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Point Processes and spatial statistics in
time-frequency analysis

Barbara Pascal and Rémi Bardenet

Abstract A finite-energy signal is represented by a square-integrable, complex-
valued function C ↦→ B(C) of a real variable C, interpreted as time. Similarly, a noisy
signal is represented by a random process. Time-frequency analysis, a subfield of
signal processing, amounts to describing the temporal evolution of the frequency
content of a signal. Loosely speaking, if B is the audio recording of a musical
piece, time-frequency analysis somehow consists in writing the musical score of the
piece. Mathematically, the operation is performed through a transformV, mapping
B ∈ !2 (R) onto a complex-valued function VB ∈ !2 (R2) of time C and angular
frequency l. The squared modulus (C, l) ↦→ |VB(C, l) |2 of the time-frequency
representation is known as the spectrogram of B; in the musical score analogy, a
peaked spectrogram at (C0, l0) corresponds to a musical note at angular frequency
l0 localized at time C0. More generally, the intuition is that upper level sets of the
spectrogram contain relevant information about in the original signal. Hence, many
signal processing algorithms revolve around identifying maxima of the spectrogram.
In contrast, zeros of the spectrogram indicate perfect silence, that is, a time at which
a particular frequency is absent. Assimilating R2 to C through I = l+ iC, this chapter
focuses on time-frequency transformsV that map signals to analytic functions. The
zeros of the spectrogram of a noisy signal are then the zeros of a random analytic
function, hence forming a Point Process in C. This chapter is devoted to the study
of these Point Processes, to their links with zeros of Gaussian Analytic Functions,
and to designing signal detection and denoising algorithms using spatial statistics,
by identifying perturbations in the point pattern of silence.
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1 Introduction and chronological perspective

In the broadest sense, a signal is a collection of data which carries information about
a phenomenon of interest. This definition encompasses data of very diverse types,
from physical measurements to epidemiological indicators, or even man-made data.
The present work focuses on temporal signals, such as, e.g., audio recordings or a
physical quantity measured by a sensor over time, such as light intensity, pressure,
voltage. Mathematically, these temporal signals C ↦→ B(C) are represented as real
or complex functions of a real variable C, referred to as time. Three examples are
provided in Figure 1: a pure sine wave with constant amplitude and frequency in 1a, a
chirpwith linearly increasing frequency and amplitude following a smooth envelope
in 1b, and a gravitational wave with exploding amplitude and frequency in 1c.
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Fig. 1: Examples of elementary signals.

As in Figure 1, most signals are acquired in the time domain, and correspond
to the measurement of some physical quantity in which time events are particu-
larly visible, e.g., an earthquake and its aftershocks. Yet, in many situations, the
frequency content provides complementary information that is crucial to get insight
into the studied phenomenon, e.g., the types of rocks through which the seismic
wave propagated, enabling precise localization of the epicenter. The most standard
tool to probe the frequency content of a signal is the Continuous Fourier Transform1

l ↦→ F B(l), which yields an overall spectral density, depending on a real vari-

1 See Section 2.2.1 for a formal definition and main properties.
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able l called the angular frequency. However, most of the time, one is interested
in a joint time-frequency representation, in order to visualize the frequency prop-
erties of events localized in time. To that aim, the Short-Time Fourier Transform2

(C, l) ↦→ VℎB(C, l) has been introduced. It amounts to computing local Fourier
transforms by sliding a localized window ℎ over the signal B, thus recording the
local frequency content at each time C. This results in the spectrogram, defined as
the squared modulus of VℎB(C, l). By analogy with physics, the spectrogram of a
signal is usually described as the energy distribution of that signal. The spectro-
grams of the three signals from Figure 1 are displayed in Figure 2: high values of the
spectrogram, in dark blue, indicate high-energy regions, suggesting that important
information is encapsulated in the spectrogram at this location of the time-frequency
plane. For instance, for the sine signal, Figure 2a shows a horizontal line of maxima
reflecting the constant frequency. For the chirp, the maxima of Figure 2b form an
increasing line, reflecting the linearly increasing frequency. Finally, one can observe
on Figure 2c the exploding frequency typical of a gravitational wave.
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(c) Gravitational wave.

Fig. 2: Gaussian spectrograms of elementary signals displayed in log-scale col-
ormaps. Maximum values are in dark blue, zeros are represented as white dots.

2 See Section 2.2.2 for a formal definition and properties.
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Both the signals of Figure 1 and the spectrograms of Figure 2 are easy to read,
in the sense that a clear structure can be identified through direct observation.
Nevertheless, a careful observer might have remarked that the signals, and hence
the spectrograms, contain higher-frequency oscillations typical of noise,3 i.e., a
unstructured perturbation superimposed on the pure signal.

Noise is omnipresent in signal processing, as any physical measurement is cor-
rupted both by intrinsic and by environmental perturbations. Its presence translates
into irregular fluctuations in the signals of Figure 1, both in time and in amplitude.
Similarly, noise creates stochastic low-energy patterns in the spectrograms of Fig-
ure 2, appearing in medium blue, and popping up outside of the upper level set in
dark blue. The (numerical) zeros of the spectrograms are represented as white dots in
Figure 2. A striking observation is that, whatever the shape of the underlying signal,
the spectrogram zeros spread very uniformly outside of the regions with large energy.
An unorthodox path has emerged in time-frequency analysis from this observation,
shifting the focus from the maxima to the zeros of spectrograms.

The first interest in the zeros of spectrogram appeared in [1] in which the authors
emphasized the quite rigid distribution of zeros of the Gaussian spectrogram4 of
white noise5 in the time-frequency plane.A sample ofwhite noise and its spectrogram
are displayed in Figures 3a and 3b respectively. More precisely, [1] remarked that the
zeros of the Gaussian spectrogram are uniformly spread, as can be seen in Figure 3b,
each zero roughly occupying a unit time-frequency area in the time-frequency plane.
Elaborating on this observation, [2] first showed that the zeros of the spectrogram
almost fully characterize the analyzed signal. Furthermore, [2] took advantage of
the fact that the presence of a signal creates holes in the pattern of zeros to design
zeros-based algorithms that denoise signals, and separate the holes into elementary
signal components. This pioneering work opened the way to a new paradigm in
time-frequency analysis, revolving around zeros instead of maxima. Continuing this
approach, [3] established that the zeros of the Gaussian spectrogram of white noise
form a Point Process – a random configuration of points in the time-frequency
plane – and that its law corresponds to the zeros of the planar Gaussian Analytic
Function.6 Extending [3], similar connections have been proven between standard
representations in signal processing and canonicalGaussianAnalytic Functions, such
as the Daubechies-Paul scalogram, whose zeros are those of the hyperbolic Gaussian
Analytic Function [4, 5], or the newly introducedKravchuk transform, this time linked
to the spherical Gaussian Analytic Function [6, 7]. These connections were used
to design both signal detection procedures [3, 6], denoising strategies [2, 4, 8], and
unmixing, consisting in recovering the components of a composite signal made of a
linear superposition of elementarywaveforms [2]. Recently, the geometric analysis of
spectrograms has extended from zeros to more general level sets [9]. Leveraging the

3 The definition of noise will be thoroughly discussed in Section 2.4.
4 The Gaussian spectrogram is defined as

��V6B (C , l)
��2, for V6 the Short-Time Fourier Transform

using the circular Gaussian window 6 (C) = c−1/2 exp(−C2/2) . See Section 2.2.2.
5 White noise consists in a random process b (C) of zero mean and no correlations at different
times. See Section 2.4 for a formal definition.
6 See Section 3, Equation (44).
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geometrical and statistical properties of level sets of the spectrogram of white noise
and of noisy Hermite functions, [9] designed detection and denoising strategies,
accompanied with theoretical guarantees.
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(b) White noise spectrogram.

Fig. 3: Time-frequency analysis of pure noise.

Outline. Section 2 is devoted to a self-contained review of the main concepts of
signal processing, with an emphasis on time-frequency analysis and a rigorous defi-
nition of white noise. Then, Gaussian Analytic Functions are introduced in 3.1, and
some key properties of their zeros are presented. The connection between Gaus-
sian Analytic Functions and time-frequency analysis is established in Section 3.2.
Section 4 presents principles and tools from spatial statistics, and their application
to the design of signal processing procedures. Finally, Section 5 highlights recent
extensions and promising research directions.

1.1 Notations

!2 (R) (resp. !2 (C)) denotes the complex-valued functions of a real (resp. complex)
variable, which are square-integrable w.r.t. the Lebesgue measure over R (resp. C).
Elements of !2 (R) (resp. !2 (C)) are denoted in lower (resp. upper) case. Operators,
linear or not, acting on !2 (R) are written with upper-case calligraphic letters. The set
of integers is denoted by Z, while the set of non-negative (resp. positive) integers is
denoted byN (resp.N∗). The complex conjugate of I ∈ C is denoted by I. Bold lower-
(resp. upper-) case refers to complex vectors (resp. matrices). For =, ? ∈ N∗, a vector
s ∈ C= (resp a matrix B ∈ C=×?) has components B1, . . . , B= (resp. {B:,ℓ , 1 ≤ : ≤
=, 1 ≤ ℓ ≤ ?}). Independent identically distributed random variables are referred to
as “i.i.d.".E[·] denotes the expectation of an randomvariable and P[·] the probability
of an event.
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2 Signal processing and time-frequency analysis

This section provides, in Section 2.1, a short introduction to the main concepts of
signal processing, followed by a brief, self-contained presentation of time-frequency
analysis in Section 2.2, with a focus on the Short-Time Fourier Transform, which
is the main signal processing tool at stake in this chapter. The classical material is
adapted from the reference books [10, 11], to which the interested reader can add
the more recent [12], and the harmonic analysis viewpoint from [13]. The rigorous
definition of white noise in 2.4 is that of Gross in [14], as presented in [5]. It will
have a prominent importance in connecting Gaussian Analytic Functions with time-
frequency representations in Section 3.2. Finally, Section 2.3 discusses numerical
implementation in the straight line of [15].

2.1 Basic concepts of signal processing

Deterministic signals are data consisting in a real or complex-valued, square-
integrable function C ↦→ H(C) of a real variable C, assimilated to time. Whether
to account for variability under repeated measurements, or for physical processes of
lesser importance that have been neglected, measured data are often further modeled
as a random process. The most common model is the signal-plus-noise model.

2.1.1 The signal-plus-noise model

In the signal-plus-noise model, the observed signal decomposes as

H = snr × B + b, (1)

with B ∈ !2 (R) the deterministic signal of interest, b a random process accounting
for the presence of noise, and snr ≥ 0 the so-called signal-to-noise ratio, quantifying
the corruption of the data H. Figure 4 exemplifies the signal-plus-noise model on
a template signal, namely a chirp, whose exact expression is given below at Equa-
tion (chirp). The value of snr decreases,7 from no noise at all in Figure 4a, to a
situation in which the signal is almost drowned in the noise in Figure 4c.

2.1.2 A few template signals

A comon class of signals comes frommodeling the propagation ofwaves. Awavelike
signal is characterized by its time-varying amplitude C ↦→ �(C) and phase C ↦→ i(C),

7 By convention, infinite snr corresponds to no noise, that is H (C) = B (C) for all C .
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Fig. 4: Realizations of the signal-plus-noise model (1) with increasing noise levels.

