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1 Introduction

It is not obvious how to give a satisfactory general definition of the renormalisation group

(RG) for the purposes of mathematical physics. When trying to do so, one would probably

be led to aspects of probability measure theory. Such a procedure would however not capture

simultaneously the mathematical and physical aspects of the RG. It is probably more fruitful

to first describe the type of problems one would like to solve, and then to show how the RG

proceeds and (in some cases) succeeds in solving the problem. In fact the way in which the RG

is implemented turns out to depend in an essential way on the problem to be analysed.

Historically renormalisation group equations (RGEs) have their origin both in quantum field

theory, mainly in quantum electrodynamics, and (somewhat later) in the theory of critical phe-

nomena in statistical physics. The name goes back to [Stueckelberg and Petermann, 1953], and

to [Gell-Mann and Low, 1954]. Their work was based on the fact that (perturbative) relativistic

field theories are parametrised through renormalisation conditions. The renormalisation group

equations then analyse the relation between different parametrisations. In statistical physics,

Wilson [Wilson, 1971a], [Wilson, 1971b] introduced the RG as a method of relating hamiltoni-

ans describing the same class of physical phenomena, on successively integrating out degrees

of freedom. The Wilson RG is conceptually more general than the now so-called old RG from

quantum field theory, and comprises it conceptually (under certain caveats) as we will show.

The Wilson RG is naturally defined in euclidean space or on lattices. Problems raised by

the Minkowski metric governing relativistic physics can partially be circumvented by analytic

continuation techniques. So far the theories constituting the standard model of particle physics

are not mathematically controllable by the Wilson RG. In fact the standard model consists

of several sectors which are not decoupled from each other. Still it makes sense to regard

them separately in a first analysis. For the sector containing nonabelian gauge fields only,

in particular quantum chromodynamics, renormalised perturbation theory says that the theory

has a Gaussian (i.e. interaction free) ultraviolet fixed point whose neighbourhood could be

controlled by the RG. But quantum chromodynamics behaves in a completely different way

in the infrared (or low energy) regime which is (and probably will be for a long time) out of

control of rigorous analysis. For the other sectors one expects that the only way in which they

can be given rigorous meaning when taking away the ultraviolet cutoff, is as interaction free

theories. This is the triviality conjecture which could be made rigorous for the one- (and to

some degree two-)component scalar field theory with lattice regularisation [Fröhlich, 1982],

[Aizenman, 1982], [Aizenman and Duminil-Copin, 2021]. Nevertheless the standard model is

extremely successful in physics when considered as a renormalisable model in perturbation

theory. We shall describe how the results on the renormalisability of the standard model can be

recovered from the differential RGEs.

The Wilson RG is intimately linked to a prominent problem of contemporary theoretical

physics, the so-called N-body problem. It adresses the physical properties of systems compris-

ing a large number of particles, or more generally a large number N of degrees of freedom,

which interact with each other via some interaction assumed to be (essentially) known.

In relativistic quantum physics, the N-body problem is implicitly always present since rela-

tivistic kinematics allows to transform energy into particles, and quantum physics implies that

all degrees of freedom of the theory (possibly restricted by symmetries) are virtually present

due to the uncertainty relations. The systems studied in quantum field theory are introduced
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through lagrangian densities which are functionals of the physical fields and which depend on

a number of constants related in particular to the interaction strengths and to the masses of the

particles appearing in the theory. In quantum electrodynamics formulated for electrons and

positrons, these would be the electron charge and the electron mass. In our short review we

do not enter into the symmetry aspects of gauge and spinor fields, but rather limit ourselves

to scalar fields. In the standard model of particle physics there appears such a scalar field,

called the (Brout-Englert-)Higgs field. In a certain parametrisation, the (initial) lagrangian den-

sity within the standard model, associated with this field only, is given (when continued to the

euclidean metric) by

L BEH(ϕ(x)) =
1

2
z (∂µϕ(x))(∂µϕ(x)) +

1

2
m2 ϕ2(x) +

g

4
ϕ4(x) , (1)

where the sum over repeated indices (here µ ) is implicit. Physical theories are defined on

four-dimensional spacetime in which case x ∈ R4 . In the euclidean lagrangian density (1), the

constants we mentioned are z , related to the normalisation of the field variable, then m , (related

to) the particle mass, and finally g , which in dimension d = 4 is a pure number and measures

the scalar particle’s selfinteraction strength.

In nonrelativistic physics, the N-body problem is at the heart of explanations of macroscopic

physics in terms of the microscopic constituents of matter. A typical example is a system of N

charged particles interacting pairwise via the Coulomb interaction. A simpler system, which

nevertheless exhibits the complexity of the problem, is the Ising spin system. In its simplest

form it is described by the hamiltonian

H({si}) = − ∑
〈i, j〉

J si s j , (2)

where J is a real constant, and the spin variables si , i = 1, . . . ,N , can take the values ±1.

The symbol 〈 , 〉 indicates nearest neighbours. In order to make it well-defined, one has to

fix the geometric disposition of the spin variables. For example the spins may be associated

with sites on a cubic lattice in dimension d . It then turns out that the behaviour of the system

depends in an important way on this geometry, in particular on the dimension. Physically

interesting questions concern for example the energy spectrum of the system. More generally

one is interested in its properties at thermal equilibrium which can be derived from the partition

function

Z(β ;{hi}) = ∑
{si}

e−βH({si})+β ∑i hisi . (3)

The logarithm of Z times −β−1 plays the role of the free energy of the system. Here β = 1
T

is

the inverse temperature in units of Boltzmann’s constant, and hi denotes the magnetic field at

site i in suitable units, which interacts with the spin si .

One way of analysing Z (be it analytically or numerically) with hindsight to the macroscopic

properties of the system, is to regroup the spins into blocks of, say, n spins. Their appropriate

definition depends on the geometry of the system. The spin variable of a given block, S j , now

takes values n,n−1, . . . ,−n+1,−n . The values n−ν or −n+ν ( ν ≥ 0) are realized by
(

n
ν

)

microscopic spin configurations. To rewrite Z for vanishing magnetic field in terms of the new
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variables while keeping its form (3), one defines a new hamiltonian H(1) such that

e−βH(1)({S j}) = ∑
{si}

e−βH({si}) ∏
j

δS j,∑i s.t.si∈S j
si
.

In this case

Z(β ;0) = ∑
{si}

e−βH({si}) = ∑
{si}

∑
{S j}

∏
j

δS j,∑i s.t.si∈S j
si

︸ ︷︷ ︸

=1

e−βH({si}) = ∑
{S j}

e−βH(1)({S j}) . (4)

The motivation for this way of proceeding is not evident, since the hamiltonian, written in

terms of the block spin variables, becomes immediately complicated. Generically blocks inter-

act via their boundaries with neighbouring blocks, which in turn interact with new neighbours

etc. so that already after the first block transformation we will get a hamiltonian (for vanishing

field) of the form

H(1)({S j}) = ∑
k≥2

∑
j1,..., jk

K j1,..., jk S j1 . . .S jk , (5)

where the constants K j1,..., jk can (in principle) be calculated from the original hamiltonian. The

hamiltonian in terms of the block variables has become nonpolynomial and nonlocal. Still the

symmetry under {si} → {−si} of the original hamiltonian (2) implies that H(1)({S j}) is even

in {Si} , and the constants K j1,..., jk will have an expansion in J .

The interest of the RG method of which the previous block spin transformation is a concep-

tually simple, though technically awkward, realisation, stems in particular from the fact that

the behaviour of physical systems when they approach second order phase transitions, turns

out to be quite universal. The critical exponents, which caracterise the singularity of response

functions, like the susceptibility or the specific heat near the critical temperature, are indepen-

dent of most details of the microscopic hamiltonians or of the specific physical systems studied,

as for example magnetic systems, systems undergoing a superfluid Lambda transition, systems

of alloys . . . What matters, is the dimensionality of the system, its symmetries and the number

and nature of the field variables, but not the details of the underlying microscopic description

of the system. This universality was observed experimentally and partially recovered in the

mean field description of the systems, and later understood in a convincing way with the aid of

the RG. We note in passing that the formulation of the RG in terms of successive block spin

transformations shows that the RG is generally only a semi-group, namely two successive RG

block spin transformations (RGTs) can be fused into a single one, but there is no inverse block

spin transformation.

