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Renormalization of φ 4
4 theory on the half-space R+×R3 with flow equations II

The Surface counter-terms of the φ 4
4 theory on the half

space R+×R3

Majdouline Borji1, a) and Christoph Kopper1, b)

Centre de Physique Théorique CPHT, CNRS, UMR 7644, Institut Polytechnique de Paris,
91128 Palaiseau, France

(Dated: 24 November 2023)

In a previous work, we established perturbative renormalizability to all orders of the
massive φ 4

4 -theory on a half-space also called the semi-infinite massive φ 4
4 -theory. Five

counter-terms which are functions depending on the position in the space, were needed to
make the theory finite. The aim of the present paper is to establish that for a particular
choice of the renormalization conditions the effective action consists of a part which is
independent of the boundary conditions (Dirichlet, Neumann and Robin) plus a boundary
term in the case of the Robin and Neumann boundary conditions. The key idea of our
method is the decomposition of the correlators into a bulk part, which is defined as the
scalar field model on the full space R4 with a quartic interaction restricted to the half-
space, plus a remainder which we call "the surface part". We analyse this surface part and
establish perturbatively that the φ 4

4 theory in R+×R3 is made finite by adding the bulk
counter-terms and two additional counter-terms to the bare interaction in the case of Robin
and Neumann boundary conditions. These surface counter-terms are position independent
and are proportional to

∫
S φ 2 and

∫
S φ∂nφ . For Dirichlet boundary conditions, we prove

that no surface counter-terms are needed and the bulk counter-terms are sufficient to renor-
malize the connected amputated (Dirichlet) Schwinger functions. A key technical novelty
as compared to our previous work is a proof that the power counting of the surface part of
the correlators is better by one scaling dimension than their bulk counterparts.

I. INTRODUCTION

Renormalization group methods in the presence of boundaries have been developed in theoretical
physics in the context of the semi-infinite scalar field model in13,14. Besides the physical signifi-
cance of this model as a prototype for systems with spatial inhomogeneities, it serves to illustrate the
characteristic new features of the RG when translation invariance is broken by the presence of sur-
faces. Recently, we established a rigorous proof of perturbative renormalizability of this model in6

using the Polchinski flow equations. Initiated by Polchinski28, this approach to renormalization has
been adapted to various interesting quantum field theories. We analyzed the generating functional
LΛ,Λ0 of connected amputated Schwinger functions by proving inductively uniform upper bounds in
the UV cutoff Λ0, wherefrom the renormalizability of the model is deduced. For theories that break
translation invariance, the whole procedure is carried out in position space23 or in the case of the
semi-infinite model in a mixed position-momentum space. Hence, the correlation functions are dis-
tributions which imposes that the method of proof must be adapted to distributions. We mention a
previous work in this direction23 on the perturbative renormalization of the massive scalar field with
a φ 4 interaction on Riemannian manifolds in which the proof of renormalization was completely
performed in position space. Our work5 on the renormalization of the semi-infinite model adapts
the proof of23 to the case of a mixed position-momentum representation. The main particularity of
working in position space within the flow equation framework is the appearance of weight factors
associated to some combinatorial objects called "trees" in the bounds on the perturbative correlation
functions. These weight factors imply tree decay between the position arguments of the correlation
functions.

a)Electronic mail: majdouline.borji@polytechnique.edu
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Renormalization of φ 4
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The loss of translation invariance implies that the relevant parameters are not constants but are
rather functions, which can possibly depend on the position x ∈V , the domain on which the system
is defined. In6, we considered BPHZ renormalization conditions, and we found that the semi-infinite
model is renormalized by adding five position dependent counter-terms to the bare interaction given
by

LΛ0,Λ0
? (φ) =

λ

4!

∫
R+

dz
∫

R3
d3x φ

4(z,x)

+
1
2

∫
R+

dz
∫

R3
d3x

(
aΛ0
? (z)φ 2(z,x)−bΛ0

? (z)φ(z,x)∆xφ(z,x)

−dΛ0
? (z)φ(z,x)∂ 2

z φ(z,x)− sΛ0
? (z)φ(z,x)(∂zφ)(z,x)+

2
4!

cΛ0
? (z)φ 4(z,x)

)
,

with ? denoting either Dirichlet, Neumann or Robin boundary conditions. The method developed
in6 is of a pedagogical nature in the sense that it provides the detailed steps to establish the renor-
malizability of scalar field theories in the mixed position-momentum space. However, the approach
does not highlight the effect of the presence of surfaces, in the sense that the correlation functions
of the semi-infinite model and its translationally invariant counterpart can both be bounded with
similar upper bounds using the method of proof of6. This also means that the steps of the proof
in6 do not show the differences between the renormalization of the semi-infinite model and of the
usual translationally invariant φ 4

4 theory in the mixed position-momentum space. A further issue is
the dependence of the counter-terms terms in6 on the position. While mathematically well defined,
the renormalization problem considered in6 differs from physical applications where the effective
action is specified at Λ0, and is supposed to be independent of the position in space, as in the case
in boundary critical phenomena12,14. For these reasons, we investigate in this paper in more detail
the structure of the counter-terms and their dependence on the surface by separating the surface and
bulk effects. The results of this paper are also useful for a future publication, in which we prove a
much stronger result with respect to the independence of the counter-terms of the position in space
by establishing that these are given by the usual translationally invariant counter-terms plus some
counter-terms supported on the surface.

In the mixed position momentum space, the possible propagators can be written as the sum of two
terms. The first term is the propagator of the translationally invariant theory CB and the second term
denoted by CS,? corresponds to the part that breaks translation invariance. By definition, CS,? de-
pends on the considered boundary condition with ? ∈ {D,N,R}. Inserting this decomposition in the
Feynman graph expansion, we obtain graphs involving exclusively CB (i.e. bulk graphs), and others
involving CS,? or CS,? and CB (i.e. surface graphs). In15 and in a different context in31, the authors
argued that the power counting of the surface graphs is better by one scaling dimension than its bulk
counterpart. We also mention the recent results1,2 on the 2D Ising model in cylindrical domains, in
which the authors proceeded similarly by decomposing the generating function of correlations of
observables located inside the volume into a bulk part (which in this case denotes the infinite plane
counterpart of the considered model), plus a remainder denoted as the "edge" that accounts for the
boundary effects. Their approach led to bounds on the "edge" part which are dimensionally better
by one scaling dimension as compared to the bulk. A similar situation is expected in the context of
the semi-infinite model15, by decomposing the correlation distributions into bulk and surface parts.
The bulk part consists of all Feynman bulk integrals, which are identical to those of the translation-
ally invariant theory, up to the restriction z≥ 0 on z-integrations. This implies that these graphs can
be renormalized using the same counter-terms as for φ 4

4 in R4 with an interaction supported on the
half-space which will be called in this paper the bulk theory. The remaining surface part contains
surface Feynman graphs and these turn out, as we establish in the sequel, to be renormalized by
adding position independent counter-terms supported on the surface. One of the important results
of the present paper in agreement with the findings of1,2, is that we obtain that the surface part
admits a power counting dimensionally better by one scaling dimension as compared to its bulk
counterpart. This modified scaling dimension appears in Theorem 1.

Our technique of proof is based on constructing a solution to the flow equation of the semi-infinite
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model derived in6 which has the following form

DΛ,Λ0
l,n ((z1, p1), · · · ,(zn, pn))+S Λ,Λ0

l,n;? ((z1, p1), · · · ,(zn, pn))

where DΛ,Λ0
l,n are the correlation distributions of the bulk theory. The surface correlation distribu-

tions S Λ,Λ0
l,n;? are defined inductively by a specific flow equation obtained from the respective flow

equations of the semi-infinite model and the bulk theory, by imposing that DΛ,Λ0
l,n +S Λ,Λ0

l,n;? is a so-
lution of the semi-infinite flow equation. These surface correlation distributions are the object of
interest of this paper since they contain all surface singularities (at Λ = Λ0) that can arise from the
propagator CS,? and hence are renormalized by the so-called surface counter-terms or equivalently
counter-terms supported on the surface. In this paper, we will not look in detail into the bulk cor-
relation distributions DΛ,Λ0

l,n , but we rather use their uniform boundedness w.r.t. the UV cutoff Λ0
which can be obtained in the case of BPHZ renormalization conditions analogously to the bounds
in6. As we mentionned before, this raises the possibility that the corresponding counter-terms de-
pend on the position. The renormalization of S Λ,Λ0

l,n;? implies that at Λ = Λ0 the effective action has
the following form

LΛ0,Λ0
R (φ) =

∫
R+

dz
∫

R3
d3x

(
λ

4!
φ

4(z,x)+
1
2

aΛ0
B (z)φ 2(z,x)− 1

2
sΛ0

B (z)φ(z,x)∂zφ(z,x)

−1
2

bΛ0
B (z)φ(z,x)∆xφ(z,x)− 1

2
dΛ0

B (z)φ(z,x)∂ 2
z φ(z,x)+

1
4!

cΛ0
B (z)φ 4(z,x)

)
+
∫

R3
d3x
(

1
2

sΛ0
R + c eΛ0

R

)
φ

2(0,x), (1)

where c denotes the Robin parameter associated to Robin boundary conditions, and the position
dependent counter-terms are those renormalizing the bulk theory.

The exposition is organized as follows. In Section II, we review the basic setting and recall some
basic properties of the Robin, Neumann, Dirichlet and bulk heat kernels. Section III is devoted to
define the scalar field theory in R4 with a quartic self-interaction restricted to the half-space R+×R3.
The CAS of this theory obey the standard flow equations of the φ 4

4 -theory in R4, with the exception
that the z , z′ integrations appearing on the RHS of the flow equations are restricted to R+ instead of
R. The bare interaction corresponding to this theory reads

LΛ0,Λ0
B (φ) =

∫
R+

dz
∫

R3
d3x

(
λ

4!
φ

4(z,x)+
1
2

aΛ0
B (z)φ 2(z,x)− 1

2
sΛ0

B (z)φ(z,x)∂zφ(z,x)

−1
2

bΛ0
B (z)φ(z,x)∆xφ(z,x)− 1

2
dΛ0

B (z)φ(z,x)∂ 2
z φ(z,x)+

1
4!

cΛ0
B (z)φ 4(z,x)

)
,

where aΛ0
B (z), sΛ0

B (z), bΛ0
B (z), dΛ0

B (z) and cΛ0
B (z) are the bulk counter-terms which can depend

(smoothly) on z since the interaction breaks translation invariance. In Section IV, we construct
the surface correlation distributions S Λ,Λ0

l,n;? associated to the boundary condition ?. In Section V,
we introduce the trees and forest structures together with their corresponding weight factors which
we need later in stating Theorem 1. Section VI is the central part of this paper. We present Theorem
1 which contains the power counting for the connected amputated Schwinger distributions (CAS)
S Λ,Λ0

l,n;? as well as their boundedness w.r.t. to Λ0 with ? denoting either Robin or Neumann boundary
conditions. Then, Proposition 4 proves that the Dirichlet surface correlation distributions can be
viewed as the limit of Robin surface correlation distributions when the Robin parameter c is taken
to infinity. Theorem 1 together with Proposition 4 imply Corollary 1 which states that the Dirichlet
surface correlation distributions when smeared with Dirichlet heat kernels are irrelevant. First order
calculations in perturbation theory9,10 suggest that the amputated theory is renormalized differently
as compared to the non-amputated one in the sense that the tadpole needs more counter-terms de-
pending on whether one of its external points is on the surface or not. We confirm this statement
to all orders of perturbation theory in Section VII. In the Appendices, we collect technical lemmas
which we use in the proof of Theorem 1.
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II. THE HEAT KERNELS AND THE PROPAGATORS

A. Some notations and the heat kernels

In the sequel, we will be using the following notations∫
z

:=
∫

∞

0
dz, ~pn := (p1, · · · , pn) , (~zn,~pn) := ((z1, p1), · · · ,(zn, pn)) ,

zi, j = (zi, · · · ,z j) , ~pi, j = (pi, · · · , p j) , 1≤ i≤ j ≤ n,
‖~pn‖ := max

1≤i≤n
|pi|.

We will also use the mixed position-momentum space representation which consists in taking the
partial Fourier transform w.r.t. the variable x∈R3. We recall that in this representation, the Dirichlet,
Neumann and Robin propagators simply read16

CD(p;z,z′) =
1

2
√

p2 +m2

[
e−
√

p2+m2|z−z′| − e−
√

p2+m2|z+z′|
]
, (2)

CN(p;z,z′) =
1

2
√

p2 +m2

[
e−
√

p2+m2|z−z′|+ e−
√

p2+m2|z+z′|
]
, (3)

CR(p;z,z′) =
1

2
√

p2 +m2

[
e−
√

p2+m2|z−z′|+
√

p2 +m2− c√
p2 +m2 + c

e−
√

p2+m2|z+z′|
]
, c > 0 . (4)

Note that the Dirichlet boundary condition corresponds to c→ +∞ and the Neumann boundary
condition to c = 0. For ? ∈ {D,R,N}, the propagator C? can also be written as

C?

(
p;z,z′

)
=
∫

∞

0
dλ e−λ (p2+m2) p?

(
λ ;z,z′

)
, (5)

where the Dirichlet, Neumann and Robin heat kernels read for z, z′ ≥ 0

pD

(
1

Λ2 ;z,z′
)
= pB

(
1

Λ2 ;z,z′
)
− pB

(
1

Λ2 ;z,−z′
)
, (6)

pN

(
1

Λ2 ;z,z′
)
= pB

(
1

Λ2 ;z,z′
)
+ pB

(
1

Λ2 ;z,−z′
)
, (7)

pR

(
1

Λ2 ;z,z′
)
= pB

(
1

Λ2 ;z,z′
)
+ pB

(
1

Λ2 ;z,−z′
)
−2

∫
∞

0
dw e−w pB

(
1

Λ2 ;z,−w
c
− z′
)
, (8)

and the bulk heat kernel pB is given by

pB
(
τ;z,z′

)
=

1√
2πτ

e−
(z−z′)2

2τ , τ > 0 . (9)

It verifies the following basic properties:

• (The bulk semi-group property) For z1 and z2 in R∫
R

du pB(τ1;z1,u) pB(τ2;u,z2) = pB(τ1 + τ2;z1,z2) . (10)

• (The ? semi-group property) For z1 and z2 in R+ and ? ∈ {D,N,R}, we have∫
R+

du p?(τ1;z1,u) p?(τ2;u,z2) = p?(τ1 + τ2;z1,z2) . (11)
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• (Completeness) For z1 in R, we have∫
R

du pB(τ1;z1,u) = 1 . (12)

• For z1 and z2 in R+, we have∫
R

du pB(τ1;z1,u) pB(τ2;u,z2)≤ 2
∫

R+
du pB(τ1;z1,u) pB(τ2;u,z2) . (13)

• For δ ≥ 0, τδ = (1+δ )τ and z1,z2 ∈ R+, we have

pB (τ;z1,z2)≤
√

1+δ pB (τδ ;z1,z2) (14)

and for δ ′ > δ

|z1− z2|r pB (τδ ;z1,z2)≤Cδ ,δ ′ τ
r
2 pB (τδ ′ ;z1,z2) , (15)

where

Cδ ,δ ′ =

√
1+δ ′

1+δ
‖xre

− x2
2

δ ′−δ

(1+δ )(1+δ ′) ‖∞ ≤ O(1) |δ −δ
′|−

r
2 . (16)

• For z, z′ ∈ R+, τ > 0 and c≥ 0, we have

pB
(
τ;z,−z′

)
≤ pB

(
τ;z,z′

)
,

∫
R+

dw e−w pB

(
τ;z,−z′− w

c

)
≤ pB

(
τ;z,z′

)
. (17)

B. The regularized propagators

We denote by ? the type of boundary conditions considered. For 0 ≤ Λ ≤ Λ0, we define the
regularized flowing propagator associated to the boundary condition ?∈ {D,N,R} as follows:

CΛ,Λ0
? (p;z,z′) :=

∫ 1
Λ2

1
Λ2

0

dλ p?
(
λ ;z,z′

)
e−λ(p2+m2). (18)

This can also be rewritten as

CΛ,Λ0
?

(
p;z,z′

)
=CΛ,Λ0

B

(
p;z,z′

)
+CΛ,Λ0

S,?

(
p;z,z′

)
, (19)

where

CΛ,Λ0
B (p;z,z′) :=

∫ 1
Λ2

1
Λ2

0

dλ pB
(
λ ;z,z′

)
e−λ(p2+m2) (20)

and

CΛ,Λ0
S,? (p;z,z′) :=

∫ 1
Λ2

1
Λ2

0

dλ pS,?
(
λ ;z,z′

)
e−λ(p2+m2), (21)

with the surface heat kernel pS,? defined as p?− pB. In the case of Robin boundary conditions,
the surface Robin heat kernel is given by

pS,R

(
1

Λ2 ;z,z′
)

:= pB

(
1

Λ2 ;z,−z′
)
−2

∫
∞

0
dw e−w pB

(
1

Λ2 ;z,−w
c
− z′
)
. (22)
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Note that the Robin heat kernel and pS,R are uniformly bounded w.r.t. the Robin parameter c.
Namely, we have using (17)

pR
(
τ;z,z′

)
≤ 4 pB

(
τ;z,z′

)
, pS,R

(
τ;z,z′

)
≤ 3 pB

(
τ;z,−z′

)
, (23)

for all z,z′ ≥ 0, τ > 0 and c≥ 0. Similarly, we also have

pD
(
τ;z,z′

)
≤ pN

(
τ;z,z′

)
≤ 2 pB

(
τ;z,z′

)
. (24)

In the sequel, we denote the derivative of the flowing propagators w.r.t. Λ by

ĊΛ
• (p;z,z′) =

∂

∂Λ
CΛ,Λ0
• (p;z,z′) = ĊΛ(p) p•

(
1

Λ2 ;z,z′
)

, (25)

where ĊΛ(p) =− 2
Λ3 e−

p2+m2

Λ2 and • ∈ {?,{S,?} ,B} with ? ∈ {D,N,R}.
Given a polynomial P and w ∈ N3, we have the following estimate on the 3-dimensional
covariance ∣∣∣∂ wĊΛ (p) P

( p
Λ

)∣∣∣≤ (Λ+m)−3−|w| P̃

(
|p|

Λ+m

)
, ∀ p ∈ R3, (26)

where P̃ is a polynomial with positive coefficients. We refer to (34) for the multi-index w
notation.

III. THE BULK THEORY ON THE HALF-SPACE R+×R3

A. The Action and the Flow Equations

We consider the theory of a real scalar field φ with mass m on the four dimensional Euclidean space-
time R4 within the framework of functional integration. The point of departure to define this theory
is to write the associated regularized path integral which is uniquely defined by the corresponding
gaussian measure. The regularized flowing propagator is given by (20). Note that for Λ→ 0 and
Λ0→ ∞ we recover the unregularized propagator. For finite Λ0 and in finite volume the positivity
and the regularity properties of CΛ,Λ0

B permit to define the theory rigorously from the functional
integral

e−
1
h̄

(
L

Λ,Λ0
B (φ)+IΛ,Λ0

)
: =

∫
dµ

Λ,Λ0
B (Φ) e−

1
h̄ L

Λ0 ,Λ0
B (Φ+φ) , (27)

LΛ,Λ0
B (0) = 0 ,

where the factors of h̄ have been introduced with regard to a systematic loop expansion considered
later. Here, the Gaussian measure dµ

Λ,Λ0
B is of mean zero and covariance h̄CΛ,Λ0

B . The test function
φ is in the support of dµ

Λ,Λ0
B which in particular implies that it is in C ∞

(
R4
)
. This regularity stems

from the UV-regularization determined by the cutoff Λ0 which is imperative to have a well-defined
functional integral. The normalization factor e−

1
h̄ IΛ,Λ0 is due to vacuum contributions. It diverges in

infinite volume so that we can take the infinite volume limit only when it has been eliminated20. We
do not make the finite volume explicit here since it plays no role in the sequel.

The functional LΛ0,Λ0
B (φ) is the bare interaction of a renormalizable theory including counter-

terms, viewed as a formal power series in h̄. It contains the tree order interaction and the related
counter-terms. The interaction is supported only on the half-space R+ ×R3 which implies that
translation invariance is broken in the z-direction (the semi-line). This raises the possibility that the
counter-terms may be z-dependent. In general, the constraints on the bare action result from the
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Renormalization of φ 4
4 theory on the half-space R+×R3 with flow equations II 7

symmetry properties of the theory which are imposed, on its field content and on the form of the
propagator. It is therefore natural to consider the general bare interaction

LΛ0,Λ0
B (φ) =

λ

4!

∫
z

∫
R3

d3xφ
4(z,x)+

1
2

∫
z

∫
R3

d3x
(

aΛ0
B (z)φ 2(z,x)−bΛ0

B (z)φ(z,x)∆xφ(z,x) (28)

−dΛ0
B (z)φ(z,x)∂ 2

z φ(z,x)− sΛ0
B (z)φ(z,x)(∂zφ)(z,x)+

2
4!

cΛ0
B (z)φ 4(z,x)

)
.

Here we supposed the theory to be symmetric under φ →−φ , and we included in (28) only relevant
terms in the sense of the renormalization group. The functions aΛ0

B (z), bΛ0
B (z), cΛ0

B (z), dΛ0
B (z) and

sΛ0
B (z) are supposed to be smooth.

The flow equation (FE) is obtained from (27) on differentiating w.r.t. Λ. For the steps of the com-
putation, we refer the reader to5,20,27. It is a differential equation for the functional LΛ,Λ0

B :

∂Λ(L
Λ,Λ0
B + IΛ,Λ0) =

h̄
2
〈 δ

δφ
,ĊΛ

B
δ

δφ
〉LΛ,Λ0

B − 1
2
〈 δ

δφ
LΛ,Λ0

B ,ĊΛ
B

δ

δφ
LΛ,Λ0

B 〉 . (29)

By 〈,〉 we denote the standard inner product in L2(R+×R3).
We expand the functional LΛ,Λ0

B (φ) in a formal power series w.r.t. h̄,

LΛ,Λ0
B (φ) =

∞

∑
l=0

h̄lLΛ,Λ0
l,B (φ) .

Corresponding expansions for aΛ0
B (z), bΛ0

B (z)..., are aΛ0
B (z) = ∑

∞
l=1 h̄laΛ0

l,B(z), etc. From LΛ,Λ0
l,B (φ) we

obtain the CAS distributions of loop order l as

DΛ,Λ0
l,n ((z1,x1), · · · ,(zn,xn)) := δφ(z1,x1) · · ·δφ(zn,xn)L

Λ,Λ0
l,B |φ=0 ,

where we used the notation δφ(z,x) = δ/δφ(z,x) .
In the pz-representation, we set for r, r1 and r2 ∈ N∗ and

Φn(z2, · · · ,zn) :=
n

∏
i=2

φi(zi), φi ∈S (R+)

D
Λ,Λ0;(i)
l,n;r (z1;~pn;Φn) :=

∫
(R+)n−1

dz2,n (z1− zi)
rDΛ,Λ0

l,n ((z1, p1), · · · ,(zn, pn))φ2(z2) · · ·φn(zn),

(30)

D
Λ,Λ0;(i, j)
l,n;r1,r2

(z1;~pn;Φn) :=
∫
(R+)n−1

dz2,n (z1− zi)
r1(z1− z j)

r2DΛ,Λ0
l,n ((z1, p1), · · · ,(zn, pn))

×φ2(z2) · · ·φn(zn), r1 + r2 = r, (31)

and for r = 0

DΛ,Λ0
l,n (z1;~pn;Φn) :=

∫
(R+)n−1

dz2,n DΛ,Λ0
l,n ((z1, p1), · · · ,(zn, pn))φ2(z2) · · ·φn(zn) . (32)

Here we denote

δ
(3)(p1+· · ·+ pn)D

Λ,Λ0
l,n ((z1, p1), · · · ,(zn, pn))= (2π)3(n−1) δ n

δφ(z1, p1) · · ·δφ(zn, pn)
LΛ,Λ0

l,B (φ)|φ≡0 .
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Renormalization of φ 4
4 theory on the half-space R+×R3 with flow equations II 8

The distribution δ (3)(p1 + · · ·+ pn) appears because of translation invariance in the x directions.
The FE for the CAS distributions derived from (29) are

∂Λ∂
wDΛ,Λ0

l,n ((z1, p1), · · · ,(zn, pn))

=
1
2

∫
R+

dz
∫

R+
dz′

∫
k

∂
wDΛ,Λ0

l−1,n+2

(
(z1, p1), · · · ,(zn, pn),(z,k),(z′,−k)

)
ĊΛ

B (k;z,z′)

− 1
2

∫
R+

dz
∫

R+
dz′

′

∑
l1,l2

′

∑
n1,n2

∑
wi

cwi

[
∂

w1DΛ,Λ0
l1,n1+1((z1, p1), · · · ,(zn1 pn1),(z, p))∂ w3ĊΛ

B (p;z,z′)

× ∂
w2DΛ,Λ0

l2,n2+1((z
′,−p), · · · ,(zn, pn))

]
rsym

,

p =−p1−·· ·− pn1 = pn1+1 + · · ·+ pn . (33)

The number |w| of momentum derivatives, is characterized by a multi-index. We use the shorthand
notation

∂
w :=

n

∏
i=1

3

∏
µ=0

(
∂

∂ pi,µ

)wi,µ

with w = (w1,0, · · · ,wn,3), |w|= ∑
i,µ

wi,µ , wi,µ ∈ N∗ . (34)

The symbol "rsym" means summation over those permutations of the momenta (z1, p1), · · ·
,(zn, pn), which do not leave invariant the (unordered) subsets ((z1, p1), · · · ,(zn1 , pn1)) and
((zn1+1, pn1+1) , · · · ,(zn, pn)), and therefore, produce mutually different pairs of (unordered) image
subsets, and the primes restrict the summations to n1 + n2 = n, l1 + l2 = l, w1 + w2 + w3 = w,
respectively. The combinatorial factor c{wi} = w!(w1!w2!w3!)−1 stems from Leibniz’s rule.

