 1)c
11>

)
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Spectrum of K versus K̂

The eigenvalues/vectors of K and K̂ are close.
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Can the isocorrelation approximation help understand the geometrical
problems of high-dimension?
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Likelihood, isocorrelation case

In blue, the true function ; In red, the parameters c(d , θ) and µ

Project the true function onto the eigenvectors of R̂ : y =
∑n

i=1 βi v̂
i

Negative log-likelihood

− L̂ = n log(σ) +
1

2

[
(β1 − µ

√
n)2

1 + (n − 1)c
+

1

1− c

n∑
i=2

βi
2

]
+

1

2
(1 + (n − 1)c) (1− c)n−1 +

n

2
log(2π)
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LOO, isocorrelation case

Project the true function onto the eigenvectors of R̂ : y =
∑n

i=1 βi v̂
i

LOO

y −m(−·)(X) =
1− c

1 + (n − 2)c
(β1 − µ

√
n)v̂ 1+

1 + (n − 1)c

1 + (n − 2)c

n∑
i=2

βi v̂
i

The isocor. LOO error can be minimized in µ and c analytically.

With the isocorrelation approximation, the likelihood and the
LOO are very fast to calculate. We can do maps and
complicated treatments with them.
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Likelihood maps
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Rough approximations. Best µ from isocorrelation is the empirical
mean (can be seen from the formula as well).
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QLOO maps
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Very rough. Best isocorrelation model is the empirical mean.
Is the volume of the 98% level set of QLOO indicative of a problem that
can be well modelled by the GP?
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The increasing a priori mean effect

As d increases, the best µ according to Q2 grows beyond the MLE µ.

y05 , best µ from Q2 maximization best µ from MLE

m(x) ≈ µ + r(x ,X)R̂−1(y − µ1n) = µ +
n∑

i=1

γ̂i r(x , x i)

γ̂i =
y − µ

1 + (n − 1)c
− βi

(1− c)
√

2
, i = 2, . . . , n

The terms γ̂i fade away if µ is not large enough i.e., m(x) becomes
insensitive to x .
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Summary

We have studied empirically the effects of the increase in
dimension on prediction by kernel methods.

In high-dimension, LOO leads to better models (i.t.o. Q2) than
MLE.

The a priori mean increases with dimension (beyond what MLE
says).

An analytical isocorrelation approximation, justified by the
geometry of sampling in high dimension, has been described.

Gaudrie, Le Riche, Appriou GP & high-dim: an empirical study 31 / 34



Perspectives

Provide theoretical arguments to understand the accordance
between Q2 and LOO in high-dimension: for which
functionsdoes it hold?

Is the volume of a good level set of QLOO (with and without
isocorrelation approximation) indicative of the difficulty to model
the function in high-dimension ?

Is the isocorrelation model useful to size θ as a function of d ?

Study a probabilistic model of the covariance matrix when d is
large (beyond the sheer mean c).
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