The partition function (3) is the generating functional of the correlation functions of the

system. The simplest one, the mean value of spin i , is obtained as

Mi({h j},T ) = 〈si〉 =
1

β
∂hi

logZ . (6)

Assuming the field to be homogeneous : hi = h ∀i , and assuming translation invariance of the

model (which is related to the assumptions on the boundary conditions imposed), we get

M(h,T ) =
1

N
∑

i

〈si〉 =
1

N

1

β
∂h logZ(β ,h) . (7)
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One observes experimentally that M(h = 0,T ) vanishes at the critical temperature Tc charac-

terising the transition from the ferromagnetic to the paramagnetic state, as

M ∝ |T −Tc|β , (8)

which defines the critical exponent β (not to be confounded with the inverse temperature).

The zero field susceptibility χ is defined as

χ(T ) =
1

N

1

β 2 ∑
i j

∂hi
∂h j

logZ
∣
∣
{hk}=0

=
1

N
∑
i j

(
〈si s j〉 − 〈si〉〈s j〉

)∣
∣
{hk}=0

. (9)

If the system is translation invariant, we may write (independently of the choice of j )

χ(T ) =
1

β
∂hM(h,T )

∣
∣
h=0

= ∑
i

(
〈si s j〉 − 〈si〉〈s j〉

)∣
∣
h=0

= ∑
i

〈si s j〉c

∣
∣
h=0

. (10)

Here the lower index c stands for connected or cumulant. The physical expectation is that the

susceptibility diverges at the critical temperature Tc as

χ(T ) ∝ |T −Tc|−γ , (11)

which defines the critical exponent γ .

Connected correlation functions are obtained through derivatives of logZ . They should stay

well-defined in the thermodynamic limit N → ∞ , and they can depend on the boundary condi-

tions imposed on the system. The correlation length ξ describes the large distance decay of

the connected two-point function. It is defined as

1

ξ (T )
:= − lim

dist(i, j)→∞

log|〈si s j〉c(T) |
dist(i, j)

, (12)

where the distance is measured in lattice units. If this limit vanishes, the correlation length is

infinite. One expects that the correlation length diverges close to the critical temperature as

ξ (T ) ∝ |T −Tc|−ν , (13)

which defines the critical exponent ν . At the critical temperature the correlation length is

infinite, and the correlations have a power law falloff, parametrised as

|〈si s j〉c| ∼ dist(i, j)−(d−2+η) for dist(i, j)→ ∞ , (14)

which defines the critical exponent η , d being the number of space dimensions.

Critical behaviour was analysed by Landau in 1937 in the mean field approximation. Here

the following values for the above mentioned critical exponents of Ising type models were

found :

β = 1/2 , γ = 1 , ν = 1/2 , η = 0 . (15)

The divergence of the correlation length at the critical temperature hints to the fact that micro-

scopic details become unimportant. Therefore iterating block transformations may shed light

on the problem, despite of transforming simple hamiltonians into complicated ones. For the
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Ising model the block variables take values in larger and larger intervals, of size 2nk after k

iterations. After suitable rescaling of the variables one typically ends, on taking limits, with a

continuous distribution in a compact or noncompact interval of values. Passing to a continuum

description, we write ϕ(x) instead Si, the continuous variable x now taking the role of the dis-

crete index i . When performing a Taylor expansion of the monomials ϕ(x1) . . .ϕ(xk) around

the same point x , we formally get from (5) families of hamiltonians of the type1

H(ϕ) =

∫

V
∑
k≥2

∑
n1,ν1,...,nk,νk

An1,ν1,...,nk,νk
(x) (∂ ν1ϕn1(x)) . . .(∂ νkϕnk(x)) ddx , (16)

where ni ∈ N, νi ∈ N0 , and the An1,ν1,...nk,νk
(x) are real. If translation invariance in euclidean

space holds, the coefficients An1,ν1,...nk,νk
are constants independent of x . The (Lebesgue)

integral extends over the volume V of the system, with hindsight to the infinite volume limit.

Considering general hamiltonians of the type (16), the universality hypothesis stated above

implies that a large class of hamiltonians of this form should lead, under suitable assumptions,

to the same critical behaviour as the original lattice hamiltonian (2). The infinite set of coef-

ficients {An1,ν1,...nk,νk
} characterises a specific theory. A RGT R maps (on suitably rescaling

the field variables) the infinite dimensional space of coefficients {An1,ν1,...nk,νk
} onto itself. In

this setting critical behaviour (in the strict sense) is associated to fixed points under the RG

R(An1,ν1,...nk,νk
) = An1,ν1,...nk,νk

∀n1,ν1, . . .nk,νk .

It then turns out, in approximate analysis, that when one stays sufficiently close to a fixed point,

only a few coefficients An1,ν1,...nk,νk
have to be fine-tuned to converge to a fixed point - these

coefficents are called relevant (or marginal) parameters -, whereas the others, which are called

irrelevant, only modify the fine-tuned path to the fixed point under the RGT R in a qualitatively

inessential way.

So the universality idea is that irrelevant parameters are not needed to describe the macro-

scopic behaviour of the system near the fixed point. For (5) heuristic analysis shows that in

d = 4, terms ∝ An1,ν1,...nk,νk
for which ∑ni + νi > 4, are irrelevant. The explanation of uni-

versality thorugh the RG is then tantamount to show that the set of relevant parameters is the

same for many physical systems. For a review in theoretical physics see [Zinn-Justin, 2007],

[Zinn-Justin, 2010]. From the mathematical point of view the universality hypothesis is in gen-

eral only a heuristic guiding principle. But rigorous statements can be made under sufficiently

strong assumptions on the parameter values, as will be detailed below in section 3.1.

Coming back to the universality class of the Ising model, a specific fixed point of the theory

in d = 4, characterised by an infinite correlation length and vanishing effective interaction,

turns out to be associated with a specific choice of relevant initial parameter values for the

simple continuum hamiltonian, taken here as a starting point of our RG analysis

H0(ϕ) =

∫

V
H

0(ϕ(x)) ddx , H
0(ϕ(x)) =

1

2
z0 (∂µϕ(x))2 +

1

2
(m0)2 ϕ2(x) +

g0

4
ϕ4(x) ,

(17)

1This form of the hamiltonian is based on the assumption that the constants K j1,..., jk from (5) decay sufficiently

rapidly, when the distance between any pair of blocks becomes large. In any case at this stage the reasoning is

formal.
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which also appeared in the field theory context (1). For mathematical consistency (or physical

stability) H 0 should be bounded from below. We require that

H
0(ϕ)≥−K for some K > 0 ,

which implies g0 ≥ 0. The dimension d = 4 is of particular interest not only in quantum

field theory, but also in statistical physics, since theoretical physics has developed calculational

techniques permitting a continuation in the number of dimensions (the so-called ε-expansion)

which allow to draw conclusions on the critical behaviour at d = 3 from that at d = 4.

Continuing on this line of reasoning the partition function corresponding to (16), (17) is written

as

Z( j) =
∫

D(ϕ) e−
∫

V H 0(ϕ(x)) ddx+
∫

V j(x)ϕ(x) ddx . (18)

Here we absorbed the factor of β in the constants appearing in H 0 , respectively in j = βh .

The notation D(ϕ) , common in the physics literature, should indicate a (continuously) infinite

product of translationally invariant Lebesgue measures, since the field variable at any point x

can take any value. The corresponding integrals are called path integrals. Such measures are

known not to exist mathematically. So we will revise the mathematical setting in section 2.