B(C) = �(C) sin(i(C)), l(C) = di
dC
(C), C ∈ R, (2)

where l(C) defines the instantaneous angular frequency. In particular, a pure sine
wave, such as in Figure 1a, corresponds to

B(C) = � sin(lC), (sine)

with both the amplitude � > 0 and the angular frequency l constant. Other ubiqui-
tous wavelike signals are linear chirps, exemplified in Figure 1b, and described, for
some duration ) > 0, as the transient waveform

B(C) = �(C) sin(b (C)C), l(C) = l1 + l2 − l12)
(C + )), (chirp)

with � a smooth envelopewhose support is contained in [−),)], andl1, l2 > 0 two
fixed angular frequencies. (chirp) models a waveform modulated in amplitude, and
with frequency evolving linearly from l1 at time −) to l2 at time ) . More intricate
wavelike signals are often encountered in modern physics to describe highly non-
linear phenomenon, such as gravitational waves, for which general relativity predicts
an exploding chirp-like form,

B(C) = � (C0 − C)−1/4 cos(3 (C0 − C)5/8 + i)1(−∞;C0 [ (C), (wave)

where � > 0 is the amplitude, 3 is a constant that encodes physical information
about the cosmological event that produced the wave, i ∈ [0, 2c[ is a pure phase,
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Fig. 5 The cross-
disciplinarity of signal pro-
cessing, pictured as the so-
called golden triangle of
signal processing of Patrick
Flandrin, see for example [12,
Chapter 1: Introduction].

physics
•

•
mathematics

•
computer science

signal

processing

and C0 ∈ R is the collapsing time at which both the amplitude �(C) = � (C0 − C)−1/4
and the instantaneous angular frequency l(C) = 10c3/8(C0 − C)−3/8 are diverging.
An example of such singular wave is provided in Figure 1c.

2.1.3 Aims and means of signal processing

The general goal of signal processing is to extract as much information as possible
about the underlying signal B from noisy observations H. Extracting information
can mean different things depending on the context. This chapter restricts to two
representative tasks of signal processing,

• detection: from noisy measurements H, decide whether there is an underlying
signal B, that is, whether snr > 0 in Equation (1);

• reconstruction: assuming snr > 0, recover as accurately as possible the signal
of interest C ↦→ B(C).
To meet these challenges, signal processing calls on the theory and tools of dif-

ferent disciplines, as illustrated in Figure 5. Indeed, signal processing lies at the
intersection of physics, for modeling phenomena in biology, mechanics, acoustics,
etc; mathematics, to formalize the problem and design performance criteria, and
computer science to provide efficient algorithms and implementations. This comple-
mentarity is key in many results presented in this chapter.

2.2 From time or frequency to joint time and frequency

As explained in the introduction, signals are often acquired in the time domain, and
hence the standard representation of a finite-energy signal is a square-integrable
function of time. This representation is convenient for precisely localizing an event
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in time, or for analyzing the dynamics of a phenomenon that involves a change in
the signal over time, but it is impractical to visualize or detect mechanisms that
create a superposition of oscillations. The latter are more readily seen on a frequency
representation, such as the Fourier spectrum of the signal. This section is devoted
to a concise presentation of the signal processing tools used to probe the frequency
content of a signal, with a focus on Fourier-based representations.

2.2.1 Fourier analysis

TheContinuous Fourier Transform of a signal can be interpreted as a comprehensive
description of the elementary oscillations composing the signal.

Definition 1 Let B ∈ !1 (R) ∩ !2 (R), its Continuous Fourier Transform F B is the
function of the angular frequency l ∈ R defined by

F B(l) =
∫
R
B(C) exp(−ilC) dC.

Since !1 (R) ∩ !2 (R) is dense in !2 (R), the Continuous Fourier Transform contin-
uously extends to all finite-energy signals, i.e. to all B ∈ !2 (R).
Proposition 1 The Continuous Fourier Transform F : !2 (R) → !2 (R) is linear,
continuous and invertible. Furthermore, if B ∈ !1 (R) and F B ∈ !1 (R), then the
reconstruction formula

B(C) = 1
2c

∫
R
F B(l) exp(ilC) dl,

holds for almost every C ∈ R with respect to Lebesgue measure on R.

Proposition 2 Let B ∈ !2 (R), then F B ∈ !2 (R), and

‖F B‖2 = ‖B‖2,

where ‖B‖22 =
∫
R
|B(C) |2 dC. In signal processing jargon, the Fourier transform pre-

serves the energy of the signal.

The Fourier spectrum of a signal is defined as the modulus of its Continuous
Fourier Transform: it quantifies the power of a frequency in the signal. Figure 6
yields the Fourier spectrum of each of the template signals displayed in Figure 1. For
the pure sine, characterized by a unique frequency, the Fourier spectrum provided in
Figure 6a is, up to small fluctuations due to the additive noise, a Dirac mass at this
frequency. For the chirp in Figure 6b, as for the gravitational wave in Figure 6c, the
Fourier spectrum spreads over a wide frequency range, accounting for all frequencies
that emerge over time. This shows a limitation of the Fourier spectrum as a signal
representation: the Fourier spectrum only indicates whether a frequency is globally
present in the signal, but it does not give any visual hint at when it appears. The time
localization of each frequency event is lost.
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Fig. 6: Fourier spectra |F B(l) | of the template signals of Figure 1.

2.2.2 The Short-Time Fourier Transform

The aforementioned limitation of Fourier analysis is addressed by time-frequency
analysis, which aims at representing simultaneously the temporal dynamics and
the frequency content of a signal. Recalling the analogy with music transcription
mentioned in the abstract, time-frequency representations yield an overview ofwhich
frequencies, seen as musical notes, are active, or played, at a given time. This leads
to an energy map on the time-frequency plane that can be read in a similar way as a
musical score, the temporal dynamics being analogous to the rhythm, and frequency
to the pitch [11, Section 2.1].

The Short-Time Fourier Transform amounts to probe the local frequency content
of a signal B, where local means duing a short-time window ℎ centered at time C.
Basically, it consists in computing the Fourier transform of a small portion of the
signal: in the case of the chirp, illustrated in Figure 7 when the window is centered at
C = −10 seconds, small frequencies are detected, while when analyzing the vicinity
of C = 10 seconds, one sees larger frequencies. The narrower the window ℎ, the
better the temporal resolution. However, it is not possible to capture correctly the
frequency content of a signal, in particular low frequencies, if the window is not
broad enough. The width and shape of ℎ hence need to be chosen according to the
context and goals, as discussed in Section 3.2. For now, a short-time window is an
element of !2 (R), which is expected to be somehow localized in time.

Definition 2 Let ℎ ∈ !2 (R) and B ∈ !2 (R). The Short-Time Fourier Transform of B
is the joint function of time and angular frequency defined by
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Fig. 7: The Short-Time Fourier Transform seen as a moving Fourier transform. The
window ℎ is centered at C ∈ {−10, 0, 10}. The green area is the support of ℎ(· − C).

VℎB(C, l) =
∫ ∞

−∞
B(D)ℎ(D − C) exp(−ilD) dD, (C, l) ∈ R2. (3)

The spectrogram of a finite-energy signal B is defined as the squared modulus of its
Short-Time Fourier Transform |VℎB(C, l) |2.

The spectrograms of the three elementary signals of Figure 1 are provided in Fig-
ure 2: for the transient wave forms, namely the chirp, Figure 2b, and the gravitational
wave, Figure 2c, the increasing and exploding instantaneous angular frequencies
are very clearly visible on this joint time-frequency representation, contrary to the
frequency representations provided by the Fourier spectrum of Figures 6b and 6c.

The Short-Time Fourier Transform benefits from particularly useful properties,
part of them inherited from Fourier analysis.

Proposition 3 For any two windows ℎ, ℎ′ ∈ !2 (R) of unit energy, ‖ℎ‖2 = ‖ℎ′‖2 = 1,
and any two signals B, B′ ∈ !2 (R), the following holds.

1. The Short-Time Fourier Transform maps the inner product of !2 (R) onto the
one on !2 (R2), and hence preserves the energy:∫

R

∫
R
VℎB(C, l)VℎB′(C, l) dC dl2c =

∫
R
B(C)B′(C) dC. (4)

2. It induces a Reproducing Kernel Hilbert Space, meaning that
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∀(C, l) ∈ R2, VℎB(C, l) =
∫
R

∫
R

K(C, l; C ′, l′)VℎB(C ′, l′) dC ′dl
′

2c
, (5)

where the kernel K is defined by K(C, l; C ′, l′) = Vℎℎ(C − C ′, l − l′).
3. If 〈ℎ, ℎ′〉 ≠ 0, then the following reconstruction formula is satisfied:

B(C ′) = 1
〈ℎ, ℎ′〉

∫
R

∫
R
VℎB(C, l)ℎ′(C ′ − C) exp(ilC) dC dl2c a.e., (6)

where 0.4. means for Lebesgue-almost all C ′ ∈ R.

Remark 1 TheReproducingKernelHilbert Space property (5) shows that an arbitrary
element of !2 (R2) is not necessarily the Short-Time Fourier Transform of a finite-
energy signal. On the contrary, Vℎ (C, l) can be reconstructed from the values of
Vℎ (C ′, l′) for (C ′, l′) in a neighborhood of (C, l), of diameter roughly the width
of the analyzing window. From a geometrical point of view, this means that the
landscape of a spectrogram is highly constrained, and in a certain sense, smooth.

A careful reader might have noticed that, although the Short-Time Fourier Trans-
form introduced in Equation (3) is defined for angular frequencies l ∈ R, the
spectrograms of Figures 2 and 3b are displayed only for non-negative angular fre-
quencies. This is motivated by the following symmetry result.

Proposition 4 Let ℎ, B ∈ !2 (R) be both real-valued. Then,

∀(C, l) ∈ R2, VℎB(C, l) = VℎB(C,−l). (7)

In particular, the spectrogram is symmetric with respect to the time axis.

In Figure 2, both the Gaussian window used in the Short-Time Fourier Transform
and the signals of interest are real-valued. Hence the corresponding spectrograms
are symmetric under frequency flip. In particular, the curve of maxima that is the
signature of the time-varying angular frequency is exactly mirrored in the regionl <

0, justifying to focus on l ≥ 0 to avoid redundancy. Spectrograms covering positive
and negative frequencies are exemplified later in the case of Hermite functions
in Figures 11b and 11c.

Remark 2 It worth noting that the zeros on Figures 11b and 11c correspond to a
complex-valued signal, since the noise is complex-valued in the signal-plus-noise
model of Section 2.1.1. This explains why the zeros on these two figures are not
symmetric with respect to the time axis. Still, as will be shown in Section 3.2, the
distribution of the zeros of the spectrogram of white noise is stationary, that is, it is
invariant under translations of the time-frequency plane.

2.2.3 The family of Hermite functions

The family of Hermite functions will be of utmost importance to construct the
continuous white noise b in Section 2.4, and to link its Short-Time Fourier Transform
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Fig. 8 Hermite functions of
order : = 0 to : = 4.
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to a Gaussian Ananlytic Function in Section 3.2. Two major properties of Hermite
functions will be used: first, they form a Hilbert basis of the space of finite-energy
signals, second their Gaussian spectrograms have very simple forms.

Definition 3 Let : ∈ N, the Hermite function of order : is

ℎ: (C) = (−1)=√√
c2==!

exp(C2/2) d
k

dC:
e−C

2
, C ∈ R. (8)

Proposition 5 The family of Hermite functions (ℎ: ):∈N is a Hilbert basis of !2 (R).
In particular, Hermite functions form an orthogonal family, that is

∀:, ℓ ∈ N,
∫
R
ℎ: (C)ℎℓ (C) dC = X:,ℓ , (9)

where X denotes the Kronecker delta, satisfying X:,ℓ = 0 if : ≠ ℓ and X:,: = 1.

To illustrate Definition 3, the first five Hermite functions are displayed in Figure 8.
When : is even (resp. odd), so is the Hermite function. It can further be shown that
the Hermite function of order : has exactly : distinct zeros. The larger : , the more
ℎ: oscillates. As an example, the Hermite function of order : = 16 with a small
amount of additional noise is displayed in the top plot of Figure 11a.

