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Abstract: In the realm of modern video processing systems, traditional metrics such as the Peak
Signal-to-Noise Ratio and Structural Similarity are often insufficient for evaluating videos intended
for recognition tasks, like object or license plate recognition. Recognizing the need for specialized
assessment in this domain, this study introduces a novel approach tailored to Automatic License
Plate Recognition (ALPR). We developed a robust evaluation framework using a dataset with ground
truth coordinates for ALPR. This dataset includes video frames captured under various conditions,
including occlusions, to facilitate comprehensive model training, testing, and validation. Our method-
ology simulates quality degradation using a digital camera image acquisition model, representing
how luminous flux is transformed into digital images. The model’s performance was evaluated using
Video Quality Indicators within an OpenALPR library context. Our findings show that the model
achieves a high F-measure score of 0.777, reflecting its effectiveness in assessing video quality for
recognition tasks. The proposed model presents a promising avenue for accurate video quality assess-
ment in ALPR tasks, outperforming traditional metrics in typical recognition application scenarios.
This underscores the potential of the methodology for broader adoption in video quality analysis for
recognition purposes.

Keywords: Video Quality Indicators (VQI); Target Recognition Video (TRV); computer vision (CV);
metrics; evaluation

1. Introduction

The evaluation of video quality varies depending on the application. Although
the quality of entertainment videos focuses primarily on viewer satisfaction, the quality
assessment of Target Recognition Videos (TRVs) emphasizes the utility of video for specific
tasks, such as video surveillance, telemedicine, fire safety, and more [1,2]. In the domain of
TRVs, current quality predictors, mostly developed based on subjective assessments, often
fail to accurately reflect the needs of recognition tasks. These predictors do not adequately
address unique challenges such as variable lighting conditions, motion blur, or occlusion,
which are critical for tasks such as surveillance and Automatic License Plate Recognition.
This disconnect between subjective quality measures and the actual utility of TRVs in
practical applications highlights a significant gap in the current approach to video quality
assessment in these contexts [2].
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While traditional methods of quality assessment like Full Reference (FR) and No
Reference (NR) metrics work well for standard videos, they do not consider the particular
characteristics that are vital for the performance of Target Recognition Videos (TRVs). These
methods often overlook factors such as target visibility under varying conditions, which
are vital for accurate recognition. As a result, there is a noticeable gap in the literature,
particularly regarding the objective evaluation of TRVs in both manual and automated
recognition tasks.

In this paper, we aim to bridge this gap by introducing an objective evaluation method-
ology that is specifically designed for TRVs. Our approach focuses on creating a comprehen-
sive dataset geared towards Automatic License Plate Recognition, encompassing various
real-world challenges such as occlusion and low light. Using this dataset, we design,
develop, and test a system that is capable of predicting the performance of machine vision
algorithms based on the quality of incoming TRVs. Our primary goal is to demonstrate
the feasibility of constructing accurate models that can anticipate the effectiveness of TRV
processing pipelines in a broad range of scenarios.

The principal contributions of this work are

• The introduction of an objective evaluation methodology tailored to TRVs, filling a
significant gap in the existing literature;

• The presentation of a comprehensive dataset for Automatic License Plate Recognition,
simulating a spectrum of real-world conditions;

• The development and validation of a predictive system that employs Video Quality
Indicators to gauge the machine vision performance in TRV tasks, which is beneficial
to both academic research and industry applications;

• A comparative analysis of existing methodologies, asserting the advantages and
broader applicability of the proposed approach;

• Selected elements of examination of the implications of existing legal regulations on
the TRV quality, emphasizing the importance of this work in ensuring adherence to
technical specifications while maintaining the functional efficacy.

Together, these contributions strive to advance the domain of video quality evaluation,
especially in areas that require highly accurate target identification, such as systems for
automatically recognizing vehicle license plates.