In the contiunuum description the expression for the zero field susceptibility becomes

χ =

∫

V
〈ϕ(x)ϕ(y)〉c ddx =

∫

V

δ

δ j(x)

δ

δ j(y)
logZ( j)

∣
∣
∣

j≡0
ddx , (19)

where we have introduced functional (Fréchet) derivatives w.r.t. j . Due to translation invariance

χ should not depend on y , but it depends on the parameters of H 0 . We are interested in the

infinite volume limit. For the correlation length we get using translation invariance

1

ξ
:= − lim

x→∞

log|〈ϕ(x) ϕ(0)〉c|
|x| . (20)

In the next section 2 we present a mathematically well-defined expression, corresponding to

a regularized version of (18), which is based on the definition of Gaussian measures on infinite

dimensional function spaces. These are characterised by their covariances. Using decomposi-

tions of the covariance of a Gaussian measure into positive parts, we can define the action of

finite RGTs on the corresponding Hamiltonians or effective actions in section 3. In subsection

3.1 we comment on rigorous work performed in this framework and describe more explicitly a

few recent results. In subsection 3.2 we describe work on the Gross-Neveu model as a promi-

nent example of one (of the few) rigorous RG ultraviolet constructions.

If the covariance depends smoothly on a parameter t , deriving w.r.t. this parameter generates

a functional differential equation, which is one form of the RG differential equations and de-

scribes the evolution of the effective action under infinitesimal RGTs, see section 4. In the

theoretical physics literature the name of RG equations (RGEs) refers to differential equations

for Green functions or Feynman amplitudes in renormalized perturbation theory, which permit

to analyse their behaviour under scaling transformations. We derive one form of those equa-

tions, the Callan-Symanzik equations.

In closing this introductory overview we would like to apologise that for lack of space we

do not touch upon many important RG achievements. We privilege issues minimising supple-

mentary knowledge and prerequisites, and also to some degree historical priority. Let us just
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refer to important work, mostly on fermionic models in solid state physics. Here there ap-

pears another relevant parameter related to the particle density, the so-called chemical potential

µ . Reviews are [Salmhofer, 1999], [Mastropietro, 2008], [Giuliani et al., 2021]. A large series

of papers on two-dimensional Fermi liquids appeared in 2003/2004, see [Feldman et al., 2004]

and references given there. Another similarly monumental endeavour on bosonic theories, with

hindsight to the Bose-Einstein condensation, still going on, can be found from the reference

[Balaban et al., 2017].

2 Perturbed Gaussian measures

Finite dimensional Gaussian integrals are well-known to mathematicians and physicists. We

recall

1√
2π a

∫

R

e−
1
2

x2

a dx = 1 for a > 0 ,
1

√

(2π)n detA

∫

Rn
e−

1
2 (x,A

−1x) dnx = 1 .

In the n-dimensional case we write x = (x1, . . . ,xn) , (x, A−1x) = ∑i, j xi (A
−1)i j x j , and ( , )

denotes the standard scalar product in Rn . The matrix (or operator) A is supposed to be positve

and symmetric :

(x, Ax) > 0 ∀x 6= 0 , (x, Ay) = (Ax, y) ∀x,y ∈ R
n .

We then denote for A > 0 on Rn

dµA(x) =
1

√

(2π)n detA
e−

1
2 (x,A

−1x) dnx

to be the (normalised) Gaussian measure of covariance A .

For the generating functional Z0(h) of the moments of the Gaussian measure we then obtain

Z0(h) :=
∫

e(h,x) dµA(x) = e
1
2 (h,Ah) ,

∂hi1
. . .∂hi2n

Z0(h)
∣
∣
h=0

=
∫

xi1 . . .xi2n
dµA(x) = ∂hi1

. . . ∂hi2n
e

1
2 (h,Ah)

∣
∣
h=0

.

This expression can be evaluated to give

∂hi1
. . .∂hi2n

Z0(h)
∣
∣
h=0

= ∑
pairings

Aα1,α2
. . . Aα2n−1,α2n

(Wick’s theorem) ,

where the sum is over the (2n− 1)!! pairings such that we have {α1, . . . ,α2n} = {i1, . . . , i2n}
(for sets with repetitions).

The following rules of calculation will be used later 2.

Let F(x) be differentiable and bounded. Then we have

1. Integration by parts :

∫

xi F(x) dµA(x) =
∫

Aik [∂xk
F(x)] dµA(x) . (21)

2Summation over doubly occurring indices is always understood.
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2. Translation of a Gaussian measure : Under a change of variable x = x′+ x0 we find

dµA(x) = e−
1
2 (x0,A

−1x0) e−(A−1x0,x
′) dµA(x

′) . (22)

3. Decomposition of the covariance : Assume that we have the decomposition

A = A1 + A2 , Ai > 0 and symmetric .

Then
∫

F(x) dµA(x) =
∫
(
∫

F(x1 + x2) dµA1
(x1)

)
dµA2

(x2) ∀ F ∈ L1(dµA(x)) . (23)

4. Infinitesimal Change of covariance : Let A(t) depend differentiably on a real parameter t.

Then

d

dt

∫

F(x) dµA(t)(x) =
1

2

∫

[∂xi
Ȧik(t)∂xk

F](x) dµA(t)(x) , where Ȧ :=
dA

dt
. (24)

5. Finite change of covariance :

∫

F(x) e−
1
2 (x,a

−1 x)dµA(x) =
1

√

det(1+Aa−1)

∫

F(x) dµA+a(x) for A+a > 0 . (25)

The definition of Gaussian measures can be extended to infinite dimensional spaces of func-

tions with the aid of the Bochner-Minlos theorem [Glimm and Jaffe, 1987]. The operator A

now is supposed to be a positive linear operator acting on some linear space of functions. The

preceding formulae can be straightforwardly translated to this context and remain valid. The

most important caveat is that the support of Gaussian measures on infinite dimensional spaces

is fixed by the covariance of the measure, i.e. by A . It becomes more restricted if the covari-

ance has better regularity and fall-off properties.

For the covariance (or the free propagator) appearing in euclidean scalar field theory which in

momentum space takes the form

C̃(p) =
1

p2 +m2
, (26)

the support is distributional in space dimensions d ≥ 2. This is related to the nonintegrability

of C̃(p) for p large, or to the singularity at x = y of

C(x− y) =
∫

dd p

(2π)d

eip(x−y)

p2 +m2
. (27)

In the infinite dimensional case the generating functional takes the form

Z0( j) :=

∫

e( j ,ϕ) dµC(ϕ) = e
1
2 〈 j,C j〉 ,

and we have again Wick’s theorem

δ

δ j(x1)
. . .

δ

δ j(x2n)
Z0( j)

∣
∣

j≡0
=

∫

ϕ(x1) . . .ϕ(x2n) dµC(ϕ) =
δ

δ j(x1)
. . .

δ

δ j(x2n)
e

1
2 ( j,C j)

∣
∣

j≡0
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= ∑
pairings

C(xα1
− xα2

) . . .C(xα2n−1
,xα2n

) ,

The generalisation of the expressions (21) to (25) to the infinite dimensional case can be written

1. Integration by parts :

∫

ϕ(x) F(ϕ) dµC(ϕ) =
∫
(
C ∗ δF(ϕ)

δϕ

)
dµC(ϕ) , (28)

with the definition C ∗ δ
δϕ :=

∫

C(x− y) δ
δϕ(y) ddy .

2. Translation of a Gaussian measure : Under a change of variable φ = ϕ +ψ we find

dµC(φ) = e−
1
2 (ψ,C−1ψ) e−(C−1ψ,ϕ) dµC(ϕ) . (29)

3. Decomposition of the measure : Assume that we have the decomposition

C = C1 + C2 , Ci > 0 .

Then for F(ϕ) ∈ L1(dµC(ϕ))

∫

F(ϕ) dµC(ϕ) =
∫
(
∫

F(ϕ1 +ϕ2) dµC1
(ϕ1)

)
dµC2

(ϕ2) . (30)

One can show that suppdµC1
, suppdµC2

⊂ suppdµC .