Proposition 6 Let 6(C) = c−1/2 exp(−C2/2) be the so-called circular Gaussian win-
dow and : ∈ N. The Short-Time Fourier Transform with analyzing window 6 of the
Hermite function of order : is given by

∀(C, l) ∈ R2, V6ℎ: (C, l) = (l + iC)
:

√
2: :!

exp
(
− (C

2 + l2)
4

− ilC
2

)
. (10)

Hence, as stated in [16, Equation (15)], the Gaussian spectrogram of ℎ: writes

∀(C, l) ∈ R2,
��V6ℎ: (C, l)��2 = 1

2: :!

(
C2 + l2

) :
exp

(
−1
2
(C2 + l2)

)
. (11)

Maximizingw.r.t. (C, l) the explicit expression (11) shows that the spectrogram of
the Hermite function of order : ∈ N∗ admits a ring of maxima, centered at the origin
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g

Tug Mωg

Fig. 10: Time translation and frequencymodulations of the circularGaussianwindow
6(C) = c−1/2 exp(−C2/2).
of the time-frequency plane and of radius

√
2: . This is illustrated in Figure 11b,

which presents the Gaussian spectrogram of the Hermite function of order : = 16,
with a small amount of additive noise according to the signal-plus-noise model (1).

2.2.4 Covariance of the Short-Time Fourier Transform

The Short-Time Fourier Transform of Definition 2 can be reinterpreted as the de-
composition of a finite-energy signal on a family of atoms, obtained by applying
elementary operations on the analyzing window. Namely, these operations consist
in time translation and frequency modulation, as displayed in Figure 10 in the case
when the analyzing window is the circular Gaussian window.

Proposition 7 Let (D, l) ∈ R2, and consider the translation and modulation endo-
morphisms TD : !2 (R) → !2 (R) andMl : !2 (R) → !2 (R), defined by

∀ℎ ∈ !2 (R), ∀C ∈ R, (TDℎ) (C) = ℎ(C − D), (Mlℎ) (C) = ℎ(C)e−ilC . (12)

Then the Short-Time Fourier Transform of B ∈ !2 (R) rewrites

∀(C, l) ∈ R2, VℎB(C, l) = 〈B,MlTCℎ〉 (13)

The covariance of the spectrogram nowmeans that if one translates andmodulates
the analyzed signal, its spectrogram is a translated version of the original one.

Proposition 8 Let ℎ ∈ !2 (R) and B ∈ !2 (R). For any time-shift D ∈ R and modula-
tion frequency l′ ∈ R,

∀(C, l) ∈ R2, Vℎ [Ml′TDB] (C, l) = e−i(l−l′)DVℎB(C − D, l − l′), (14)

Hence, the spectrogram is covariant under time-shifts and frequency modulations:

∀(C, l) ∈ R2, |Vℎ [Ml′TDB] (C, l) |2 = |VℎB(C − D, l − l′) |2 . (15)

This property is illustrated in Figure 11, where the spectrogram of the original
noisy Hermite function, displayed in Figure 11b, presents a ring of maxima centered
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Fig. 11: Covariance of the spectrogram exemplified for the Hermite function ℎ:
with : = 16, displayed in top plot of (a) and associated spectrogram in (b), and the
modulated and translated Hermite functionMlTDℎ: with D = 10 [sec] and l = 10
[rad.s−1], displayed in bottom plot of (a) and associated spectrogram in (c).

at the origin, while the spectrogram of the translated and modulated noisy Hermite
function, in Figure 11c, presents the same overall geometry, thought shifted: the ring
of maxima is translated of D seconds in time and l rad.s−1 in frequency.

2.3 Numerical implementation

While it is handy in theory to identify signals to functions of a real variable, in
practice, one never has access to the full observed function H : C ∈ R ↦→ H(C) ∈ C,
but only to a finite number of measurements y = (H1, . . . , H=) ∈ C=. It is often
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implicitly assumed that these measurements are regular evaluations of an underlying
function during a finite time interval, at angular frequencylB = 2c/XC for some time
step XC > 0, i. e. H: = H(: · XC), : = 1, . . . , =. The Continuous Fourier Transform is
usually replaced in practice by the discrete Fourier transform (DFT).

Definition 4 For = ∈ N∗, let s = (B1, . . . , B=) ∈ C= be a discrete signal. TheDiscrete
Fourier Transform of s is a vector ŝ ∈ C=, defined by

∀: ∈ {0, . . . , = − 1}, B̂:+1 =
=∑
9=1

B 9 exp
(
−2ic: · 9 − 1

=

)
. (16)

Similarly, the Discrete Fourier spectrum of a discrete signal is defined as the com-
ponentwise squared modulus of its Discrete Fourier Transform, the :-th component
quantifying the global energy of the signal at angular frequency 2c:/= · XC−1.

One major advantage of (16) is that there exists a fast algorithm, namely the
Fast Fourier Transform algorithm, that computes ŝ ∈ C= in $ (= ln(=)) operations.
In comparison, the naive approach that successively computes (16) for each : =
0, . . . , = − 1 requires $ (=2) operations.

Definition 5 For = ∈ N∗, let s = (B1, . . . , B=) ∈ C= a discrete signal. For < ∈ N∗, the
Discrete Short-Time Fourier Transform of s is a matrix Vs ∈ C=×<, whose elements
write, for : ∈ {0, . . . , = − 1}, ℓ ∈ {0, . . . , < − 1},

(Vs):,ℓ =
=∑
9=1

B 9ℎ (: · XC − 9 · XC) exp (−i(ℓ · Xl) (( 9 − 1) · XC)) XC. (17)

The discrete spectrogram is defined as the squared modulus of the discrete Short-
Time Fourier Transform, and its (:, ℓ)-element describes the energy density at time
: · XC and angular frequency ℓ · Xl [15].

Provided that the time and frequency discretizations are compatible, i.e., that
XC × Xl = 2c= for some = ∈ N∗, the Discrete Short-Time Fourier Transform can
be implemented efficiently in O(=2 log =) operations by leveraging the Fast Fourier
Transform algorithm into a sliding algorithm [17].

2.4 From random processes to a rigorous definition of white noise

Going further in the analysis of noisy signals C ↦→ H(C) in the signal-plus-noise
model (1) requires to provide a rigorous mathematical description of noise. The
noise C ↦→ b (C), exemplified in Figure 3a, is a random process with no temporal
structure, unlike the underlying signals of interest B(C) such as pure sines, linear
chirps or gravitational waves of Figure 1. The ideal noise, which is ubiquitous
in signal processing, should have three major properties: i) for each C, b (C) has
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zero expectation, also known as the unbiased measurements hypothesis; ii) at two
different times C and C ′, the random variables b (C) and b (C ′) are uncorrelated, the
so-called independent measurements hypothesis; iii) b (C) is a Gaussian variable,
whose variance does not depend on C, a property known as homoscedasticity. Such a
random process b is called white noise. The purpose of this section is to discuss the
existence and the construction of white noise in both the discrete, finite-dimensional,
setting and in the continuous, infinite-dimensional, setting, and the links between
the two.

The signals considered in this chapter are complex-valued, and hence this section
describes the construction of complex white noise. Not only the complex framework
is more general, but also, as will be thoroughly discussed in Section 3, it yields
a wealth of symmetries, which can then be leveraged efficiently to design signal
processing procedures presented in Section 4. Though, it worth noting that it is
possible to consider real-valued signals contaminated by real-valued white noise, as
discussed in [3, Section 3].

2.4.1 Discrete white noise as a Gaussian vector

First of all, a complex analogue of the real standard Gaussian distribution is needed.
If G, H ∼ N(0, 1) are independent real standard Gaussian random variables, then

I =
G + iH√
2
∼ NC (0, 1) (18)

defines a standard complex Gaussian random variable, whose distribution is denoted
NC (0, 1). Equivalently, the standard complex Gaussian distribution is characterized
by its density with respect to Lebesgue on C, given by c−1e−|I |2 . The factor 1/

√
2 in

Equation (18) ensures that the variance of the complex variable I, defined as V[I] =
E

[|I |2] − |E[I] |2, is equal to one. It can further be checked that, if I ∼ NC (0, 1),
then E[I] = E[II] = E[II] = 0, and E[II] = 1.

Once the standard complex Gaussian is defined, it is possible to extend it to
obtain complex Gaussian vectors, generalizing real Gaussian vectors. Let = ∈ N∗
and b1, . . . , b= denote i.i.d. standard complex Gaussian random variables, stacked
into a vector / ∈ C=, and consider s ∈ C=, B ∈ C=×= and C = BB∗. The distribution
of the random vector

y = s + B/ (19)

is the complex multivariate Gaussian distribution of mean s and covarianceC, short-
ened as y ∼ NC (s,C). Complex Gaussian vectors behave as their real counterparts
in all basic respects [18, Section 2.1]. Note that they are sometimes alternatively
called circular Gaussian vectors, e.g., in [19], in order to emphasize the stability of
the ensemble of Gaussian vectors under unitary transforms of C=.
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Definition 6 Let = ∈ N∗, 0= the zero-vector of length = and I=×= the identity matrix
of size =, the finite-dimensional complex white noise is the Gaussian vector of
distribution NC (0=, I=×=). Equivalently, given an orthonormal basis (e: )=:=1 of C=
and b1, . . . , b= i.i.d. standard complex Gaussian random variables,

/ =
=∑
:=1

b: e: . (20)

Remark 3 The distributionNC (0=, I=×=) is invariant under unitary transforms of C=.
In particular, the law of the complex Gaussian vector in Equation (20) is independent
of the choice of the orthonormal basis.

As an illustration, the real part of a realization of complexwhite noise in dimension
= = 128 is displayed in Figure 12a. From a signal processing point of view it models
the measurement noise, completely uncorrelated from one sampling time to another.
As the Discrete Fourier Transform, introduced in Definition 4, consists in a change of
orthonormal basis, the Discrete Fourier transform of the complex white noise is the
complex white noise itself.8 Thus, its expected Fourier spectrum, the secondmoment
of each component, is constant: all frequencies are equally represented. Figure 12b
presents the discrete Fourier spectrum of the white noise realization of Figure 12a:
it randomly oscillates around a constant value. More informally for the moment,
this absence of deterministic structure is also visible in the Gaussian spectrogram of
Figure 12c: the Short-Time Fourier Transform of white noise is a smooth Gaussian
random field with constant mean, and its zeros are very evenly distributed in the
time-frequency plane.

Finally, to prepare the ground for the infinite-dimensional white noise, note that
Definition 6 is equivalent to specifying a Gaussian characteristic function for the
random vector /.

Proposition 9 The random vector / ∈ C= is a finite-dimensional Gaussian white
noise if and only if

∀s ∈ C=, E/ [exp(i〈/, s〉)] = exp(−‖s‖2/2), (21)

where 〈·, ·〉 (resp. ‖·‖) is the Euclidean inner product (resp. norm) of C=.

2.4.2 White noise in an infinite-dimensional space

Going further in the analysis of continuous noisy signals C ↦→ snr × B(C) + b (C), de-
scribed in Section 2.1.1, requires a rigorous definition of the noise process b (C),
and hence to extend Definition 6 to the continuous setting, to get an infinite-
dimensional white noise. Although considering the Hilbert space !2 (R) of con-
tinuous finite-energy signals would be enough for this chapter, the construction of

8 Up to the normalizing constant 1/√= which ensures unit variance when added to (16).
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Fig. 12: Time and frequency vs. time-frequency analysis of white noise.

infinite-dimensional white noise will be presented in the general case of a separable
Hilbert space of signals, as it does not imply further technicality and will allow easier
connections to more recent work in Section 5. A thorough introduction to Gaussian
measures on Banach spaces can be found in [20, Chapter 8].