B. Test functions and boundary conditions

The n-point correlation "functions" DΛ,Λ0
l,n when considered in the pz-representation are tempered

distributions which belong for fixed ~pn to the space S ′ (R+n) w.r.t. the semi-norms

n

∏
i=1

N2 (φi) ,

where N2(φ) := sup0≤α,β≤2
∥∥(1+ zβ )∂ α

z φ(z)
∥∥

∞
and ∂zφ |z=0 = limz→0+ ∂zφ . For additional infor-

mations on the topological construction of S ′ (R+), we refer the reader to29. Our method of proof
relies on inductive bounds deduced from the flow equations (33). The induction restricts our choice
of the test functions. To proceed inductively we cannot admit any arbitrary test function in S (R+n).
Let us give the set of test functions we will be using in the sequel: For 2≤ s≤ n, we define

τ := infτ2,s, where τ2,s = (τ2, · · · ,τs) with τi > 0 ,

and similarly z2,s = (z2, · · · ,zs). Given (y2, · · · ,ys) ∈ Rs−1, we define

φτ2,s,y2,s(z2,s) :=
s

∏
i=2

pB(τi;zi,yi)
n

∏
i=s+1

χ
+(zi) , (35)

where χ+ is the characteristic function of the semi-line R+. This definition can be generalized by
choosing any other subset of s− 1 coordinates among z2, · · · ,zn . The characteristic functions χ+

are introduced in order to be able to extract the relevant terms in the sense of the renormalization
group from the full n-point distributions and to get inductive control of the local counter terms.
To go further one could either prove (in a more functional analysis type of approach) that our test
functions are dense in the set of smooth rapidly decaying functions on R+ w.r.t. a suitable norm and
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Renormalization of φ 4
4 theory on the half-space R+×R3 with flow equations II 9

that DΛ,Λ0
l,n (z1;~pn;Φn) are continuous w.r.t. this semi-norm. Given the test functions φ2, φ3 and φ4

in S (R+), we define

Φ4(z2,z3,z4) =
4

∏
i=2

φi(zi) .

The relevant terms contained in

DΛ,Λ0
l,2

(
z1;~0;φ2

)
:=
∫

z2

DΛ,Λ0
l,2 ((z1,0),(z2,0))φ2(z2) (36)

and

DΛ,Λ0
l,4

(
z1;~0;Φ4

)
:=
∫

z2,4

DΛ,Λ0
l,4 ((z1,0), · · · ,(z4,0))Φ4 (z2,z3,z4) , (37)

are then extracted using a Taylor expansion of the test functions φ2 and Φ4, which gives

DΛ,Λ0
l,2 (z1;0,0;φ2) = aΛ,Λ0

l,B (z1)φ2(z1)− sΛ,Λ0
l,B (z1)(∂z1φ2)(z1)

−dΛ,Λ0
l,B (z1)(∂

2
z1

φ2)(z1)+ lΛ,Λ0
l,2;B (z1;φ2) , (38)(

∂p2D
Λ,Λ0
l,2

)
(z1;0,0;φ2) = bΛ,Λ0

l,B (z1)φ2(z1)+
(

∂p2 lΛ,Λ0
l,2

)
(z1;φ2) , (39)

DΛ,Λ0
l,4 (z1;0, · · · ,0;Φ4) = cΛ,Λ0

l,B (z1)φ2(z1)φ3(z1)φ4(z1)+ lΛ,Λ0
l,4,B (z1;Φ4) . (40)

Then the relevant terms appear as

aΛ,Λ0
l,B (z1) =

∫
∞

0
dz2 DΛ,Λ0

l,2 ((z1,0),(z2,0)) , (41)

sΛ,Λ0
l,B (z1) =

∫
∞

0
dz2 (z1− z2)D

Λ,Λ0
l,2 ((z1,0),(z2,0)) , (42)

dΛ,Λ0
l,B (z1) =−

1
2

∫
∞

0
dz2 (z1− z2)

2DΛ,Λ0
l,2 ((z1,0),(z2,0)) , (43)

bΛ,Λ0
l,B (z1) =

∫
∞

0
dz2 ∂p2

(
DΛ,Λ0

l,2 ((z1, p),(z2,−p))
)
|p=0

, (44)

cΛ,Λ0
l,B (z1) =

∫
∞

0
dz2dz3dz4 DΛ,Λ0

l,4 ((z1,0), · · · ,(z4,0)) , (45)

and the remainders lΛ,Λ0
l,2,B (z1;φ2),

(
∂p2 lΛ,Λ0

l,2,B

)
(z1;φ2) and lΛ,Λ0

l,4,B (z1;Φ4) can be written as

lΛ,Λ0
l,2,B (z1;φ2) =

∫
∞

0
dz2

∫ 1

0
dt

(1− t)2

2!
∂

3
t φ2 (tz2 +(1− t)z1)D

Λ,Λ0
l,2 ((z1;0),(z2;0)) , (46)

(
∂p2 lΛ,Λ0

l,2,B

)
(z1;φ2) =

∫
∞

0
dz2

∫ 1

0
dt ∂tφ2 (tz2 +(1− t)z1)∂p2

(
DΛ,Λ0

l,2 ((z1, p),(z2,−p))
)
|p=0

and

lΛ,Λ0
l,4,B (z1;Φ4)

=
∫
(R+)3

dz2,4 DΛ,Λ0
l,4 ((z1,0), · · · ,(z4,0))

[∫ 1

0
dt ∂tφ2 (tz2 +(1− t)z1)φ3(z3)φ4(z4)

+φ2(z1)
∫ 1

0
dt ∂tφ3 (tz3 +(1− t)z1)φ4(z4)+φ2(z1)φ3(z1)

∫ 1

0
dt ∂tφ4 (tz4 +(1− t)z1)

]
. (47)
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Renormalization of φ 4
4 theory on the half-space R+×R3 with flow equations II 10

Boundary conditions at Λ = Λ0:
The bare interaction implies that at Λ = Λ0

DΛ0,Λ0
l,2 ((z1, p),(z2,−p)) =

(
aΛ0

l;B(z1)+bΛ0
l;B(z1)p2− sΛ0

l;B(z1)∂z1 −dΛ0
l;B(z1)∂

2
z1

)
δ (z1− z2) ,

DΛ0,Λ0
l,4 ((z1, p1), · · · ,(z4, p4)) =

(
λδl,0 + cΛ0

l;B(z1)(1−δl,0)
) 4

∏
i=2

δ (z1− zi) .

DΛ0,Λ0
l,n ((z1, p1), · · · ,(zn, pn)) = 0 , ∀n≥ 5. (48)

Renormalization conditions at Λ = 0 (BPHZ renormalization conditions):
The renormalization conditions are fixed at Λ = 0 by imposing for all z1 ≥ 0

a0,Λ0
l,B (z1)≡ 0, s0,Λ0

l,B (z1)≡ 0, d0,Λ0
l,B (z1)≡ 0, b0,Λ0

l,B (z1)≡ 0, c0,Λ0
l,B (z1)≡ 0 . (49)

These will be adopted in the following. Note that the boundary conditions are invariant under O(3)-
symmetry. In the sequel, we need the following result:

Proposition 1. For 0≤ Λ≤ Λ0 < ∞, 1≤ s≤ n, 2≤ i≤ n and 0≤ r≤ 3, we consider test functions
of the form φτ2,s,y2,s(z2,s), which are also denoted in shorthand as φτ2,s,y2,s .
Adopting (48)-(49) we claim

∣∣∣∂ wD
Λ,Λ0;(i)
l,n;r (z1;~pn;φτ2,s,y2,s)

∣∣∣
≤ (Λ+m)4−n−|w|−r P1

(
log

Λ+m
m

)
P2

(
‖~pn‖
Λ+m

)
Q1

(
τ−

1
2

Λ+m

)
F Λ

s,l;δ (τ2,s) , (50)

∣∣∣∂ wD
Λ,Λ0;(i, j)
l,n;r1,r2

(z1;~pn;φτ2,s,y2,s)
∣∣∣

≤ (Λ+m)4−n−|w|−r1−r2 P ′
1

(
log

Λ+m
m

)
P ′

2

(
‖~pn‖
Λ+m

)
Q′1

(
τ−

1
2

Λ+m

)
F Λ

s,l;δ (τ2,s) , (51)

and ∂ wD
Λ,Λ0;(i)
l,n;r (z1;~pn;φτ2,s,y2,s) is continuous w.r.t. z1 . Here, Pi and Qi denote polynomials with

non-negative coefficients which depend on l,n, |w|,r, but not on {pi}, Λ, Λ0 and z1. The polynomials
Qi are reduced to a constant if s = 1, and for l = 0 all polynomials Pi and Qi reduce to constants.

Since we considered the bulk theory in the mixed position-momentum space together with im-
posing BPHZ renormalization conditions, the proof of proposition 1 follows step by step the proof
of Theorem 1 in6. For the sake of simplicity, we do not reproduce here the full proof and we refer
the reader to6 for the details.
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Renormalization of φ 4
4 theory on the half-space R+×R3 with flow equations II 11

IV. THE SURFACE CORRELATION DISTRIBUTIONS

A. The semi-infinite theory

In this subsection, we recall the flow equations of the semi-infinite massive scalar field model
presented in6:

∂Λ∂
wL Λ,Λ0

l,n;? ((z1, p1), · · · ,(zn, pn))

=
1
2

∫
z

∫
z′

∫
k

∂
wL Λ,Λ0

l−1,n+2;?

(
(z1, p1), · · · ,(zn, pn),(z,k),(z′,−k)

)
ĊΛ
? (k;z,z′)

− 1
2

∫
z

∫
z′

′

∑
l1,l2

′

∑
n1,n2

∑
wi

cwi

[
∂

w1L Λ,Λ0
l1,n1+1;?((z1, p1), · · · ,(zn1 pn1),(z, p))∂ w3ĊΛ

? (p;z,z′)

× ∂
w2L Λ,Λ0

l2,n2+1;?((z
′,−p), · · · ,(zn, pn))

]
rsym

,

p =−p1−·· ·− pn1 = pn1+1 + · · ·+ pn . (52)

where CΛ,Λ0
? (p;z,z′) is defined in (19) and L Λ,Λ0

l,n;? ((z1, p1), · · · ,(zn, pn)) denote the semi-infinite
correlation distributions at loop order l and with n external points. The ? index refers to the type
of considered boundary conditions, namely Dirichlet, Neumann and Robin. In6, we imposed the
following mixed boundary conditions:

• At Λ = Λ0:

L Λ0,Λ0
l,2;? ((z1, p),(z2,−p)) =

(
aΛ0

l;?(z1)+bΛ0
l;?(z1)p2− sΛ0

l;?(z1)∂z1 −dΛ0
l;? (z1)∂

2
z1

)
δ (z1− z2) ,

L Λ0,Λ0
l,4;? ((z1, p1), · · · ,(z4, p4)) = λδl,0 + cΛ0

l;?(z1)(1−δl,0)
4

∏
i=2

δ (z1− zi) .

L Λ0,Λ0
l,n;? ((z1, p1), · · · ,(zn, pn)) = 0 , ∀n≥ 5. (53)

• At Λ = 0: We impose BPHZ type renormalization conditions. Namely, for all z1 ≥ 0 we set

a0,Λ0
l;? (z1)≡ 0, s0,Λ0

l;? (z1)≡ 0, d0,Λ0
l;? (z1)≡ 0, b0,Λ0

l;? (z1)≡ 0, c0,Λ0
l;? (z1)≡ 0 , (54)

where

aΛ,Λ0
l;? (z1) =

∫
∞

0
dz2 L Λ,Λ0

l,2;? ((z1,0),(z2,0)) , (55)

sΛ,Λ0
l;? (z1) =

∫
∞

0
dz2 (z1− z2)L

Λ,Λ0
l,2;? ((z1,0),(z2,0)) , (56)

dΛ,Λ0
l;? (z1) =−

1
2

∫
∞

0
dz2 (z1− z2)

2L Λ,Λ0
l,2;? ((z1,0),(z2,0)) , (57)

bΛ,Λ0
l;? (z1) =

∫
∞

0
dz2 ∂p2

(
L Λ,Λ0

l,2;? ((z1, p),(z2,−p))
)
|p=0

, (58)

cΛ,Λ0
l;? (z1) =

∫
∞

0
dz2dz3dz4 L Λ,Λ0

l,4;? ((z1,0), · · · ,(z4,0)) . (59)

This yielded five position dependent counter-terms which appear in the bare interaction of our semi-
infinite model

LΛ0,Λ0
? (φ)=

λ

4!

∫
R+

dz
∫

R3
d3x φ

4(z,x)+
1
2

∫
R+

dz
∫

R3
d3x

(
aΛ0
? (z)φ 2(z,x)−bΛ0

? (z)φ(z,x)∆xφ(z,x)

−dΛ0
? (z)φ(z,x)∂ 2

z φ(z,x)− sΛ0
? (z)φ(z,x)(∂zφ)(z,x)+

2
4!

cΛ0
? (z)φ 4(z,x)

)
. (60)
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Renormalization of φ 4
4 theory on the half-space R+×R3 with flow equations II 12

In our previous work6, we saw that imposing constant renormalization conditions w.r.t. the position
z at the scale Λ = 0 is at the expense of obtaining position dependent counter-terms and bounds
which do not seprate the bulk from the surface effects. In this work, we aim to differentiate the
bulk and surface effects. Our strategy is based on extracting the surface counter-terms from the
semi-infinite counter-terms by separating the bulk and the surface effects in the definition of the
semi-infinite correlation distributions. Concretely, we proceed by subtracting the bulk correlation
distributions defined in Section III from the semi-infinite correlation distributions and study the
behaviour of the difference to which we refer as the surface correlation distributions. Namely, we
write

S Λ,Λ0
l,n;? ((~zn,~pn)) := L Λ,Λ0

l,n;? ((~zn,~pn))−DΛ,Λ0
l,n ((~zn,~pn)) . (61)

The definition (61) allows to write the FEs verified by S Λ,Λ0
l,n;? , which we give explicitly in the next

subsection.

B. The surface correlation distributions

Before getting to the mathematical definition of the surface correlation distributions, let us give
a brief motivation based on a diagrammatic approach to the renormalization problem of the semi-
infinite scalar field model. The propagator associated to the b.c. ? can be decomposed into a sum of
the two contributions given in (19), where CΛ,Λ0

B is the regularized bulk propagator which is respon-
sible for the singularities arising from coalescing of points and CΛ,Λ0

S,? is the part which is responsible
of singularities arising when a point approaches the surface. Therefore, an arbitrary Feynman dia-
gram of the semi-infinite model can be written as the sum of a diagram which contains only bulk
internal lines consisting of propagators CΛ,Λ0

B only, and other diagrams which contain at least one
surface internal line given by the propagator CΛ,Λ0

S,? . Renormalizing the massive semi-infinite model
then amounts to renormalizing the diagrams with only bulk internal lines and those with at least a
surface internal line. This approach has the advantage to disentangle the surface divergences from
the bulk divergences. From the renormalization group point of view, we proceed similarly by writ-
ing (61) with DΛ,Λ0

l,n (resp. S Λ,Λ0
l,n;? ) consisting of all connected amputated diagrams with n external

legs and l loops involving exclusively CΛ,Λ0
B (resp. CΛ,Λ0

B and at least one CΛ,Λ0
S,? ). Using the flow

equations (33) and (52), we obtain the flow equations verified by the surface correlation distributions
S Λ,Λ0

l,n;? ((z1, p1), · · · ,(zn, pn))

∂ Λ∂
wS Λ,Λ0

l,n;? ((z1, p1), · · · ,(zn, pn))

=
1
2

∫
z,z′

∫
k

∂
wS Λ,Λ0

l−1,n+2;?

(
(z1, p1), · · · ,(zn, pn),(z,k),(z′,−k)

)
ĊΛ
? (k;z,z′)

+
1
2

∫
z,z′

∫
k

∂
wDΛ,Λ0

l−1,n+2

(
(z1, p1), · · · ,(zn, pn),(z,k),(z′,−k)

)
ĊΛ

S,?(k;z,z′)

− 1
2

∫
z,z′

′

∑
l1,l2

′

∑
n1,n2

∑
wi

cwi[
∂

w1S Λ,Λ0
l1,n1+1;?((z1, p1), · · · ,(zn1 , pn1),(z, p))∂ w3ĊΛ

? (p;z,z′) ∂
w2S Λ,Λ0

l2,n2+1;?((z
′,−p), · · · ,(zn, pn))

+∂
w1DΛ,Λ0

l1,n1+1((z1, p1), · · · ,(zn1 , pn1),(z, p))∂ w3ĊΛ
? (p;z,z′) ∂

w2S Λ,Λ0
l2,n2+1;?((z

′,−p), · · · ,(zn, pn))

+∂
w1S Λ,Λ0

l1,n1+1;?((z1, p1), · · · ,(zn1 , pn1),(z, p))∂ w3ĊΛ
? (p;z,z′)∂ w2DΛ,Λ0

l2,n2+1((z
′,−p), · · · ,(zn, pn))

+∂
w1DΛ,Λ0

l1,n1+1((z1, p1), · · · ,(zn1 , pn1),(z, p))∂ w3ĊΛ
S,?(p;z,z′)∂ w2DΛ,Λ0

l2,n2+1((z
′,−p), · · · ,(zn, pn))

]
rsym

,

p =−p1−·· ·− pn1 = pn1+1 + · · ·+ pn . (62)

For the tree order l = 0 we have

S Λ,Λ0
0,4;? ((z1, p1), · · · ,(z4, p4)) = 0 . (63)
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Renormalization of φ 4
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The existence of S Λ,Λ0
l,n ((z1, p1), · · · ,(zn, pn)) is ensured by (63) and by the flow equations (62)

through induction in n+2l and in l for fixed n+2l.

C. Boundary and renormalization conditions

For φ1 and φ2 in S (R+), the relevant terms are contained in

S Λ,Λ0
l,2;? (0,0) :=

∫
z1,z2

S Λ,Λ0
l,2;? ((z1,0),(z2,0))φ1(z1)φ2(z2). (64)

They are extracted from (64) by performing a Taylor expansion of the test functions φ1 and φ2
around 0 which gives

S Λ,Λ0
l,2;? (0,0) = sΛ,Λ0

l;? φ1(0)φ2(0)+ eΛ,Λ0
l;;? φ1(0)(∂nφ2)(0)+hΛ0

l;?φ2(0)(∂nφ1)(0)

+ lΛ,Λ0
l,2;? (φ1,φ2) , (65)

with (∂nφ)(0) := limz→0(∂zφ)(z). Then the relevant terms sΛ,Λ0
l;? , eΛ,Λ0

l;? and hΛ,Λ0
l;? are obtained as

sΛ,Λ0
l;? :=

∫
z1,z2

S Λ,Λ0
l,2 ((z1,0),(z2,0)) , eΛ,Λ0

l;? :=
∫

z1,z2

z2 S Λ,Λ0
l,2 ((z1,0),(z2,0)) ,

hΛ,Λ0
l;? :=

∫
z1,z2

z1 S Λ,Λ0
l,2 ((z1,0),(z2,0)) . (66)

Bose symmetry implies that∫
z1,z2

z2 S Λ,Λ0
l,2;? ((z1,0),(z2,0)) =

∫
z1,z2

z1 S Λ,Λ0
l,2;? ((z1,0),(z2,0)) , (67)

so that the counter-terms eΛ,Λ0
l;? and hΛ,Λ0

l;? are equal to all orders of perturbation theory. The remain-

der lΛ,Λ0
l,2;? (φ1,φ2) has the form

lΛ,Λ0
l,2;? (φ1,φ2) =

(∫
z1,z2

z1z2 S Λ,Λ0
l,2;? ((z1,0),(z2,0))

)
(∂nφ1)(0)(∂nφ2)(0)

+φ1(0)
∫

z1,z2

S Λ,Λ0
l,2;? ((z1,0),(z2,0))

∫ 1

0
dt (1− t)

(
∂

2
t φ2
)
(tz2)

+φ2(0)
∫

z1,z2

S Λ,Λ0
l,2;? ((z1,0),(z2,0))

∫ 1

0
dt (1− t)

(
∂

2
t φ1
)
(tz1)

+(∂nφ1)(0)
∫

z1,z2

z1 S Λ,Λ0
l,2;? ((z1,0),(z2,0))

∫ 1

0
dt (1− t)

(
∂

2
t φ2
)
(tz2)

+(∂nφ2)(0)
∫

z1,z2

z2 S Λ,Λ0
l,2;? ((z1,0),(z2,0))

∫ 1

0
dt (1− t)

(
∂

2
t φ1
)
(tz1)

+
∫

z1,z2

S Λ,Λ0
l,2;? ((z1,0),(z2,0))

(∫ 1

0
dt (1− t)

(
∂

2
t φ1
)
(tz1)

)
×
(∫ 1

0
dt ′ (1− t ′)

(
∂

2
t ′φ2
)
(t ′z2)

)
.

(68)

In the sequel, we use the following notations. For ? ∈ {R,N,D}, we write

∂
wS Λ0,Λ0

l,n;?;r1,r2

(
~pn;φτ1,s,y1,s

)
:=
∫

z1,··· ,zn

zr1
1 zr2

2 ∂
wS Λ,Λ0

l,n;? ((z1, p1), · · · ,(zn, pn))
s

∏
i=1

pB (τi;zi,yi) ,

∂
wS Λ0,Λ0

l,n;?;r1,r2

(
~pn;φ

?
τ1,s,y1,s

)
:=
∫

z1,··· ,zn

zr1
1 zr2

2 ∂
wS Λ,Λ0

l,n;? ((z1, p1), · · · ,(zn, pn))
s

∏
i=1

p? (τi;zi,yi) .
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Renormalization of φ 4
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The boundary conditions imposed on S Λ,Λ0
l,n;? are the following:

• At Λ = Λ0, we impose for ? ∈ {R,N}

S Λ0,Λ0
l,2;? ((z1, p),(z2,−p)) = sΛ0,Λ0

l;? δz1δz2 + eΛ0,Λ0
l;?

(
δz1δ

′
z2
+δ

′
z1

δz2

)
, ∀l ≥ 1 , (69)

S Λ0,Λ0
0,2;? ((z1, p),(z2,−p)) = 0 ,

S Λ0,Λ0
l,n;? ((~zn,~pn)) = 0 , ∀n≥ 4, ∀l ≥ 0 . (70)

• At Λ = 0, we fix the renormalization conditions for ? ∈ {R,N} as

s0,Λ0
l;? = 0, e0,Λ0

l;? = 0 . (71)

• For Dirichlet boundary conditions we impose

S Λ0,Λ0
l,n;D ((~zn,~pn)) = 0, ∀n≥ 2, ∀l ≥ 0 . (72)

Remarks 1. - The boundary conditions (69)-(72) together with the flow equations (62) and the
tree order (63) define uniquely the surface correlation distributions

S Λ,Λ0
l,n;? ((z1, p1), · · · ,(zn, pn)) , ? ∈ {D,R,N} .

This can be verified inductively by taking the difference of two solutions of the flow equa-
tions which obey the same boundary conditions (69)-(72) and by proving to all orders of
perturbation theory that this difference vanishes.

- We would like to emphasize w.r.t. (61) that we do not require any a priori knowledge on the
semi-infinite correlation distributions L Λ,Λ0

l,n;? to give a meaning to S Λ,Λ0
l,n;? . The flow equations

(62) together with the bulk correlation distributions defined in Section III, the tree order (63)
and the boundary conditions (69)-(72) are sufficient to define uniquely the surface correlation
distributions. The relation (61) implies the flow equations to be verified by S Λ,Λ0

l,n;? such that
the sum

DΛ,Λ0
l,n +S Λ,Λ0

l,n;?

is a solution to the FEs (52).

V. TREES, FORESTS AND WEIGHT FACTORS

The bounds on the surface and bulk correlation distributions are specified in terms of weighted
trees and forests, which we define in the following, and for which we also derive some properties that
will be important later. Our trees basically represent tree level Feynman graphs, though this analogy
should not be taken too literally; the trees and the incidence numbers of vertices are independent
of the detailed form of the n-point interactions in the theory, the loop order controls the number
of vertices of incidence number 2 of the trees and forests via a bound, but there is no one-to-one
correspondence between the loop order and the number of these vertices. To each tree/forest, we
assign a weight factor which appears in the bounds. These weight factors consist of products of bulk
heat kernels pB (·;z,z′) with z and z′ vertices of the tree/forest. The main idea behind introducing
these trees is the fact that in perturbation theory, the scaling behaviour of correlation functions
including loop corrections is modified only logarithmically with respect to the tree level. The tree
structure is compatible with the flow equations, in particular with the quadratic term of the bulk flow
equations which we recall

DΛ,Λ0
l1,n1+1 ((~zn1 ,~pn1),(z, p)) pB

(
1

Λ2 ;z,z′
)

DΛ,Λ0
l2,n2+1

(
(~zn1+1,n,~pn1+1,n),(z′,−p)

)
ĊΛ(p).
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The heat kernel pB
(
1/Λ2;z,z′

)
corresponds to an internal line which merges the trees corresponding

to the weight factors that bound each of the terms DΛ,Λ0
li,ni+1.

Since the aim of this paper is to understand the surface effects on the renormalizability of the
semi-inifnite model, we need to introduce additional combinatorial structures which we denote as
surface trees. These have an external point on the surface. The appearance of forests, which are
a collection of surface trees is motivated by the surface part of the propagator CΛ,Λ0

S,? . The FE (62)
contains terms with a factor of ĊS,?

ĊS,?
(
k;z,z′

)
= pS,?

(
1

Λ2 ;z,z′
)

ĊΛ(k). (73)

Using (6)-(8) together with (17), we have∣∣∣∣pS,?

(
1

Λ2 ;z,z′
)∣∣∣∣≤ O(1) pB

(
1

Λ2 ;z,−z′
)
. (74)

Furthermore, for z, z′ ≥ 0 we also have

pB

(
1

Λ2 ;z,−z′
)
≤
√

2π Λ
−1 pB

(
1

Λ2 ;z,0
)

pB

(
1

Λ2 ;z′,0
)
. (75)

The bound (75) will play an important role in the sequel in lowering the power counting of
the surface correlation distributions S Λ,Λ0

l,n;? . Furthermore, the heat kernels pB
(
1/Λ2;z,0

)
and

pB
(
1/Λ2;z′,0

)
imply that the trees corresponding to the weight factors bounding DΛ,Λ0

li,ni+1 in the
flow equation (62) have new external legs (z,0) and (z′,0). This motivates our definition of surface
trees as those trees with an external leg (z,0) (i.e. surface external leg). Now the definition of
forests which consist of a collection of trees is motivated by the fact that the bound (75) produces
two surface external legs and hence two surface trees. The inductive bound of Theorem 1 used
for the surface correlation distributions is then given in terms of weight factors associated with a
product of surface trees, i.e. a forest.
First, we start with some notations that we will use in the sequel:

• For s≥ 1, we denote by σs the set {1, · · · ,s} and for i≤ j we denote by σi: j the set {i, · · · , j}.