4. Infinitesimal change of covariance :

d

dt

∫

F(ϕ) dµC(t)(ϕ) =
1

2

∫

[〈 δ

δϕ
,Ċ(t)

δ

δϕ
〉F](ϕ) dµC(t)(ϕ) , where Ċ =

d

dt
C . (31)

Here we use the notation

〈 δ

δϕ
,Ċ(t)

δ

δϕ
〉 =

∫

ddx ddy
δ

δϕ(x)
Ċ(t;x− y)

δ

δϕ(y)
.

The functional F(ϕ) is supposed to be smoooth, and integrable w.r.t. dµC(t) ∀t .

5. Finite change of covariance :

∫

F(ϕ) e−
1
2 (ϕ,δC−1 ϕ) dµC(ϕ) =

1
√

det(1+C δC−1)

∫

F(ϕ) dµC+δC(ϕ) (32)

for C+δC > 0 and C δC−1 traceclass.

We will be interested in the correlation functions of perturbed Gaussian measures of the form

e−L0
V (ϕ) dµC(ϕ) . (33)

Here L0
V is supposed to be of the general form of H0 from (17),

L0
V (ϕ) =

∫

V
L

0(ϕ(x))ddx , L
0(ϕ(x)) =

1

2
ν0 ϕ2(x) +

1

2
b0 (∂µ ϕ)2(x) +

g0

4
ϕ4(x) . (34)
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We have changed the naming of the coefficients of the quadratic terms since they have been

partially transferred to the Gaussian measure dµC(ϕ) . The integration in (34) has been re-

stricted to a finite volume V . Mathematical consistency requires that the coefficients of these

(absorbed) terms are positive so that the covariance of the Gaussian measure (possibly after

rescaling) takes the form (26). Generally one wants to show that connected correlation func-

tions exist in the infinite volume limit, otherwise stated, they do not depend on V , up to correc-

tions vanishing when V exhausts R4 .

We then define as before the correlation functions

〈ϕ(x1) . . .ϕ(xn)〉 :=
δ

δ j(x1)
. . .

δ

δ j(xn)
Z( j)

∣
∣

j≡0
, Z( j) =

∫

e( j ,ϕ) e−L0
V (ϕ) dµC(ϕ) .

The connected correlation functions are defined as the moments of logZ( j) :

〈ϕ(x1) . . .ϕ(xn)〉c :=
δ

δ j(x1)
. . .

δ

δ j(xn)
logZ( j)

∣
∣

j≡0
.

The connected free propagator amputated correlation functions are defined as the moments of

logZ(C−1 j) . All these systems of functions contain in principle the full information about the

theory. The connected ones are free from certain divergences which appear in the infinite vol-

ume limit. They are thus more suitable for studying the theory. The free propagator amputated

correlation functions appear for example when writing scattering cross sections in quantum

field theory.

Going back to the hamiltonians of type (17), we will suppose that our theory is symmetric

under ϕ → −ϕ , as is the case for the Ising model w.r.t. the set of variables {si} . We also

assume that it is symmetric under the euclidean group. This assumption is generally admitted

for continuum models supposed to have the same critical behaviour as the Ising model, the

physical reason being that lattice details become invisible when the correlation length becomes

infinite. In this case the lowest order terms w.r.t. the number of fields ϕ and the number of

derivatives ∂µ ϕ are indeed

ϕ2(x) , (∂µϕ)2(x) , ϕ4(x) .

The rigorous analysis close to a critical point starts from bare functionals of the form (34). The

constant ν0 has to be chosen suitably as a function of g0 for the theory to be (close to) critical

so that T −Tc is tuned via ν0 .

We stated already that the support of the measure dµC is distributional in d ≥ 2. This

means that expressions of the type ϕ2(x) , (∂µϕ)2(x) , ϕ4(x) . . . are not well-defined. One

can show that for covariances falling off more rapidly in p-space, the support of the measure

becomes more regular in position space. If they fall off more rapidly than any power of |p| ,
the support is contained in the set of smooth functions in position space, see e.g. [Reed, 1973],

[Colella, P., Lanford, O.E., 1973]. We will use subsequently the following regularised covari-

ance:

C̃Λ,Λ0(p) =
∫ Λ−2

Λ−2
0

dλ e−λ (p2+m2) =
e
− p2+m2

Λ2
0 − e

− p2+m2

Λ2

p2 +m2
, 0 ≤ Λ ≤ Λ0 < ∞ . (35)
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We have, uniformly in p : limΛ→0 limΛ0→∞C̃Λ,Λ0(p) = C̃(p) 3. There is a general conviction

that interesting results do not depend on the choice of the regularisation. But in practice inter-

esting results can mostly be obtained only for judicious choices. The previous choice has the

advantage of having good analyticity properties.

Our mathematically well-defined starting expression corresponding to (18) is then

ZΛ,Λ0( j) =

∫

e−L0
V (ϕ)+( j(x) ,ϕ) dµCΛ,Λ0 (ϕ) = e

1
2 〈 j,CΛ,Λ0 j〉

∫

e−L0
V (φ+CΛ,Λ0∗ j) dµCΛ,Λ0 (φ) , (36)

where we performed a translation of variables ϕ = φ +CΛ,Λ0 ∗ j , see (29).

For ϕ =CΛ,Λ0 ∗ j we define

e−L
Λ,Λ0
V (ϕ) :=

1

ZΛ,Λ0(0)
e−

1
2 〈ϕ,(CΛ,Λ0)−1 ϕ〉 ZΛ,Λ0((CΛ,Λ0)−1ϕ)

or equivalently

L
Λ,Λ0
V (ϕ) = logZΛ,Λ0(0)− logZ((CΛ,Λ0)−1ϕ) +

1

2
〈ϕ, ((CΛ,Λ0)−1 ϕ〉 . (37)

We thus find

e−L
Λ,Λ0
V (ϕ) =

1

ZΛ,Λ0(0)

∫

e−L0
V (φ+ϕ) dµCΛ,Λ0 (φ) . (38)

The functional LΛ,Λ0(ϕ) is called the Wilson effective action at scale Λ . Its moments are

the connected amputated Schwinger functions (CASFs) of the theory which give access to its

physical contents.

3 Renormalisation group transformations

There are two classes of RG problems to be distinguished. The construction of models with an

ultraviolet (uv) fixed point or of models with an infrared (ir) fixed point 4. The first situation

is the one from quantum field theory where one wants to take the ultraviolet limit Λ0 → ∞ . In

this case we will assume that the theory is infrared safe which means in our case that m2 6= 0.

A convenient decomposition of the covariance C0,Λ0 (35) is

C0
uv(m;x− y) =

∫
dd p

(2π)4
eip(x−y)

∫ ∞

1
dλ e−λ (p2+m2) , (39)

Cl
uv(m;x− y) =

∫
dd p

(2π)4
eip(x−y)

∫ M−2(l−1)

M−2l
dλ e−λ (p2+m2) , 1 ≤ l ≤ N , (40)

where M > 1, Λ0 = M2N , so that ∑N
=0Cl

uv = C0,Λ0 . Often one requires M ≫ 1 for technical

reasons. The aim of an RG analysis is then to obtain statements uniform in the uv limit N → ∞

3 Λ0 is sufficient as a regulator, the parameter Λ is related to the RG flow, see below.
4Generally one analyses the neighbourhood of one fixed point. [Abdesselam, 2007] presents a rigorous construc-

tion of a complete RG trajectory between two fixed points for a field theory in 3 dimensions.
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or Λ0 → ∞ .

In the case of an infrared problem, like the one of the critical behaviour of Ising type models, we

are interested in the case m2 = 0 for Λ0 < ∞ fixed, since this choice of parameters corresponds

to an infinite correlation length (of the Gaussian theory) in the presence of an uv cutoff. In the

microscopic Ising type hamiltonian this cutoff is present through the lattice. Choosing in this

case units such that Λ0 = 1, we decompose

Cl
ir(x− y) =

∫
dd p

(2π)4
eip(x−y)

∫ M2(l+1)

M2l
dλ e−λ p2

, (41)

where 0 ≤ l ≤ N −1 , Λ = M−2N , Λ0 = 1 ,
N−1

∑
l=0

Cl
ir = CΛ,1 .