Let ℌ be a complex separable Hilbert space, with norm ‖·‖ℌ, and ( 5: ):∈N a
Hilbert basis of ℌ. Mimicking the above definition of discrete white noise, it would
be tempting to define infinite-dimensional white noise as an element b of the Hilbert
space satisfying, ∀: ∈ N, 〈b, 5:〉 = b: with (b: ):∈N an infinite sequence of i.i.d.
standard complex Gaussian random variables, or equivalently as the series

b =
∑
:∈N

b: 5: . (22)

However, as stated in [5, Section 3.2.2], with probability one, the series (22) di-
verges in ℌ. The solution proposed by [14], and used in [5, Section 3.2], consists in
considering a weaker norm ‖·‖G on ℌ, defined as

∀B ∈ ℌ, ‖B‖2
G
:=

∑
:∈N

|〈B, 5:〉|2
1 + :2 (23)

enabling to define an extensionG of ℌ in which the convergence of (22) is ensured.



20 Barbara Pascal and Rémi Bardenet

Proposition 10 Let ‖·‖G be the norm on ℌ defined in (23), G the completion of ℌ
induced by ‖·‖G, and ( 5: ):∈N afixedHilbert basis ofℌ. Then, for (b: ):∈N a sequence
of i.i.d. standard complex Gaussian random variables, the series of Equation (22)
converges almost surely in G. The limit b of the series is called white noise, with
distribution `. Moreover,

∀j ∈ G∗, Eb∼` [exp(i〈b, j〉)] = exp
(
−‖ℎj ‖2ℌ

/
2
)
, (24)

whereG∗ is the topological dual ofG, 〈·, ·〉 is the natural pairing betweenG and its
dual, and ℎj ∈ ℌ is associated to j ∈ G∗ ⊂ ℌ∗ by Riesz’s representation theorem.9

Several comments are in order. First, Equation (24) is an extension of the finite-
dimensional characteristic function (21). Second, the convergence of the series is a
consequence of the definition of the norm ‖·‖G in Equation (23) and the fact that
(b: ):∈N is a sequence of i.i.d. standard complex Gaussian random variables; indeed,




∑

:∈N
b: 5:






2
G

=
∑
:∈N

|b: |2
1 + :2 (25)

is almost surely finite, using e.g. Kolmogorov’s two-series theorem. Third, note that
the definition of the space G depends on the choice of the Hilbert basis ( 5: ):∈N.
Hence, unlike the finite-dimensional case of Section 2.4.1, the definition of white
noise here is basis-dependent. Finally, the definition implies that for any = ∈ N∗, and
any finite orthonormal family ( 5: )=:=1 of ℌ, the vector of C= defined as

(〈b, 5:〉)=:=1 ∼ NC (0=, I=×=) (26)

is an =-dimensional white noise. Hence, in signal processing where ℌ = !2 (R),
the definition of white noise in Proposition 10 is consistent with the intuition of
an uncorrelated continuous random process with Gaussian marginals; see also [21,
Definition 2.1.7].

2.4.3 From discrete to continuous: approximation results

The infinite-dimensional white noise is described in Proposition 10 as an infinite
sum, though, in numerical experiments, only finite sums can be computed. One can
thus wonder, given ( 5: ):∈N a Hilbert basis of !2 (R), (b: ):∈N a sequence of i.i.d.
standard complex Gaussian variables, and = ∈ N∗, to what extent a truncated sum of
the form

b (=) =
=∑
:=0

b= 5: ∼ ` (=) (27)

9 By construction, ℌ ⊂ G, thus G∗ ⊂ ℌ∗, justifying the existence of a representing function in ℌ.
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is a good approximation of the white noise b constructed in Proposition 10; or,
in other words, whether the sequence of distributions

(
` (=)

)
=∈N∗ converges to the

distribution ` of the infinite-dimensional white noise.

Proposition 11 Let ` be the distribution of the infinite-dimensional white noise
constructed in Proposition 10, and ` (=) the distribution of the truncated white noise
of Equation (27). Then, [5] showed that for any = ∈ N∗,

W2

(
` (=) , `

)
≤ 1√

=
, (28)

whereW2 denotes the 2-Wasserstein-Kantorovich distance.10.

Remarking that, for any a1, a2 probability measures on G, the Cauchy-Schwarz
inequality10 ensuresW1 (a1, a2) ≤ W2 (a1, a2), and thatW1 admits theKantorovich-
Rubinstein dual representation

W1 (a1, a2) = sup
����∫
G

L da1 −
∫
G

L da2
���� , (29)

where the supremum is taken over all Lipschitz-continuous functions L : G → R
whose Lipschitz constant ‖L‖Lip is smaller or equal to one, the authors of [5] used
Proposition 11 to demonstrate the following corollary. This will prove useful when
studying time-frequency transforms of white noise in Section 3.2.

Corollary 1 Let L : G → R, b the infinite-dimensional white noise and ` its
distribution introduced in Propositions 10 and 11, = ∈ N∗, b (=) defined in (27), and
` (=) in (27). If L is Lipschitz, then���E[L(b (=) )] − E [L(b)]��� ≤ ‖L‖Lip√

=
. (30)

3 Gaussian Analytic Functions in time-frequency analysis

The continuous white noise has been defined in Section 2.4.2 as an infinite series,
in which each term is the product of a standard Gaussian random variable and a
normalized elementary function, the Gaussian variables being independent. Hence,
applying to the infinite-dimensional white noise a linear time-frequency transform,
such as the Gaussian Short-Time Fourier Transform Vℎ , associated to a window ℎ

of Section 2.2.2, should informally yield a series of the form

10 Let ? ≥ 1, then the ?-Wasserstein-Kantorovich distance W? (a1, a2) between two probability
measures a1, a2 on Θ is defined by W? (a1, a2) ? = inf

∬
Θ×Θ ‖ℎ1 − ℎ2 ‖

?
Θ
d^ (ℎ1, ℎ2) , where the

infimum is taken over probability measures ^ on Θ × Θ with marginals a1 and a2.
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Vℎb =
∑
:∈N

b:Vℎ 5: (31)

where ( 5: ):∈N is the Hilbert basis of !2 (R) used in the definition of b (22). As will
be shown in Section 3.2, assimilating the time-frequency plane to the complex plane
and appropriately choosing the analysis window ℎ and the Hilbert basis ( 5: ):∈N,

Vℎ 5: (C, l) = k(I)F: (I) (32)

expresses as the product of an analytic function F: of I = l + iC ∈ C, and a
non-vanishing function k, common to all atoms 5: . Then, it will follow from (31)
that, up to multiplication by a non-vanishing function, Vℎb is an infinite series
of analytic functions with i.i.d. standard complex Gaussian weights, known as a
Gaussian Analytic Function in probability theory and denoted

GAF =
∑
:∈N

b:F: . (33)

Section 3.1 provides a self-contained introduction to the theory of Gaussian Analytic
Functions, with a focus on the geometry of their level sets and in particular of their
zeros. It will closely follow the classical reference [18], so widely recommended that
it is commonly referred to as The GAF book. Then, in Section 3.2, closely following
[5], a rigorous mathematical meaning will be given to the time-frequency transform
of white noiseVℎb informally defined as the right-hand side of (31).

3.1 A short introduction to Gaussian Analytic Functions

Let L ⊂ C be an open subset of the complex plane, and �(L) be the space of analytic
functions on L endowed with the topology of uniform convergence on compact sets.
Then �(L) is a complete separable metric space, which allows to rigorously define
random variables taking values in the space of analytic functions on L.

3.1.1 Complex Gaussian processes

Studying the Short-Time Fourier Transform of complex white noise requires to give a
rigorous mathematical definition to the �(L)-valued Gaussian variables introduced
in (33). A way to build Gaussian random functions is to constrain all marginals to
be complex Gaussian vectors, as defined in Section 2.4.1.

Definition 7 A random function F ∈ �(L) is a Gaussian Analytic Function if and
only if for all ? ≥ 1, I1, . . . , I? ∈ L, the marginal

(
F(I1), . . . , F(I?)

)
is a zero-mean

complex Gaussian vector NC (0,K). In particular,
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K(I, I′) = E
[
F(I)F(I′)

]
, I, I′ ∈ C (34)

is called the covariance kernel of F.

From Definition 7 it is not a priori obvious whether non-trivial random ana-
lytic functions satisfying such marginal conditions exist. If it exists, the law of a
Gaussian Analytic Function is characterized by its kernel. The proof comes from a
standard, though technical, argument.11 As for the existence, rather than resorting to
Kolmogorov extension and continuity theorems, Proposition 12 below follows the
exposition in [18], providing an explicit construction of particular Gaussian Analytic
Functions as entire serieswith random coefficients of the form (33). This construction
will be key to rigorously establishing the link between Gaussian Analytic Functions
and the spectrogram of white noise in Section 3.2.

Proposition 12 (Lemma2.2.3 in [18])LetF1, F2, . . . be analytic functions onL, and
(b: ):∈N be an infinite sequence of i.i.d. zero-mean unit-variance complex random
variables. Assume that

∀K ⊂ L compact, sup
I∈K

∑
:∈N
|F: (I) |2 < ∞. (uniform − K)

Then, almost surely,
∑
:∈N b:F: converges uniformly on compact subsets of L. The

limit thus defines a random analytic function.
Additionally, if the coefficients b: are standard complex Gaussian variables, then

the limit is the Gaussian Analytic Function with covariance kernel

K(I, I′) =
∞∑
:=0

F: (I)F: (I′).

Independently of its use to build Gaussian Analytic Functions, Proposition 12 is
also of interest for its proof, which shows a beautiful interplay of probability and
analysis. This is a good example of how the theory of random analytic functions
combines these two domains. The proof here is from [18, Lemma 2.2.3], with a few
of their voluntary gaps filled for the sake of completeness.

Proof Consider the partial sums

∀= ∈ N, I ∈ L, X= (I) =
=∑
ℓ=0

bℓFℓ (I). (35)

Clearly, X1,X2, . . . are all in �(L). The proof proceeds in three steps: 1) demon-
strating that, for any compact K ⊂ L, (X=)=∈N is a Cauchy sequence in !2 (K);
then 2) showing that (X=)=∈N converges uniformly on compact sets and hence that

11 See, for instance, the extension result in [22, Proposition 3.2], which can be adapted to the
topology of compact convergence by noting that analytic functions are in particular continuous.
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X ∈ �(L); and 3) concluding about the Gaussianity of X and the expression of its
covariance kernel.

Step 1. Let ‖·‖K denote the norm in !2 (K), and 〈·, ·〉K the inner product. Let
: ≤ =. It can be shown that

E
[‖X=‖2K |b1, . . . , b: ] = ‖X: ‖2K + =∑

ℓ=:+1
‖Fℓ ‖2K. (36)

Indeed, for any Borel set B of C: ,

E
[‖X=‖2K1( b1 ,..., b: ) ∈B]

= E
[‖X: ‖2K1( b1 ,..., b: ) ∈B]

+ 2Re ©­«E
©­«

∑
1≤8≤:

∑
9>:

b8b 9
〈
F8 , F 9

〉
K

ª®¬1( b1 ,..., b: ) ∈B
ª®¬

+ E
©­«

∑
8, 9>:

b8b 9
〈
F8 , F 9

〉
K

ª®¬1( b1 ,..., b: ) ∈B


where Re(·) stands for the real part of a complex number. Because E
[
b8b 9

]
= X8, 9 ,

the second term vanishes, while the third term reduces to

E

[(
=∑

ℓ=:+1
‖Fℓ ‖2K

)
1( b1 ,..., b: ) ∈B

]
.