• Let Ps be the set of all the partitions of σs. For a partition Π ∈Ps, we write Π = (πi)1≤i≤lΠ
with πi denoting an element of the partition Π and lΠ the cardinality of Π.

• For Π ∈Ps such that r ∈ πi, we define

π
r
i := πi \{r} , Π

r :=
{{

π j
}

1≤ j≤lΠ, j 6=i ,π
r
i

}
. (76)

• Given Π ∈Ps+2 such that {s+1,s+2} ∈ πi, we define the reduced sub-partition

π
s+1,s+2
i := πi \{s+1,s+2} . (77)

• We denote by P1
s the set of partitions which contain at least one sub-partition of length 1 (i.e.

∃πi ⊂Π, |πi|= 1) and P1;c
s its complementary set.

• We denote by P̃2;s the set of partitions of length 2 of the set σs. Note that P̃2;s is a subset of
Ps.

A. Bulk trees, surface trees and forests

• A tree is an undirected graph in which any two vertices are connected by exactly one path.
We define the incidence number of a vertex z of the tree by the number of lines of the tree
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Renormalization of φ 4
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that have z as an edge and we denote it by c(z). Given a tree T , we denote by V (T ) the set of
vertices of the tree. The set of external vertices Ve(T ) of the tree T is defined as follows

Ve(T ) := {z ∈ V (T )| c(z) = 1} . (78)

The set of internal vertices Vi(T ) is then defined as V (T )\Ve(T ).

• For s ≥ 2, we denote by T s the set of all trees that have a root vertex and s− 1 external
vertices. For a tree T s ∈ T s we will call z1 ∈ R+ its root vertex. Denoting by V (T ) the set
of vertices of T s, the set of external vertices of the tree T s is defined as

Ve(T s) := {z ∈ V (T s)\{z1}| c(z) = 1} . (79)

The set of internal vertices is the relative complement of Ve(T s) in V (T s) \ {z1}. Note that
the root vertex z1 is a vertex which is neither internal nor external. For simplicity, we use in
the sequel the set of points Y = {y2, · · · ,ys} in Rs−1 to be identified with the external vertices
of T s. Likewise we call Z = {z2, · · · ,zr+1} the set of internal vertices of T s where zi ∈ R+

and r is the cardinality of Vi(T s).

• We denote by c1 = c(z1) the incidence number of the root vertex. We call a line p an external
line of the tree if one of its edges is in Y . The set of external lines is denoted J . The
remaining lines are called internal lines of the tree and are denoted by I .

• By T s
l we denote a tree T s ∈ T s satisfying v2 +δc1,1 ≤ 3l−2+ s/2 for l ≥ 1 and satisfying

v2 = 0 for l = 0, where vn is the number of vertices having incidence number n. Then T s
l

denotes the set of all trees T s
l . We indicate the external vertices and internal vertices of the

tree by writing T s
l (z1,y2,s,~z) with y2,s = (y2, · · · ,ys) and~z = (z2, · · · ,zr+1).

• For s ≥ 1, we define the set of bulk trees T̂ s
l as the set of all trees with s external vertices

which satisfy v2 ≤ 3l−2+ s
2 for all l ≥ 1, or v2 = 0 for l = 0.

• Let s ≥ 1. For y1,s := (y1, · · · ,ys) ∈ Rs, we define the set of surface trees T s,0 to be the
set consisting of all trees of s+ 1 external vertices {y1, · · · ,ys,0}. In the sequel, we refer to
the external vertex 0 as the surface external vertex to distinguish it from the other external
vertices.

• By T s,0
l we denote a surface tree T s,0 ∈ T s,0 satisfying v2 ≤ 3l − 2 + s+1

2 for l ≥ 1 and
satisfying v2 = 0 for l = 0. Then T s,0

l denotes the set of all surface trees T s,0
l . For a tree

T s,0
l ∈ T s,0

l , the set {y1, · · · ,ys,0} of points in R is identified with its external vertices, and

~z = (z1, · · · ,zr) with the set of its internal vertices such that r :=
∣∣∣Vi

(
T s,0

l

)∣∣∣. We indicate the

external vertices and the internal vertices of the tree by writing T s,0
l (Yσs ,0,~z). Note that this

definition implies for all l′ ≤ l, T s,0
l′ ⊂ T s,0

l . The definition we use here of internal/external
vertices is (78).

• For s = 1, the set of surface trees T 1,0
l includes as well the surface tree T 1,0

l (y1,0) with no
internal vertices and one surface external vertex attached to the external vertex y1.

• Given a partition Π ∈Ps and trees T
sπi ,0

l (Yπi ,0,~zπi) ∈ T
sπi ,0

l , we define the forest W s
l (Π) as

follows,

W s
l (Π,y1,s,~z) = ∪lπ

i=1T
sπi ,0

l (Yπi ,0,~zπi) where sπi := |πi|,
lΠ

∑
i=1

sπi = s and Yπ j =
{

yi| i ∈ π j
}
.

(80)
We write shortly W s

l (Π,y1,s,~z)≡W s
l (Π), but one should keep in mind that the forest depends

on y1,s and~z. There is a slight abusive of notation in (80), in the sense that T
sπi ,0

l are not sets
but rather surface trees, however we use the union symbol ∪lΠ

i=1 to emphasize the fact that the
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forest is a collection of surface trees. Then the set of all forests W s
l (Π) denoted by W s

l (Π), is
defined as:

W s
l (Π) :=

{
∪lΠ

i=1T
sπi ,0

l (Yπi ,0,~zπi) | T
sπi ,0

l ∈T
sπi ,0

l , ∀ 1≤ i≤ lΠ
}

. (81)

Note that for the trivial partition Π0 =σs, the length of the partition is equal to one. Therefore,
the set W s

l (σs) reduces to surface trees T s,0
l . We write

W s
l (σs) = T s,0

l . (82)

This implies that each tree T
sπi ,0

l (Yπi ,0,~zπi) can be identified with a forest in W
sπi

l (σsπi
),

where σsπi
:= ∪k∈πi {k}.

• We define the global set of forests W s
l by

W s
l := {∪Π∈PsW

s
l (Π)|W s

l (Π) ∈W s
l (Π)} .

To illustrate these concepts, we give some examples of trees and forests for s = 3 and l = 2.
The set of partitions is in this case

P3 = {{{1} ,{2},{3}} ,{{1} ,{2,3}},{{2} ,{1,3}},{{3} ,{1,2}},σ3} . (83)

– For the trivial partition Π0 = σ3, the partition length lΠ is equal to one and therefore
the elements of the set W 3

2 (Π0) are the trees T 3,0
2 ∈ T 3,0 such that v2 ≤ 5. For v2 = 3,

Figure 1 is an example of a surface tree in W 3
2 (Π0).

z1

z2

z3

y1 y2

z4

y3

z5

0

FIG. 1: Example of a forest W 3
2 (Π0) with v2 = 3 and~z = (z1, · · · ,z5).

The red color is used for the internal vertices of incidence number 2.

– For the partition Π1 = {{1},{2},{3}}, an element of W 3
2 (Π1) (i.e. the set of forests of

the partition Π1) is given by the forest in Figure 2.

z3z1 z5

z2
0 y2

y1

z4

0

y3 0

FIG. 2: Example of a forest W 3
2 (Π1) with v2 = 5 and~z = (z1, · · · ,z5) .

This forest is composed of three trees. Each tree has two external vertices. The external
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vertex yi has an index which belongs to the sub-partition {i}. Note that the total number
of vertices of incidence number 2 does not exceed 5 (in this case it is equal to 5). Note
also that all the internal vertices of a surface tree with only two external vertices are of
incidence number 2.

– For the partition Π2 = {{1,2} ,{3}}, Figure 3 is an example of a forest in W 3
2 (Π2) with

a total number of vertices of incidence number 2 equal to 4.

z4z1

z6
z2

0

y2

y1
z5

0y3

FIG. 3: Example of a forest W 3
2 (Π2) ∈W 3

2 (Π2) with v2 = 4 .

Similar examples for the forest W 3
2 (Π3) (respectively W 3

2 (Π4)) for Π3 = {1,3} ,{2} (resp.
Π4 = {{2,3} ,{1}}) can be constructed by replacing in Figure 2 the vertices {y1,y2} by
{y1,y3} and the vertex y3 by y2 (resp. {y1,y2} by {y2,y3} and y3 by y1).
An example of a forest in the global set of forests W 3

2 is ∪4
i=0W 3

2 (Πi).

B. Some operations on Forests and Trees

1. Reduction

Let W s+2
l−1 (Π) be a forest in W s+2

l−1 (Π). In this part, we define and explain the process of reducing
the forest W s+2

l−1 (Π) to a forest in W s
l .

Definition 1. (Reduced partition) Let s ≥ 1 and Π be in Ps+2. We denote by πi and π j the sub-
partitions of Π such that s+1 ∈ πi and s+2 ∈ π j. The reduced partition Πs+1,s+2 is defined as
follows,

Π
s+1,s+2 =

{
{πk}1≤k≤lΠ,k/∈{i, j} , π

s+1
i , π

s+2
j if i 6= j

{πk}1≤k≤lΠ,k 6=i , π
s+1,s+2
i otherwise ,

where we used the notations (76)-(77).

Proposition 2. (Reduction process) Let s≥ 1. For Π∈Ps+2, we define Cys+1,ys+2 to be the operator
which acts on a forest W s+2

l−1 (Π) ∈W s+2
l−1 (Π) by removing the two external legs attached to ys+1 and

ys+2. If this operation produces an internal vertex of incidence number one, it is removed until an
internal vertex of incidence number c(z)≥ 2 is reached. We have

Cys+1,ys+2W s+2
l−1 (Π) ∈W s

l (Π
s+1,s+2) . (84)

Proof. The set Ps+2 can be separated into two subsets P̃s+2 and P̃c
s+2 defined as follows:

• P̃s+2 is defined as a subset of Ps+2 which contains all the partitions Π that admit a sub-
partition πi such that {s+1, s+2} ∈ πi.

• P̃c
s+2 is the complementary set of P̃s+2 .
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z2z1

0y1y2 ys+1 0ys+2
· · ·

FIG. 4: Example of a forest W s+2
l−1 (Π) where Π ∈ P̃s+2 and lΠ = 2.

z2z1 z3

0 y1ys+1 0 0 ysys+2
· · ·

FIG. 5: Example of a forest W s+2
l−1 (Π

c) where Πc ∈ P̃c
s+2 and lΠ = 3.

Diagrammatically, the global set of forests W s+2
l−1 is partitioned into two subsets: the subset of forests

for which ys+1 and ys+2 both belong to the same surface tree and the subset of forests in which ys+1
and ys+2 belong to different surface trees.

The proof of the statement (84) follows directly from establishing that

∀Π ∈ P̃s+2 : Cys+1,ys+2W s+2
l−1 (Π) ∈W s

l (Π
s+1,s+2) (85)

and

∀Π ∈ P̃c
s+2 : Cys+1,ys+2W s+2

l−1 (Π) ∈W s
l (Π

s+1,s+2) . (86)

• First, we prove (85). Given a partition Π in P̃s+2, there exists a sub-partition πi ∈ Π such
that {s+1,s+2} ∈ πi. Therefore, we can write in slightly abusive notation

Cys+1,ys+2W s+2
l−1 (Π) =

lπ⋃
k=1,k 6=i

T sk,0
l−1

(
Yπk ,0,~zπk

)⋃
Cys+1,ys+2T

sπi ,0
l−1 (Yπi ,0,~zπi) , (87)

where the tree T
sπi ,0

l−1 (Yπi ,0,~zπi) can be identified with a forest in W
sπi

l−1

(
σsπi

)
. Deducing (85)

amounts to prove for sπi > 2

Cys+1,ys+2T
sπi ,0

l−1 (Yπi ,0,~zπi) ∈T
sπi−2,0

l . (88)

For sπi = 2

Cys+1,ys+2T 2,0
l−1 (ys+1,ys+2,0,~zπi) =∅ , (89)

and we have

Cys+1,ys+2W s+2
l−1 (Π) =

lπ⋃
k=1,k 6=i

T sk,0
l−1

(
Yπk ,0,~zπk

)
, (90)

which is clearly in W s
l (Π

s). To treat the case sπi > 2, the discussion is simplified by con-
sidering the case of the trivial partition Π = σs+2 s.t. s ≥ 1. In this case, the set of forest
W s+2

l−1 (σs+2) is given by all the surface trees T s+2,0
l−1 (see (82)). Let Ji (resp. J j) be the ex-

ternal line which attaches the internal vertex zi (resp. z j) to the external vertex ys+1 (resp.
ys+2). The operator Cys+1,ys+2 removes the external legs Ji and J j from the forest W s+2

l−1 (σs+2),
and if one of the internal vertices zi and z j becomes of incidence number one, it is removed
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and the process continues until an internal vertex z of incidence number c(z) ≥ 2 is reached.
This implies that v′2 (i.e. the number of vertices of incidence number 2 of the new forest
Cys+1,ys+2W s+2

l−1 (σs+2)) is at most v2 +2, with v2 the number of vertices of incidence number
2 of W s+2

l−1 (σs+2). Therefore,

v′2 ≤ v2 +2≤ 3(l−1)−2+
s+3

2
+2≤ 3l−2+

s+1
2

.

The last point to verify is that the reduction process converges for s ≥ 1 in the sense that we
have

Cys+1,ys+2W s+2
l−1 (σs+2) 6=∅ . (91)

In order to obtain (91), we need to prove that there exists at least one internal vertex z̃ such
that c(z̃)≥ 2. If W s+2

l−1 (σs+2) has at least one internal vertex such that c(z)≥ 4, then eventually
(91) holds. If all the internal vertices are of incidence number less than or equal to 3, then
since s ≥ 1, the tree W s+2

l−1 (σs+2) has a number of external vertices greater than or equal to 4
(taking into account the surface external vertex 0 as well). This implies that it has at least two
internal vertices z and z′ such that c(z) = c(z′) = 3 which leads directly to (91). This proves
(85).

• Now, we prove (86). Take Π ∈ P̃c
s+2, there exist πi, π j ∈Π such that i 6= j, {s+1} ∈ πi and

{s+2} ∈ π j. Therefore, we can write

Cys+1,ys+2W s+2
l−1 (Π) =

lΠ⋃
k=1,k 6=i,k 6= j

T
sπk ,0

l−1

(
Yπk ,0,~zπk

)
∪Cys+1T

sπi ,0
l−1 (Yπi ,0,~zπi)

∪Cys+2T
sπ j ,0

l−1

(
Yπ j ,0,~zπ j

)
, (92)

where the operator Cys+1 acts on the tree T
sπi ,0

l−1 by removing the external leg to which ys+1
is attached and by removing all the internal vertices which through this process become of
incidence number one. Following the same steps of the discussion above, we deduce that v′2,i
the number of vertices of incidence number 2 of the tree Cys+1T

sπi ,0
l is at most v2,i + 1, with

v2,i the number of vertices of incidence number 2 of T
sπi+1,0

l . We have

v′2,i ≤ v2,i +1≤ 3(l−1)−2+
sπi +1

2
≤ 3l−2+

sπi

2
,

which implies that Cys+1T
sπi ,0

l ∈T
sπi−1,0

l .
Here again, we need to verify that the reduction process of the forest W s+2

l−1 converges in the
sense of (91). If |πi|= |π j|= 1, then we have

Cys+1,ys+2W s+2
l−1 (Π) =

lπ⋃
k=1,k 6=i,k 6= j

T
sπk ,0

l−1

(
Yπk ,0,~zπk

)
. (93)

If |πi| ≥ 2, we have

Cys+1T
sπi ,0

l−1 (Yπi ,0,~zπi) 6=∅ .

This holds since the tree T
sπi ,0

l−1 (Yπi ,0,~zπi) has at least three external vertices which implies
that there exists at least one internal vertex such that c(z) ≥ 3, and removing at most one
external leg at each step of the reduction process implies that the incidence number of z is
strictly greater than 1 at the end of the process.
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2. Fusion

In this part, we define and explain the merging process of a bulk tree with a forest.

Proposition 3. For s ≥ 2 and l ≥ 0, we consider the partition (π̃1, π̃2) in P̃2;s such that |π̃i| = si
and s1 + s2 = s. Given a partition Π of the set π̃2 ∪ {s2 +1}, we define the a-merging operator
Ma

ys1+1,ys2+1
acting on the forest W s2+1

l2
(Π) and the bulk tree T̂ s1+1

l1
(Yπ̃1 ,ys1+1;~z) at the external

vertices ys1+1 and ys2+1 following the steps below:

(a) Let Js1+1 = (z,ys1+1) and Js2+1 = (z′,ys2+1) be the external legs which attach respectively
ys1+1 to the internal vertex z ∈ T̂ s1+1

l1
and ys2+1 to the internal vertex z′ ∈W s2+1

l2
(Π). In the

first step of the merging process Js1+1 and Js2+1 are removed.

(b) A new internal line (z,z′) is added.

Similarly, we define the b-merging operator Mb
ys1+1,ys2+1

acting on W s2+1
l2

(Π) and T̂ s1+1
l1

(Yπ̃1 ,ys1+1,~z)
following the same steps above except for adding an internal vertex of incidence number 2, which
replaces the internal line (z,z′) in step (b) by the two internal lines (z,u) and (u,z′). Then we claim

Mi
ys1+1,ys2+1

(
T̂ s1+1

l1
(Yπ̃1 ,ys1+1;~z) ,W s2+1

l2
(Π)
)
∈W s

l (Π
′) , i ∈ {a,b} (94)

where Π′ := π̃1
⋃

Πs2+1 (we used the notation (76)) and l := l1 + l2.

Proof. Let πi be the sub-partition of Π such that s2 +1 ∈ πi. The merging operators (a) and (b) act
only on the tree T

sπi ,0
l2

since all the surface trees corresponding to the remaining sub-partitions do
not have external vertices on which the merging operators act. Therefore, without loss of generality,
we simplify the discussion by considering the case of a partition Π of length one.

The first and second step of the two merging processes create a tree with s+ 1 external vertices
given by the set {

Yπ̃1

}
∪
{

Yπ̃2 ,0
}
.

The only difference between the two cases is related to the set of internal vertices, which in case
of (a) is given by the union of the internal vertices of the bulk tree T̂ s1+1

l1
(Yπ̃1 ,ys1+1,~z) and the

surface tree T
sπi ,0

l2
. For (b), a new vertex of incidence number 2 is added, which implies

v2,a = v2,1 + v2,2, v2,b = v2,1 + v2,2 +1, (95)

where v2,i denotes the number of vertices of incidence number 2 of the surface tree obtained through
the merging process (i). Therefore, we obtain

v2,i ≤ 3(l1 + l2)−4+
s1 + s2 +3

2
+1 = 3l−2+

s+1
2

, i ∈ {a,b} . (96)

This concludes that the surface trees obtained through the merging processes (a) and (b) are
indeed in W s

l (σs).

C. Weight factors

1. The bulk weight factors

Let 0< δ < 1. Given a set τ2,s := {τ2, · · · ,τs}with τ := inf2≤i≤s τi, a set of external vertices y2,s =
{y2, · · · ,ys} ∈ Rs−1 and a set of internal vertices~z = (z2, · · · ,zr+1) ∈ (R+)r, and attributing positive
parameters ΛI = {ΛI |I ∈I } to the internal lines, the weight factor Fδ

(
ΛI ,τ2,s;T s

l (z1,y2,s,~z)
)

of
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a tree T s
l (z1,y2,s,~z) at scales ΛI is defined as a product of heat kernels associated with the internal

and external lines of the tree. We set

Fδ (ΛI ,τ2,s;T s
l (z1,y2,s,~z)) := ∏

I∈I
pB

(
1+δ

Λ2
I

; I
)

∏
J∈J

pB(τJ,δ ;J) , (97)

where τJ,δ denotes the entry τi,δ in τ carrying the index of the external coordinate yi in which
the external line J ends, and τi,δ := (1+ δ )τi. For I = {a,b} the notation pB(

1+δ

Λ2
I

; I) stands for

pB(
1+δ

Λ2
I

;a,b). We also define the integrated weight factor

Fδ (Λ,τ2,s;T s
l ;z1,y2,s) := sup

Λ≤ΛI≤Λ0

∫
~z
Fδ (ΛI ,τ2,s;T s

l (z1,y2,s,~z)) . (98)

It depends on Λ0, but note that its limit for Λ0→ ∞ exists, and that typically the sup is expected
to be taken for the minimal values of Λ admitted. Therefore we suppress the dependence on Λ0 in
the notation. The definitions (97)-(98) can be generalized to a bulk tree T̂ s

l . Finally we introduce
the global weight factor F (Λ,τ2,s,z1,y2,s), which is defined through

Fs,l;δ (Λ,τ2,s,z1,y2,s) := ∑
T s

l ∈T
s

l

Fδ (Λ,τ2,s;T s
l ;z1,y2,s) . (99)

Similarly, we define the global bulk weight factor

F̂s,l;δ (Λ,τ2,s,y2,s) := ∑
T̂ s

l ∈T̂
s

l

Fδ

(
Λ,τ2,s; T̂ s

l ;y2,s
)
. (100)

If this does not lead to ambiguity we write shortly

F Λ

s,l;δ (τ2,s)≡Fs,l;δ (Λ,τ2,s,z1,y2,s) . (101)

For s = 1 we set F Λ

1,l;δ ≡ 1.

2. The surface weight factors

• In the sequel, we will use the following notations:

τπi := {τk| k ∈ πi} , Yπi := {yk|k ∈ πi}, τπi,δ := {(1+δ )τk| k ∈ πi} , τ := inf
1≤i≤s

τi.

(102)

• Let 0< δ < 1 and τ1,s := {τ1, · · · ,τs} such that τ > 0 and let Yσs ∈Rs be the set of the external

vertices. Given a partition Π ∈Ps, let~zΠ =
(
~zπ1 , · · · ,~zπlΠ

)
∈ (R+)p, where each vector~zπi

consists of the internal vertices of the tree T
sπi ,0

l in the forest W s
l (Π) and p is the number of

internal vertices of W s
l (Π). We denote by I =∪lΠ

i=1Ik the set of the internal lines of the trees
of W s

l (Π) and by J = ∪lΠ
k=1Jk the set of the external lines which link an internal vertex to

an external vertex belonging to the set Yσs . Each set Ik (resp. Jk) denotes the internal lines

(resp. the external lines) of the tree T
sπk ,0

l . We also use the notation J 0
k =

{
J0

k |1≤ k ≤ lΠ
}

to denote the set of surface external lines which link an internal vertex to 0.

• Attributing positive parameters ΛI = {ΛI |I ∈I } to the internal lines and Λ̃=
{

Λ̃k|k ∈J 0
k

}
to the surface external lines, the weight factor F 0

δ

(
ΛI , Λ̃;τ1,s;W s

l (Π);~zΠ;Yσs

)
of the forest

W s
l (Π) at scales ΛI and Λ̃k is defined as the product of heat kernels associated to the internal
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and external lines of each tree of the forest. For a sub-partition πk ∈Π, we define the weight
factor of the tree T

sπk ,0
l as follows:

F 0
δ

(
ΛIk , Λ̃k;τπk ;T

sπk ,0
l ;~zπk ;Yπk

)
:= ∏

I∈Ik

pB

(
1+δ

Λ2
I

; I
)

∏
J∈Jk

pB((1+δ )τJ ;J) pB

(
1+δ

Λ̃2
k

;Jk
0

)
, (103)

where we used the same notations as in (97) and Jk
0 denotes the line which links an internal

vertex to the external vertex 0 with an attributed positive parameter Λ̃k. For a surface tree T 1,0
l

with no internal vertices, the surface weight factor reads

F 0
δ

(
τπk ;T 1,0

l ;yπk

)
:= pB

(
(1+δ )τπk ;yπk ,0

)
. (104)

The weight factor of the forest W s
l (Π) is defined for Π ∈P1,c

s as follows:

F 0
δ

(
ΛI , Λ̃;τ1,s;W s

l (Π);~zΠ;Yσs

)
:= ∏

πk∈Π

F 0
δ

(
ΛIk , Λ̃k;τπk ;T

sπk ,0
l ;~zπk ;Yπk

)
. (105)

For Π ∈P1
s , it is given by

F 0
δ

(
ΛI , Λ̃;τ1,s;W s

l (Π);~zΠ;Yσs

)
:= ∏

πk

F 0
δ

(
ΛIk , Λ̃k;τπk ;T

sπk ,0
l ;~zπk ;Yπk

)
×∏

π̃k

F 0
δ

(
ΛIk , Λ̃k;2τπ̃k ;T

sπ̃k ,0
l ;~zπ̃k ;Yπ̃k

)
, (106)

where the product ∏π̃k
runs over all sub-partitions in Π of length equal to 1.

• We also define the integrated surface weight factor

F 0
δ
(Λ,τ1,s;W s

l (Π);Yσs) := sup
Λ≤ΛI ,Λ̃k≤Λ0

∫
~zΠ

F 0
δ

(
ΛI , Λ̃;τ1,s;W s

l (Π);~zΠ;Yσs

)
, (107)

where
∫
~zΠ

:= ∏
p
i=1
∫

∞

0 dzi. The weight factor associated to a global forest W s
l is defined as

F 0
δ
(Λ,τ1,s;W s

l ;Yσs) := ∑
Π∈Ps

F 0
δ
(Λ,τ1,s;W s

l (Π);Yσs) . (108)

• We define the global surface weight factor as follows,

F 0
s,l;δ (Λ,τ1,s;Yσs) := ∑

W s
l ∈W

s
l

F 0
δ
(Λ,τ1,s;W s

l ;Yσs) . (109)

If it does not lead to ambiguity we write shortly

F Λ,0
s,l;δ (τ1,s)≡F 0

s,l;δ (Λ,τ1,s;Yσs) . (110)

For s = 0 we set F Λ,0
0,l;δ ≡ 1.