The aim is to control the ir limit N → ∞ or Λ → 0. It is straightforward to see that Cl
ir(x− y)

has exponential decay of scale M−l :

|Cl
ir(x− y)| ≤ K e−M−l |x−y| for suitable K > 0 . (42)

We note that recent important work on the RG which we are going to cite below, was performed

using decompositions with even better decay properties, corresponding to compact support in

position space [Brydges et al., 2003], i.e. such that

Cl
ir(x− y) = 0 ∀x, y with |x− y| ≥ K Ml . (43)

3.1 Critical models

Starting from our decompositions we may now define corresponding effective actions. In the

infrared case we choose the decomposition (41). We then define

e−Ll+1
V (ϕ) =

1

Zl
V (0)

∫

e−Ll
V (φ+ϕ) dµCl

ir
(φ) , 0 ≤ l ≤ N −1 , (44)

which means

Ll+1
V (ϕ) = − log

(∫

e−Ll
V (φ+ϕ) dµCl

ir
(φ)

)

+ logZl
V (0) , (45)

where

Zl
V (0) =

∫

e−Ll
V (φ) dµCl

ir
(φ) . (46)

The task is to control the sequence of functionals Ll
V ∀l ≤ N −1, N → ∞ , and also to control

the infinite volume (or thermodynamic) limit for the moments of Ll
V , i.e. for the CASFs.

For the Ising type universality class described by lagrangians of the type (34), the critical

behaviour may depend on the number of fields and on the symmetry properties of the models.

So we include a slight generalisation, assuming the field ϕ to be of vectorial nature, having n

components, ϕ = (ϕ1, . . . ,ϕn) so that ϕ2 = ∑n
i=1 ϕ2

i and we substitute ϕ4 → |ϕ|4 := (ϕ2)2 .
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Then L0
V is invariant under the rotation group O(n) for n ≥ 2; for n = 1, it is invariant under

Z2 , i.e. ϕ →−ϕ . We now write5

Ll
V (ϕ) =

∫

V

[ 1

2
νl ϕ2(x) +

1

2
bl (∂µϕ)2(x) +

gl

4
|ϕ|4(x)

]
ddx + δLl

V (ϕ) (47)

and want to control

νi , bl , gl , δLl
V for l → ∞

under suitable conditions for the initial values

ν0 , b0 , g0 and δL0
V = 0 .

For the moments of the Ll
V , we aim at statements uniform in sequences of volumes Vj exhaust-

ing Rd for j → ∞ . The Ll
V themselves are expected to diverge linearly with the volume, due

to translation invariance6. Correspondingly Zl
V is expected to depend exponentially with V .

Analysing CASFs, i.e. moments of Ll
V (ϕ) in the infinite volume limit, then requires to factor

out the denominator from (44) in the expression of the integral, in order to be able to divide it

out.

This analysis requires to perform several types of expansions in the functional integral. Each

of these expansions is relatively transparent individually. What makes the task intricate is that

the expansions have to be performed iteratively in a harmonised way at each renormalisation

group step, while keeping the outcome under inductive control. In modern work these expan-

sions have been partially fused and adapted to each other [Brydges et al., 2019]. Note also

that the expressions (44) and (45) indicate that each step involves taking a logarithm and a

re-exponentiation. These operations have been adapted to the expansions by defining a new

(so-called circle) product [Brydges et al., 2019] in this context. Iterating the expansions and

keeping control requires the couplings gi to stay uniformly (very !) small. In our overview we

now shortly describe the three expansions separately in their original form, treating Ll
V as if

it were of the same form as L0
V , i.e. neglecting the technically hard part, the control of δLl

V .

Then we have the following expansions, see for example [Brydges, 1984], [Rivasseau, 1991] :

The cluster expansion is intended to make visible the decay of the correlations. This decay is

in particular required for performing the infinite volume limit. One decomposes the volume

into cubes, the side length of which ∼ Ml corresponds to the decay of the covariance Cl (42).

The expansion is w.r.t. the situation where all these cubes are factorised in the expansion. It

permits to present a partition function ZV as a sum over products of factorised contributions

called polymer amplitudes whose mutually disjoint supports are unions of cubes. Due to the

fall-off of (42) the polymer amplitudes decrease exponentially with the polymer size.

The fact that the polymer amplitudes produced by the cluster expansion have disjoint supports,

can be expressed by introducing hardcore interactions between the polymers

V (Yr,Ys) = 0 if Yr ∩Ys = /0 , V (Yr,Ys) = ∞ otherwise ,

where Yr and Ys are the supports of a given pair of polymers, i.e. unions of (open) cubes.

5We suppressed the lower indices V on νl , bl , gl .
6Being related to the Helmholtz free energy, they describe extensive quantities in the terminology of thermody-

namics.
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The Mayer expansion then (maybe astonishingly) expands the situation of the polymer gas

with hardcore constraints around the situation, where these polymers overlap, by writing for

the hardcore constraints

e−V (Yr,Ys) = 1 + (e−V (Yr,Ys) − 1) .

The outcome of cluster and successive Mayer expansion permits to factorise the denominator

in (44) in the numerator and then to take the infinite volume limit for CASFs.

The expansion in effective couplings νl , bl , gl is related to the perturbative expansion w.r.t. g0.

But this expansion does not even converge for the one-dimensional integral
∫

e−g0 x4− 1
2 x2

dx .

The aim is therefore to write an expansion to low orders in the couplings, but with sufficiently

strong bounds on the remainder, which permit to control the flow of the couplings and of

δLl
V (ϕ) simultaneously. The bounds have to be strong enough to gain inductive control on the

iterated RGTs. This requires that the Gaussian measure is only weakly perturbed, that is to say

that g0 > 0 is very small. The most important couplings are the {gl} , since g0 > 0 is at origin

of the evolution of all other couplings. In d = 4 we find at leading order7

gl+1 = gl − β2 g2
l , β2 > 0 . (48)

Corrections are of order g3
l , but also depend on the other constants and on V . Note also that

β2 is (weakly) l- and volume dependent, and depends on the number of field components n .

Iterating this equation N times gives at leading order in g0

gN ∼ g0

1 + N β2g0
, (49)

which for N → ∞ leads to the interaction free Gaussian fixed point. This fact that the gl stay

uniformly small, is a crucial prerequisite for the convergence of the expansion. Following the

law of the constants νl shows that they are expected to increase at leading order proportional

to gM2 when going away from the critical point, i.e. going from l + 1 to l . This says that

ν0 < 0 has to be fine-tuned to a specific value νc in order that νN → 0 for N → ∞ , the latter

being required to obtain an infinite correlation length for the critical theory. The νi act as mass

terms, finite mass being associated with finite correlation length. The flow of the bl which at

leading order is of order g2
l , stays under control when approaching the critical point, if the gl

are under control and are very small, as is the case for the law (48), (49) if 0 ≤ g0 ≪ 1.

As we said the technical difficulty consists in controlling the corrections to this leading be-

haviour and to make the different expansions compatible. The control of δLl
V which is nonlocal

and nonpolynomial in the fields requires to introduce sophisticated norms to measure its size

in a way appropriate for the construction, which makes visible the fact that the sum over all

irrelevant contributions stays irrelevant on iteration.

We note that the heavy apparatus of iterated RGTs is generally only required if the non-

gaussian couplings (like g in our case) are relevant or marginal,i.e. contract only logarithmi-

cally under RGTs as in (49), near the fixed point. This is not the case for the construction

7The complete exact expression of which (48) is the lowest order approximation, is of the form

gl+1 = Fl(gl ,νl ,bl ,δLl;n,V ) ,

where the functional Fi has to be controlled, which is possible for g0 very small.
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of the critical theory in d > 4. In this case it has been shown rigorously that the ϕ4 model

for d > 4 exhibits the same critical exponents η, γ as the mean field approximation, see (15),

[Fröhlich, 1982], [Aizenman, 1982]. In particular it is known that with ν = νc + ε and as

ε →+0,

χ(g,ν) ≍ O(
1

ε
) ,

where A ≍ B means C−1 A ≤ B ≤ C A for a universal constant C > 0. This means that the

critical exponent γ takes the value γ = 1.