Our work differs significantly from existing efforts in several aspects. Although there
are initiatives that address the TRV quality evaluation [3–9], they primarily focus on special-
ized domains such as public safety or health care and do not directly address the nuances
involved in Automatic License Plate Recognition. Furthermore, while there are estab-
lished benchmarks in video quality assessment, such as KoNViD-1k [10], LIVE-VQC [11],
YouTube-UGC [12], and LSVQ [13], our work provides a more holistic approach, focusing
on the creation of universal objective evaluation metrics for TRVs designed specifically
for Automatic License Plate Recognition scenarios. This underscores the necessity of our
custom dataset, which is meticulously curated to address unique challenges in this field.
Legal regulations often dictate technical specifications in some TRV applications [1,2],
further underscoring the need for objective quality assessment methods that can ensure
compliance while maintaining effectiveness. The remainder of this paper is organized as
follows. Section 2 details the experimental design; Sections 2.1 and 2.2 describe corpus
collection and the development of degradation models, respectively; Sections 2.3 and 2.4
explain the experiments conducted; Section 3 reports our findings; and Section 4 concludes
the paper.
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2. Materials & Methods

This section outlines the comprehensive methodology used in our study. Figure 1
illustrates the general methodology flow chart, which encapsulates the core components
of our research approach. Our experimental framework integrates a foundational dataset
(denoted the Source Reference Circuits, SRCs, Section 2.1) and a variety of visual impair-
ments (termed Hypothetical Reference Circuits, HRCs, Section 2.2). Each HRC imposes
a specific type of degradation on an SRC. The analysis of the output video sequences is
conducted through a computer vision library for Automatic License Plate Recognition
(ALPR, Section 2.3), combined with a Video Quality Indicator (VQI, Section 2.4).

Recognition 
Experiment

Quality 
Experiment

Objective 
Video 

Quality 
Assessment 

Model

Figure 1. General methodology flow chart outlining the interactions among the recognition experi-
ment, quality experiment, and the objective video quality assessment model.

2.1. Collection of Pre-Existing Source Reference Circuits (SRCs)

This subsection delineates the technical attributes of the chosen SRCs and the specially
assembled dataset used in this investigation. The corpus consisting of pre-existing original
SRC video sequences was utilized.

The SRC repository encompasses a variety of video frames chosen according to a
criterion aimed at compiling a comprehensive database encompassing a diverse array of
characteristics. The details of the dataset are explained in the following section.

Within the scope of our experimental framework, a subset of the entire SRC collection
was used. The initial step in curating this subset involved determining its magnitude. To
this end, preliminary experimental runs, potential subsequent training iterations, and a
validation experiment for the model were envisaged. The validation set is substantial,
comprising roughly a quarter of the volume of a single training session, while the initial and
any potential second training phases are composed of an equivalent number of samples.

An additional premise adopted for the experimental design, grounded in pragmatic
considerations, stipulates that the duration of an experimental iteration shall not exceed
one week. This temporal constraint influences the scale of the training sets, considering
that the size of the test sets is a quarter of that of the training sets.
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At this juncture, it is imperative to recognize that the computation time for a single
frame exerts a significant impact on the volume of frames incorporated into each experiment.
This time frame encompasses the aggregate duration of image processing for both the
quality experiment (Section 2.4) and the recognition experiment (Section 2.3). With an
understanding of the mean time taken to conduct the quality experiment on an individual
frame and the mean time for the recognition experiment on the same, we are able to
approximate the quantity of frames that can be processed weekly or the total number of
frames that can be accommodated in a single experimental cycle.

Furthermore, it is essential to clarify that the figure yielded by the aforementioned
procedure pertains to the count of feasible Processed Video Sequence (PVS) frames, as
opposed to the count of utilizable SRC frames. To ascertain the tally of employable SRC
frames, we take the total number of viable PVS frames and divide it by the quantity of the
stipulated HRCs. The aggregate of the HRCs, including the original SRC, is 65.

Progressing to particular details, it has been ascertained that the average duration for
processing a singular image in the quality experiment is within the magnitude of hundreds
of seconds. In contrast, the average time taken to process an image in the recognition
experiment is less than a second, which renders it comparatively negligible.