Remarks 2. • The definitions (98) and (107) imply for 0≤ Λ′ ≤ Λ

F Λ,0
s,l;δ (τ1,s)≤F Λ′,0

s,l;δ (τ1,s) , F Λ

s,l;δ (τ1,s)≤F Λ′
s,l;δ (τ1,s) . (111)
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• Combining the bound (15) together with the definitions (97) and (103), the following bounds
hold for all 0 < δ < δ ′ and 0≤ Λ≤ Λ0

F Λ,0
s,l;δ (τ1,s)≤C(δ ,δ ′) F Λ,0

s,l;δ ′ (τ1,s) , F Λ

s,l;δ (τ1,s)≤C′(δ ,δ ′) F Λ

s,l;δ ′ (τ1,s) . (112)

The constants C and C′ are explicitly given by

C(δ ,δ ′) := sup
(I ,J )∈T s,0

l , T s,0
l ∈T

s,0
l

C|I |+|J |
δ ,δ ′ , C′(δ ,δ ′) := sup

(I ,J )∈T s
l , T s

l ∈T
s

l

C|I |+|J |
δ ,δ ′ ,

where I and J are respectively the set of internal and external lines of the tree T s
l (resp.

surface tree T s,0
l ) and | · | denotes their cardinality. The constant Cδ ,δ ′ is given by (16) for

r = 0.

D. Inequalities

For the proof in Sec VI, we need to bound the tree/forest weight factors for reduced forests and
for merged trees and forests.

Lemma 1. (Reduction) Let τ, δ > 0 , 0≤ Λ≤ Λ0 and Yσs ∈ Rs, we have∫
R

du F 0
s+2,l−1;δ

(
Λ;τ1,s,

1
2Λ2 ,

1
2Λ2 ;Yσs ,u,u

)
≤ O(1) Λ F 0

s,l;δ (Λ;τ1,s;Yσs) , (113)

where the constant O(1) depends only on s and l.

Proof. Let us recall the definition of the surface weight factor, which in this case is given by

F 0
s+2,l−1;δ

(
Λ;τ1,s,

1
2Λ2 ,

1
2Λ2 ;Yσs+2

)
= ∑

W s+2
l−1 ∈W

s+2
l−1

∑
Π∈Ps+2

F 0
δ

(
Λ;τ1,s,

1
2Λ2 ,

1
2Λ2 ;W s+2

l−1 (Π);Yσs+2

)
, (114)

where ys+1 := u and ys+2 = u. The weight factor

F 0
δ

(
Λ;τ1,s,

1
2Λ2 ,

1
2Λ2 ;W s+2

l−1 (Π);Yσs+2

)
is given by (103)-(106). Let (zi,u) and (z j,u) be the external lines which attach respectively the
internal vertices zi and z j to the external vertices ys+1 and ys+2. Using (10), we obtain

∫
R

du pB

(
α1(1+δ )

2Λ2 ;zi,u
)

pB

(
α2(1+δ )

2Λ2 ;z j,u
)
= pB

(
(α1 +α2)(1+δ )

2Λ2 ;zi,z j

)
≤Λ . (115)

We recall that a tree of two external vertices (including the surface external vertex 0) corresponds
to a sub-partition of length 1 and the surface weight factor associated to these trees differs from
a surface tree of three or more external vertices by a factor 2 multiplying the parameter τi of the
corresponding external vertex, as it appears in (106). Therefore, the constants α1 and α2 take either
the value 2 or 1 depending on whether the two external vertices at u belong to a surface tree of only
two external vertices or more. The bound (115) removes the external legs (zi,u) and (z j,u) from the
forest W s+2

l−1 (Π) by bounding their contribution in the surface weight factor by Λ. Furthermore, the
property ∫

∞

0
dz pB

(
1+δ

Λ2
i

;z,z′
)
≤ 1 (116)
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implies that all internal vertices which after removing (zi,u) and (z j,u), their incidence number
is equal to one are removed. These two steps correspond to reducing the forest W s+2

l−1 (Π) at the
external vertices (u,u). Therefore, we have

∫
R

du F 0
δ

(
Λ;τ1,s,

1
2Λ2 ,

1
2Λ2 ;W s+2

l−1 (Π);Yσs ,u,u
)
≤ Λ F 0

δ

(
Λ;τ1,s;Cu,uW s+2

l−1 (Π);Yσs

)
. (117)

Proposition 1 gives that Cu,uW s+2
l−1 (Π) ∈W s

l

(
Πs+1,s+2

)
, where Πs+1,s+2 ∈Ps is the reduced parti-

tion obtained from Π. Hence, we obtain

∑
W s+2

l−1 ∈W
s+2

l−1

∑
Π∈Ps+2

F 0
δ

(
Λ,τ1,s;Cu,uW s+2

l−1 (Π);Yσs

)
≤ O(1) ∑

W s
l ∈W

s
l

∑
Π∈Ps

F 0
δ
(Λ,τ1,s;W s

l (Π);Yσs) . (118)

The constant O(1) takes into account that the reduction operator is not a one-to-one map, in the
sense that the same forest can be obtained from the reduction of different forests, which implies
that some weight factors F 0

δ

(
Λ,τ1,s;W s

l (Π);Yσs

)
are possibly summed more than once in (117).

Combining (117) and (118) gives the final bound (113).
If the external vertex ys+1 belong to the sub-surface tree T 1,0

l (ys+1,0) with no internal vertex, (115)
reads in this case∫

R
du pB

(
(1+δ )

Λ2 ;0,u
)

pB

(
(1+δ )

Λ2 ;z j,u
)
= pB

(
2(1+δ )

Λ2 ;0,z j

)
≤ Λ . (119)

If ys+2 is also an external vertex of T 1,0
l (ys+2,0), then z j is replaced by 0 in (119). This corresponds

to removing the sub-surface trees from the forest W s+2
l−1 (Π). The bound (118) is obtained in these

two cases following the same line of reasoning as before.

Lemma 2. (Forest-Forest Fusion) Let δ , δ ′ > 0 and 1≤ l1, l2 ≤ l−1 such that l1 + l2 = l. Given
(π̃1, π̃2) ∈ P̃2;s, we have

∫
R

du F 0
s1+1,l1;δ

(
Λ;τπ̃1 ,

1
2Λ2 ;Yπ̃1 ,u

)
F 0

s2+1,l2;δ ′

(
Λ;τπ̃2 ,

1
2Λ2 ;Yπ̃2 ,u

)
≤ Λ F 0

s,l;δ ′′ (Λ;τ1,s;Yσs) , (120)

where si := |πi| and δ ′′ = max(δ ,δ ′).

Proof. Without loss of generality, we consider the ordered sub-partitions π̃1 :=σs1 and π̃2 :=σs1+1,s.
To establish (120), it is sufficient to bound

∫
R

du F 0
s1+1,l1;δ

(
Λ;τ1,s1 ,

1
2Λ2 ;W s1+1

l1
(Π1);Yσs1

,u
)

×F 0
s2+1,l2;δ ′

(
Λ;τs1+1,s,

1
2Λ2 ;W s2+1

l2
(Π2);Yσs1+1:s ,u

)
(121)

where Π1 ∈ P̃s1+1 and Π2 ∈ P̃s2+1. The sets P̃s1+1 and P̃s2+1 denote respectively the set of
partitions of σs1 ∪{s+1} and σs1+1:s∪{s+2}. Using (112), we can bound (121) by

∫
R

du F 0
s1+1,l1;δ ′′

(
Λ;τ1,s1 ,

1
2Λ2 ;W s1+1

l1
(Π1);Yσs1

,u
)

×F 0
s2+1,l2;δ ′′

(
Λ;τs1+1,s,

1
2Λ2 ;W s2+1

l2
(Π2);Yσs1+1:s ,u

)
, (122)
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where δ ′′ = max(δ ,δ ′).
Let πi and π j be respectively the sub-partitions in Π1 and Π2 such that {s+1} ∈ πi and {s+2} ∈
π j. We denote by zi and z j the internal vertices in the sub-surface trees T

sπi ,0
l1

(Yπi ,u,0) and

T
sπ j ,0

l2

(
Yπ j ,u,0

)
in the forests W s1+1

l1
(Π1) and W s2+1

l2
(Π2), which are attached to u. As we men-

tioned previously, the bound (115) amputates the external legs (zi,u) and (z j,u) and bounds their
contribution in (122) by Λ. Furthermore, (116) implies that all internal vertices of incidence number
1 are removed. The amputation can possibly create in each tree at most one internal vertex of inci-
dence number 2. Denoting by T

sπi−1,0
l1

(Yπi ,0) the surface tree obtained by amputating the external

leg (z,u) from T
sπi ,0

l1
(Yπi ,u,0), we deduce

ṽs1
2,i ≤ vs1

2,i +1≤ 3l1−1+
sπi

2
+

1
2
,

where ṽs1
2,i and vs1

2,i denote respectively the number of vertices of incidence number 2 of the surface

trees T
sπi−1,0

l1
(Yπi ,0) and T

sπi ,0
l1

(Yπi ,u,0). Since 1≤ l1 ≤ l−1, we obtain

ṽs1
2,i ≤ 3l−3−1+

sπi

2
+

1
2
≤ 3l−2+

sπi

2
. (123)

Proceeding similarly with T
sπ j ,0

l2

(
Yπ j ,u,0

)
, we deduce that the number of vertices of the amputated

tree obeys

ṽs2
2, j ≤ 3l−2+

sπ j

2
. (124)

From (123) and (124), we deduce that T
sπi−1,0

li
(Yπi ,0) ∈T

sπi−1,0
l . Therefore, we obtain that∫

R
du F 0

s1+1,l1;δ ′′

(
Λ;τπ1 ,

1
2Λ2 ;W s1+1

l1
(Π1);Yπ1 ,u

)
×F 0

s2+1,l2;δ ′′

(
Λ;τπ2 ,

1
2Λ2 ;W s2+1

l2
(Π2);Yπ2 ,u

)
(125)

is bounded by

Λ F 0
δ ′′

(
Λ;τ1,s1 ;W s1

l1
(Πs1+1

1 );Yσs1

)
F 0

δ ′′

(
Λ;τs1+1,s;W

s2
l2
(Πs2+1

2 );Yσs1+1:s

)
, (126)

where we used the notation (76). Note that Π
s+1
1 ∪Π

s+2
2 ∈Ps, which together with (126) gives the

integrated surface weight factor of the forest W s1
l1
(Πs1+1

1 )∪W s2
l2
(Πs+1

2 ). Hence (126) is bounded by

Λ F 0
δ ′′ (Λ;τ1,s;W s

l (Π);Yσs) ,

where Π = Π
s+1
1 ∪Π

s+2
2 belongs to Ps and we deduce∫

R
du F Λ;0

s1+1,l1;δ

(
τ1,s1 ,

1
2Λ2 ;Yσs1

,u
)

F Λ;0
s2+1,l2;δ ′

(
τs1+1,s,

1
2Λ2 ;Yσs1+1,s ,u

)
≤ Λ F Λ,0

s,l;δ ′′ (τ1,s) . (127)

Lemma 3. (Bulk tree-Forest Fusion) Let δ , δ ′ > 0 and l1, l2 ≥ 0 such that l1 + l2 = l. Given
(π̃1, π̃2) ∈ P̃2;s, we have∫

R
du F 0

s1+1,l1;δ

(
Λ;τπ̃1 ,

1
2Λ2 ;Yπ̃1 ,u

)
F̂s2+1,l2;δ ′

(
Λ;τπ̃2 ,

1
2Λ2 ;Yπ̃2 ,u

)
≤ O(1) F 0

s,l;δ ′′ (Λ;τ1,s;Yσs) (128)

where δ ′′ = max(δ ,δ ′).
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Proof. Without loss of generality, we again consider the ordered sub-partitions σs1 and σs1+1:s. In
order to obtain the bound (128), it is sufficient to bound for a given Π1 ∈ P̃s1∫

R
du F 0

δ

(
Λ;τ1,s1 ,

1
2Λ2 ;W s1+1

l1
(Π1);Yσs1

,u
)

Fδ ′

(
Λ;τs1+1,s,

1
2Λ2 ; T̂ s2+1

l2
;Yσs1+1:s ,u

)
. (129)

Using the bound (112), we bound (129) by∫
R

du F 0
δ ′′

(
Λ;τ1,s1 ,

1
2Λ2 ;W s1+1

l1
(Π1);Yσs1

,u
)

Fδ ′′

(
Λ;τs1+1,s,

1
2Λ2 ; T̂ s2+1

l2
;Yσs1+1:s ,u

)
, (130)

where δ ′′ := max(δ ,δ ′). Let zi and z j be respectively the internal vertices attached to u in
W s1+1

l1
(Π1) and to u in T̂ s2+1

l2
. Interchanging the integral over u with the integral over the in-

ternal vertices of the forest W s1+1
l1

(Π1) and the bulk tree T̂ s2+1
l2

in their respective weight factors and
using (10) we deduce∫

R
du pB

(
α(1+δ )

2Λ2 ;zi,u
)

pB

(
1+δ

2Λ2 ;z j,u
)
= pB

(
(α +1)(1+δ )

2Λ2 ;zi,z j

)
(131)

with α ∈ {1,2}. Here, we proceed similarly to (115) to differentiate the surface trees with two
external vertices from other surface trees with more than two external vertices. For α = 2, we keep
the integration over u and write∫

R
du pB

(
1+δ

Λ2 ;zi,u
)

pB

(
1+δ

2Λ2 ;z j,u
)
≤ 2

∫
∞

0
du pB

(
1+δ

Λ2 ;zi,u
)

pB

(
1+δ

2Λ2 ;z j,u
)
. (132)

Therefore, (131) and (132) correspond to the fact that the two external legs attached to (zi,u) and
(z j,u) are removed. If α = 1, the external lines are replaced by the internal line (zi,z j) and for
α = 2 the vertex u becomes internal with incidence number 2. The first case corresponds to the
steps of merging the forest W s1+1

l1
(Π1) and the bulk tree T̂ s2+1

l2
at the external points (u,u) through

the process a). In the second case, the forest and the tree are merged following the merging process
b). From Proposition 3 we have

Mi
u,u

(
W s1+1

l1
(Π1), T̂

s2+1
l2

)
∈W s

l (Π
′) , i ∈ {a,b}

where Π′ = Π
s1+1
1 ∪σs1+1:s. This implies that (130) is bounded by

2 F 0
δ ′′
(
Λ;τ1,s;W s

l (Π
′);Yσs

)
.

Therefore we deduce∫
R

du F 0
s1+1,l1;δ

(
Λ;τπ1 ,

1
2Λ2 ;Yπ1 ,u

)
F̂s2+1,l2;δ ′

(
Λ;τπ2 ,

1
2Λ2 ;Yπ2 ,u

)
≤ O(1) F 0

s,l;δ ′′ (Λ;τ1,s;Yσs) ,

where O(1) is a constant which depends on s and l that takes into account that the same forest can
be obtained through the fusion of different forests and bulk trees.

VI. RESULTS AND PROOFS

Before stating the results of this paper, we recall some notations that are used frequently in the
sequel:

τ1,s := (τ1, · · · ,τs) , y1,s := (y1, · · · ,ys) . (133)
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A. Results

The central result of this paper is summarized below in Theorem 1, which provides a uniform
bound in the UV cutoff Λ0 of the surface correlation "functions" in the case of Robin and Neumann
boundary conditions. As we mentionned before in section IV-B, the surface correlation "functions"
S Λ,Λ0

l,n;? are tempered distributions when considered in the mixed position-momentum space. Hence,
in order to bound the n-point surface correlation distributions, one should first smear them with an
appropriate set of test functions. Since the renormalization proof by the method of flow equations is
inductive, the choice of test functions is restricted by the flow equations. For simplicity, we choose
the bulk heat kernels

φτ1,s,y1,s (~zn) =
s

∏
i=1

pB (τi;zi,yi) ,

but one should keep in mind that this choice is not unique.
The bound (135) consists of familiar factors which are also present in the inductive bounds that

establishes the perturbative renormalization of the scalar field theory in momentum space20 in R4,
in particular the power counting factor in terms of Λ+m as well as the polynomials P1 and P2.

There is also the additional factor (see (103)-(107))

F 0
s,l;δ (Λ,τ1,s;Yσs) := ∑

W s
l ∈W

s
l

∑
Π∈Ps

F 0
δ
(Λ,τ1,s;W s

l (Π);Yσs) , (134)

denoted by the surface weight factor. On one hand, this factor appears because we work in position
space in the z-direction, but on the other hand it comes from the contribution of the factor ĊS,? in the
flow equation (62) through the bounds (73)-(75). Note that the behaviour w.r.t. the flow parameter
Λ in the surface weight factor (134) is traced by controlling the number of vertices of incidence
number 2 of the forests through the following bound

v2 ≤ 3l−2+
s+1

2
.

This bound is compatible with the inductive scheme but is not optimal in the sense that sharper
upper bounds rendering the proof even more complicated could have been achieved.

The definition of the surface correlation "distributions" introduced in section IV-B implies that
S Λ,Λ0

l,n;? contain all the contributions from the surface part CΛ,Λ0
S,? of the propagator CΛ,Λ0

? . Hence, the
right-hand side of the bound (135) contains elements that account for the effect of the presence of
the surface on the renormalization of S Λ,Λ0

l,n;? which are:

• A dimensionally better power counting (i.e. (Λ+m)3−n) as compared to the bound on the
bulk correlation distributions given in proposition 1.

• The surface weight factor.

Theorem 1. (Boundedness) Let 0≤Λ≤Λ0 < ∞ and (ri,s)∈N2 such that 0≤ ri ≤ 4 and 0≤ s≤ n.
For Yσs ∈ Rs, ? ∈ {R,N} and adopting (69)-(71) we claim

∣∣∣∂ wS Λ,Λ0
l,n;?;r1,r2

(
~pn;φτ1,s,y1,s

)∣∣∣≤ (Λ+m)3−n−r1−r2−|w|P1

(
log

Λ+m
m

)
P2

(
‖~pn‖
Λ+m

)
×Q1

(
τ−

1
2

Λ+m

)
F 0

s,l;δ (Λ,τ1,s,Yσs) , ∀n≥ 2 . (135)

Here and subsequently Pi and Qi denote polynomials with non-negative coefficients which depend
on l,n, |w|,δ ,r1,r2, but not on {pi}, Λ, Λ0 and c. The polynomial Qi is reduced to a constant for
s = 1, and for l = 0 all polynomials Pi reduce to constants. The parameter δ depends on the loop
order l and verifies 0 < δl ≤ δl+1 < 1.
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As a consequence of Theorem 1, we have:

Proposition 4. For fixed 0≤ Λ≤ Λ0 < ∞, τ > 0 and (y1, · · · ,yn) ∈ (R+)n, we have:

S Λ,Λ0
l,n;D

(
~pn;

n

∏
i=1

pD (τi; ·,yi)

)
= lim

c→+∞
S Λ,Λ0

l,n;R

(
~pn;

n

∏
i=1

pR (τi; ·,yi)

)
, (136)

where the parameter c denotes the Robin parameter.

Corollary 1. For Dirichlet boundary conditions, adopting (69)-(72) and the assumptions of Propo-
sition 4 we have∣∣∣∣∣S Λ,Λ0

l,n;D

(
~pn;

n

∏
i=1

pD (τi; ·,yi)

)∣∣∣∣∣
≤ (Λ+m)3−n P3

(
log

Λ+m
m

)
P4

(
‖~pn‖
Λ+m

)
Q2

(
τ−

1
2

Λ+m

)
F 0

n,l;δ (Λ,τ1,n,Yσn) ∀n≥ 4 ,

(137)

and for n = 2 we have∣∣∣∣∣S Λ,Λ0
l,2;D

(
p,−p;

2

∏
i=1

pD (τi; ·,yi)

)∣∣∣∣∣
≤ (Λ+m)−1

τ
− 1

2
1 τ

− 1
2

2 P5

(
log

Λ+m
m

)
P6

(
|p|

Λ+m

)
Q3

(
τ−

1
2

Λ+m

)
F 0

2,l;δ (Λ,τ1,2,Yσ2) . (138)

Theorem 2. (Convergence) Let 0 ≤ Λ ≤ Λ0 < ∞. Using the same notations, conventions and
adopting the same renormalization conditions (69)-(72) as in Theorem 1 and Proposition 4, we
have the following bounds

(A)
∣∣∣∂Λ0∂

wS Λ,Λ0
l,n;?;r1,r2

(~pn;φτ1,s,y1,s)
∣∣∣≤ (Λ+m)4−n−|w|−r1−r2

(Λ0 +m)2 P̃1

(
log

Λ0 +m
m

)
P̃2

(
‖~pn‖
Λ+m

)
× Q̃1

(
τ−

1
2

Λ+m

)
F Λ,0

s,l;δ (τ1,s), ∀n+ |w|+ r1 + r2 ≥ 2, ? ∈ {N,R} . (139)

(B)
∣∣∣∂Λ0S

Λ,Λ0
l,n;D (~pn;φ

D
τ1,n,y1,n

)
∣∣∣

≤ (Λ+m)4−n

(Λ0 +m)2 P̃1

(
log

Λ0 +m
m

)
P̃2

(
‖~pn‖
Λ+m

)
Q̃1

(
τ−

1
2

Λ+m

)
F Λ;0

n,l;δ (τ1,n), ∀n≥ 4. (140)

(C)
∣∣∣∂Λ0S

Λ,Λ0
l,2;D (~pn;φ

D
τ1,n,y1,n

)
∣∣∣

≤ τ
−1 (Λ0 +m)−2 P̃1

(
log

Λ0 +m
m

)
P̃2

(
‖~pn‖
Λ+m

)
Q̃1

(
τ−

1
2

Λ+m

)
F Λ;0

2,l;δ (τ1,2). (141)

Remarks 3. • There are two differences between the Robin/Neumann case (135) and the
Dirichlet case (137)-(138): The boundary conditions (72) for S Λ,Λ0

l,n;D are imposed at scale

Λ = Λ0 only, whereas for S Λ,Λ0
l,n;?;r1,r2

we imposed mixed boundary conditions (69)-(71). The
second difference concerns the type of test functions considered, which in the case of Dirich-
let are product of Dirichlet heat kernels (i.e. ∏

n
i=1 pD (τi;zi,yi)), whereas in the case of Robin

and Neumann b.c. the test functions are product of bulk heat kernels and characteristic
functions of the semi-lines (i.e. ∏

s
i=1 pB (τi;zi,yi)∏

n
i=s+1 χ+(zi)).
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• The bounds (135) and (137)-(138) can be established by induction separately using the asso-
ciated flow equations. For the Dirichlet boundary conditions, the associated flow equations
are integrated from Λ to Λ0. For the Robin/Neumann cases, the flow equations are integrated
from 0 to Λ for the relevant terms using the boundary condition (71) and from Λ to Λ0 for the
irrelevant terms using the boundary condition (69).

• Adopting the boundary conditions (48)-(49) together with (69)-(71), the distributions DΛ,Λ0
l,n

and S Λ,Λ0
l,n;? are uniquely defined as the solutions of the flow equations (33) and (62). Further-

more, their sum

L Λ,Λ0
l,n;? = DΛ,Λ0

l,n +S Λ,Λ0
l,n;? , (142)

is the unique solution of the flow equations (52) such that DΛ,Λ0
l,n and S Λ,Λ0

l,n;? obey respectively
(48)-(49) and (69)-(71). Theorem 1 together with Proposition 1 gives for s≥ 1∣∣∣∣∣∂ wL Λ,Λ0

l,n;r,?

(
~pn;

s

∏
i=1

pB (τi; ·,yi)

)∣∣∣∣∣
≤
{
(Λ+m)4−n−|w|−r F̂ Λ

s,l;δ (τ1,s)+(Λ+m)3−n−|w|−r F Λ,0
s,l;δ (τ1,s)

}
×P5

(
log

Λ+m
m

)
P6

(
‖~pn‖
Λ+m

)
Q3

(
τ−

1
2

Λ+m

)
, (143)

where

∂
wL Λ,Λ0

l,n;r,?

(
~pn;

s

∏
i=1

pB (τi; ·,yi)

)

:=
∫

z1,··· ,zn

(z1− z2)
r
∂

wL Λ,Λ0
l,n;? ((z1, p1), · · · ,(zn, pn))

s

∏
i=1

pB (τi;zi,yi)

and F̂ Λ

s,l;δ (τ1,s) :=
∫

z1
pB (τ1;z1,y1)F

Λ

s,l;δ (τ2,s).

The bound (143) implies that ∂ wL Λ,Λ0
l,n;r? (~pn;∏

s
i=1 pB (τi; ·,yi)) are bounded uniformly w.r.t.

Λ0. It is also possible to deduce a convergence Theorem which implies the existence of the
limit Λ→ 0 and Λ0→ ∞ for ∂ wL Λ,Λ0

l,n;r? which we do not explicit here.

• We do not prove Theorem 2 since there is no novelty in the proof, which is mainly based
on combining arguments from the proof of Theorem 1 with the steps of the proof of the
convergence theorem in6.

• The difference between DΛ,Λ0
l,n +S Λ,Λ0

l,n;? , and L Λ,Λ0
l,n;? studied in6, is their distributional struc-

ture, in the sense that one can prove inductively using the FEs (62) and the boundary condi-
tions (69)-(70) that

DΛ,Λ0
l,n

(
z1;φτ2,s,y2,s

)
+S Λ,Λ0

l,n;?

(
z1;φτ2,s,y2,s

)
= aΛ,Λ0

l,n;? (z1,y2,s,τ2,s)+bΛ,Λ0
l,n;? (y2,s,τ2,s)δz1

+ cΛ,Λ0
l,n;? (y2,s,τ2,s)δ

′
z1
, (144)

where aΛ,Λ0
l,n;? is smooth w.r.t. z1 and aΛ,Λ0

l,n;? , bΛ,Λ0
l,n;? and cΛ,Λ0

l,n;? are smooth w.r.t. y2,s and τ2,s.