We now want to cite a few relatively recent rigorous results from [Brydges et al., 2019] ob-

tained with the aid of the RG. We concentrate on the susceptibility defined in (9). The results

have been obtained using a lattice uv cutoff and a compact support decomposition of the mea-

sure (43). In our context they can be phrased as

Theorem :

Let

L0(ϕ) =

∫

V

[ 1

2
ν0 ϕ2(x) +

1

2
b0 (∂µϕ)2(x) +

1

4
g0 |ϕ|4(x)

]
ddx .

Let d = 4 , n ≥ 1 and g0 > 0 sufficiently small. In the (suitably defined) infinite volume limit

there exists νc = νc(g,n)< 0 such that, with ν0 = νc + ε and as ε →+0 ,

χ(g,ν) ∼ Ag,n
1

ε
(logε−1)(n+2)/(n+8) , ξ (g,ν) ∼ Cg,n

1

ε1/2
(logε−1)

1
2 (n+2)/(n+8) , (50)

and, for |x| → ∞

〈ϕ1(0)ϕ1(x)〉g,νc
∼

A′
g,n

|x|2 , (51)

where A(x)∼ B(x) means A(x) = B(x)(1+o(x)) . The constant Ag,n satisfies for g →+0

Ag,n ∼
[
(n+8)g

16π2

] n+2
n+8

. (52)

The results (50) say that the critical exponent γ equals 1, and that the critical exponent ν
equals 1/2. But in both cases the mean field theory behaviour undergoes precisely calculated

logarithmic corrections. It is in particular remarkable that the constant Ag,n in (50) can be

calculated to this precision. From (51) we see that the critical exponent η stays zero as in the

free theory.

In dimensions below 4, the ir limit becomes even harder. Dimensions 2 < d < 4 are studied

in the physics literature using expansions in dimension [Wilson and Fisher, 1972] and number

of components. An alternative to the expansion in ε = 4−d is to consider so-called long-range

interactions decaying with distance as r−(d+α) for α ∈ (0,2) . In contrast to the above theorem,

the long-range results involve a non-Gaussian RG fixed point, with corrections to mean-field

scaling that are power law rather than logarithmic. An example of a result of this type is the

following theorem which pertains to the |ϕ|4 -model defined with the lattice laplacian operator

replaced by the fractional power (−∆)α/2 , with α = 1
2
(d+ε ) and small ε > 0. The kernel of

this operator decays at large distance as

(−∆)
α/2
xy ≍ |x− y|−(d+α) . (53)
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Theorem [Slade, 2018] :

For d = 1, 2, 3 , n ≥ 1 , V sufficiently large, and ε = 2αd > 0 sufficiently small, there exists

s̄ ≍ ε such that, for g∈ [63
64

s̄ , 65
64

s̄] , there exist νc = νc(g,n) and C > 0 such that for ν = νc+t

with t →+0 , the susceptibility of the long-range model obeys

C−1 t(1+
n+2
n+8

ε
α −C ε2) ≤ χ(g,ν;n) ≤ C t(1+

n+2
n+8

ε
α +C ε2) . (54)

This statement implies that the critical exponent γ exists, and undergoes finite corrections of

order ε , as compared to mean field theory :

γ = 1 +
n+2

n+8

ε

α
+O(ε2) . (55)

3.2 Ultraviolet limits

The method we have exposed is sufficiently general to treat also quantum field theories in

four euclidean dimensions, as they appear in the standard model. In this case we may use a

decomposition of the covariance as in (40) and (39). Considering a massive scalar field theory,

the challenge consists in performing the uv limit. It then turns out that at leading order the flow

of the effective coupling as compared to (48), is of the form8

gl = gl+1 − β2 g2
l+1 , β2 > 0 , 0 ≤ l ≤ N −1 . (56)

Starting from a small bare coupling gN this leads to a vanishing physical (renormalised) cou-

pling g = g0 in the uv limit N → ∞ . As mentioned in the introduction, the sign of β changes

when considering nonabelian gauge theories. But in these theories gauge symmetry forbids

a mass terms. Then the uv and ir constructions would have to be joined together, and the ef-

fective coupling would (presumably) grow arbitrarily in the ir region. Generally rigorous RG

constructions require that the flowing couplings stay globally very small, since otherwise there

is no control of the enormous combinatorics generated by successive RG integrations.

One may then consider larger classes of field theories, other types of fields, admit euclidean

dimensions d 6= 4, other geometries, new symmetry structures or covariances deviating from

the standard form as e.g. in (53). Generally this is a vast field which we cannot enter on

these few pages. The simplest option is to consider the uv limit of the massive |ϕ|4-models in

d = 1,2,3. These are so-called superrenormalisable models whose effective couplings vanish

according to a power of the scale when going in the uv direction. As a consequence their con-

struction does not fully require the iterative RG apparatus, even if in d = 3 it stays challenging.

Looking for models in euclidean dimensions d 6= 4, for which the flow of the relevant and

marginal couplings under RGTs is similar to the one of the critical |ϕ|4 theory in d = 4, a

prominent example for which the construction could be achieved is the massive Gross-Neveu

model in euclidean dimensions d = 2 [Gawedzki and Kupiainen, 1985], [Feldman et al., 1986].

Its (bare) lagrangian is given by

L0
V (ψ, ψ̄) =

∫

V

[
ψ̄(x)( izN /∂ + mN)ψ(x) − λN (ψ̄ ψ)2(x)

]
d2x , (57)

8In the uv context it is more adapted to label the starting point of the RG construction by N , and then to go down

to smaller values reaching the physical value at index 0.
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where ψ, ψ̄ are two-component fermionic Grassmann spinor fields. The regularized (free)

fermionic propagator in momentum space is assumed to be

S0,Λ0(p) =
/p+m

p2 +m2
e−Λ−2

0 p2

, Λ0 = MN .

For the construction to be feasible, one has to assume that there exist at least n ≥ 2 flavour

components ψ1, . . . ,ψn . The definition of the term ψ̄ ψ in (57) is thus

ψ̄ ψ =
n

∑
a=1

∑
α=1,2

ψ̄a
α ψa

α .

The perturbative analysis of this model is quite similar to the one of the |ϕ|4 -model. Both have

a four-field vertex. They also have similar power counting, since the fermion propagator has

slower fall-off in momentum space, which is compensated by lowering the dimension from 4

to 2 . It turns out that due to the sign changes occurring for Grassmann variables, the sign in

(56) is now reversed so that at leading order the flow is

λl = λl+1 + β2,n λ 2
l+1 , β2,n > 0 . (58)

Assuming the bare coupling λN to behave as 1/(N +C) , for N → ∞ , C ≫ 1, the solutions

λi of (58) stay globally very small. The sign cancellations present for fermionic fields, also

tame to some degree the problems linked to the infinite volume limit, and those related to estab-

lishing bounds on the remainder terms, in particular on the δLl
V in the inductive construction.

Unfortunately these improvements can only partially be maintained under the RG iterations.

The final result for the uv RG construction of the Gross-Neveu model can be stated as follows:

Theorem : Choosing

λN =
1

β2,n N + 1
π logN + C

, mN = m N−γn , zN = 0 ,

where

β2,n =
2(n−1)

π
logM , γn =

n− 1
2

n−1
, C , M (from (40)) sufficiently large ,

the uv limit of the Gross-Neveu-model as a two-dimensional interacting euclidean field theory

exists. The CASFs of the theory thus constructed are the Borel sums of their renormalised

perturbative expansion.