This proves (36).
Then, for Y > 0, define the stopping time g = inf{:, ‖X: ‖K > Y}. Using (36), it

comes

E
[‖X=‖2K] ≥ =∑

:=1
E

[‖X=‖2K1g=: ]
=

=∑
:=1
E

[
1g=:E

[‖X=‖2K | b 9 , 9 ≤ : ] ]
≥

=∑
:=1
E

[
1g=: ‖X: ‖2K

]
≥ Y2P [g ≤ =] ,

It follows that

P

[
sup
9≤=
‖X 9 ‖2K ≥ Y

]
= P [g ≤ =] ≤ 1

Y2
E

[‖X=‖2K] = 1Y2 =∑
ℓ=1
‖Fℓ ‖2K. (37)

In particular, the monotone convergence theorem implies that
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P

[
sup
9
‖X 9 ‖2K ≥ Y

]
≤ 1
Y2

∞∑
ℓ=1
‖Fℓ ‖2K, (38)

where the right-hand side is finite by (uniform − K).
For any fixed ? ∈ N, a similar computation applied to

(
X?+= − X?

)
=∈N yields

P

[
sup
=≥1
‖X?+= − X? ‖2K ≥ Y

]
≤ 1
Y2

∞∑
9=?+1

‖F 9 ‖2K, (39)

which, by Hypothesis (uniform − K), converges to zero as ? → ∞. On the other
hand, by dominated convergence,

E

[
lim
?→∞1{sup=≥1 ‖X?+=−X? ‖2K≥Y}

]
= lim
?→∞E

[
1{sup=≥1 ‖X?+=−X? ‖2K≥Y}

]
,

which is zero by (39). Consequently,

P
[∃? ∈ N such that ∀=, ‖-?+= − -? ‖ ≤ Y

]
= 1. (40)

In other words, almost surely, (X=)=∈N is a Cauchy sequence in the Hilbert space
!2 (K), and thus converges in !2 (K) to some X ∈ !2 (K).

Step 2. The second step consists in proving that X= converges uniformly on the
compact subsets of L, so that the limit is analytic. Let I0 ∈ L and take ' > 0 such
that the closed disk D(I0, 4') centered at I0 and of radius 4' is included in L. As a
sum of analytic functions, X= is analytic, thus it satisfies Cauchy’s formula: for any
A < 4',

∀I ∈ L, |I − I0 | ≤ A, X= (I) = 1
2ci

∫
CA

X= (Z)
Z − I Leb(dZ),

where the integral is over the circle CA = {I0 + AeiC , 0 ≤ C ≤ 2c} and Leb denotes
the Lebesgue measure on C. Let I ∈ D(I0, '), and average Cauchy’s formula over
A ∈ (2', 3'), to obtain

X= (I) = 1
2ci
1
'

∫ 3'

2'

∫ 2c

0

X= (I0 + AeiC )
I0 + AeiC − I

iAeiCdCdA

=
1
2c

∫
A

X= (Z)G(Z ; I) Leb(dZ), G(Z ; I) = Z

|Z |'(Z − I) , (41)

where A is the annulus {Z ∈ L, 2' ≤ |Z − I0 | ≤ 3'}. Then, on the one hand,

∀I ∈ D(I0, '), Z ∈ A, |G(Z ; I) | ≤ 1 × 1
'
× 1
'
=
1
'2
. (42)

On the other hand, Step 1 implies that, on an event of probability one, there is X in
!2 (D(I0, 4')) such that X= → X in !2 (D(I0, 4')). Cauchy-Schwarz applied to (41)
then shows that, on the same event,
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X= → 1
2c

∫
A

X(Z)G(Z ; ·) Leb(dZ)

uniformly over � (I0, '). Since I0 and ' were chosen arbitrarily, (X=)=∈N converges
uniformly on any compact subset K of L to some XK ∈ �(L). Uniform convergence
implying simple convergence, for I ∈ L, the limit XK (I) is independent of K, which
defines a functionX onL. SinceX restricted to any compact set is analytic,X ∈ �(L).

Step 3. If the coefficients (b: )=∈N are i.i.d. complex Gaussian variables, then for
any = ∈ N, X= is a Gaussian Analytic Function in the sense of Definition 7, with
covariance kernel

K= (I, I′) =
=∑
:=0

F: (I)F: (I′). (43)

In particular, any marginal vector x= = (X= (I1), . . . ,X= (I?)) of evaluations of X=
at I1, . . . , I? ∈ C is a complex Gaussian vector, say with covariance matrix K=. On
the other hand, almost surely, X= → X uniformly on compact subsets, so that in
particular x= converges in distribution towards the vector x of evaluations of X at
the same points. Weak limits of Gaussian vectors are Gaussian, and the generic term
of the covariance matrix of x is necessarily the limit of the corresponding term in
K=; see e.g. [18, Exercise 2.1.4]. Hence, X is a Gaussian Analytic Function, and its
covariance kernel is obtained by letting =→∞ in (43). This concludes the proof.�

3.1.2 A key example: the planar Gaussian Analytic Function

The construction of Proposition 12 yields a wealth of Gaussian Analytic Functions.
The simplest building blocks are monomials, that is, taking F: (I) ∝ I: for all : ∈ N:
the resulting Gaussian Analytic Function then consists in a Taylor expansion with
random coefficients. A suitable choice of normalization in F: leads to a first key
example: the planar Gaussian Analytic Function.

Definition 8 Let L = C, W > 0, and (b: ):∈N be i.i.d. standard complex Gaussian
variables. The planar Gaussian Analytic Function of parameter W is the entire func-
tion

GAF(W)
C
(I) =

∞∑
:=0

b:

√
W:

:!
I: , I ∈ C. (44)

In the following, when W = 1, the superscript is omitted and the planar Gaussian
Analytic Function is simply denoted GAFC.

The demonstration that the planar Gaussian Analytic Function is well defined,
analytic on C and Gaussian, relies on the verification that, whatever W > 0, Hypoth-
esis (uniform − K) holds for L = C and
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Fig. 13 Zeros ℨC of the
planar Gaussian Analytic
Function GAFC of Defini-
tion 8. The distribution of ℨC
is invariant under the isome-
tries of the complex plane,
hence the uniform spread.
(Adapted from [5])

F: (I) =
√
W:

:!
I: . (45)

This allows to invoke Proposition 12. It follows that the covariance kernel of the
planar Gaussian Analytic Function writes

K (W) (I, |) =
∞∑
:=0

√
W:

:!
I:

√
W:

:!
|: =

∞∑
:=0

(WI|):
:!

= exp (WI|) . (46)

By construction, the planar Gaussian Analytic Function is a random function, and
so are its level sets. In particular, because GAF(W)

C
is analytic, its zeros

ℨ
(W)
C

=

(
GAF(W)

C

)−1
({0}) (47)

form a random set of isolated points, that is, a Point Process12 on C. A sample of
the zeros of the planar Gaussian Analytic Function of parameter W = 1, denoted13 by
ℨC, is shown in Figure 13. Strikingly, the zeros of GAFC are very evenly spread in
the plane, a property that the next sections shall make more precise.

3.1.3 The random zeros of a Gaussian Analytic Function form a Point Process

Though Point Processes can be defined in more general spaces, this chapter restricts
to a complete metric space S, which will be C most of the time.

Definition 9 A locally finite point configuration in S is a subset X of S such that,
for any bounded B ⊂ S, the cardinality of X ∩B is finite. A Point Process on S is
a random variable taking values in the locally finite point configurations in S.

First, note that according to Definition 9, a Point Process is almost surely a set,
so that points naturally come with multiplicity one. Some authors prefer to allow

12 See Section 3.1.3 for a proper definition, properties and analysis tools.
13 When the superscript is omitted, it is assumed that W = 1.
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for points with arbitrary multiplicity, in which case Definition 9 becomes that a
of a simple Point Process. Second, the fact that zero sets of Gaussian Analytic
Functions are Point Processes is a consequence of the analyticity of a Gaussian
Analytic Function, which forbids accumulation points. Finally, it can be shown that
the random zeros of a Gaussian Analytic Function, i.e., those that are not shared by
every sample, are all simple zeros with probability one [18, Lemma 2.4.1]. Hence,
Definition 9, which does not take multiplicity into account, accurately describes the
set of random zeros of a Gaussian Analytic Function. To make things concrete,

I ↦→ (I − I0)A × GAFC (I)

for I0 ∈ C and A ∈ N∗, is a Gaussian Analytic Function. It has a deterministic zero
in I0 with multiplicity A , while its random zeros are those of GAFC, which all have
of multiplicity one, almost surely.

Of particular interest when studying the zero set of a Gaussian Analytic Functions
zero sets are its symmetries. Indeed, as observed in Figure 13, the zeros of the planar
Gaussian Analytic Function looks rather uniformly distributed, which turns out
to reflect a deeper invariance property of the distribution of zeros. Consider the
isometries of C, described as the transformations

I[,o :
{
C→ C
I ↦→ [I + o , (48)

for [, o ∈ C with |[ | = 1. They consist in compositions of rotations and translations.

Proposition 13 [18, Proposition 2.3.4] Let W > 0, the zero set ofGAF(W)
C

is invariant,
in distribution, under the complex plane isometries {I[,o , [, o ∈ C, |[ | = 1}.

The proof below is taken verbatim from [18], and is here to show how basic
properties of a Gaussian Analytic Function transfer to its zeros.

Proof For some W > 0, let [, o ∈ C with |[ | = 1 and define

G(I) = GAF(W)
C
([I + o).

G is a Gaussian Analytic Function and its kernel writes

KG (I, |) = E
[
G(I)G(|)

]
(49)

= E

[
GAF(W)

C
([I + o)GAF(W)

C
([| + o)

]
. (50)

Then, using the expression of the kernel of GAF(W)
C

provided in Equation (46),



Point Processes and spatial statistics in time-frequency analysis 29

KG (I, |) = exp
(
W([I + o) ([| + o)

)
(51)

= exp
(
WI| + W[oI + Wo[| + W |o |2

)
(52)

= exp(WI|) exp(W[oI + |o |2/2)exp(W[o| + |o |2/2). (53)

Since exp(WI|) is the covariance kernel of GAF(W)
C

, one can recognize in (53) the
covariance kernel of

H : I ↦→ exp(W[oI + |o |2/2) × GAF(W)
C
.

As emphasized in Section 3.1, a Gaussian Analytic Function is characterized by
its kernel, so that G and H are equal in law, and thus the Point Processes of their
zeros as well. Further, H coincides with the planar Gaussian Analytic Function up to
multiplication by a non-vanishing function, thus its zero set coincides with the zero
set of GAF(W)

C
, which concludes the proof. �

Remark 4 Apart from the planar case, there exist two other canonical Gaussian
Analytic Functions, respectively referred to as spherical and hyperbolic, whose zero
sets are respectively invariant under isometries of the sphere and of the hyperbolic
plane [18, Proposition 2.3.4]. All three canonical Gaussian Analytic Functions have
been connected to (generalized) time-frequency transforms of white noise. While
this chapter focuses on the planar Gaussian Analytic Function zeros in standard time-
frequency analysis, though similar results and methodologies have been applied in
both the hyperbolic and the spherical settings [3–6], as discussed in Section 5.

3.1.4 Spatial statistics of zero sets of Gaussian Analytic Functions

To characterize second- (or higher-) order properties in a Point Process, such as the
apparent absence of pairs of points too close to each other in Figure 13, one can use
the joint intensities.

Definition 10 LetX be a Point Process, defined on an open subsetL ⊂ C and = ∈ N∗.
Following [18, Definition 1.2.2], the =-point joint intensity d= of X with respect to
the Lebesgue measure Leb on C, is defined, when it exists, by

∫
L=
Ψ(Z1, . . . , Z=)d: (Z1, . . . , Z=) Leb(dZ1) . . . Leb(dZ=) = E


∑

(I1 ,...,I=) ∈X=

I1≠...≠I=

Ψ(I1, . . . , I=)


,

(54)

for any bounded compactly supported measurable map Ψ : L= → C.