However, the semi-infinite correlation distributions L Λ,Λ0
l,n;? considered in6 are smooth w.r.t. z1

which is a consequence of the type of mixed b.c.s imposed on the semi-infinite correlation
distributions.
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• If the bulk correlation distributions obey the bound∣∣∣∂ wDΛ,Λ0
l,n;r1,r2

(
~pn;φτ1,s,y1,s

)∣∣∣
≤
{
(Λ+m)3−n−r1−r2−|w|F Λ,0

s,l;δ (τ1,s)+(Λ+m)4−n−r1−r2−|w|F Λ

s,l;δ (τ1,s)
}

×P1

(
log

Λ+m
m

)
P2

(
‖~pn‖
Λ+m

)
Q1

(
τ−

1
2

Λ+m

)
, ∀n≥ 2 , ∀s≥ 1 (145)

instead of (50)-(51), the bound (135) still holds.

• The bound (135) holds also for the surface correlation distributions folded with ? heat kernels
(i.e. ? ∈ {N,R}), that is

∣∣∣∂ wS Λ,Λ0
l,n;?;r1,r2

(
~pn;φ

?
τ1,s,y1,s

)∣∣∣≤ (Λ+m)3−n−r1−r2−|w|P1

(
log

Λ+m
m

)
P2

(
‖~pn‖
Λ+m

)
×Q1

(
τ−

1
2

Λ+m

)
F Λ,0

s,l;δ (τ1,s) , ∀n≥ 2 , (146)

where the external points y1,s belong to (R+)s. This is a direct consequence of (7)-(8) together

with the bounds (17). In particular, the bound (146) implies that S Λ,Λ0
l,n;R;r1,r2

(
~pn;φ R

τ,y1,s

)
is

uniformly bounded w.r.t. the Robin parameter c.

B. Proof of Theorem 1

Outline of the proof: The bounds (135) and (137)-(138) are proven inductively using the stan-
dard inductive scheme which proceeds upwards in l, for given l upwards in n, and for given (n, l)
downwards in |w| starting from some arbitrary |wmax| ≥ 3. The bounds (135) and (137)-(138) can
be proven separately. Let us explain the general steps in establishing (135). First, we verify that the
bound (135) holds at the tree order. The terms on the RHS of the FE are prior to the one in the LHS
in the inductive order, therefore we use the induction hypothesis for the terms in the RHS to bound
the term on the LHS. In this part of the proof, the key ingredient is the stability of the reduction and
fusion operations of the trees and forests under the flow equation, which is guaranteed by Lemmas
1-3. Afterwards, we integrate this bound from Λ to Λ0 for the irrelevant terms using the boundary
conditions (70). The relevant part requires a careful analysis. We proceed by performing a Taylor
expansion of the test functions φτ1,y1 and φτ2,y2 around z1 = 0 and z2 = 0 in

∂ΛS Λ,Λ0
l,2;?

(
~0;φτ1,2,y1,2

)
.

This step allows to separate the relevant and irrelevant parts in the 2-point surface correlator at
zero momenta. Then, the relevant terms are integrated from 0 to Λ using the renormalization (71).
The remainder of the Taylor expansion is irrelevant and it is integrated from Λ to Λ0 using again
(70) together with the properties of the surface weight factor for s = 2, which are gathered in the
Appendix.

Proof. We establish the proof in the case of the Robin boundary conditions. For the Neumann
boundary conditions, we proceed similarly. In the sequel, we omit the subscript R from S Λ,Λ0

l,n;R .
The induction starts at the tree order for which we have

S Λ,Λ0
0,4 ((z1, p1), · · · ,(z4, p4)) = 0 ,

and the bound (135) obviously holds.
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1. The right-hand side of the FEs

The bounds that we want to obtain for the RHS of the flow equations (62) are of the form∣∣∣∂Λ∂
wS Λ,Λ0

l,n;r1,r2

(
~pn;φτ1,s,y1,s

)∣∣∣≤ (Λ+m)2−n−|w|−r1−r2 P1

(
log

Λ+m
m

)
P2

(
‖~pn‖
Λ+m

)
×Q1

(
τ−

1
2

Λ+m

)
F 0

s,l;δ (Λ,τ1,s,y1,s) , (147)

for all n ≥ 2, 0 ≤ s ≤ n and 0 ≤ r1, r2 ≤ 4. In the sequel, we drop the lower indices from the
polynomials P1, P2 and Q1. But one should keep in mind that these polynomials, whenever they
appear, may have different positive coefficients which depend on l,n, |w|,δl only and not on {pi},
Λ, Λ0, τ1,s and the Robin parameter c.

The bound (147) is established by bounding each of the terms on the RHS of the FE (62). We
consider first the case r1 = r2 = 0.

• We start by treating the linear terms RD
1 and RS

1 given by

RS
1 :=

∫
z,z′

∫
z1,n

∫
k

∂
wS Λ,Λ0

l−1,n+2

(
(z1, p1), · · · ,(zn, pn),(z,k),(z′,−k)

)
×ĊΛ(k)pR

(
1

Λ2 ;z,z′
) s

∏
i=1

pB (τi;zi,yi) (148)

and

RD
1 :=

∫
z,z′

∫
z1,n

∫
k

∂
wDΛ,Λ0

l−1,n+2

(
(z1, p1), · · · ,(zn, pn),(z,k),(z′,−k)

)
×ĊΛ(k)pS,R

(
1

Λ2 ;z,z′
) s

∏
i=1

pB (τi;zi,yi) , (149)

where pR and pS,R are given by (8) and (22). First, we bound RS
1. Using the decomposition of

the Robin heat kernel (8), we obtain that RS
1 can be written as the sum of three contributions

such that for each contribution the Robin heat kernel pR in RS
1 is replaced by a term from the

decomposition (8). We analyze first the term

R̃S
1 :=

∫
z,z′

∫
z1,n

∫
k

∂
wS Λ,Λ0

l−1,n+2

(
(z1, p1), · · · ,(zn, pn),(z,k),(z′,−k)

)
×ĊΛ(k)pB

(
1

Λ2 ;z,z′
) s

∏
i=1

pB (τi;zi,yi) .

Using the semi-group property for the bulk heat kernel (10), R̃S
1 can be rewritten as∫

R
du
∫

z,z′

∫
z1,n

∫
k

∂
wS Λ,Λ0

l−1,n+2

(
(z1, p1), · · · ,(zn, pn),(z,k),(z′,−k)

)
×ĊΛ(k)pB

(
1

2Λ2 ;z,u
)

pB

(
1

2Λ2 ;z′,u
) s

∏
i=1

pB (τi;zi,yi) .

We now insert the induction hypothesis to obtain that R̃S
1 is bounded by

(Λ+m)1−n−|w|P

(
log

Λ+m
m

)
Q

(
τ−

1
2

Λ+m

)∫
k

∣∣∣ĊΛ(k)
∣∣∣P(

|k|
Λ+m

,
‖~pn‖
Λ+m

)
∫

R
du F Λ,0

s+2,l−1;δ1

(
τ1,s,

1
2Λ2 ,

1
2Λ2 ;Yσs ,u,u

)
. (150)
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Using∫
k

∣∣∣ĊΛ(k)
∣∣∣( |k|

Λ+m

)α

=
∫

R3

d3k
(2π)3

2
Λ3 e−

k2+m2

Λ2

(
|k|

Λ+m

)α

≤ O(1), ∀α ∈ N, (151)

we have

|R̃S
1| ≤ (Λ+m)1−n−|w|P

(
log

Λ+m
m

)
Q

(
τ−

1
2

Λ+m

)
P

(
‖~pn‖
Λ+m

)
∫

R
du F Λ,0

s+2,l−1;δ1

(
τ1,s,

1
2Λ2 ,

1
2Λ2 ;Yσs ,u,u

)
. (152)

Applying Lemma 1, we obtain the bound

|R̃S
1| ≤ (Λ+m)2−n−|w|P

(
log

Λ+m
m

)
P

(
‖~pn‖
Λ+m

)
Q

(
τ−

1
2

Λ+m

)
F Λ,0

s,l;δ1
(τ1,s) . (153)

The other contributions to RS
1 are∫

z,z′

∫
z1,n

∫
k

∂
wS Λ,Λ0

l−1,n+2

(
(z1, p1), · · · ,(zn, pn),(z,k),(z′,−k)

)
×ĊΛ(k)pB

(
1

Λ2 ;z,−z′
) s

∏
i=1

pB (τi;zi,yi) (154)

and

−2
∫

z,z′

∫
z1,n

∫
k

∂
wS Λ,Λ0

l−1,n+2

(
(z1, p1), · · · ,(zn, pn),(z,k),(z′,−k)

)
×ĊΛ(k)

∫
v
e−v pB

(
1

Λ2 ;z,−z′− v
c

) s

∏
i=1

pB (τi;zi,yi) . (155)

These terms can be rewritten using (10) as∫
R

du ∂
wS Λ,Λ0

l−1,n+2

(
~pn,k,−k;φτ1,s,y1,s × pB

(
1

2Λ2 ; ·,u
)

pB

(
1

2Λ2 ; ·,−u
))

(156)

and∫
R

du
∫

v
e−v

∂
wS Λ,Λ0

l−1,n+2

(
~pn,k,−k;φτ1,s,y1,s × pB

(
1

2Λ2 ; ·,u
)

pB

(
1

2Λ2 ; ·,−v
c
−u
))

.

(157)
Applying the induction hypothesis, we obtain that (156) is bounded by

(Λ+m)1−n−|w|P

(
log

Λ+m
m

)
Q

(
τ−

1
2

Λ+m

)
P

(
‖~pn‖
Λ+m

)
∫

R
du F Λ,0

s+2,l−1;δ1

(
τ1,s,

1
2Λ2 ,

1
2Λ2 ;Yσs ,u,−u

)
. (158)

Similarly, we have the following bound for (157)

(Λ+m)1−n−|w|P

(
log

Λ+m
m

)
Q

(
τ−

1
2

Λ+m

)∫
k
Ċ(k) P

(
|k|

Λ+m
,
‖~pn‖
Λ+m

)
∫

R
du
∫

v
e−v F Λ,0

s+2,l−1;δ1

(
τ1,s,

1
2Λ2 ,

1
2Λ2 ;Yσs ,u,−u− v

c

)
. (159)
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Using the bounds (17)and remembering the definition (103) of the surface weight factor, we
deduce that ∫

R
du
∫

v
e−v F Λ,0

s+2,l−1;δ1

(
τ1,s,

1
2Λ2 ,

1
2Λ2 ;Yσs ,u,−u− v

c

)
and ∫

R
du F Λ,0

s+2,l−1;δ1

(
τ1,s,

1
2Λ2 ,

1
2Λ2 ;Yσs ,u,−u

)
are bounded by ∫

R
du F Λ,0

s+2,l−1;δ1

(
τ1,s,

1
2Λ2 ,

1
2Λ2 ;Yσs ,u,u

)
.

The rest of the proof follows the steps used to obtain the final bound for R̃S
1, which gives

|RS
1| ≤ (Λ+m)2−n−|w|P

(
log

Λ+m
m

)
P

(
‖~pn‖
Λ+m

)
Q

(
τ−

1
2

Λ+m

)
F Λ,0

s,l;δ1
(τ1,s) . (160)

Now we analyse RD
1 . This term is independent of the induction hypothesis and will be

bounded using only the bound (50) for DΛ,Λ0
l,n . Using (10), RD

1 can be rewritten as

∫
R

du
∫

z,z′

∫
z1,n

∫
k

∂
wDΛ,Λ0

l−1,n+2

(
(z1, p1), · · · ,(zn, pn),(z,k),(z′,−k)

)
×ĊΛ(k)pB

(
1

2Λ2 ;z,u
)

pB

(
1

2Λ2 ;z′,−u
) s

∏
i=1

pB (τi;zi,yi) .

The bound (50) implies that RD
1 is bounded by

(Λ+m)2−n−|w|P

(
log

Λ+m
m

)
P

(
‖~pn‖
Λ+m

)
Q

(
τ−

1
2

Λ+m

)∫
R

du
∫

z1

pB (τ1;z1,y1)

× ∑
T s+2

l−1 (z1,y2,s,u,−u,~z)

∫
~z

Fδ2

(
Λ;
{

τ2,s,
1

2Λ2 ,
1

2Λ2

}
;T s+2

l−1 (z1,y2,s,u,−u,~z)
)

. (161)

For any contribution to (161) we denote by z′,z′′ the vertices in the tree T s+2
l−1 (z1,y2,s,u,−u)

to which the test functions pB

(
1+δ2
2Λ2 ;u, ·

)
and pB

(
1+δ2
2Λ2 ; ·,−u

)
are attached. Performing the

integral over u we obtain using (10)

∫
R

du pB

(
1+δ2

2Λ2 ;z′,u
)

pB

(
1+δ2

2Λ2 ;−u,z′′
)
= pB

(
1+δ2

Λ2 ;z′,−z′′
)

≤ pB

(
1+δ2

Λ2 ;z′,0
)
. (162)

The bound (162) implies that the legs (z,u) and (z′,u) are amputated from the tree T s+2
l−1 and

(z′,u) is replaced by the surface external leg (z′,0) with the parameter Λ. If z′′ is of incidence
number one, it is removed using

∫
z′′ pB

(
(1+δ2)/Λ2

I ;z,z′′
)
≤ 1, and this operation is iterated

until a vertex z̃ such that c(z̃)≥ 2 is reached. This iteration process converges to a non-empty
tree since for s ≥ 1, there exists at least one internal vertex of incidence number greater or
equal to 3 in the tree T s+2

l−1 . The integration over z1 in (161) implies that z1 becomes an internal
vertex attached to y1. Therefore, the reduction process produces a tree which belongs to T s,0.
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Furthermore, v′2 which denotes the number of vertices of incidence number 2 of the new tree,
is increased at most by 2. This stems from the reduction process which can produce one
additional internal vertex such that c(z) = 2 when the vertex z′′ is removed, but also from the
vertex z1 which was initially a root vertex. If z1 had an incidence number equal to one then
after introducing the test function pB(τ1;z1,y1), it becomes internal of incidence number 2.
If v2 is the number of vertices of incidence number 2 of T s+2

l−1 , then v′2 ≤ v2 +δc1,1 +1 which
implies

v′2 ≤ v2 +δc1,1 +1≤ 3(l−1)−2+
s+2

2
+1≤ 3l−2+

s+1
2

.

This also means that the obtained tree is a surface tree in T s,0
l ≡W s

l (σs), which can also be
seen as the set of forests corresponding to the trivial partition. Therefore, RD

1 is bounded by

(Λ+m)2−n−|w|P

(
log

Λ+m
m

)
P

(
‖~pn‖
Λ+m

)
Q

(
τ−

1
2

Λ+m

)
F 0

δ2
(Λ;τ1,s;W s

l (σs);Yσs)

(163)
which implies (see (108))

∣∣RD
1
∣∣≤ (Λ+m)2−n−|w|P

(
log

Λ+m
m

)
P

(
‖~pn‖
Λ+m

)
Q

(
τ−

1
2

Λ+m

)
F Λ,0

s,l;δ2
(τ1,s) . (164)

• In this part, we treat the quadratic terms on the RHS of the flow equations. It is enough to
analyse the terms from the symmetrized sum in which the arguments (zi, pi) appear ordered
in (S Λ,Λ0

l1,n1+1,S
Λ,Λ0

l2,n2+1), (D
Λ,Λ0
l1,n1+1,S

Λ,Λ0
l2,n2+1) and (DΛ,Λ0

l1,n1+1,D
Λ,Λ0
l2,n2+1). These terms are given by

RSS
2 :=

∫
z1,n

∫
z,z′

zr1
1 zr2

2 ∂
w1S Λ,Λ0

l1,n1+1((z1, p1), · · · ,(zn1 , pn1),(z, p))∂ w3ĊΛ(p)pR

(
1

Λ2 ;z,z′
)

×∂
w2S Λ,Λ0

l2,n2+1((z
′,−p), · · · ,(zn, pn))

s

∏
i=1

pB(τi;zi,yi) ,

RDS
2 :=

∫
z1,n

∫
z,z′

zr1
1 zr2

2 ∂
w1S Λ,Λ0

l1,n1+1((z1, p1), · · · ,(zn1 , pn1),(z, p))∂ w3ĊΛ(p)pR

(
1

Λ2 ;z,z′
)

×∂
w2DΛ,Λ0

l2,n2+1((z
′,−p), · · · ,(zn, pn))

s

∏
i=1

pB(τi;zi,yi) ,

and

RDD
2 :=

∫
z1,n

∫
z,z′

zr1
1 zr2

2 ∂
w1DΛ,Λ0

l1,n1+1((z1, p1), · · · ,(zn1 , pn1),(z, p))∂ w3ĊΛ(p)pS,R

(
1

Λ2 ;z,z′
)

×∂
w2DΛ,Λ0

l2,n2+1((z
′,−p), · · · ,(zn, pn))

s

∏
i=1

pB(τi;zi,yi) .

First, we treat the case (r1,r2) = (0,0).

– We start with the term RDS
2 . The property (11) implies that RDS

2 can be rewritten as∫
R+

du
∫

z1,n

∫
z,z′

∂
w1S Λ,Λ0

l1,n1+1((z1, p1), · · · ,(zn1 , pn1),(z, p))∂ w3ĊΛ(p)

×∂
w2DΛ,Λ0

l2,n2+1((z
′,−p), · · · ,(zn, pn))

s

∏
i=1

pB(τi;zi,yi)pR

(
1

2Λ2 ;z,u
)

pR

(
1

2Λ2 ;z′,u
)
.
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Using the decomposition of the Robin heat kernel (8), we restrict our analysis to the
following term only

R̃DS
2 :=

∫
R+

du
∫

z1,n

∫
z,z′

∂
w1S Λ,Λ0

l1,n1+1((z1, p1), · · · ,(zn1 , pn1),(z, p))∂ w3ĊΛ(p)

×∂
w2DΛ,Λ0

l2,n2+1((z
′,−p), · · · ,(zn, pn))

s

∏
i=1

pB(τi;zi,yi)pB

(
1

2Λ2 ;z,u
)

pB

(
1

2Λ2 ;z′,u
)
.

The line of reasoning in treating the remaining contributions in RDS
2 is similar to the one

used in bounding RS
1. We define

φ
′
s1
(z1,n1) =

n1

∏
r=1

φi(zi), φ
′′
s2
(zn1+1,n) =

n

∏
r=n1+1

φi(zi) , (165)

where

φi(zi) =

{
pB(τi;zi,yi) if i≤ s
χ+(zi) otherwise . (166)

Note that s1 = n1 if n1 ≤ s and s2 = s− n1. Otherwise, we have s1 = s and s2 = 0.
Without loss we consider the case n1 < s. Therefore, R̃DS

2 can be rewritten as

R̃DS
2 =

∫
R+

du
∫

z′
∂

w1S Λ,Λ0
l1,n1+1

(
~pn1 , p;φ

′
s1
× pB

(
1

2Λ2 ; .,u
))

∂
w3ĊΛ(p)

×∂
w2DΛ,Λ0

l2,n2+1

(
z′;−p,~pn1+1,n;φ

′′
s2

)
× pB

(
1

2Λ2 ;u,z′
)

. (167)

Applying the induction hypothesis to S Λ,Λ0
l1,n1+1 and using the bound (50) for DΛ,Λ0

l2,n2+1, we
obtain that R̃DS

2 is bounded by

(Λ+m)2−n−|w|P

(
log

Λ+m
m

)
P

(
‖~pn‖
Λ+m

)
Q

(
τ−

1
2

Λ+m

)

×
∫

R+
du F 0

s1+1,l1;δ3

(
Λ;τ1,s1 ,

1
2Λ2 ;Yσs1

,u
)

×
∫

z′
Fs2,l2;δ ′3

(
Λ;τs1+1,s;z′;Yσs1+1:s

)
pB

(
1

2Λ2 ;z′,u
)
.

Since the global weight factor Fs2,l2;δ ′3

(
Λ;τs1+1,s;z′;Yσs1+1:s

)
is a sum of the weight

factors of all trees T s2
l2
(z′;~z′′;Yσs1+1:s) in T s2

l2
, we deduce that the integration over z′

of the corresponding weight factor gives the global weight factor of the bulk tree
T̂ s2+1

l2

(
z′,~z′′;Yσs1+1:s ,u

)
obtained from T s2

l2
by converting z′ into an internal vertex and

attaching it to the external vertex u. Therefore we can write

F̂s2+1,l2;δ ′3

(
Λ;τs1+1,s,

1
2Λ2 ;Yσs1+1:s ,u

)
= ∑

T̂
s2+1
l2

∈T̂ s2+1
l2

Fδ ′3

(
Λ;τs1+1,s,

1
2Λ2 ; T̂ s2+1

l2
;Yσs1+1:s ,u

)
, (168)

with

Fδ ′3

(
Λ;τs1+1,s,

1
2Λ2 ; T̂ s2+1

l2
;Yσs1+1:s ,u

)
=
∫

z′
Fδ ′3

(
Λ;τs1+1,s;T s2

l2
;z′;Yσs1+1:s

)
pB

(
1

2Λ2 ;z′,u
)
. (169)
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Applying Lemma 3, we deduce that R̃DS
2 is bounded by

(Λ+m)2−n−|w|P

(
log

Λ+m
m

)
P

(
‖~pn‖
Λ+m

)
Q

(
τ−

1
2

Λ+m

)
F Λ,0

s,l;δ ′′3
(τ1,s) ,

where δ ′′3 := max(δ3,δ
′
3).

– In this part we bound the term RSS
2 . As for RDS

2 , we only treat the term

R̃SS
2 :=

∫
R+

du
∫

z1,n

∫
z,z′

∂
w1S Λ,Λ0

l1,n1+1((z1, p1), · · · ,(zn1 , pn1),(z, p))∂ w3ĊΛ(p)

×∂
w2S Λ,Λ0

l2,n2+1((z
′,−p), · · · ,(zn, pn))

s

∏
i=1

pB(τi;zi,yi)pB

(
1

2Λ2 ;z,u
)

pB

(
1

2Λ2 ;z′,u
)
.

Using the same notations (165)-(166), we rewrite R̃SS
2 as follows,

R̃SS
2 =

∫
R+

du ∂
w1S Λ,Λ0

l1,n1+1

(
~p1,n1 , p;φ

′
s1
× pB

(
1

2Λ2 ; .,u
))

∂
w3ĊΛ(p)

×∂
w2S Λ,Λ0

l2,n2+1

(
−p,~pn1+1,n;φ

′′
s2
× pB

(
1

2Λ2 ; .,u
))

. (170)

Note that R̃2,SS = 0 for li ∈ {0, l}. Using the induction hypothesis, we obtain

∣∣R̃SS
2
∣∣≤ (Λ+m)1−n−|w|P

(
log

Λ+m
m

)
P

(
‖~pn‖
Λ+m

)
Q

(
τ−

1
2

Λ+m

)

×
∫

R
du F 0

s1+1,l1;δ3

(
Λ;τ1,s1 ,

1
2Λ2 ;Yσs1

,u
)

F 0
s2+1,l2;δ4

(
Λ;τs1+1,s,

1
2Λ2 ;Yσs1+1:s ,u

)
.

Applying Lemma 2, we deduce that R̃SS
2 is bounded by

(Λ+m)2−n−|w|P

(
log

Λ+m
m

)
P

(
‖~pn‖
Λ+m

)
Q

(
τ−

1
2

Λ+m

)
F Λ,0

s,l;δ5
(τ1,s) ,

where δ5 := max(δ3,δ4).

– In this part, we bound the term RDD
2 , which we rewrite using (165)-(166) as follows,

∫
z,z′

∂
w1DΛ,Λ0

l1,n1+1

(
z;~p1,n1 , p;φ

′
s1

)
∂

w3ĊΛ(p)pS,R

(
1

Λ2 ;z,−z′
)

×∂
w2DΛ,Λ0

l2,n2+1

(
z′;~pn1+1,n,−p;φ

′′
s2

)
.

Using the bounds (23) and (50), we obtain that RDD
2 is bounded by

(Λ+m)3−n−|w| e−
m2

2Λ2 P

(
log

Λ+m
m

)
P

(
‖~pn‖
Λ+m

)
Q

(
τ−

1
2

Λ+m

)

×
∫

z,z′
Fs1+1,l1;δ ′4

(
Λ;τ1,s1 ;z;Yσs1

)
Fs2+1,l2;δ ′3

(
Λ;τs1+1,s;z′;Yσs1+1:s

)
pB

(
1

Λ2 ;z′,−z
)
.

(171)

The bound

pB

(
1

Λ2 ;z′,−z
)
≤
√

2π Λ
−1 pB

(
1

Λ2 ;z′,0
)

pB

(
1

Λ2 ;z,0
)

(172)
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together with

Λ
−α e−

m2

2Λ2 ≤ O(1)(Λ+m)−α for α ∈ N , (173)

gives

e−
m2

2Λ2

∫
z,z′

Fs1+1,l1;δ ′4

(
Λ;τ1,s1 ;z;Yσs1

)
Fs2+1,l2;δ ′3

(
Λ;τs1+1,s;z′;Yσs1+1:s

)
pB

(
1

Λ2 ;z′,−z
)

≤ O(1) (Λ+m)−1
∫

z
Fs1+1,l1;δ ′4

(
Λ;τ1,s1 ;z;Yσs1

)
pB

(
1

Λ2 ;z,0
)

×
∫

z′
Fs2+1,l2;δ ′3

(
Λ;τs1+1,s;z′;Yσs1+1:s

)
pB

(
1

Λ2 ;z′,0
)
.

From the definition (99), we have

∫
z
Fs1+1,l1;δ ′4

(
Λ;τ1,s1 ;z;Yσs1

)
pB

(
1

Λ2 ;z,0
)

= ∑
T

s1+1
l1

∈T s1+1
l1

∫
z
Fs1+1,l1;δ ′4

(
Λ;τ1,s1 ;T s1+1

l1
;z;Yσs1

)
pB

(
1

Λ2 ;z,0
)
. (174)

We define the tree T s1,0
l1

obtained from T s1+1
l1

by converting the root vertex z into an

internal vertex and attaching z to the surface external vertex 0. Clearly, T s1,0
l1

belongs to

T s1,0. Denoting by v′2 the number of vertices of incidence number 2 of T s1,0
l1

, we clearly
have

v′2 = v2 +δc(z),1

with v2 denoting the number of vertices of incidence number 2 of T s1+1
l1

. Remembering

that T s1+1
l1

is in T s1+1
l1

, we have

v′2 = v2 +δc(z),1 ≤ 3l−2+
s1 +1

2
.