As stated, the Gross-Neveu model serves as an illustration of the uv behaviour suspected to

hold also in nonabelian gauge theories. The fact that the ir limit of those is not under control,

can be bypassed by studying them in finite volume. We mention monumental work by Balaban

[Balaban, 1988] who studied lattice gauge theory on a (“small”) torus in a long series of papers.

4 The renormalisation group equations

As we said the quantum field theories constituting the standard model of particle physics are

so far not known to exist as mathematical models beyond perturbation theory. On the other
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hand the formal perturbative loop expansion often gives extremely precise results, in agreement

with experiment. What can be done on the mathematical side, is to show that perturbation

theory gives order by order finite results for the CASFs. To implement perturbation theory, we

introduce an expansion parameter generally called h̄ and rewrite (38) as9

e−
1
h̄

LΛ,Λ0(ϕ) =
1

ZΛ,Λ0(0)

∫

e−
1
h̄

L0(φ+ϕ) dµh̄CΛ,Λ0 (φ) . (59)

The moments of LΛ,Λ0 can then be expanded in a formal power series w.r.t. h̄ . Setting h̄ = 1 we

get back (37), (38). This expansion is called the loop expansion. In simple cases as symmetric

ϕ4-theory it is equivalent to perturbation theory.

The functional renormalisation group equation is a functional differential equation for LΛ,Λ0(ϕ)
of parameter Λ. Rewritten in terms of its moments, the CASFs, it is an infinite-dimensional

dynamical system of parameter Λ . Introducing the constant h̄ as in (59) and using the change

of covariance formula (31) we obtain writing ĊΛ := ∂ΛCΛ,Λ0 and IΛ,Λ0 :=−h̄ logZΛ,Λ0(0)

∂Λ e−
1
h̄ (LΛ,Λ0(ϕ)+ IΛ,Λ0) =

1

2

∫

[〈 δ

δφ
, h̄ĊΛ δ

δφ
〉e−

1
h̄ L0(φ+ϕ)] dµh̄CΛ,Λ0 (φ) . (60)

Since L0 depends only on the sum φ +ϕ , the r.h.s. can be rewritten as

1

2
〈 δ

δϕ
, h̄ĊΛ δ

δϕ
〉
∫

e−
1
h̄

L0(φ+ϕ) dµh̄CΛ,Λ0 (φ) =
1

2
〈 δ

δϕ
, h̄ĊΛ δ

δϕ
〉e−

1
h̄
(LΛ,Λ0(ϕ)+ IΛ,Λ0 ) .

Performing the derivatives on both sides and factoring out the exponential 10 then gives

∂ΛLΛ,Λ0 =
h̄

2
〈 δ

δϕ
,ĊΛ δ

δϕ
〉LΛ,Λ0 − 1

2
〈 δ

δϕ
LΛ,Λ0 ,ĊΛ δ

δϕ
LΛ,Λ0〉 + h̄∂Λ logZΛ,Λ0 , (61)

which is the functional differential flow equation of the RG written for the Wilson effective

action. The differential Wilson RGEs seem to appear first in [Wegner and Houghton, 1973]. As

we said, LΛ,Λ0(ϕ) is the generating functional of the CASFs in the presence of the regulators

Λ, Λ0 . The task is then to prove that these functions exist in the limits Λ → 0 , Λ0 → ∞ .

The functional LΛ,Λ0 has an expansion as a formal power series in terms of Feynman dia-

grams with precisely l loops, n external legs, and propagator CΛ,Λ0(p) . As the name suggests,

only connected diagrams contribute, and the (free) propagators on the external legs are removed.

Analysing the functional LΛ,Λ0(ϕ) in the sense of formal power series w.r.t. h̄ , and in moments

w.r.t. ϕ , means that we consider the terms in the formal power series

LΛ,Λ0(ϕ) :=
∞

∑
n>0

∞

∑
l=0

h̄l
∫

d4x1 . . .d
4xn L̃

Λ,Λ0

n,l (x1, . . . ,xn)ϕ(x1) · · ·ϕ(xn) , (62)

where ϕ is in the support of dµh̄CΛ,Λ0 , where no statement is made on the convergence of the

series in n , l . The objects on the right side, the perturbative CASFs, are the basic quantities in

9We suppress the volume index V in the notation since the infinite volume limit can be taken straightforwardly

at the level of the perturbative CASFs. So we do not talk about it in this section and understand that we stay in

finite volume before arriving at the perturbative CASFs.
10The exponential can be shown to be finite in finite volume and in the presence of regulators.
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our analysis. When expanded out in ϕ and in powers of h̄ , the flow equations, deduced from

(61) for the moments, read in momentum space, using translation invariance

∂Λ L
Λ,Λ0

n,l (p1, . . . , pn) =
(

n+2
2

)∫

k
ĊΛ(k)L Λ,Λ0

n+2,l−1(k,−k, p1, . . . pn) (63)

−1

2
∑

l1 + l2 = l

n1 +n2 = n+2

n1n2S

[

L
Λ,Λ0

n1,l1
(p1, . . . , pn1

)ĊΛ(q)L Λ,Λ0

n2,l2
(−q, pn1

, . . . , pn)

]

with p′ = pn1
+ . . .+ pn = −p1 − . . .− pn1−1 . The symbol S (for symmetrization) indicates

that we take the mean value over those permutations π of (1, . . . ,n) , for which π(1)< π(2)<
.. . < π(n1−1) and π(n1)< π(n1+1)< .. . < π(n) .

To fix the CASFs as solutions of the flow equations, we have to impose boundary conditions.

The simplest choice are so-called BPHZ conditions at Λ = 0

∂ w
L

0,Λ0

n,l (~0) = δw,0 δn,4 δl,0
g

4
for n+ |w| ≤ 4 , (64)

together with

∂ w
L

Λ0,Λ0

n,l (~p) = 0 for n+ |w|> 4 . (65)

Here w is a multiindex indicating |w| derivatives w.r.t. the four-momentum components.

The task is now to prove that that perturbation theory gives order by order finite results for

the CASFs on taking the limits Λ0 → ∞ , Λ → 0. Polchinski [Polchinski, 1984] first realised

that the system (63) can be analysed inductively using a scheme going up N = n+2l, and for

fixed N going up in l, which permits to bound the CASFs L
Λ,Λ0

n,l efficiently, and thus to base

renormalisation theory entirely on this system of equations.

2

8

4

6

10

12

0 1 2 3 4 5

n

l
Figure 1: Polchinski’s inductive scheme starting at (n, l) = (4,0)

Using this scheme it is straightforward to show the following

Theorem : The perturbative CASFs for the massive scalar field theory obey the following

bounds [Keller et al., 1992] which are uniform in the cutoff Λ0 :

∣
∣L

Λ,Λ0

n,l (p1, . . . , pn)
∣
∣ ≤ (Λ+m)4−n

P(log
Λ+m

m
) F (

|~p|
Λ+m)

) .
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Here P is a polynomial of degree ≤ l , and the function F can be bounded more or less

stringently with more or less effort. Uniformity in the cutoff directly leads to renormalisability.

These results can be extended to prove renormalisability for all sectors of the standard model.

One aspect which still deserves attention, is to prove in a rigorous way the validity of the Ward

identities in the standard model, to all orders, in the presence of chiral fermions. Apart from

recovering in a simpler way results from traditional renormalisation theory, the method has also

allowed to prove statements which are beyond the traditional methods, for an older review see

[Müller, 2003]. We mention the convergence of the perturbative operator product expansion

[Hollands and Kopper, 2012], bounds on theories containing irrelevant bare interaction terms,

large momentum bounds and bounds on high orders in perturbation theory, temperature inde-

pendent renormalisation for T > 0, renormalisation on manifolds and on spaces with boundary.

Recently it could be proven with the aid of RGEs in the mean field approximation, but with-

out recourse to perturbation theory, that there exist asymptotically free mean field scalar field

theories. These have nonpolynomial bare lagrangians L0
V [Kopper, 2022].