30 Barbara Pascal and Rémi Bardenet

If d= exists, Definition 10 means that given = points (Z1, . . . , Z=) ∈ C= and
infinitesimal radii (dZ1, . . . , dZ=) ∈ R=+, the joint probability that there is at least one
point of X falling in each infinitesimal disk D(Z: , dZ: ), of radius dZ: and centered
at Z: , is

d: (Z1, . . . , Z=)Leb(dZ1) . . . Leb(dZ=). (55)

Remark 5 If the Point Process X has exponential tails, that is, there exists a constant
2 > 0 such that for any compact K ⊂ L, P [card(X ∩ K) > =] ≤ exp(−2=), where
card denotes the number of elements of a discrete ensemble, then if they exist, the
collection of all joint intensities determines the distribution of X [18, Remark 1.2.4].

For : = 1, the first intensity function d1 can be interpreted as the unnormalized
density of points ofX inL. Indeed, it follows fromDefinition 10 that for any compact
set K ⊂ L,

E [card(K ∩ X)] =
∫
K

d1 (Z) Leb(dZ). (56)

For Gaussian analytic functions, the first intensity exists and is given by the so-called
Edelman-Kostlan formula.

Proposition 14 Let ℨ the zero set of a Gaussian Analytic Function of covariance
kernel K, as defined in (34). Up to multiplication by a deterministic function, assume
ℨ only consists of random zeros. Then the first intensity of ℨ exists, and14

d1 (I) = 14cΔ logK(I, I). (57)

Three different proofs of Proposition 14 are given in [18, Section 2.4], all beau-
tifully illustrating the interplay of geometry, harmonic analysis and probability.

Applying the Edelman-Kostlan formula (57) to the covariance kernel of the planar
Gaussian Analytic Function in (46), one obtains a constant first intensity

d1 (I) = W
c
, I ∈ C (58)

for the Point Process ℨ(W)
C

of Equation (47). This is consistent with the invariance
of the zeros under translations in Proposition 13, as well as with the visibly uniform
distribution of zeros in Figure 13.

Gaussian Analytic Functions are suprisingly constrained objects. As an edifying
example, a property called Calabi’s rigidity, proved by Sodin [23] and discussed in
[18, Theorem 2.5.1], states that the first intensities of the zero sets of two Gaussian
Analytic Functions defined on L, F and G, are equal is and only if there exists a

14 One can show that I ↦→ K(I, I) is real analytic, so that differentiation is allowed. By assumption,
K does not vanish: if it did, the Gaussian Analytic Function would have a deterministic zero there;
see [18, Section 2.4.1].
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deterministic non-vanishing analytic function k : L → C such that G = kF. In
other words, the first intensity alone essentially characterizes the zeros of a Gaussian
Analytic Function. In particular, this implies that the planar Gaussian Analytic
Function of Definition 8 is the only one, up to multiplication by a non-vanishing
analytic function, whose zeros are invariant under isometries of C. The same is true
for the other two canonical Gaussian Analytic Functions of Remark 4.

Among the numerous properties that make Gaussian Analytic Function remark-
able mathematical objects, the existence of explicit expressions for their joint inten-
sities [18, Corollary 3.4.1] has important practical implications.

Proposition 15 Let F be the Gaussian Analytic Function defined on L with covari-
ance kernel K, and denote its zero set by ℨ. If

I1, . . . , I= ↦→ det
((K(Z: , Zℓ))1≤:,ℓ≤=)

does not vanish anywhere, then the =-point joint intensity function of ℨ exists, and
writes as the ratio of an = × = permament and an = × = determinant,

∀(Z1, . . . , Z=) ∈ L=, d= (Z1, . . . , Z=) = per(C − BA−1B)
det(cA) , (59)

where A,B,C ∈ C=×= are defined by, for 1 ≤ :, ℓ ≤ =,

A:,ℓ = E
[
F(Z: )F(Zℓ)

]
, B:,ℓ = E

[
F′(Z: )F(Zℓ)

]
, C:,ℓ = E

[
F′(Z: )F′(Zℓ)

]
,

and F′ the derivative of F.

Proposition 15 has been leveraged to compute spatial statistics of the zeros of
the Gaussian spectrogram of white noise [3], as later presented in Section 3.2.3.
Not only does this explicit formula enable to explain the joint behavior of the zeros
observed in Figure 12c, but is also can be used to design zero-based signal processing
procedures [3], as discussed in Section 4.

3.1.5 Hyperuniformity and rigidity

To go deeper in the understanding of the geometry of zero set of Gaussian Analytic
Function, it is useful to have a reference Point Process inmind. This role is often filled
by the intensively studied Poisson Point Process, described in great detail in [24,
Chapter 2], [18, Chapter 1]. Unlike the zero sets of Gaussian Analytic Functions, the
distribution of its zeros shows spatial independence by definition.

Definition 11 Let a be a measure on C, the Poisson Point Process P of underlying
measure a is the unique Point Process such that, ∀? ∈ N∗, ∀B1, . . . ,B? disjoint
Borel subsets of C,
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P [card(P ∩B=) = =: , 1 ≤ : ≤ ?] =
?∏
:=1
exp(−a(B: )) a(B: )

=:

=: !
(60)

where by convention the right-hand side vanishes if a(B: ) = ∞ for at least one : .

In particular, the numbers of points of a Poisson Point Process falling in disjoint
subsets are independent random variables. Hence, in contrast to the zeros of GAFC
displayed in Figure 13, Poisson Point Processes do not visually exhibit any sort of
regular spacings, as can be observed in Figure 1 of [18, Chapter 1].

Many properties of Poisson Point Processes are documented. As an illustrative
example, for P the Poisson Point Process with respect to the measure _Leb, with
Leb the Lebesgue measure onC and _ > 0 the so-called intensity ofP, Definition 11
ensures that for any A > 0, card(P ∩ D(0, A)) is a Poisson random variable of
parameter _, so that V [card(P ∩ D(0, A))] = _A2. This reference behavior is used
to define the hyperuniformity property.

Definition 12 A Point Process X on C is said to be hyperuniform if

V [card(X ∩ D(0, A))] =
A→∞ >(A

2). (61)

This sub-Poissonian growth is interpreted as a sign of organization at large scales.
A thorough review on hyperuniformity can be found in [25], spatial statistics aspects
are treated in [26, 27]. Remarkably, the Point Process ℨC of the zeros of the planar
Gaussian Analytic Function is hyperuniform; more precisely,

lim
A→∞

V [card(ℨC ∩ D(0, A))]
A

=
ZR (3/2)
4c3/2

, (62)

where ZR denotes the Riemann zeta function [28, Equation (4.16)].
Another interesting property quantifying the regularity of a Point Process is

rigidity [25, 29]. In words, ridigity is the ability to predict some moments of the
configuration of points within a compact window, given the outside.

Definition 13 Let X be a Point Process in C. If for any bounded open subsetB ⊂ C,
there exists an integer-valued measurable function N, defined on the configurations
of points in Bc = C \B, such that almost surely

card(X ∩B) = N(X ∩Bc), (63)

then X is said to be number-rigid.15
In words, number-rigidity means that given the configuration of X outside of B,

the number of points ofX falling insideB is known. Similarly, a Point Process is said
to be barycenter-rigid if the same property holds for the barycenter of the elements
of X ∩B, that is replacing the cardinality with the barycenter in Equation (63).

15 Number-rigidity is not to be confused with Calabi’s rigidity mentioned in Section 3.1.4.
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The Point Process of the zeros of the planar Gaussian Analytic Function has been
shown to be both number- and barycenter-rigid, as explained in the survey [30]. Yet,
not all zero sets of Gaussian Analytic Functions are number-rigid. For example the
zeros of the hyperbolic Gaussian Analytic Function [18, Equation 2.3.6)] are not
number rigid [31]. Furthermode, considering that number-rigidity is of order 0, and
barycenter-rigidity of order 1, [32] proposed a parametrized variant of the planar
Gaussian Analytic Function which shows rigidity at an arbitrary order.

3.2 Zeros of the time-frequency representation of white noise

Heuristic Equations (31) and (32) in the preamble of Section 3 advocate for the
existence of a bridge between Gaussian Analytic Functions and time-frequency
representations of white noise, provided that, first, the time-frequency transforms
of the Hilbert basis elements are, up to multiplication by a non-vanishing function,
analytic functions defining a proper Gaussian Analytic Function and then, that the
Short-Time Fourier Transform of white noise is given a rigorous mathematical sense.

A key element to prove these claims is the connection between time-frequency
representations and complex analysis embodied by the Bargmann transform [33],
originating in mathematical physics, which associates a finite-energy signal to an
analytic function tightly connected to its Short-Time Fourier Transform.

3.2.1 The Bargmann transform

Definition 14 Let B ∈ !2 (R), the Bargmann transform BB of the signal B is

BB : I ↦→ c−1/4 exp(−I2/2)
∫
R
B(C) exp

(√
2CI − C2/2

)
dC, I ∈ C. (64)

Integrability of the integrand over R is ensured by B ∈ !2 (R). As stated in Proposi-
tion 16 below, the image of B is a subset of the analytic functions of the complex
plane [12, Chapter 12]. Furthermore, the Bargman transform preservers the energy,
i.e., the !2-norm, of the signal.

Proposition 16 [11, Proposition 3.4.1] The Bargmann transform B isometrically
maps !2 (R) onto the Bargmann-Fock space

F =

{
F ∈ �(C), ‖F‖2

F
=

∫
C
|F(I) |2 exp(−|I |2) Leb(dI) < ∞

}
.

Assimilating the time-frequency plane to the complex plane, the Bargmann trans-
form connects with the Gaussian Short-Time Fourier Transform [12, Section 12.1].
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Proposition 17 Let 6(C) = c−1/2 exp(−C2/2) be the circular Gaussian window, and
B ∈ !2 (R). The Short-Time Fourier Transform with window 6 of the signal B coin-
cides, up tomultiplication by a non-vanishing function, with its Bargmann transform:

∀(C, l) ∈ R2, V6B(C, l) = exp(−|I |2/4 − ilC/2) × BB
(
I√
2

)
, (65)

where I = l + iC.

One major interest of the Bargmann transform is that it maps the basis formed by
the Hermite functions, introduced in Section 2.2.3, onto monomials.

Lemma 1 [11, Proposition 3.4.4] For any : ∈ N, let ℎ: be the Hermite function of
order : , introduced in Definition 6. Then, the Bargmann transform of ℎ: reads

Bℎ: (I) = I:√
:!
, I ∈ C. (66)

The family of monomials (Bℎ: ):∈N satisfies Hypothesis (uniform − K), and thus
lead to a Gaussian Analytic Function in Proposition 12, namely the planar Gaussian
Analytic Function presented in detail in Section 3.1.2.

Remark 6 Combining the link between the Short-Time Fourier Transform and the
Bargmann transform (65), and the closed-form expression of theBargmann transform
of the Hermite function ℎ: (66), one recovers the Gaussian spectrogram of ℎ: (11).

3.2.2 The Short-Time Fourier Transform of white noise

By Proposition 17, to define the Short-Time Fourier transform of white noise, it is
enough to define its Bargmann transform. The definition of white Gaussian noise in
Section 2.4 gives a central role to a given basis of !2 (R), which from now on will
be chosen as the Hermite basis.

Proposition 18 [5, Section 3.5] Let G be the completion of !2 (R) defined in Sec-
tion 2.4.2, using the Hermite basis. The Bargmann transform extends continuously
to G.

Proof First, remark that the involved monomials satisfy a stronger assumption than
(uniform − K). Indeed, for any compact K ⊂ C,

�K := sup
I∈K

∑
:∈N
(1 + :2)

���� I:√
:!