This implies that T s1,0
l1
∈T s1,0

l1
. Using the definitions (97), (98) and (103), we obtain

∑
T

s1+1
l1

∈T s1+1
l1

∫
z
Fs1+1,l1;δ ′4

(
Λ;τ1,s1 ;T s1+1

l1
;z;Yσs1

)
pB

(
1

Λ2 ;z,0
)

≤ ∑
T

s1,0
l1
∈T s1 ,0

l1

F 0
s1,l1;δ ′4

(
Λ;τ1,s1 ;T s1,0

l1
;Yσs1

,0
)
. (175)

A similar reasoning gives

∑
T

s2+1
l2

∈T s2+1
l2

∫
z′
Fs2+1,l2;δ ′3

(
Λ;τs1+1,s;T s2+1

l2
;z′;Yσs1+1:s

)
pB

(
1

Λ2 ;z′,0
)

≤ ∑
T

s2 ,0
l2
∈T s2 ,0

l2

F 0
s2,l2;δ ′3

(
Λ;τs1+1,s;T s2,0

l2
;Yσs1+1:s ,0

)
. (176)
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Hence, we deduce∫
z
Fs1+1,l1;δ ′4

(
Λ;τ1,s1 ;z;Yσs1

)
pB

(
1

Λ2 ;z,0
)

×
∫

z′
Fs2+1,l2;δ ′3

(
Λ;τs1+1,s;z′;Yσs1+1:s

)
pB

(
1

Λ2 ;z′,0
)

≤ O(1)

 ∑
W s

l ∈W
s

l

∑
{Π∈Ps, lΠ=2}

F 0
δ6
(Λ;τ1,s;W s

l (Π);Yσs)

 , (177)

where Π := {Π1,Π2}, Π1 := {1, · · · ,s1} and Π2 := {s1 +1, · · · ,s}. In (177), we also
used the bound (112) and δ6 := max(δ ′3,δ

′
4). Therefore, we find that RDD

2 is bounded by

(Λ+m)2−n−|w|P

(
log

Λ+m
m

)
P

(
‖~pn‖
Λ+m

)
Q

(
τ−

1
2

Λ+m

)

×

 ∑
W s

l ∈W
s

l

∑
{Π∈Ps, lΠ=2}

F 0
δ6
(Λ;τ1,s;W s

l (Π);Yσs)

 . (178)

This shows that RDD
2 is bounded by

(Λ+m)2−n−|w|P

(
log

Λ+m
m

)
P

(
‖~pn‖
Λ+m

)
Q

(
τ−

1
2

Λ+m

)
F Λ,0

s,l;δ6
(τ1,s) .

• Case (r1,r2) 6= (0,0): The linear terms RS
1 and RD

1 together with the non-linear term RSS
2 are

treated following the same steps as before. The only terms that require a careful analysis are
RDS

2 and RDD
2 . To shorten the discussion, we restrict our analysis to the term RDD

2 . RDS
2 can be

treated following the same line of reasoning. We write

zr1
1 = ∑

α1+β1=r1

(
r1

α1

)
(z1− z)α1 zβ1 , zr2

2 = ∑
α2+β2=r2

(
r2

α2

)(
z2− z′

)α2 z′β2 .

This allows to rewrite RDD
2 for all n1 ≥ 2 as follows

∑
α1+β1=r1,α2+β2=r2

(
r1

α1

) (
r2

α2

)
zβ1+β2 ∂

w1D
Λ,Λ0;(1,2)
l1,n1+1;α1,α2

(
z;~p1,n1 , p;φ

′
s1

)
∂

w3ĊΛ(p)

×∂
w2DΛ,Λ0

l2,n2+1

(
z′;~pn1+1,n,−p;φ

′′
s2

)
pS,R

(
1

Λ2 ;z,z′
)

, (179)

and for n1 = 1 we have

∑
α1+β1=r1,α2+β2=r2

(
r1

α1

) (
r2

α2

)
zβ1 z′β2

∂
w1D

Λ,Λ0;(1)
l1,2;α1

(
z; p1, p;φ

′
s1

)
∂

w3ĊΛ(p)

×∂
w2D

Λ,Λ0;(2)
l2,n;α2

(
z′;~p2,n,−p;φ

′′
s2

)
pS,R

(
1

Λ2 ;z,z′
)

. (180)

Using the bounds (50), (51) and (23), we deduce that the summands in (179)-(180) are
bounded by

(Λ+m)3−n−|w|−α1−α2 e−
m2

2Λ2 P

(
log

Λ+m
m

)
P

(
‖~pn‖
Λ+m

)
Q

(
τ−

1
2

Λ+m

)
×
∫

z,z′
Fs1,l1;δ ′′1

(
Λ;τ1,s1 ;z;Yσs1

)
Fs2,l2;δ ′′2

(
Λ;τs1+1,s;z′;Yσs1+1:s

)
χ

Λ
n1

(
z,z′
)
, (181)
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where

χ
Λ
n1

(
z,z′
)
=

 zβ1 z′β2 pB

(
1

Λ2 ;z′,−z
)

if n1 = 1,

zβ1+β2 pB

(
1

Λ2 ;z′,−z
)

otherwise .

Using the bound (172) together with (15) and (172), we deduce for all δ , δ̃ > 0

χ
Λ
n1

(
z,z′
)
≤ O(1) Λ

−1−β1−β2 pB

(
1+δ

Λ2 ;z,0
)

pB

(
1+ δ̃

Λ2 ;z′,0

)
, (182)

which implies together with (173) that (181) is bounded by

(Λ+m)2−n−|w|−r1−r2 P

(
log

Λ+m
m

)
P

(
‖~pn‖
Λ+m

)
Q

(
τ−

1
2

Λ+m

)

×
∫

z
Fs1,l1;δ ′′1

(
Λ;τ1,s1 ;z;Yσs1

)
pB

(
1+δ ′′1

Λ2 ;z,0
)

×
∫

z′
Fs2,l2;δ ′′2

(
Λ;τs1+1,s;z′;Yσs1+1:s

)
pB

(
1+δ ′′2

Λ2 ;z′,0
)
. (183)

This together with the bounds (177) and (178) imply the final bound for RDD
2 given by

(Λ+m)2−n−|w|−r1−r2 P

(
log

Λ+m
m

)
P

(
‖~pn‖
Λ+m

)
Q

(
τ−

1
2

Λ+m

)
F Λ,0

s,l;δ7
(τ1,s) , (184)

where δ7 := max(δ ′′1 ,δ
′′
2 ).

Using the bound (112), we deduce (147) where δ := max{δi, δ ′i , δ ′′i , 1≤ i≤ 7}.

2. Integration of the FEs

• We start by integrating the irrelevant terms for which n+ |w|+ r1 + r2 ≥ 4. In this case, (147)
is integrated from Λ to Λ0 using the boundary condition (69)-(70) together with (111) and we
obtain∣∣∣∂ wS Λ,Λ0

l,n;r1,r2

(
~pn;φτ1,s,y1,s

)∣∣∣
≤ (Λ+m)3−n−|w|−r1−r2 P

(
log

Λ+m
m

)
P

(
‖~pn‖
Λ+m

)
Q

(
τ−

1
2

Λ+m

)
F Λ,0

s,l;δ (τ1,s) . (185)

• The relevant terms are those that correspond to n+ |w|+ r1 + r2 ≤ 3. These read∫
∞

0
dz1

∫
∞

0
dz2 zr1

1 zr2
2 ∂ΛS Λ,Λ0

l,2 ((z1, p),(z2,−p))
s

∏
i=1

pB(τi;zi,yi) , (186)

where r1, r2 are integers such that r1 + r2 ≤ 1, and 0 ≤ s ≤ 2. We restrict our analysis to the
case s = 2, the case s = 1 can be treated similarly and the case s = 0 will be integrated in the
sequel. For s = 2, the relevant part is extracted from∫

z1,z2

∂ΛS Λ,Λ0
l,2 ((z1, p),(z2,−p))φ1(z1)φ2(z2) (187)

by performing a Taylor expansion of φ1 and φ2 around zi = 0 at p = 0, where φi(zi) :=
pB(τi;zi,yi), using (65) and (68). The bound (147) for s = 0 and r1 + r2 ≤ 1 gives∣∣∣∂ΛsΛ,Λ0

l

∣∣∣ ≤ P

(
log

Λ+m
m

)
,

∣∣∣∂ΛeΛ,Λ0
l

∣∣∣ ≤ (Λ+m)−1 P

(
log

Λ+m
m

)
. (188)
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Integrating (188) from 0 to Λ and using the renormalization conditions (71), we have∣∣∣sΛ,Λ0
l

∣∣∣≤ (Λ+m)P

(
log

Λ+m
m

)
,
∣∣∣eΛ,Λ0

l

∣∣∣≤P

(
log

Λ+m
m

)
. (189)

Applying Lemma 6 from the Appendix, we have∣∣∣sΛ,Λ0
l φ1(0)φ2(0)+ eΛ,Λ0

l {φ1(0)(∂nφ2)(0)+φ2(0)(∂nφ1)(0)}
∣∣∣

≤ (Λ+m)P

(
log

Λ+m
m

)
Q

(
τ−

1
2

Λ+m

)
F Λ,0

2,l;δ (τ1,2) . (190)

Now, we bound and integrate the remainder ∂ΛlΛ,Λ0
l,2 (φ1,φ2), which is irrelevant as we will see

in the sequel, from Λ to Λ0. We distinguish between the two cases:

– Λ≤ 3
√

lτ−
1
2 : Using (147) and (190), we deduce that ∂ΛlΛ,Λ0

l,2 (φ1,φ2) is bounded by

O(1) max
(
m2,τ−1)(Λ+m)−2 P

(
log

Λ+m
m

)
Q

(
τ−

1
2

Λ+m

)
F Λ,0

2,l;δ (τ1,2) . (191)

– Λ≥ 3
√

lτ−
1
2 : In the sequel, we restrict our analysis to the integration of the following

terms, for which we need to proceed differently.

Ḣ1 :=
(∫

z1,z2

z1z2∂ΛS Λ,Λ0
l,2 ((z1,0),(z2,0))

)
(∂nφ1)(0)(∂nφ2)(0) , (192)

Ḣ2 := (∂nφ2)(0)
∫

z1,z2

z2 ∂ΛS Λ,Λ0
l,2 ((z1,0),(z2,0))

∫ 1

0
dt (1− t)

(
∂

2
t φ1(tz1)

)
, (193)

and

Ḣ3 :=
∫

z1,z2

∂ΛS Λ,Λ0
l,2 ((z1,0),(z2,0))

(∫ 1

0
dt (1− t)∂ 2

t φ1(tz1)

)
×
(∫ 1

0
dt ′ (1− t ′)∂ 2

t ′φ2(t ′z2)

)
. (194)

The other terms which also contribute to ∂ΛlΛ,Λ0
l,2 (φ1,φ2) can be treated similarly.

∗ We start first with Ḣ1 for which the bound (147) implies that∣∣∣∣(∫z1,z2

z1z2∂ΛS Λ,Λ0
l,2 ((z1,0),(z2,0))

)∣∣∣∣≤ (Λ+m)−2 P

(
log

Λ+m
m

)
. (195)

Using Lemma 6, we obtain∣∣∣∣(∫z1,z2

z1 z2∂ΛS Λ,Λ0
l,2 ((z1,0),(z2,0))

)
(∂nφ1)(0)(∂nφ2)(0)

∣∣∣∣
≤ (Λ+m)−2

τ
− 1

2
1 τ

− 1
2

2 P

(
log

Λ+m
m

)
Q

(
τ−

1
2

Λ+m

)
F Λ,0

2,l;δ (τ1,2) . (196)

∗ The term Ḣ2: we have for 0≤ t ≤ 1

φi(tzi) =
1√
2πτi

e−
(tzi−yi)

2
2τi . (197)
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Differentiating (197) twice w.r.t. t, we obtain

∂
2
t (φi(tzi)) =

1
t

[
− z2

i
τi

+
z2

i (tzi− yi)
2

τ2
i

]
pB

(
τi

t2 ;zi,
yi

t

)
, (198)

which implies that the term∫
z1,z2

z2 ∂ΛS Λ,Λ0
l,2 ((z1,0),(z2,0))

∫ 1

0
dt (1− t)∂ 2

t φ1(tz1) (199)

can be rewritten as

∑
(α,β )∈I2

cαβ

yβ

1

τ
1+ β+α

2
1

∫ 1

0
dt tα−1(1− t)

∫
z1,z2

z2 z2+α

1 ∂ΛS Λ,Λ0
l,2 ((z1,0),(z2,0)) pB

(
τ1

t2 ;z1,
y1

t

)
, (200)

where I2 :=
{
(0,0),(α,β ) | α +β = 2, (α,β ) ∈ N2

}
, and the coefficients cαβ ∈

R depend only on the exponents α and β . The bound (147) implies that the term∫
z1,z2

z2 z2+α

1 ∂ΛS Λ,Λ0
l,2 ((z1,0),(z2,0)) pB

(
τ1

t2 ;z1,
y1

t

)
(201)

is bounded by

(Λ+m)−3−α e−
m2

2Λ2 Q

 tτ
− 1

2
1

Λ+m

F 0
1,l;δ

(
Λ;

τ1

t2 ;
y1

t

)
. (202)

From Lemma 7, we obtain(
y1√
τ1

)β

F 0
1,l;δ

(
Λ;

τ1

t2 ;
y1

t

)
≤ O(1) t

(
1+
√

τ1

Λ

)β

F Λ,0
1,l;δ ′ (τ1) , (203)

where 0 < δ < δ ′. Using (173) together with (201) and (202), we deduce that (200)
is bounded by

(Λ+m)−3
τ
−1
1 P

(
log

Λ+m
m

)
Q

(
τ−

1
2

Λ+m

)
F Λ,0

1,l;δ ′ (τ1) . (204)

Lemma 6 together with (A3) imply that Ḣ2 is bounded by

(Λ+m)−3
τ
−1
1 τ

− 1
2

2 P

(
log

Λ+m
m

)
Q

(
τ−

1
2

Λ+m

)
F Λ,0

2,l;δ ′ (τ1,2) . (205)

Following similar steps, we obtain∣∣∣∣(∂nφ1)(0)
∫

z1,z2

z2 ∂ΛS Λ,Λ0
l,2 ((z1,0),(z2,0))

∫ 1

0
dt (1− t)

(
∂

2
t φ2(tz1)

)∣∣∣∣
≤ (Λ+m)−3

τ
− 1

2
1 τ

−1
2 P

(
log

Λ+m
m

)
Q

(
τ−

1
2

Λ+m

)
F Λ,0

2,l;δ ′ (τ1,2) (206)

and∣∣∣∣φi(0)
∫

z1,z2

∂ΛS Λ,Λ0
l,2 ((z1,0),(z2,0))

∫ 1

0
dt (1− t)

(
∂

2
t φ j(tz1)

)∣∣∣∣
≤ (Λ+m)−2

τ
−1
j P

(
log

Λ+m
m

)
Q

(
τ−

1
2

Λ+m

)
F Λ,0

2,l;δ ′ (τ1,2) . (207)
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∗ The term Ḣ3: We start from (194) and (198) and write the term Ḣ3 as follows

∑
(α,β )∈I2

∑
(α ′,β ′)∈I2

cαβ cα ′β ′
yβ

1

τ
1+ β+α

2
1

yβ ′

2

τ
1+ β ′+α ′

2
2

∫ 1

0
dt dt ′ tα−1(1− t) t ′α

′−1
(1− t ′)

∫
z1,z2

z2+α ′
2 z2+α

1 ∂ΛS Λ,Λ0
l,2 ((z1,0),(z2,0)) pB

(
τ1

t2 ;z1,
y1

t

)
pB

(
τ2

t ′2
;z2,

y2

t ′

)
. (208)

The bound (147) implies that the term∫
z1,z2

z2+α ′
2 z2+α

1 ∂ΛS Λ,Λ0
l,2 ((z1,0),(z2,0)) pB

(
τ1

t2 ;z1,
y1

t

)
pB

(
τ2

t ′2
;z2,

y2

t ′

)
is bounded by

(Λ+m)−4−α−α ′ e−
m2

2Λ2 Q

(
tτ−

1
2

Λ+m

)
F 0

2,l;δ

(
Λ;

τ1

t2 ,
τ2

t ′2
;

y1

t
,

y2

t ′

)
.

From Lemma 8 and (173), we deduce that (208) is bounded by

τ
− 1

2
1 τ

− 1
2

2 (Λ+m)−2 P

(
log

Λ+m
m

)
Q̃

(
τ−

1
2

Λ+m

)
F Λ;0

2,l;δ ′ (τ1,2) , (209)

where 0 < δ < δ ′ < 1.
The boundary conditions (69) together with (68), (200) and (208) imply that

lΛ0,Λ0
l,2;R (φ1,φ2) = 0.

Integrating from Λ to Λ0, we obtain for Λ0 ≥ 3
√

lτ−
1
2

lΛ,Λ0
l,2 (φ1,φ2) =

∫ 3
√

lτ−
1
2

Λ

dλ ∂λ lλ ,Λ0
l,2 (φ1,φ2)+

∫
Λ0

3
√

lτ−
1
2

dλ ∂λ lλ ,Λ0
l,2 (φ1,φ2) . (210)

Using the bounds (191), (196), (205) and (209) together with (206) and (207), we obtain
that the remainder lΛ,Λ0

l,2 is bounded by

(Λ+m)max

{
τ−1

(Λ+m)2 ,
m2

(Λ+m)2

}
P

(
log

Λ+m
m

)
Q̃

(
τ−

1
2

Λ+m

)
F Λ,0

2,l;δ ′ (τ1,2) .

(211)
For Λ0 ≤ 3

√
lτ−

1
2 , we conclude by integrating (191) from Λ to Λ0 and we deduce∣∣∣∂ wS Λ,Λ0

l,2;r1,r2

(
~0;φτ1,s,y1,s

)∣∣∣
≤ (Λ+m)1−|w|−r1−r2 P

(
log

Λ+m
m

)
Q

(
τ−

1
2

Λ+m

)
F Λ,0

s,l;δ ′(τ1,s) , (212)

where we used (112).

• Extension to general momenta: We now extend the bound (212) to general momenta using
the Taylor formula with integral remainder, which reads

∂
wS Λ,Λ0

l,2;r1,r2

(
p,−p;φτ1,s,y1,s

)
= ∂

wS Λ,Λ0
l,2;r1,r2

(
~0;φτ1,s,y1,s

)
+
∫ 1

0
dt ∂t∂

wS Λ,Λ0
l,2;r1,r2

(
t p,−t p;φτ1,s,y1,s

)
.

(213)
Applying this formula, the bound of the integrand ( due to the derivative ) yields an additional
factor (Λ+m)−1 which combines with the momentum produced by the t-derivative to give a
bound as in (135).

This ends the proof of Theorem 1.
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C. Proof of Proposition 4

Proof. The proof follows the same inductive scheme used in the proof of Theorem 1. For the tree
order, we have

S Λ,Λ0
0,n;? ((z1, p1), · · · ,(zn, pn)) = 0, ∀n≥ 2, ? ∈ {D,R,N} .

Clearly, the statement (136) holds.

A1) We start by verifying inductively the following statement

∂ΛS Λ,Λ0
l,n;D

(
~pn;φ

D
τ1,n,y1,n

)
= lim

c→+∞
∂ΛS Λ,Λ0

l,n;R

(
~pn;φ

R
τ1,n,y1,n

)
. (214)

In the sequel, we use the symbol ? to denote either Dirichlet or Robin boundary conditions.
Given Π = (π1,π2) ∈Pn such that |πi| = ni and n1 + n2 = n, we introduce the following
notations:

S Λ,Λ0
li,ni+1;?

(
~pπi ,(−1)i p;Φ

Λ;?
πi

;Yπi ,u
)

:=
∫
~zπi ,z

S Λ,Λ0
li,ni+1;? ((~zπi ,~pπi),(z, p))∏

i∈πi

p? (τi;zi,yi) p?

(
1

2Λ2 ;z,u
)
, i ∈ {1,2} (215)

and

S Λ,Λ0
l−1,n+2;?

(
~pn,k,−k;Φ

Λ;?
n+2;Yσn ,u,u

)
:=
∫
~zn,z,z′

S Λ,Λ0
l−1,n+2;?

(
(~zn,~pn),(z,k),(z′,−k)

)
×φ

?
τ1,n,y1,n

(z1,n) p?

(
1

2Λ2 ;z,u
)

p?

(
1

2Λ2 ;z′,u
)
, (216)

where

Φ
Λ;?
πi

(~zπi ,z) = φ
?
πi
(~zπi) p?

(
1

2Λ2 ;z,u
)

with φ
?
πi
(~zπi) := ∏

i∈πi

p? (τi;zi,yi) ,

and

Φ
Λ;?
n+2

(
z1,n,z,z′

)
= φ

?
τ1,n,y1,n

(z1,n) p?

(
1

2Λ2 ;z,u
)

p?

(
1

2Λ2 ;z′,u
)
.

We consider the flows equations (62) smeared with the test functions φ ?
τ1,n,y1,n

given by

∂ΛS Λ,Λ0
l,n;?

(
~pn;φ

?
τ1,n,y1,n

)
=

1
2

∫
u

∫
k
S Λ,Λ0

l−1,n+2;?

(
~pn,k,−k;Φ

Λ;?
n+2;Yσn ,u,u

)
ĊΛ(k)

+
1
2

∫
z,z′

∫
k
DΛ,Λ0

l−1,n+2

(
(~zn.~pn),(z,k),(z′,−k)

)
ĊΛ

S,?(k;z,z′)φ ?
τ1,n,y1,n

(z1,n)

− 1
2

′

∑
l1,l2

′′

∑
π1,π2

[∫
u

{
S Λ,Λ0

l1,n1+1;?

(
~pπ1 ,−p;Φ

Λ;?
π1

;Yπ1 ,u
)

ĊΛ(p)

×S Λ,Λ0
l2,n2+1;?

(
~pπ2 , p;Φ

Λ;?
π2

;Yπ2 ,u
)

+DΛ,Λ0
l1,n1+1

(
~pπ1 ,−p;Φ

Λ;?
π1

;Yπ1 ,u
)

ĊΛ(p) S Λ,Λ0
l2,n2+1;?

(
~pπ2 , p;Φ

Λ;?
π2

;Yπ2 ,u
)

+S Λ,Λ0
l1,n1+1;?

(
~pπ1 ,−p;Φ

Λ;?
π1

;Yπ1 ,u
)

ĊΛ(p) DΛ,Λ0
l2,n2+1

(
~pπ2 , p;Φ

Λ;?
π2

;Yπ2 ,u
)}

+
∫

z,z′
DΛ,Λ0

l1,n1+1

(
z;−p,~p1,n1 ;φ

?
π1

)
ĊΛ

S,?(p;z,z′)DΛ,Λ0
l2,n2+1

(
z′; p,~pn1+1,n;φ

?
π2

)]
rsym

,

p =− ∑
i∈π1

pi = ∑
i∈π2

pi , (217)
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where we used (115) and the notations (215)-(216). Here, the prime denotes all pairs (l1, l2)
such that l1 + l2 = l, and the double prime refers to a summation over (π1,π2) ∈ P̃2;n with
ni := |πi|.
Using the induction hypothesis, we obtain

S Λ,Λ0
l−1,n+2;D

(
~pn,k,−k;Φ

Λ;D
n+2;Yσn ,u,u

)
= lim

c→+∞
S Λ,Λ0

l−1,n+2;R

(
~pn,k,−k;Φ

Λ;R
n+2;Yσn ,u,u

)
,

(218)

S Λ,Λ0
li,ni+1;D

(
~pπi ,(−1)i p;Φ

Λ;D
πi

;Yπi ,u
)

= lim
c→+∞

S Λ,Λ0
li,ni+1;R

(
~pπi ,(−1)i p;Φ

Λ;R
πi

;Yπi ,u
)
, i ∈ {1,2} . (219)

For τi > 0 and yi ∈ R+, we have

lim
c→+∞

Np (pD(τi; ·,yi)− pR(τi; ·,yi)) = 0 , (220)

where for φ in S (R+) the semi-norm Np is given by

Np(φ) = ∑
α, β≤p

sup
x∈R+
|xα

∂
β

φ(x)| .

Remembering that DΛ,Λ0
l,n ∈S ′ (R+n) and using (220), we deduce

DΛ,Λ0
li,ni+1

(
~pπi ,(−1)i p;Φ

Λ;D
πi

;Yπi ,u
)
= lim

c→+∞
DΛ,Λ0

li,ni+1

(
~pπi ,(−1)i p;Φ

Λ;R
πi

;Yπi ,u
)
. (221)

We rewrite the term∫
k

∫
z,z′

DΛ,Λ0
l−1,n+2

(
(~zn.~pn),(z,k),(z′,−k)

)
ĊΛ

S,R(k;z,z′)φ R
τ1,n,y1,n

(z1,n) (222)

as follows∫
k

∫
u
DΛ,Λ0

l−1,n+2

(
~pn,k,−k;Φ

Λ;R
n+2;Yσn ,u,u

)
ĊΛ(k)

−
∫

k

∫
R

du DΛ,Λ0
l−1,n+2

(
~pn,k,−k;φ

R
τ1,n,y1,n

× pB

(
1

2Λ2 ; ·,u
)

pB

(
1

2Λ2 ; ·,u
))

ĊΛ(k) . (223)

Following the same steps that led to (221), we obtain

DΛ,Λ0
l−1,n+2

(
~pn,k,−k;Φ

Λ;D
n+2;Yσn ,u,u

)
= lim

c→+∞
DΛ,Λ0

l−1,n+2

(
~pn,k,−k;Φ

Λ;R
n+2;Yσn ,u,u

)
(224)

and

DΛ,Λ0
l−1,n+2

(
~pn,k,−k;φ

D
τ1,n,y1,n

× pB

(
1

2Λ2 ; ·,u
)

pB

(
1

2Λ2 ; ·,u
))

= lim
c→+∞

DΛ,Λ0
l−1,n+2

(
~pn,k,−k;φ

R
τ1,n,y1,n

× pB

(
1

2Λ2 ; ·,u
)

pB

(
1

2Λ2 ; ·,u
))

. (225)

Part A1) in the proof of Theorem 1 implies that the integrands of each term on the RHS of the
FEs (217), in the case of Robin boundary conditions are bounded independently of the Robin
parameter c, and the Lemmas 1-3 show that these bounds are integrable w.r.t. u. We refer the
reader to the proof of Theorem 1 for more details.
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A2) Integration: Lebesgue’s dominated convergence theorem together with (218)-(225) and the
FEs (217) give

∂ΛS Λ,Λ0
l,n;D

(
~pn;φ

D
τ1,n,y1,n

)
= lim

c→+∞
∂ΛS Λ,Λ0

l,n;R

(
~pn;φ

R
τ1,n,y1,n

)
. (226)

This implies (again by the Lebesgue’s dominated convergence theorem and the integrability
of the bound (147) in the proof of Theorem 1)∫

Λ0

Λ

dλ ∂λ S λ ,Λ0
l,n;D

(
~pn;φ

D
τ1,n,y1,n

)
= lim

c→+∞

∫
Λ0

Λ

dλ ∂λ S λ ,Λ0
l,n;R

(
~pn;φ

R
τ1,n,y1,n

)
. (227)

– Irrelevant terms: These terms are characterized by n≥ 4. Using the boundary condition

S Λ0Λ0
l,n;?