4.1 The Callan-Symanzik equations

At the end of this short overview we would like to come back to the early days of the RGEs in

perturbative quantum field theory. As we said the Wilson RG comprises the nowadays socalled

old RG. Among the RGEs in the old sense, the Callan-Symanzik equations probably take the

most prominent place. We want to deduce them here from (36), (37), (38), staying in the

euclidean framework for a scalar field. As we said the solutions of the flow equations (63)

are determined once we have fixed the renormalisation conditions. To align ourselves with

the notation in perturbative quantum field theory we write the bare (inter)action in a slightly

different parametrisation as

L̂0
b(z

1/2φ) =

∫

V

[ 1

2
(z−1)(∂µφ)2 +

1

2
(m2

0 z − m2)φ 2 +
g0

4!
z2 φ 4

]
. (66)

The BPHZ renormalisation conditions corresponding to (64) are then

L̂
0,Λ0

2,l (~0) =
1

2
δl,0 m2 , ∂p2L̂

0,Λ0

2,l (~0) =
1

2
δl,0 , L̂

0,Λ0

4,l (~0) = δl,0
g

4!
, (67)

where L̂
0,Λ0

n,l (~p) = L
0,Λ0

n,l (~p) + 1
2

δl,0 δn,2 (p2 +m2) . Using (66) we can write (59) for Λ = 0

as 11

e−L0,Λ0 (ϕ) =
1

Z0,Λ0(0)

∫

e−Lb(z1/2(φ+ϕ)) dµC0,Λ0 (φ) . (68)

Setting φ̃ = z1/2 φ and C̃ = zC 12, we can then write

e−L0,Λ0 (ϕ) =
1

Z̃0,Λ0(0)

∫

e−Lb(φ̃ +z1/2 ϕ) dµC̃0,Λ0 (φ̃) . (69)

11 In this section we again set to one the factors of h̄ for readibility. But one should note that all quantities are

supposed to be expanded in the formal loop expansion. This applies also to the coefficient functions β (g) and

γ(g) in (70).
12This change of covariance is associated with a normalisation factor which is finite only for Λ0 finite and in

finite volume, see (32). Again we do not dwell on this issue because the volume drops out, when considering

moments of the log of the partition function.
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Now the renormalised CASFs are defined to be the moments of L0,Λ0(ϕ) (for Λ0 → ∞ ), and

the bare CASFs (indicated by a subscript b ) are defined to be the moments of

− log
(
∫

e−Lb(φ̃ +z1/2 ϕ) dµC̃0,Λ0 (φ̃)
)

so that we obtain the relation13

L̂
0,Λ0

n (m2;g;~p) = zn/2(m2
0;g0)L̂

Λ0

b;n (m
2
0;g0;~p) .

The bare functions generally do not have finite limits for Λ0 → ∞ . If we now change the

(renormalised) mass into m2(s) = (1+ s)m2 , keeping g0 fixed, we get

[
d

ds

∣
∣
∣
g0

L̂
0,Λ0

n (m2(s);g(s);~p)]
∣
∣
s=0

=
d

ds

∣
∣
∣
g0

[zn/2(m2
0(s);g0)L̂

Λ0

b;n (m
2
0(s);g0;~p)

]
∣
∣
∣
s=0

,

which gives

[
m2 ∂

∂m2
+ β (g)

∂

∂g
− nγ(g)

]
L̂

0,Λ0
n (m2;g;~p) = L̂

Λ0

1;n (m
2;g;~p) , (70)

where

β (g) =
dg

ds

∣
∣
∣
g0,s=0

, γ(g) =
1

2

d logz

ds

∣
∣
∣
g0,s=0

.

The functions

L̂
Λ0

1;n (m
2;g;~p) = zn/2(m2

0(s);g0)
d

ds

∣
∣
∣
g0

L̂
Λ0

b,n (m
2
0(s);g0;~p)

∣
∣
s=0

are the moments obtained via the flow equations from the bare action

L0
1(z

1/2φ) =
∫
[ 1

2
(z−1)(∂µφ)2 +

1

2
(m2

0 z − m2)φ 2 +
g0

4!
z2 φ 4 +

1

2

dm2
0

ds

∣
∣
∣
g0,s=0

zφ 2
]

d4x

(71)

to first order in z
2

dm2
0

ds

∣
∣
g0,s=0

∫

φ 2(x)d4x . Renormalisation theory tells us that the L̂
0,Λ0

1;n (m;g;~p)

have finite limits for Λ0 → ∞ order by order in perturbation theory. Their precise renormali-

sation conditions can be read from (70) at Λ = 0, evaluated at the renormalisation points, i.e.

zero momentum in the BPHZ case, using the renormalisation conditions (67). The equations

(70) are the Callan-Symanzik equations [Callan, 1970], [Symanzik, 1970].

5 Conclusions

The renormalisation (semi)group is a general method to analyse systems with a large (or in-

finite) number of degrees of freedom 14. Putting the RG into work requires to establish a

13It is customary in perturbative field theory to parametrise renormalised and bare functions in terms of the

respective constants (m2, g) and (m2
0, g0) , understanding that these are mutually unique functions of each

other.
14Basically all physical systems are of this type.
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hierarchy among these degrees of freedom, mostly based on a one-dimensional ordering, e.g.

according to a length or an energy scale. Then the effect of the degrees of freedom on phys-

ical observables such as correlation functions is taken into account successively, according to

the chosen hierarchy. The RG has become an indispensable tool for analysing such systems

in the general situation, where no explicit solutions, due to the particular symmetry structure

of the system, are available. The importance and domains of application of the RG have been

growing ever since its advent in the 1950ies and its new conception by Wilson around 1970.

In our presentation we focussed on a few rigorous results in the theory of critical phenomena

and in constructive field theory. The renormalisation group equations are continous versions of

the RG, which may be given the form of an infinite dimensional dynamical system. Here we

focussed on the reformulation and extension of rigorous perturbative renormalisation theory in

this framework. In the future there will certainly be other fields of physics analysed with the

RG method, like e.g. the analysis of coherent quantum systems and tensor networks.

Since the method is very general, it is probably not astonishing that its implementation is not

system independent. Rigorous RG analysis often requires large effort, and results are obtained

only for a very limited range of parameters. On the other hand it is often the only method at

hand to obtain rigorous results on systems which are not strongly restricted by symmetries. So

for the future we do not only hope for results on new systems, but also for technical and concep-

tual simplifications and for extensions to physically more realistic situations. One may safely

predict that the RG and the RGEs will continue to be of primordial interest for mathematical

physics in the foreseeable future.
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sation des constantes dans la théorie des quanta. Helv.Phys.Acta 26, 499-520.

[Symanzik, 1970] Symanzik, K., 1970. Small distance behaviour in field theory and power

counting. Commun.Math.Phys 18, 227-246.

[Wegner and Houghton, 1973] Wegner, F.J., Houghton, A., 1973. Renormalization group equa-

tion for critical phenomena, Phys.Rev. A8, 401-412.

[Wilson, 1971a] Wilson, K.G., 1971. Renormalization group and critical phenomena. 1. Renor-

malization group and the Kadanoff scaling picture. Phys.Rev.B4, 3174-3183.

[Wilson, 1971b] Wilson, K.G., 1971. Renormalization group and critical phenomena. 2. Phase

space cell analysis of critical behavior. Phys.Rev.B4, 3184-3205.

[Wilson and Fisher, 1972] Wilson, K.G., Fisher, M.E., 1972. Critical exponents in 3.99 dimen-

sions. Phys.Rev.Lett. 28, 240243.

[Zinn-Justin, 2007] , Zinn-Justin, J., 2007. Phase Transitions and Renormalization Group. Ox-

ford University Press.

[Zinn-Justin, 2010] , Zinn-Justin, J., 2010. Critical Phenomena: field theoretical approach.

Scholarpedia article.

25


	Introduction
	Perturbed Gaussian measures
	Renormalisation group transformations
	Critical models
	Ultraviolet limits

	The renormalisation group equations
	The Callan-Symanzik equations

	Conclusions
	Bibliography