����2 < ∞. (67)

Letting B ∈ !2 (R), it follows from the expression (23) of ‖·‖G and the Cauchy-
Schwarz inequality that
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∀I ∈ K, |BB(I) | ≤
√
�K‖B‖G. (68)

Since G is the completion of !2 (R), for any H ∈ G, there exists a sequence (B=)=∈N
in !2 (R) which converges to H in G. By (68), the sequence (BB=)=∈N has the
Cauchy property in �(C), which is complete. Consequently, (BB=)=∈N converges to
a unique BH ∈ �(C), independently of the choice of the sequence. This defines a
unique continuous extension B : G→ �(C). �

In particular, for b the Gaussian white noise as built in Section 2.4, Proposition 18
defines a random variable Bb. To see that the latter expresses as a random series, let
b (=) be the truncation of b introduced in (27). By linearity,

Bb (=) =
=∑
:=0

b:
I:√
:!
, (69)

where (b: ):∈N are i.i.d. standard complexGaussian variables. Since b (=) → b almost
surely in G, and by continuity of B, taking the limit in both sides of (69) yields

Bb (I) =
∞∑
:=0

b:
I:√
:!
= GAFC (I) (70)

where convergence is almost sure in �(C). In particular, the probability distribution
of the Bargmann transform of white noise coincides with that of the planar Gaussian
Analytic Function.

Remark 7 The Bargmann transform being linear, Equation (68) implies that, for any
fixed compact set K ⊂ C, B : !2 (R) → �(K) is √�K-Lipschitz. Hence Corollary 1
applies and provides an upper bound of the rate at which Bb (=) converges toward
Bb. This is the starting point of [5, Section 5.3], culminating in [5, Theorem 5.5]
which gives control on the number of zeros ofBb based only on the truncationBb (=)
for = large enough.

Equation (65), which links the Gaussian Short-Time Fourier Transform and the
Bargmann transform, allows us to conclude as to the meaning of the Short-Time
Fourier transform of white noise.

Proposition 19 Let b be the infinite-dimensionalwhite noise associated to theHilbert
basis of Hermite functions. The Short-Time Fourier Transform with circular Gaus-
sian window of b,

l + iC ↦→ V6b (C, l),
has the same distribution as

I ↦→ k(I)GAF1/2
C
(I), (71)

where k : I ↦→ exp(−|I |2/4 − ilC/2) is a non-vanishing function.
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Remark 8 Proposition 19 has interesting implications in applied probability. Indeed,
sampling the zeros of random polynomials or analytic functions is known to be a
very difficult task: Gaussian Analytic Functions and their truncations can behave
very wildly as soon as |I | > 1, rapidly exceeding numerical encoding capacities.
This is not the case of time-frequency representations, which can be evaluated for
discrete signals of large length in a very stable way, trough the Fast Fourier Transform
algorithm as explained in Section 2.3. The numerical stability is ensured by the non-
vanishing prefactor k in Equation (71), which naturally performs a regularization at
infinity without impacting the distribution of the zeros.

3.2.3 Spatial statistics for the zeros of the Gaussian spectrogram of white noise

FromProposition 19, sincek is non-vanishing, the zeros of theGaussian spectrogram
of white noise are exactly the zeros of the planar Gaussian Analytic FunctionGAF1/2

C
,

which have been thoroughly presented in Section 3.1. In particular, Proposition 13
implies that the zeros of the Gaussian spectrogram of white noise form a stationary
and isotropic Point Process, and Proposition 15 yields explicit expressions for all its
:-point statistics.

A major tool in spatial statistics is the two-point joint intensity introduced in Def-
inition 10, which, roughly speaking, encapsulates the statistics of distances between
points. In practice, its is often normalized by the first intensity, to define the pair
correlation function

g(I, I′) = d2 (I, I′)
d1 (I)d1 (I′) , I, I′ ∈ R2. (72)

For stationary Point Processes, two-point statistics, such as g, only depend on I− I′.
If additionally, the Point Process is isotropic, then they only depend on |I − I′ |.

Expanding the intricate formula provided in Proposition 15, a closed-form ex-
pression of the pair correlation function of the zeros of the Gaussian spectrogram of
white noise has been derived16 in [3, Proposition 5].

Proposition 20 [3, Proposition 5] Let gC be the pair correlation function of the zeros
of the Gaussian spectrogram of white noise. Then gC is well-defined, only depends
on A = |I − I′ |, and writes

gC (A) =

[
sinh2

(
A2

4

)
+ A416

]
cosh

(
A2

4

)
− A2

2 sinh
(
A2

4

)
sinh3

(
A2

4

) . (73)

16 Proposition 20 is slightly different from [3, Proposition 5] due to different conventions in the
definition of the Short-Time Fourier Transform. The formula provided in (73) can be obtained by
the change of variable I → I/

√
2c in [3, Equation (15)].
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Fig. 14 Pair correlation func-
tion of the zeros of the Gaus-
sian spectrogram of white
noise compared to the constant
pair correlation function of
the Poisson Process. The the-
oretical gC is given in (73) and
the estimation is made with
the R package spatstat [34].
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The pair correlation function of the zeros of the Gaussian spectrogram of white
noise is displayed in Figure 14. It is to be compared with the pair correlation function
of the Poisson Point Process which is constant equal to one. The fact that gC vanishes
at small scales indicates a short-range repulsion between zeros, which contrasts with
the independence characterizing a Poisson Point Process. Furthermore, the zeros of
the Gaussian spectrogram of white noise have a small ring of attraction around A = 2,
corresponding to gC (A) > 1, which prevents them to constitute aDeterminantal Point
Process with Hermitian kernel.17

The so-called hole probability is another common tool to study the dispersion of
points in a stationary Point Process.

Definition 15 For a stationary Point Process X on C, and A > 0, the hole probability
?A is the probability that no point of X falls into the disk of radius A centered at 0,

?A = P [X ∩ D(0, A) = ∅] . (74)

Note that by stationarity of the Point Process, the choice of 0 as the center in
(74) is arbitrary. The asymptotic behavior of the hole probability of the zeros of the
planar Gaussian Analytic Function GAFC,18 and hence of the zeros of the Gaussian
spectrogram of white noise, has been studied in [35], who showed that

A−4 log ?A −→
A→∞

−3e2
4

. (75)

This decay of the hole probability as exp(−A4) is to be compared to the slower
decay of the hole probability of any stationary Poisson Point Process, which goes
as exp(−A2) [18, Proposition 7.2.1]. This comparison supports the observation that
the zeros of the Gaussian spectrogram of white noise are more evenly spread in the
time-frequency plane than a Poisson Point Process.

17 See [18, Chapter 4] for a thorough presentation of Determinantal Point Processes.
18 Note that this corresponds to W = 1 in Definition 8.



38 Barbara Pascal and Rémi Bardenet

4 Signal processing based on spatial statistics of zeros

The comprehensive knowledge about the distribution of the zeros of the Gaussian
spectrogram of white noise has been leveraged to design zero-based signal process-
ing procedures targeting signal detection and reconstruction, the two major signal
processing tasks introduced in Section 2.1.3. While the seminal procedure proposed
in [2], and the recent generalization to zeros of wavelet transforms [36], rely on the
Delaunay triangulation of the configuration of zeros to perform signal detection and
reconstruction, [3, 6] use tools from spatial statistics [37]. This section follows the
latter path, and introduces a modicum of spatial statistics before illustrating their use
in zero-based signal detection.

4.1 Summary functions

Besides the joint intensities, which correspond to the moments of a Point Process
distribution, several functional quantities have been proposed to either describe a
Point Process, or serve as objective in an inference pipeline. A common class of
such summary functions, well suited to stationary Point Processes, are related to the
second-order properties of the Point process. In particular, Ripley’s  function is
useful to quantify the repulsiveness between the points of a stationary and isotropic
Point Process.

Definition 16 Let X be a stationary isotropic Point Process on C, with constant first
intensity d1 > 0. Ripley’s  function is defined, at A > 0, as the expected number of
pairs of point in X which are distant of less than A [37, Chapter 4], that is,

∀A > 0,  (A) = 1
4cd21

E

[
≠∑

I,I′∈X
1 ( |I − I′ | < A)

]
(76)

where the sum runs over all pairs of distinct points I ≠ I′ ofX and 1(·) is the indicator
function, taking value 1 if the condition is met and zero otherwise. Practitioners often
prefer the so-called variance-stabilized version of Ripley’s function,

∀A > 0, !(A) =
√
 (A)
c

. (77)

For the reference Poisson Point Process, corresponding no neither attraction nor
repulsion, the !-function is the identity, which is one reason to use ! rather than  .
Figure 15 displays A ↦→ ! (A) − A for the Poisson Point Process, and for the zeros of
the Gaussian spectrogram of white noise. The !-functions of the zeros, in green for
the function defined in (77) and in blue for an estimate, show a clear lack of pairs at
small scales, which is the signature of the repulsiveness between spectrogram zeros.
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Fig. 15 Variance stabilized-
! function of the zeros of
the Gaussian spectrogram of
white noise. The estimation
is made with the R package
spatstat [34].
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Remark 9 From a practical point of view, Equation (76) means that estimating Rip-
ley’s  function amounts to count the number of zeros distant from A > 0. In
practice, however, Point Processes are only observed on bounded windows, so that
the  -functional is only estimated on a bounded range [0, Amax], for Amax > 0 deter-
mined by the diameter of the observation window. To handle border effects arising
from the partial observation of the Point Process, [37, Section 4.3.3] reviews sophis-
ticated edge corrections. Estimation of Figures 14 and 15 used Ohser and Stoyan’s
translation edge correction [38].

Related to the hole probability of Section 74, a second class of summary functions
focuses on interpoint distances, and provides information on the size of holes in a
Point Process.

Definition 17 Let X be a stationary Point Process on C and for A > 0, let D(0, A)
denote the disk of radius A centered at the origin. The empty-space function of X is
defined as [37, Chapter 4]

� (A) = P (D(0, A) ∩ X ≠ ∅) . (78)

In words, the empty-space function of a stationary Point Process is defined as the
distribution of the distance from a given fixed point, which by stationarity can be set
arbitrarily as the origin, to the nearest point of the Point Process.

Remark 10 In Figure 2, the presence of a deterministic signal creates large holes in
the pattern of zeros. Such holes are absent in the Point Process made of zeros of
the Gaussian spectrogram of white noise displayed in Figure 3b. This advocates for
the use of the empty-space function to identify measurements that correspond to a
deterministic signal covered by a noise, with respect to pure noise.
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4.2 A zero-based Monte Carlo envelope test for signal detection

A fundamental question in signal processing is whether a noisy observation contains
an underlying signal of interest. Zero-based procedures using spatial statistics have
proved accurate for this detection task [3, 6].

Formally, in the signal-plus-noise model, signal detection consists in a statistical
test enabling to reject, with a fixed confidence level 1 − U, the null hypothesis19

H0 : snr = 0

corresponding to pure white noise, with the alternative hypothesis

H1 : snr > 0

corresponding to a non-centered measurement H = snr × B + b, in which B possibly
carries interesting information. The smaller the snr, the harder the detection.

A standard statistical procedure was followed in [3], plugging the summary func-
tions from Section 3.1.3 into a Monte Carlo envelope test. This procedure relies
on the construction of an intermediate statistic S : G → R such that large values
SH tend to correspond to situations where the measurements contain an underlying
signal, so that H0 should be rejected.

Definition 18 Given a summary function �, say ! or � from Section 3.1.3, defined
on a range of distances [Amin, Amax], the associated S∞ and S2 statistics are defined
as

S∞H = sup
A ∈[Amin ,Amax ]

����̂H (A) − �0 (A)��� ; S2H = √∫ Amax

Amin

����̂H (A) − �0 (A)��� dA, (79)

where �0 is the corresponding summary function of the zeros of the Gaussian
spectrogram of white noise, while �̂H is an estimator of this summary function,
computed on the observed data H.