(
~pn;φ

?
τ1,n,y1,n

)
= 0, ? ∈ {D,R} (228)

together with (227), we deduce

S Λ,Λ0
l,n;D

(
~pn;φ

D
τ1,n,y1,n

)
= lim

c→+∞
S Λ,Λ0

l,n;R

(
~pn;φ

R
τ1,n,y1,n

)
. (229)

– Relevant terms (n = 2): We have

∫
Λ0

Λ

dλ ∂λ S λ ,Λ0
l,2;R

(
~pn;φ

R
τ1,n,y1,n

)
= S Λ0,Λ0

l,2;R

(
~pn;φ

R
τ1,n,y1,n

)
−S Λ,Λ0

l,2;R

(
~pn;φ

R
τ1,n,y1,n

)
(230)

and ∫
Λ0

Λ

dλ ∂λ S λ ,Λ0
l,2;D

(
~pn;φ

R
τ1,n,y1,n

)
=−S Λ,Λ0

l,2;D

(
~pn;φ

D
τ1,n,y1,n

)
. (231)

In (231), we used the boundary condition (72) for the Dirichlet case. The boundary
condition (69) implies

S Λ0,Λ0
l,2;R

(
~pn;φ

R
τ1,2,y1,2

)
= sΛ0,Λ0

l;R

2

∏
i=1

pR (τi;yi,0)

+ eΛ0,Λ0
l;R {pR (τ1;y1,0) ∂n pR (τ2;y2,0)+ pR (τ2;y2,0) ∂n pR (τ1;y1,0)} . (232)

Using

|∂n pR (τ1;y1,0)| ≤ O(1) τ
− 1

2
i pB

(
τi,δ ;yi,0

)
,

and the fact that sΛ0,Λ0
l;R and eΛ0,Λ0

l;R are uniformly bounded w.r.t. the Robin parameter c,
which is implied by the bound given in Theorem 1 for s = 1, r1 ∈ {0,1} and r2 = 0, we
obtain from pR→c→+∞ pD

lim
c→+∞

S Λ0,Λ0
l,2;R

(
~pn;φ

R
τ1,2,y1,2

)
= 0. (233)

Therefore, we deduce

S Λ,Λ0
l,2;D

(
~pn;φ

D
τ1,2,y1,2

)
= lim

c→+∞
S Λ,Λ0

l,2;R

(
~pn;φ

R
τ1,2,y1,2

)
. (234)

This ends the proof of (136).
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D. Proof of Corollary 1

Proof. In this part, we prove the bounds (137) and (138). As a consequence of Theorem 1, we have
for Robin boundary conditions∣∣∣S Λ,Λ0

l,n;R

(
~pn;φ

R
τ1,n,y1,n

)∣∣∣
≤ (Λ+m)3−n P1

(
log

Λ+m
m

)
P2

(
‖~pn‖
Λ+m

)
Q1

(
τ−

1
2

Λ+m

)
F Λ,0

n,l;δ (τ1,n), ∀n≥ 2 . (235)

Using Theorem 1 and taking the limit c→+∞, we deduce∣∣∣S Λ,Λ0
l,n;D

(
~pn;φ

D
τ,y1,s

)∣∣∣
≤ (Λ+m)3−n P1

(
log

Λ+m
m

)
P2

(
‖~pn‖
Λ+m

)
Q1

(
τ−

1
2

Λ+m

)
F Λ,0

n,l;δ (τ1,n), ∀n≥ 2 . (236)

For n = 2, it is possible to obtain a sharper bound by performing a Taylor expansion around 0 of the
test functions pR (τi; ·,yi) as follows

S Λ,Λ0
l,2;R

(
~pn;φ

R
τ1,2,y1,2

)
= sΛ,Λ0

l;R pR (τ1;y1,0) pR (τ2;y2,0)+ eΛ,Λ0
l;R {pR (τ1;y1,0)(∂n pR)(τ2;y2,0)

+pR (τ2;y2,0)(∂n pR)(τ1;y1,0)}+ lΛ,Λ0
l,2;R (pR (τ1; ·,y1) , pR (τ2; ·,y2)) . (237)

Taking the limit c→ ∞, we deduce

S Λ,Λ0
l,2;D

(
~pn;φ

D
τ1,2,y1,2

)
= lim

c→+∞
l̃Λ,Λ0
l,2;R (pR (τ1; ·,y1) , pR (τ2; ·,y2)) , (238)

where the remainder l̃Λ,Λ0
l,2;R is given by(∫

z1,z2

z1z2 S Λ,Λ0
l,2;R ((z1, p),(z2,−p))

)
(∂nφ1)(0)(∂nφ2)(0)

+
∫

z1,z2

S Λ,Λ0
l,2;R ((z1, p),(z2,−p))

(∫ 1

0
dt (1− t)

(
∂

2
t φ1
)
(tz1)

)
×
(∫ 1

0
dt ′ (1− t ′)

(
∂

2
t ′φ2
)
(t ′z2)

)
+(∂nφ2)(0)

∫
z1,z2

z2 S Λ,Λ0
l,2;R ((z1, p),(z2,−p))

∫ 1

0
dt (1− t)

(
∂

2
t φ1
)
(tz1)

+(∂nφ1)(0)
∫

z1,z2

z1 S Λ,Λ0
l,2;R ((z1, p),(z2,−p))

∫ 1

0
dt (1− t)

(
∂

2
t φ2
)
(tz2) (239)

and φi(zi) := pR (τi;zi,yi). These terms can be bounded in a similar way as Ḣ1, Ḣ2 and Ḣ3 in the
proof of Theorem 1. One should keep in mind that the test functions considered whithin the proof
of Theorem 1 were products of bulk heat kernels. However, the same bounds (192), (205) and (194)
which are uniform in c, hold for Robin type test functions using the bounds (17). Therefore, we
deduce∣∣∣l̃Λ,Λ0

l,2;R (φ1,φ2)
∣∣∣≤ (Λ+m)−2

τ
− 1

2
1 τ

− 1
2

2 P

(
log

Λ+m
m

)
Q

(
τ−

1
2

Λ+m

)
F Λ,0

2,l;δ (τ1,2) , (240)

which gives∣∣∣S Λ,Λ0
l,2;D

(
~pn;φ

R
τ1,2,y1,2

)∣∣∣≤ (Λ+m)−2
τ
− 1

2
1 τ

− 1
2

2 P

(
log

Λ+m
m

)
Q

(
τ−

1
2

Λ+m

)
F Λ,0

2,l;δ (τ1,2) , (241)

and this ends the proof of Corollary 1.
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E. The minimal form of the bare interaction

In this section, we show that the bare interaction (1) corresponds to the boundary conditions imposed
in Theorem 1 for LΛ,Λ0

? . Given φ ∈ supp µ
Λ,Λ0
? , we expand LΛ0,Λ0

? (φ) in powers of the field φ :

LΛ0,Λ0
? (φ) =

+∞

∑
n=1

1
n!

∫
~zn

∫
R3n

n

∏
i=1

d3 pi

(2π)3 L Λ0,Λ0
l,n;? ((z1, p1), · · · ,(zn, pn))

×δ
(3) (p1 + · · ·+ pn)φ(z1, p1) · · ·φ(zn, pn). (242)

Using (142), we can write

LΛ0,Λ0
? (φ) = DΛ0,Λ0(φ)+SΛ0,Λ0

? (φ),

where

DΛ0,Λ0(φ) :=
+∞

∑
n=1

1
n!

∫
~zn

∫
R3n

n

∏
i=1

d3 pi

(2π)3 DΛ0,Λ0
l,n ((z1, p1), · · · ,(zn, pn))δ

(3) (p1 + · · ·+ pn)

×φ(z1, p1) · · ·φ(zn, pn) (243)

and

SΛ0,Λ0
? (φ) =

+∞

∑
n=1

1
n!

∫
~zn

∫
R3n

n

∏
i=1

d3 pi

(2π)3 S Λ0,Λ0
l,n;? ((z1, p1), · · · ,(zn, pn))δ

(3) (p1 + · · ·+ pn)

×φ(z1, p1) · · ·φ(zn, pn) . (244)

Proposition 1 in6 implies that there exists f in L2(R+) such that

φ(z, p) =
∫

∞

0
dz′ CΛ,Λ0

? (p;z,z′) f (p,z′) ,

which can be rewritten as

φ(p,z) =
∫

∞

0
dz′
∫ 1

Λ2
0

1
Λ2

dλ e−λ (p2+m2)p?
(
λ ;z,z′

)
f (p,z′) .

Therefore, we can write∫
z1,··· ,zn

S Λ0,Λ0
l,n;? ((z1, p1), · · · ,(zn, pn))φ(z1, p1) · · ·φ(zn, pn)

=
∫
~z′n

n

∏
i=1

∫ 1
Λ2

0
1

Λ2

dλi e−λi(p2
i +m2) f (pi,z′i)S

Λ0,Λ0
l,n;?

(
~pn;φ

?
λ1,n,z′1,n

)
. (245)

The boundary conditions (70) and (72) imply that

SΛ0,Λ0
? (φ) =

1
2

∫
R3

d3 p
(2π)3

∫
z1,z2

S Λ0,Λ0
l,2;? ((z1, p),(z2,−p))φ(z1, p)φ(z2,−p) , (246)

where S Λ0,Λ0
l,2;? ((z1, p),(z2,−p)) is given by (69) for Robin/Neumann boundary conditions and by

(72) for Dirichlet boundary conditions:

• Robin/Neumann boundary conditions (c≥ 0): In this case, we obtain

SΛ0,Λ0
? (φ) =

∫
R3

d3 p
(2π)3

(
1
2

sΛ0
? + ceΛ0

?

)
φ(0, p)φ(0,−p) , (247)

where

sΛ0
? =

∫
z1,z2

S Λ0,Λ0
l,2;? ((z1, p),(z2,−p)) , eΛ0

? =
∫

z1,z2

z1S
Λ0,Λ0

l,2;? ((z1, p),(z2,−p)) (248)

and ? ∈ {R,N}.
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• Dirichlet boundary conditions: For Dirichlet boundary conditions, we obtain

SΛ0,Λ0
D (φ) = 0 .

VII. THE AMPUTATED VS THE NON-AMPUTATED THEORY

For quantum field theories on spaces without boundary, the renormalization problem of the ampu-
tated and the non-amputated theory is equivalent in the sense that the required counter-terms render
finite the amputated and unamputated amplitudes, independently of the location of the external
points of the unamputated diagrams20,23. However, first order calculations10 give clear evidence
that this is not the case when one considers the renormalization of the semi-infinite model. The tad-
pole diverges w.r.t. the UV cutoff, and its renormalization depends on the location of the external
points (i.e. if they are on the surface or not). If the two external points are not on the surface, then
in addition to the usual mass counter-term only one additional surface counter-term, which diverges
linearly in the UV cutoff, is needed. This is not the case when one considers the tadpole with at
least one external point on the surface. The latter needs one additional surface counter-term which
diverges logarithmically w.r.t. the UV cutoff. This suggests that the amputated and non-amputated
diagrams are renormalized differently for the semi-infinite model. In this section, we prove the fol-
lowing proposition which sheds some light on this finding to all loop orders in perturbation theory:

Proposition 5. Let ? ∈ {R,N}. We denote by C? the unregularized propagator associated to the
boundary condition ?. For nonvanishing sΛ0

l;? and eΛ0
l;? , we have for y2 > 0

lim
y1→0+

∫
z1,z2

S Λ0,Λ0
l,2;? ((z1, p),(z2,−p))CR (p;z1,y1)CR (p;z2,y2)

6=
∫

z1,z2

S Λ0,Λ0
l,2;? ((z1, p),(z2,−p))CR (p;z1,0)CR (p;z2,y2) (249)

and

lim
y1→0+

lim
y2→0+

∫
z1,z2

S Λ0,Λ0
l,2;? ((z1, p),(z2,−p))CR (p;z1,y1)CR (p;z2,y2)

6=
∫

z1,z2

S Λ0,Λ0
l,2;? ((z1, p),(z2,−p))CR (p;z1,0)CR (p;z2,0) . (250)

Proof. We give the proof of Proposition 5 in the case of Robin boundary conditions. Neumann b.c.
can be treated analogously.
We proved in Section 3 that for the particular choice of the boundary conditions (69)-(71), the bare
interaction is of the form (1) and we have

S Λ0,Λ0
l,2;R ((z1, p),(z2,−p)) =

(
sΛ0

R + eΛ0
R (∂z1 +∂z2)

)
δz1δz2 . (251)

Hence, we obtain for y1, y2 > 0∫
z1,z2

S Λ0,Λ0
l,2;R ((z1, p),(z2,−p))CR (p;z1,y1)CR (p;z2,y2) = sΛ0

R CR (p;0,y1)CR (p;0,y2)

+ eΛ0
R {CR (p;0,y1)∂nCR (p;0,y2)+CR (p;0,y2)∂nCR (p;0,y1)} . (252)

Using

lim
z→0

lim
y→0

∂zCR (p;z,y) =−κpCR (p;0,0) , lim
y→0

lim
z→0

∂zCR (p;z,y) = c CR (p;0,0) (253)

with κp :=
√

p2 +m2, we deduce∫
z1,z2

S Λ0,Λ0
l,2;R ((z1, p),(z2,−p))CR (p;z1,y1)CR (p;z2,y2)

=
(

sΛ0
R +2c eΛ0

R

)
CR (p;0,y1)CR (p;0,y2) , ∀y1,y2 > 0, (254)
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∫
z1,z2

S Λ0,Λ0
l,2;R ((z1, p),(z2,−p))CR (p;z1,y1)CR (p;z2,0)

=
(

sΛ0
R +2c eΛ0

R

)
CR (p;0,y1)CR (p;0,0)− eΛ0

R CR (p;0,y1)(κp + c)CR (p;0,0) , (255)

∫
z1,z2

S Λ0,Λ0
l,2 ((z1, p),(z2,−p))CR (p;z1,0)CR (p;z2,0)

=
(

sΛ0
R +2c eΛ0

R

)
CR (p;0,0)CR (p;0,0)−2 eΛ0

R CR (p;0,0)(κp + c)CR (p;0,0) , (256)

from which (249) and (250) follow directly.

Remarks 4. Denoting gΛ0
R = sΛ0

R +2ceΛ0
R , we deduce that (254) implies that the unamputated two-

point function of the semi-infinite model which has two external points in the interior of the bulk,
requires only the surface counter-term gΛ0

R to be renormalized. This is not the case when at least one
of the external points is on the surface. From (255) and (256), we deduce that gΛ0

R is not sufficient
and the additional surface counter-term eΛ0

R is required to make the two-point function finite. This
generalizes the remarks given in11,14 and10 concerning the tadpole to all loop orders.
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Appendix A: Some properties of the surface weight factor for s = 2 and l ≥ 1

In this Appendix, we prove several lemmas that we use in the proof of Theorem 1. These lemmas
concern the case s = 2 for which the set of partitions P2 simply reads

P2 := {Π0,Π1} ,

where Π0 := σ2, Π1 = {π1,π2} and πi = {i}.
From the definition (81), we have

W 2
l (σ2) =

{
T 2,0

l (Yσ2 ,0;~z)| T 2,0
l ∈T 2,0, v2 ≤ 3l−1

}
and

W 2
l (Π1) =

{
T 1,0

l;1 (y1,0;~z)∪T 1,0
l;2 (y2,0;~z′)| T 1,0

l;1 , T 1,0
l;2 ∈T 1,0

l

}
,

which implies that the global surface weight factor F Λ,0
2,l;δ (τ1,2) simply reads

F Λ,0
2,l;δ (τ1,2) = ∑

T 2,0
l ∈W 2

l (σ2)

F 0
δ

(
Λ,τ1,τ2;T 2,0

l ;Yσ2

)
+F Λ,0

1,l;δ (τ1)F
Λ,0
1,l;δ (τ2) , (A1)

where

F Λ,0
1,l;δ (τi) := ∑

T 1,0
l ∈T 1,0

l

F 0
δ

(
Λ,2τi;T 1,0

l ;yi

)
. (A2)

Note that (A1) implies

F Λ,0
1,l;δ (τ1)F

Λ,0
1,l;δ (τ2)≤F Λ,0

2,l;δ (τ1,2) . (A3)

Lemma 4. Let v be the total number of vertices of incidence number 2 of the surface tree T 2,0
l . For

p ≥ 1, we denote by~z = (z1, · · · ,zp) the set of the internal vertices of T 2,0
l and (y1,y2) ∈ (R+)2 its

external vertices. For ΛI := {Λi |1≤ i≤ v−1}, Λ̃ ∈ [Λ,Λ0] and τ1,τ2 > 0, we have∫
~z
F 0

δ

(
ΛI , Λ̃;τ1,τ2;T 2,0

l ;~z;Yσ2

)
≤
∫

∞

0
dz pB

(
c1,δ ;z,y1

)
pB
(
c2,δ ;z,y2

)
pB

(
1+δ

Λ̃2
1

;z,0
)

(A4)

and∫
∞

0
dz pB

(
c1,δ ;z,y1

)
pB
(
c2,δ ;z,y2

)
pB

(
1+δ

Λ̃2
1

;z,0
)
≤ 2v

∫
~z
F 0

δ

(
ΛI , Λ̃;τ1,τ2;T 2,0

l ;~z;Yσ2

)
, (A5)

where 0 ≤ v1,v2,v0 ≤ v such that v1 + v2 + v0 = v, c1,δ := (1+ δ )c1 and c2,δ := (1+ δ )c2. The
parameters c1, c2 and Λ̃1 are given by

c1 = τ1 +

(
v1

∑
i=1

1
Λ2

i

)
(1−δv1,0) , (A6)

c2 = τ2 +

(
v1+v2−1

∑
i=v1+1

1
Λ2

i

)
(1−δv2,0) , (A7)

1
Λ̃2

1
=

(
v−1

∑
i=v1+v2

1
Λ2

i

)
(1−δv,0)+

1
Λ̃2

. (A8)
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Proof. • First, we prove the bound (A4). A tree T 2,0
l in W 2

l (σ2) is of the following form

y1

z1

y2

τ2

v2

0

1
Λ̃2

v0

v1

τ1

It contains one internal vertex of incidence number 3 and all the other internal vertices are of
incidence number 2. We assume that each dashed line contains a number vi ≥ 1 of internal
vertices of incidence number 2. The case vi = 0 can be treated similarly. Remember that
v0+v1+v2 = v. Let {z2, · · · ,zv1+1}, {zv1+2, · · · ,zv1+v2} and {zv1+v2+1, · · · ,zv} be respectively
the internal vertices on the paths from z1 to y1, z1 to y2 and z1 to 0. From (103), the integral
surface weight factor of T 2,0

l is then given by

∫
~z
F 0

δ

(
ΛI , Λ̃;τ1,τ2;T 2,0

l ;~z;Yσ2

)
=
∫

z1,··· ,zv

v1+1

∏
j=2

pB

(
1+δ

Λ2
j−1

;z j−1,z j

)
pB
(
τ1,δ ;zv1+1,y1

)
× pB

(
1+δ

Λ2
v1+1

;z1,zv1+2

)
v1+v2

∏
j=v1+3

pB

(
1+δ

Λ2
j−1

;z j−1,z j

)
pB
(
τ2,δ ;zv1+v2 ,y2

)
× pB

(
1+δ

Λ2
v1+v2

;z1,zv1+v2+1

)
v

∏
j=v1+v2+2

pB

(
1+δ

Λ2
j−1

;z j−1,z j

)
pB

(
1+δ

Λ̃2
;zv,0

)
. (A9)

Bounding the integral over R+ by the integral over R and using (10), we obtain

∫
z2···zv1+1

v1+1

∏
j=2

pB

(
1+δ

Λ2
j−1

;z j−1,z j

)
pB(τ1,δ ;zv1+1,y1)≤ pB(c1,δ ;z1,y1) , (A10)

where c1,δ = (1+ δ )
(

τ1 +∑
v1
i=1

1
Λ2

i

)
. Proceeding similarly on the paths from z1 to y2 and

from z1 to 0, we obtain that the weight factor of a tree in W 2
l (σ2) is bounded by the weight

factor of the tree

y1

z1

y2

c2

0

1
Λ̃2

1

c1

where c1, c2 and 1
Λ̃2

1
are the new parameters associated respectively to the edges (z1,y1),

(z1,y2) and (z1,0). The relations between these new parameters and those of the tree T 2,0
l are
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given by

c2 = τ2 +

(
v2

∑
i=1

1
Λ2

i+v1

)
and

1
Λ̃2

1
=

(
v−1

∑
i=v1+v2

1
Λ2

i

)
+

1
Λ̃2

.

This proves the statement (A4).

• To prove (A5), we assume without loss of generality that v1 ≥ 1. Using (13), we find

pB(c1,δ ;z1,y1) =
∫

Rv1
dz2 · · ·dzv1+1

v1+1

∏
j=2

pB

(
1+δ

Λ2
j−2

;z j,z j−1

)
pB(τ1,δ ;zv1+1,y1)

≤ 2v1

∫
(R+)v1

dz2 · · ·dzv1+1

v1+1

∏
j=2

pB

(
1+δ

Λ2
j−2

;z j,z j−1

)
pB(τ1,δ ;zv1+1,y1) . (A11)

Proceeding similarly for pB(c2,δ ;z1,y2) and pB

(
1+δ

Λ̃2
1

;z,0
)

, we deduce

∫
∞

0
dz pB

(
c1,δ ;z,y1

)
pB
(
c2,δ ;z,y2

)
pB

(
1+δ

Λ̃2
1

;z,0
)

≤ 2v
∫
~z
F 0

δ

(
ΛI , Λ̃;τ1,τ2;T 2,0

l ;~z;Yσ2

)
. (A12)

Lemma 5. Let W 2
l (Π1) := T 1,0

l;1 (y1,0;~z)∪T 1,0
l;2 (y2,0;~z′) be a forest in W 2

l (Π1) with (y1,y2)∈ (R+)2

and v2,1 (resp. v2,2) the total number of vertices of incidence number 2 of the tree T 1,0
l;1 (resp. T 1,0

l;2 ).
For p, q ≥ 1, we denote by~z = (z1, · · · ,zp) (resp. ~z′ =

(
z′1, · · · ,z′q

)
) the set of the internal vertices

of T 1,0
l;1 (resp. T 1,0

l;2 ). For ΛI :=
{

Λi, Λ′j |1≤ i≤ v2,1−1, 1≤ j ≤ v2,2−1
}

, Λ̃1, Λ̃2 ∈ [Λ,Λ0] and
τ1,τ2 > 0, we have∫

~z
F 0

δ

(
ΛI , Λ̃1, Λ̃2;τ1,τ2;W 2

l (Π1);~z;Yσ2

)
≤ pB

(
c̃1,δ ;y1,0

)
pB
(
c̃2,δ ;y2,0

)
(A13)

and

pB
(
c̃1,δ ;y1,0

)
pB
(
c̃2,δ ;y2,0

)
≤ 2v2,1+v2,2

∫
~z
F 0

δ

(
ΛI , Λ̃1, Λ̃2;τ1,τ2;W 2

l (Π1);~z;Yσ2

)
, (A14)

where c̃1 and c̃2 are given by

c̃1 = 2τ1 +
v2,1−1

∑
i=1

1
Λ2

i,1
+

1
Λ̃2

1
,

c̃2 = 2τ2 +
v2,2−1

∑
i=1

1
Λ′2i,2

+
1

Λ̃2
2
.

Proof. The forest W 2
l (Π1) is of the following form

y1

z1

zv2,1

0

1
Λ̃2

1

v2,1

2τ1

y2

z′1

z′v2,2

0

1
Λ̃2

2

v2,2

2τ2
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The integrated weight factor of this forest reads∫
~z
F 0

δ

(
ΛI , Λ̃1, Λ̃2;τ1,2;W 2

l (Π1);~z;y1,y2
)

=
∫

∞

0
dz1 · · ·dzv2,1

v2,1

∏
j=2

pB

(
1+δ

Λ2
j−1

;z j,z j−1

)
pB(2τ1,δ ;z1,y1)pB

(
1+δ

Λ̃2
1

;zv2,1 ,0
)

×
∫

∞

0
dz′1 · · ·dz′v2,2

v2,2

∏
j=2

pB

(
1+δ

Λ′2j−1
;z′ j,z′ j−1

)
pB(2τ2,δ ;z′1,y2)pB

(
1+δ

Λ̃2
2

;zv2,2 ,0
)

.

Bounding the integral over R+ by the integral over R and using (10), we obtain∫
~z
F 0 (

ΛI , Λ̃1, Λ̃2;τ1,2;W 2
l (Π1);~z;y1,y2

)
≤ pB

(
c̃1,δ ;y1,0

)
pB
(
c̃2,δ ;y2,0

)
,

where for v2,i > 1

c̃1 = 2τ1 +
v2,1−1

∑
i=1

1
Λ2

i,1
+

1
Λ̃2

1
, (A15)

c̃2 = 2τ2 +
v2,2−1

∑
i=1

1
Λ2

i,2
+

1
Λ̃2

2
. (A16)

If v2,i = 1, then c̃i = 2τi +
1

Λ̃2
i
.

Using again (13) and proceeding as in (A11), we deduce

pB
(
c̃1,δ ;y1,0

)
pB
(
c̃2,δ ;y2,0

)
≤ 2v2,1+v2,2

∫
~z
F 0 (

ΛI , Λ̃1, Λ̃2;τ1,2;W 2
l (Π1);~z;y1,y2

)
. (A17)

Lemma 6. For 0≤ α ≤ 1 and y1, y2 ∈ R, we have

|∂ α
n φi(0)| ≤C0,δ τ

− α
2

i F Λ,0
1,l;δ (τi) , ∀ 0 < δ < 1, (A18)

where ∂ α
n φi(0) = limzi→0+ ∂ α

zi
φi(zi) with φi(zi) := pB (τi;zi,yi) and C0,δ is defined in (15).

Proof. For α = 0, we have

φi(0) =
1√
2πτi

e−
y2
i

2τi ≤
√

2 pB (2τi;yi,0) . (A19)

For α = 1, we have |∂nφi(0)|= yi
τi

φi(0). Using the bound (15) for r = 1, we obtain

|∂nφi(0)| ≤
√

2 C0,δ τ
− 1

2
i pB

(
2τi,δ ;yi,0

)
. (A20)

We consider the surface tree T 1,0
l;i which consists of the external vertex yi and the surface external

vertex 0. We associate to the external line (0,yi) the parameter 2τi. The integrated surface weight
factor of the tree T 1,0

l;i then reads

F 0
1,l;δ

(
2τi;T 1,0

l;i ;yi

)
= pB

(
2τi,δ ;yi,0

)
. (A21)

Since T 1,0
l;i ∈W 1

l (π1), we obtain using (A2)

F 0
1,l;δ

(
2τi;T 1,0

l;i ;yi

)
≤F 0

1,l;δ (τi) . (A22)
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Combining the bounds (A19), (A20) and (A22), we deduce

|∂ α
n φi(0)| ≤

√
2 C0,δ τ

− α
2

i F Λ,0
1,l;δ (τi) , α ∈ {0,1} . (A23)

Furthermore, we also obtain∣∣∣∂ α
n φ1(0)∂ β

n φ2(0)
∣∣∣≤ 2 C2

0,δ τ
− α

2
1 τ

− β

2
2

2

∏
i=1

F Λ,0
1,l;δ (τi) , α, β ∈ {0,1} . (A24)

Recalling (A3), we deduce∣∣∣∂ α
n φ1(0)∂ β

n φ2(0)
∣∣∣≤ 2C2

0,δ τ
− α

2
1 τ

− β

2
2 F Λ,0

2,l;δ (τ1,2) . (A25)

Lemma 7. For 0 < t ≤ 1, γ ∈ N, y1 ∈ R and 0 < δ < δ ′ < 1, we have

(
y1√
τ1

)γ

F Λ,0
1,l;δ (t,τ1)≤ O(1) t

1+
τ
− 1

2
1
Λ

γ

F Λ,0
1,l;δ ′(τ1) , (A26)

where

F Λ,0
1,l;δ (t,τ1) := ∑

T 1,0
l ∈T 1,0

l

F 0
δ

(
Λ,

2τ1

t2 ;T 1,0
l ;

y1

t

)
=

3l−1

∑
v=0

F 0
δ

(
Λ,

2τ1

t2 ;T 1,0
l ;

y1

t

)
, (A27)

and O(1) is a constant which depends on δ , δ ′, v, γ and the loop order l.

Proof. We consider the surface tree T 1,0
l ∈T 1,0

l with the external vertex y1
t and the internal vertices

~zv = (z1, · · · ,zv). Let v be the number of its vertices of incidence number 2 and ΛI = (Λi)1≤i≤v−1,
Λv and τ1/t2 be respectively the parameters associated to the internal lines, the surface external line
and the external line of T 1,0

l . Then the integrated surface weight factor of T 1,0
l reads

F 0
δ

(
ΛI ;

2τ1

t2 ;T 1,0
l ;

y1

t

)
=
∫
~zv

pB

(
2τ1,δ

t2 ;
y1

t
,z1

) v−1

∏
i=1

pB

(
1+δ

Λ2
i

;zi,zi+1

)
pB

(
1+δ

Λ2
v

;zv,0
)

. (A28)

If y1 ∈ R−, (A28) is bounded by

pB

(
2τ1,δ

t2 ;
y1

t
,0
) ∫

~zv

v−1

∏
i=1

pB

(
1+δ

Λ2
i

;zi,zi+1

)
pB

(
1+δ

Λ2
v

;zv,0
)

. (A29)

Therefore, we obtain

F 0
δ

(
ΛI ;

2τ1

t2 ;T 1,0
l ;

y1

t

)
≤ O(1) t pB

(
2τ1,δ ;y1,0

)
≤ O(1) t F Λ,0

1,l;δ (τ1), ∀T 1,0
l ∈T 1,0

l . (A30)

Using (15), we deduce (
y1√
τ1

)γ

F 0
1,l;δ (t,τ1)≤ O(1) t F Λ,0

1,l;δ ′(τ1) , (A31)
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where 0 < δ < δ ′ < 1.
Now, we treat the case in which y1 ∈ R+. Bounding the integral over (R+)v by the integral over Rv

in (A28) and using (10), we obtain

F 0
δ

(
ΛI ;

2τ1

t2 ;T 1,0
l ;

y1

t

)
≤ t pB

(
2τ1,δ +

v

∑
i=1

t2(1+δ )

Λ2
i

;y1,0

)
≤ t pB

(
2τ1,δ +

v

∑
i=1

(1+δ )

Λ2
i

;y1,0

)
. (A32)

Furthermore, using (15) we obtain for all 0≤ δ < δ ′ < 1(
y1√
τ1

)γ

pB

(
2τ1,δ +

v

∑
i=1

1+δ

Λ2
i

;y1,0

)

≤ Cδ ,δ ′

1+
v

∑
i=1

τ
− 1

2
1√
2Λi

γ

pB

(
2τ1,δ ′ +

v

∑
i=1

1+δ ′

Λ2
i

;y1,0

)
. (A33)

Since Λi, Λv ≥ Λ for all i ∈I , we deduce that (A33) is bounded by

Cδ ,δ ′ max
((

v√
2

)γ

,1
)1+

τ
− 1

2
1
Λ

γ

pB

(
2τ1,δ ′ +

v

∑
i=1

1+δ ′

Λ2
i

;y1,0

)
(A34)

Proceeding similarly to (A11), we deduce

pB

(
2τ1,δ ′ +

v

∑
i=1

1+δ ′

Λ2
i

;y1,0

)
≤ 2v F 0

δ ′

(
ΛI ,Λv;2τ1;T 1,0

l ;y1

)
, (A35)

which together with (A32) and (A33) imply

(
y1√
τ1

)γ

F 0
δ

(
ΛI ;

2τ1

t2 ;T 1,0
l ;

y1

t

)
≤C t

1+
τ
− 1

2
1
Λ

γ

F 0
δ ′

(
ΛI ;2τ1;T 1,0

l ;y1

)
, (A36)

where C := 2v Cδ ,δ ′max
((

v√
2

)γ

,1
)

. Using

F Λ,0
1,l;δ (τ1) :=

3l−1

∑
v=0

F 0
δ

(
Λ,2τ1;T 1,0

l ;y1

)
, (A37)

we deduce (
y1√
τ1

)γ

F 0
1,l;δ (t,τ1)≤ O(1) t

1+
τ
− 1

2
1
Λ

γ

F Λ,0
1,l;δ ′(τ1) . (A38)

Lemma 8. Let Λ≥ 3
√

lτ−
1
2 , 0< δ < δ ′≤ 1 and (y1,y2)∈R2. For 0< t, t ′≤ 1, l≥ 1 and γ1,γ2 ∈N,

we have(
y1√
τ1

)γ1
(

y2√
τ2

)γ2

F 0
2,l;δ

(
Λ;

τ1

t2 ,
τ2

t ′2
;

y1

t
,

y2

t ′

)
≤ tt ′Q

(
τ−

1
2

Λ

)
F 0

2,l;δ ′ (Λ;τ1,2;y1,2) . (A39)

The polynomial Q has nonnegative coefficients which are independent of τ1, τ2 and Λ but depend
on l, δ , δ ′, γ1 and γ2.
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Proof. Using (A1), F Λ,0
2,l;δ

(
τ1
t2 ,

τ2
t ′2 ; y1

t ,
y2
t ′

)
can be written as follows

∑
T 2,0

l ∈W 2
l (σ2)

F 0
δ

(
Λ;

τ1

t2 ,
τ2

t ′2
;T 2,0

l ;
y1

t
,

y2

t ′

)

+

 ∑
T 1,0

l ∈T 1,0
l (

F 0
δ

(
Λ,

2τ1

t2 ;T 1,0
l ;

y1

t

) ·
 ∑

T̃ 1,0
l ∈T 1,0

l

F 0
δ

(
Λ,

2τ2

t ′2
; T̃ 1,0

l ;
y2

t ′

) . (A40)

• First, we prove(
y1√
τ1

)γ1
(

y2√
τ2

)γ2

∑
T 2,0

l ∈W 2
l (σ2)

F 0
(

Λ,
τ1

t2 ,
τ2

t ′2
;T 2,0

l ;
y1

t
,

y2

t ′

)

≤ tt ′Q

(
τ−

1
2

Λ

)
F 0

2,l;δ ′ (Λ;τ1,2,y1,2) , (A41)

where 0 < δ < δ ′ < 1. Let us start first with the case y1, y2 ≥ 0. Given a surface tree T 2,0
l in

W 2
l (σ2), we have by Lemma 4

F 0
δ

(
ΛI , Λ̃;

τ1

t2 ,
τ2

t ′2
;T 2,0

l ;
y1

t
,

y2

t ′

)
≤
∫

∞

0
dz pB

(
c1,δ (t);z,

y1

t

)
pB

(
c2,δ (t

′);z,
y2

t ′

)
pB

(
1+δ

Λ̃2
1

;z,0
)

, (A42)

where c1,δ (t) = c1(t)(1+δ )and c2,δ (t ′) = c2(t ′)(1+δ ). The parameters c1(t), c2(t ′) and Λ̃1

are given by (A6) with τ1→ τ1/t2 and τ2→ τ2/t ′2. For y1 ≤ y2, we write

∫
∞

0
dz pB

(
c1,δ (t);z,

y1

t

)
pB

(
c2,δ (t

′);z,
y2

t ′

)
pB

(
1+δ

Λ̃2
1

;z,0
)

= I (0,y1)+I (y1,y2)+I (y2,+∞) , (A43)

where

I (a,b) :=
∫ b

a
dz pB

(
c1,δ (t);z,

y1

t

)
pB

(
c2,δ (t

′);z,
y2

t ′

)
pB

(
1+δ

Λ̃2
1

;z,0
)
.

– First, we bound I (0,y1). For 0≤ t, t ′ ≤ 1, we have

pB

(
c1,δ (t);z,

y1

t

)
≤ t pB

(
c1,δ ; tz,y1

)
, (A44)

pB

(
c2,δ (t

′);z,
y2

t ′

)
≤ t ′ pB

(
c2,δ ; t ′z,y2

)
, (A45)

with ci := ci(1). For 0≤ z≤ y1 ≤ y2, we also have

pB
(
c1,δ ; tz,y1

)
≤ t pB

(
c1,δ ;z,y1

)
, (A46)

pB
(
c2,δ ; t ′z,y2

)
≤ t ′ pB

(
c2,δ ;z,y2

)
. (A47)

This implies

I (0,y1)≤ t t ′
∫

∞

0
dz pB

(
c1,δ ;z,y1

)
pB
(
c2,δ ;z,y2

)
pB

(
1+δ

Λ̃2
1

;z,0
)

, (A48)
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which again by Lemma 4 is bounded by

O(1)
∫
~z
F 0

δ

(
ΛI , Λ̃;τσ2 ;T 2,0

l ;~z;Yσ2

)
≤ O(1)F Λ,0

2,l;δ (τ1,2) .

For (γ1,γ2) 6= (0,0), we need to bound also the following term(
y1√
τ1

)γ1
(

y2√
τ2

)γ2

I (0,y1) . (A49)

Using (A48), (A49) is bounded by

t t ′ τ
−γ1−γ2

γ1

∑
k=0

γ2

∑
k′=0

(
γ1

k

) (
γ2

k′

) ∫
∞

0
dz |y1− z|k|y2− z|k′ zγ1+γ2−k−k′

× pB
(
c1,δ ;z,y1

)
pB
(
c2,δ ;z,y2

)
pB

(
1+δ

Λ̃2
1

;z,0
)
. (A50)

Using (15), we obtain

zγ1+γ2−k−k′ pB

(
1+δ

Λ̃2
1

;z,0
)
≤Cδ ,δ ′ Λ̃

−γ1−γ2+k′+k
1 pB

(
1+δ ′

Λ̃2
1

;z,0
)
. (A51)

Since Λi, Λ̃≥ Λ for all i ∈I , we deduce that

1
Λ̃2

1
=

(
v

∑
i=v1+v2+1

1
Λ2

i

)
(1−δv,0)+

1
Λ̃2
≤ v0 +1

Λ2 and ci ≤ τi +
vi

Λ2 . (A52)

This gives

zγ1+γ2−k−k′ pB

(
1+δ

Λ̃2
1

;z,0
)
≤ O(1) Λ

−γ1−γ2+k′+k pB

(
1+δ ′

Λ̃2
1

;z,0
)
. (A53)

Similarly, we have

|yi− z|γi−k pB
(
ci,δ ;yi,z

)
≤C′

δ ,δ ′ c
k
2
i pB

(
ci,δ ′ ;yi,z

)
, (A54)

≤ O(1) τ
k
2

i

1+
τ
− 1

2
i
Λ

k

pB
(
ci,δ ′ ;yi,z

)
, (A55)

where we used (A52). Whenever it appears, O(1) denotes a constant which depends on
δ , δ ′, l and v. Combining (A50), (A53) and (A55), we deduce that (A49) is bounded by

t t ′ Q

(
τ−

1
2

Λ

)∫
∞

0
dz pB

(
c1,δ ′ ;z,y1

)
pB
(
c2,δ ′ ;z,y2

)
pB

(
1+δ ′

Λ̃2
1

;z,0
)
. (A56)

By Lemma 4, we deduce that (A49) is bounded by

t t ′ Q

(
τ−

1
2

Λ

)∫
~z
F 0

δ

(
ΛI , Λ̃;τσ2 ;T 2,0

l ;~z;Yσ2

)
. (A57)

– Using the bounds (A44), (A45) and (A47), the term I (y1,y2) is bounded by

t t ′
∫ y2

y1

dz pB
(
c1,δ ; tz,y1

)
pB
(
c2,δ ;z,y2

)
pB

(
1+δ

Λ̃2
1

;z,0
)
. (A58)
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For z≥ y1, we have

pB

(
1+δ

Λ̃2
1

;z,0
)
≤ pB

(
2(1+δ )

Λ̃2
1

;z,0
)

exp
(
− y2

1Λ̃2
1

4(1+δ )

)
. (A59)

Knowing that v0 ≤ 3l−1 together with

∀Λi ∈ ΛI , Λi ≥ Λ , Λ̃≥ Λ , (A60)

and recalling (A52), we obtain

Λ̃1 ≥
Λ√
3l
≥
√

3τ
− 1

2 . (A61)

where we also used Λ≥ 3
√

lτ−
1
2 . This implies

exp
(
− y2

1Λ̃2
1

4(1+δ )

)
≤ exp

(
− y2

1Λ2

12(1+δ )l

)
≤ exp

(
− y2

1
2(1+δ )τ1

)
. (A62)

Furthermore, we have

pB
(
c1,δ ; tz,y1

)
≤ 1√

2πc1,δ
. (A63)

Combining (A63) with the fact that c1 ≥ τ1, we deduce

I (y1,y2)≤
∫

R
dz pB

(
c2,δ ;z,y2

)
pB

(
2(1+δ )

Λ̃2
1

;z,0
)

pB
(
c1,δ ;y1,0

)
,

and by (10) we deduce that I (y1,y2) is bounded by

pB

(
c2,δ +

2(1+δ )

Λ̃2
1

;y2,0
)

pB
(
c1,δ ;y1,0

)
.

Using the property (15) of the bulk heat kernel together with (A60), we obtain(
y1√
τ1

)γ1
(

y2√
τ2

)γ2

pB

(
c2,δ +

2(1+δ )

Λ̃2
1

;y2,0
)

pB
(
c1,δ ;y1,0

)
≤Q

τ
− 1

2
i
Λ

 pB

(
c2,δ ′ +

2(1+δ ′)

Λ̃2
1

;y2,0
)

pB
(
c1,δ ′ ;y1,0

)
, (A64)

where 0 < δ < δ ′ < 1. For Λ≥ 3
√

lτ−
1
2 and l ≥ 1, we have

∀Λi ∈ ΛI , Λi ≥ Λ≥
√

3lτ
− 1

2
2 , (A65)

and this implies

1
Λ2

v1+v2

≤ τ2

3
,

1
Λ2

v1+v2−1
≤ τ2

3
,

1
Λ̃2

1
=

(
v

∑
i=v1+v2+1

1
Λ2

i

)
(1−δv,0)+

1
Λ̃2
≤ v0 +1

Λ2 ≤ τ2

3
, (A66)
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where again we used that v0 ≤ 3l−1. Hence, we have

c2,δ ′ +
2(1+δ ′)

Λ̃2
1

= τ2,δ ′ +
v2

∑
i=1

1+δ ′

Λ2
i+v1

+
2(1+δ ′)

Λ̃2
1

≤ 2τ2,δ ′ +
v2−2

∑
i=1

1+δ ′

Λ2
i+v1

+
1+δ ′

Λ̃2
1

, (A67)

which gives

pB

(
c2,δ ′ +

2(1+δ ′)

Λ̃2
1

;y2,0
)
≤
√

2 pB

(
2τ2,δ ′ +

v2−2

∑
i=1

1+δ ′

Λ2
i+v1

+
1+δ ′

Λ̃2
1

;y2,0

)
. (A68)

(13) together with Lemma 4 gives

pB

(
2τ2,δ ′ +

v2−2

∑
i=1

1+δ ′

Λ2
i+v1

+
1+δ ′

Λ̃2
1

;y2,0

)

≤ O(1)
∫

z1

· · ·
∫

zv2+v0−1

pB
(
2τ2,δ ′ ;z1,y2

) v2−1

∏
i=2

pB

(
1+δ ′

Λ2
v1+i−1

;zi,zi−1

)

×
v0−1

∏
i=0

pB

(
1+δ ′

Λ̃2
v1+v2+i

;zv2+i,zv2+i−1

)
pB

(
1+δ ′

Λ̃2
;zv2+v0−1,0

)
. (A69)

The RHS of (A69) corresponds to the integrated surface weight factor of a surface tree
T 1,0

l which has an external vertex y2 and v2 + v0− 1 internal vertices which all are of
incidence number 2. This tree belongs to the set of forests W 1

l (π2) if and only if

v0 + v2−1≤ 3l−1 . (A70)

Since the tree T 2,0
l

(
τ1
t2 ,

τ2
t ′2

; y1
t ,

y2
t ′

)
is in the forest W 2

l (σ2), v0, v1 and v2 necessarily
verify

v0 + v2−1≤ 3l−2− v1 +
1
2
,

which implies (A70). Hence, T 1,0
l belongs to the set W 1

l (π2). From (A68) and (A69),
we deduce

pB

(
c2,δ ′ +

1+δ ′

Λ̃2
;y2,0

)
≤ O(1) F Λ,0

1,l;δ ′ (τ2) . (A71)

Using (A11), we obtain

pB
(
c1,δ ′ ;y1,0

)
≤ O(1) F Λ,0

1,l;δ ′ (τ1) . (A72)

(A58) and (A64) together with (A71) and (A75) give(
y1√
τ1

)γ1
(

y2√
τ2

)γ2

I (y1,y2)≤ t t ′Q

(
τ−

1
2

Λ

)
F Λ,0

1,l;δ ′ (τ1)F
Λ,0
1,l;δ ′ (τ2) , (A73)

where all the constants were absorbed in the coefficients of the polynomial Q.

– The last term to bound is

I (y2,+∞) :=
∫

∞

y2

dz pB

(
c1,δ (t);z,

y1

t

)
pB

(
c2,δ (t

′);z,
y2

t ′

)
pB

(
1+δ

Λ̃2
1

;z,0
)
.
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For z≥ y2 ≥ y1 we have

pB

(
1+δ

Λ̃2
1

;z,0
)
≤ Λ̃1√

2π
exp
(
− z2Λ̃2

1
6(1+δ )

)
exp
(
− y2

1
2c1,δ

)
exp
(
− y2

2
2c2,δ

)
,

where we used (A61) and ci ≥ τi.
Bounding respectively pB

(
c1,δ (t);z, y1

t

)
and pB

(
c2,δ (t ′);z, y2

t ′
)

by t√
2πc1,δ

and t ′√
2πc2,δ

we deduce that I (y2,+∞) is bounded by

O(1) t t ′ pB
(
c1,δ ;y1,0

)
pB
(
c2,δ ;y2,0

)
.

Using the bound (15), we find(
y1√
τ1

)γ1
(

y2√
τ2

)γ2

pB
(
c2,δ ;y2,0

)
pB
(
c1,δ ;y1,0

)
≤Q

τ
− 1

2
i
Λ

 pB
(
c2,δ ′ ;y2,0

)
pB
(
c1,δ ′ ;y1,0

)
, (A74)

where 0 < δ < δ ′ < 1. Using (A11), we deduce

pB
(
ci,δ ′ ;yi,0

)
≤ O(1) F Λ,0

1,l;δ ′ (τi) , (A75)

which implies(
y1√
τ1

)γ1
(

y2√
τ2

)γ2

I (y2,+∞)≤ t t ′Q

(
τ−

1
2

Λ

)
F Λ,0

1,l;δ ′ (τ1)F
Λ,0
1,l;δ ′ (τ2) . (A76)

Combining (A57), (A73) and (A76) together with (A3) and (A42), we obtain (A41).
Now, we treat the case in which the external vertices are negative: Given a surface tree T 2,0

l
in W2,l(σ2), we recall

∫
~z
F 0

δ

(
ΛI , Λ̃;

τ1

t2 ,
τ2

t ′2
;T 2,0

l ;~z;
y1

t
,

y2

t ′

)
=
∫

z1,··· ,zv

v1+1

∏
j=2

pB

(
1+δ

Λ2
j−1

;z j−1,z j

)
pB

(τ1,δ

t
;zv1+1,

y1

t

)
× pB

(
1+δ

Λ2
v1+1

;z1,zv1+2

)
v1+v2

∏
j=v1+3

pB

(
1+δ

Λ2
j−1

;z j−1,z j

)
pB

(τ2,δ

t ′2
;zv1+v2 ,

y2

t ′

)
× pB

(
1+δ

Λ2
v1+v2

;z1,zv1+v2+1

)
v

∏
j=v1+v2+2

pB

(
1+δ

Λ2
j−1

;z j−1,z j

)
pB

(
1+δ

Λ̃2
;zv,0

)
. (A77)

For y1 ≤ 0 and zv1+1 ∈ R+, we have

pB

(τ1,δ

t2 ;z,
y1

t

)
≤ t pB

(
τ1,δ ;y1,0

)
.

Hence, we obtain for y1, y2 ≤ 0 using (15)(
y1√
τ1

)γ1
(

y2√
τ2

)γ2

F 0
δ

(
ΛI , Λ̃;

τ1

t2 ,
τ2

t ′2
;T 2,0

l ;
y1

t
,

y2

t ′

)
≤ O(1) t t ′ pB

(
τ1,δ ′ ;y1,0

)
pB
(
τ2,δ ′ ;y2,0

)
, (A78)

which is bounded by

O(1) t t ′ F Λ,0
1,l;δ ′ (τ1)F

Λ,0
1,l;δ ′ (τ2) . (A79)
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If y1 ≤ 0 and y2 ≥ 0, we have

F 0
δ

(
ΛI , Λ̃;

τ1

t2 ,
τ2

t ′2
;T 2,0

l ;
y1

t
,

y2

t ′

)
≤ O(1) t pB

(
τ1,δ ;y1,0

) ∫ ∞

0
dz pB

(
c2,δ (t

′);z,
y2

t ′

)
pB

(
1+δ

Λ̃2
1

;z,0
)
. (A80)

Using (10) together with (A11) and (A2), we have∫
∞

0
dz pB

(
c2,δ (t

′);z,
y2

t ′

)
pB

(
1+δ

Λ̃2
1

;z,0
)
≤ F Λ,0

1,l;δ (t
′,τ2). (A81)

Combining Lemma 7 with (A80) and (A81) gives(
y1√
τ1

)γ1
(

y2√
τ2

)γ2

F 0
δ

(
ΛI , Λ̃;

τ1

t2 ,
τ2

t ′2
;T 2,0

l ,
y1

t
,

y2

t ′

)
≤ O(1) t t ′ Q

(
τ−

1
2

Λ

)
F Λ,0

1,l;δ ′ (τ1)F
Λ,0
1,l;δ ′ (τ2) . (A82)

Using (A3), we obtain the bound (A41).

• By definition, we have

F Λ,0
1,l;δ (t,τ1) = ∑

T 1,0
l ∈T 1,0

l

F 0
δ

(
Λ,

τ1

t2 ;T 1,0
l ;

y1

t

)
. (A83)

Applying Lemma 7 to the global surface weight factors F Λ,0
1,l;δ (t,τ1) and F Λ,0

1,l;δ (t
′,τ2) we

obtain(
y1√
τ1

)γ1

∑
T 1,0

l ∈T 1,0
l

F 0
δ

(
Λ,

τ1

t2 ;T 1,0
l ;

y1

t

)

×
(

y2√
τ2

)γ2

∑
T̃ 1,0

l ∈T 1,0
l

F 0
δ

(
Λ,

τ2

t ′2
; T̃ 1,0

l ;
y2

t ′

)

≤ O(1) t t ′

1+
τ
− 1

2
1
Λ

γ1
1+

τ
− 1

2
2
Λ

γ2

F Λ,0
1,l;δ ′ (τ1)F

Λ,0
1,l;δ ′ (τ2) , (A84)

and this together with (A3), (A40) and (A41) conclude the proof of Lemma 8.
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