The spatial statistics S∞ and S2 quantify the discrepancy between the observation
H and pure white noise. By a symmetry argument, the following Monte Carlo test
then performs detection at the confidence level U, without further distributional
assumption.

Proposition 21 Let � a functional statistic, and S the associated spatial statistic.
Let U ∈]0, 1[, and two integers : ≤ < such that U = :/(<+1). The following testing
procedure

(i) generate < samples of white noise b (1) , . . . , b (<) ;
(ii) compute the summary statistics S ( 9) = Sb ( 9) , 9 ∈ {1, . . . , <};
(iii) sort them such that S1 ≥ . . . ≥ S<;

19 In such tests, U corresponds to the probability of rejecting H0 while it is true.
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(iv) compute the empirical summary statistic SH;
(v) if SH ≥ S (:) , then reject the null hypothesis H0;
provides a signal detection test with confidence level 1 − U.

One advantage of the detection test of Proposition 21 is that no user-defined
threshold is needed. Instead, the value of SH above which the null hypothesis should
be rejected is determined fully by the desired confidence level and by the numerical
simulations of the< white noise samples. Several functional statistics � can be used,
among which Ripley’s  function, its variance-stabilized version !, introduced in
Definition 16, or the empty-space function � of Definition 17. The power of the
resulting tests are numerically investigated in Section 4.4.

Remark 11 If the functional statistic �0 is not known explicitly, it can be replaced by

∀A ∈ [Amin, Amax], �0 (A) = 1
< + 1

©­«
<∑
9=1

�̂b ( 9) (A) + �̂H (A)ª®¬ (80)

without impacting the confidence level of the test provided in Proposition 21.

Before demonstrating the test, it remains to discuss how to numerically extract
zeros from a discretized approximate spectrogram.

4.3 Numerical algorithms to find zeros

As explained in Section 2.3, in practice, signals are sampled at a given frequency,
yielding discrete observations, fromwhich a discrete spectrogram is computed taking
advantage of the discrete Fast Fourier Transform algorithm. This discrete spectro-
gram is thus a Riemann-like approximation of the actual spectrogram, at a finite grid
of # values, sampled between −) and ) with time step )B , and thus available on a
bounded uniform grid in the time-frequency plane,

(C, l) ∈ )BZ × lBZ ∩ [−),)] × [0,Ω]; (81)

Here, lB denotes the frequency step at which the spectrogram is evaluated, and the
maximal frequency Ω = #)−1/4 satisfies the Nyquist-Shannon condition.20

In the code21 accompanying the seminal paper [2], the zeros of the spectrogram are
computed usingminimal grid neighbors, as illustrated in Figure 16. This method first
seeks local minima, defined as points of the grid, such as (C: , lℓ) in red in Figure 16,

20 The Nyquist-Shannon theorem states that, if a signal B ∈ !2 (R) contains no frequency larger
than � > 0, which means that FB (l) = 0 as soon as l is larger than 2c�, then B can be fully
reconstructed from the sequence (B (=)B) , = ∈ Z) as soon as the sampling frequency 5B = ) −1B is
(strictly) larger than 2� [39, Theorem 5.15]
21 https://perso.ens-lyon.fr/patrick.flandrin/zeros.html
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Fig. 16: Minimal Grid Neighbor method for localization of spectrogram zeros.
(left) Characterization of a local minimum adapted from [6]. (right) Empirical vs.
theoretical first intensity of the zeros of the Gaussian spectrogram of white noise.

at which the spectrogram value is lower than at the eight nearest neighbors, contained
in the black dashed square in Figure 16. Then, the local minima which are below
a fixed threshold are considered as zeros. This algorithm is used in most practical
studies involving zeros of Short-Time Fourier Transforms [2, 3, 5] and [12, Chapters
13 and 15], zeros of wavelet transforms [4, 36], or zeros of generalized covariant
representations [6, 7].

Remark 12 Interestingly, by a super-harmonicity argument, [40, Corollary 1] showed
that any local minimum of the spectrogram is a zero. If the approximation introduced
by the Discrete Fourier Transform is neglected, it is thus in principle unnecessary to
further threshold the local minima.

To assess the Minimal Grid Neighbor detection algorithm, the right plot of Fig-
ure 16 displays in blue the estimated first intensity of the zeros of the Gaussian
spectrogram of white noise for several numbers points in the discrete signal, aver-
aged over 200 samples of white noise, accompanied with 95% Gaussian confidence
level, represented as the light blue area. It is in fair agreement with the expected
constant first intesnity d1 = 1/(2c), obtained by setting U = 1/

√
2 in Equation (58).

Remark 13 Recently, [41] proposed an adaptation of the Minimal Grid Neighbors
approach, namely the Adaptive Minimal Grid Neighbors algorithm, coming with
theoretical guarantees that all the zeros of the Gaussian spectrogram of a noisy
signal are detected with an arbitrarily high precision, determined by the resolution
of the discrete time-frequency grid. The theoretical result is supported by intensive
numerical experiments. Interestingly, [41] yields the minimal resolution needed to
detect all zeros with a given probability.
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4.4 Numerical experiments

This section describes numerical experiments conducted in [3, Section 5.2] to assess
the power of the zero-based Monte Carlo detection test described in Section 4.2,
defined as the probability to reject H0 under the alternative hypothesis H1. To make
the power numerically accessible, the authors restricted the alternative to a linear
chirp model (chirp). For the sake of completeness, these experiments are reproduced
verbatim, with courtesy of all the authors.

Synthetic noisy linear chirps following the signal-plus-noise model of Sec-
tion 2.1.1 are generated. Examples of noisy chirps are provided in Figure 4. Three
levels of noise are considered, snr ∈ {1, 5, 10}, and two support sizes, called )
in (chirp), the chirp occupying either the entire observation window, left column of
Figure 17, or half of it, right column. The smaller snr and ) , the lower the expected
detection power, as can be observed on the example spectrograms associated to each
subplot of Figure 17.

The level of confidence is fixed to U = 0.05, and the number of samples of
white noise to < = 199, imposing : = 10. Following Definition 18, two summary
statistics using the 2-norm, i.e. of type S2, are compared, respectively based on the
variance-stabilized !-function of Definition 16, in green, and on the empty-space
function � of Definition 17, in blue. The power V of the test is computed on 200
independent samples of each noisy chirp, and reported in Figure 17 as a function
of the upper bound Amax on which the summary statistic is computed. The reported
Clopper-Pearson confidence intervals for the five values of Amax take into account a
Bonferroni correction [42], corresponding to the ten multiple tests per plot.

As expected, the power increases with snr and is lower for shorter signals. Fur-
thermore, it is advantageous to use the maximal range of values of A, so that as many
points as possible are taken into account in the summary statistics. For large Amax
and medium to high snr, the empty-space function � leads to higher power than the
variance-stabilized ! function, and otherwise is of comparable performance. It thus
appears as a robust choice, enabling to reach powers close to unity for snr not too
small.

These experiments have shown the ability of zero-based detection procedures to
detect linear chirps as long as the noise level is not prohibitive. Moreover, this study
is complemented in [3, Section 5.3] with reconstruction experiments relying on the
estimation of a mask delimiting the chirp in the spectrogram estimated jointly with
the empty-space function. Together with the zero-based denoising and component-
separation strategy designed in [2], these experiments draw a promising path for
signal processing based on spatial statistics on the spectrogram zeros.

There exist plenty of detection and reconstruction methods in signal processing
to which zero-based methods should now be compared, among which matched filter-
ing [43] and spectrogram correlators [44] for detection, ridge extraction combined
with synchrosqueezing [45] or minimization of the mean-square error on the spec-
trogram via a Griffin-Lim algorithm [46] for reconstruction. Remarkably, a public
benchmark [47] has recently been developed, enabling to compare zero-based ap-
proaches to other state-of-the-art procedures, responding to the great interest raised
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by the topic in the signal processing community. Furthermore, everyone is invited to
contribute to the benchmark by contributing the code of their method of choice.22

5 Extensions and new research avenues

This chapter has focused on the zeros of the Short-Time-Fourier Transform. In this
opening section, pointers to recent works that goes beyond that case are given.
The present section does not intend to exhaustively list all recent works combining
harmonic analysis and spatial statistics but rather to shed light on some interesting
directions of research on zeros of signal representations.

5.1 A time-frequency transform for each Gaussian Analytic Function

As demonstrated in Section 3.1.3, the zero set of the planar Gaussian Analytic Func-
tion, defined on the complex plane, is invariant under the group of isometries of C.
It turns out that there exist two other Gaussian Analytic Functions, whose zeros are
respectively invariant under isometries of H and S respectively [18, Section 2.3].
Following the pioneering work [3] connecting the planar Gaussian Analytic Func-
tion and time-frequency analysis, a natural question is whether these two Gaussian
Analytic Functions are linked to some signal processing transforms.

Such connections have been established in [4–7]. Notably, [4, 5] have simulta-
neously established that the zeros of the scalogram of white noise obtained from
the Daubechies-Paul wavelet transform coincides with the zeros of the hyperbolic
Gaussian Analytic Function, though with subtly different definitions of white noise.
A preliminary connection was established in [5] between the spherical Gaussian
Analytic Function and an ad-hoc generalized time-frequency transform, acting on
vectors of measurements, thus bypassing the need to approximate integrals in the
computation of Fourier transforms. The resulting transform was however numeri-
cally unstable. Later on, a novel connection was established between the spherical
Gaussian Analytic Function and a numerically stable signal processing transform,
expressed as a decomposition on coherent states [6, 7]23.

5.2 Toward non analytic representations

In order for the Short-Time Fourier Transform to write as the product of a non-
vanishing function and an analytic function, it is necessary to use the circular

22 https://github.com/jmiramont/benchmarks-detection-denoising/
23 See [11, Chapter 9] and [48, Chapter 2] for comprehensive description of the notion of coherent
state and their link with covariance properties.
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Fig. 17: Reproduced from [3] with courtesy of J. Flamant and P. Chainais.
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Gaussian window [49]. Analyticity is a crucial property both in [2, 3, 5], ensuring
that the zeros of the spectrogram of a noisy signal constitutes a well-defined Point
Process and enabling to connect to the rich theory of Gaussian Analytic Functions.
However, recent work [19] proposed a more general framework enabling to study
the zeros of the spectrogram of white noise for non-Gaussian windows thanks to the
introduction of Gaussian Weyl-Heisenberg Functions. To characterize the zeros of a
non-Gaussian spectrogram of Gaussian white noise, the authors of [19] rely on the
Kac-Rice formulae [50, Chapter 3], describing the level sets of Gaussian functions.

In particular, assuming that the analysis window is a Schwartz function, the Point
Process of zeros of the spectrogram of Gaussian white noise is shown to be station-
ary, though not isotropic, and the first intensity of its zeros is expressed in terms of
the ambiguity function of the analysis window [19, Theorems 1.6 and 1.9]. More
precisely, time translations and frequencymodulations defined in Section 2.2.4, com-
binedwith genuinely designed phase shifts, constitute the so-calledWeyl-Heisenberg
group, under which the spectrogram with circular Gaussian window is covariant. As
for the Short-Time Fourier Transform with a Schwartz window, it is covariant under
the action of an extended Weyl-Heisenberg group. These results provide a solid the-
oretical background to the numerical study of the zeros of the spectrogram of white
noise with Hermite window performed in [12, Chapter 16], as discussed in [19,
Corollary 1.10]. Going beyond the restricted framework of the Short-Time Fourier
Transformwith circular Gaussianwindow it of utmost importance, since a significant
proportion of applied signal processing work relies on non-Gaussian windows [51].
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