In light of the previously stated considerations, within a weekly time frame, it is
feasible to process PVS images derived from 120 distinct SRC images. This allocation
permits the arrangement of 80 SRC images for the initial training experiment, with an
additional set of 20 SRC images (a quarter of the training set) for the testing phase and a
further 20 SRC images (another quarter) for validation purposes. Each SRC image features a
singular discernible entity (a vehicle’s license plate), culminating in a total of 120 individual
entities.

As delineated earlier, a validation set of equivalent size to the test set has been assem-
bled but is currently not processed.

Subsequent segments of this subsection elaborate on the complete collection
(Section 2.1.1) and the specific selection utilized for the experiment (Section 2.1.2).

2.1.1. The Automatic License Plate Recognition Data Collection

The ALPR dataset examined was curated from CCTV footage. The video sequences of
the source reference circuit (SRC) were recorded at the AGH University of Krakow, Lesser
Poland, focusing on high traffic parking areas during peak hours [2]. The compiled dataset
encompasses approximately 15,500 frames in total.

Ground Truth Annotation

Ground truth coordinates were prepared to facilitate the assessment of Automatic
License Plate Recognition. For each video in the dataset, a corresponding text file containing
ground truth information was created. These annotations were compiled in July 2019. The
text file adheres to the following naming convention:

video_name_anno.txt

Each of these files lists the coordinates specifying the location of the license plate in
individual frames.

Coordinate Formatting

Within each ground truth file, the coordinates are formatted as follows:

image_number.jpg,X1,Y1,X2,Y2,X3,Y3,X4,Y4

An example line could look like the following:

1.jpg 511 137 582 136 582 154 512 154
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Coordinate Significance

The coordinates (X1, Y1), (X2, Y2), (X3, Y3), (X4, Y4) designate the following points
on the license plate:

• (X1, Y1): Top-left corner of the license plate;
• (X2, Y2): Top-right corner of the license plate;
• (X3, Y3): Bottom-right corner of the license plate;
• (X4, Y4): Bottom-left corner of the license plate.

Special Cases

In cases where the license plate is fully occluded, all coordinates are annotated as zero.
For example,

50.jpg 0 0 0 0 0 0 0 0

For partially occluded license plates, only the visible portions are annotated in the
ground truth file.

Data Availability

The entire dataset can be accessed in the “Supplementary Materials” section. A
representative SRC frame is illustrated in Figure 2.

Figure 2. Sample image from the AGH collection, utilized for evaluating the video quality in the
context of license plate identification.

2.1.2. The ALPR Subset

A subset is derived from the full assembly, allocating 120 images in a training, testing,
and validation array in ratios of 80, 20, and 20, respectively. A compilation of the SRC
images chosen for ALPR is depicted in Figure 3.
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Figure 3. An assembled display of the chosen SRC images for the purpose of ALPR.
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Please refer to the Appendix A for the complete list.

2.2. Making Hypothetical Reference Circuits (HRC)

This section addresses the various degradation scenarios, termed Hypothetical Refer-
ence Circuits (HRCs). The proposed array of HRCs encompasses a variety of impairments
throughout the digital image acquisition process. The choice of HRCs is pivotal as it
influences the applicability of the quality assessment methodology suggested here.

Currently, HRC selection utilizes two distinct types of camera model: a model of a
digital single-lens reflex camera and a basic pinhole camera model. The latter is especially
relevant to ALPR applications, as the detailed features of more elaborate camera models do
not necessarily enhance the recognition task. The single lens reflex digital camera model is
shown in Figure 4, while the pinhole camera model schematic is shown in Figure 5.

The operation of a digital camera is characterized by the manner in which light
reflection from a subject is transformed into a digital image. Insufficient exposure to ambient
light can attenuate the light before it reaches the lens system. Should the lens elements
be misaligned, a blurred effect, known as defocus aberration, may ensue. Subsequently,
the light interacts with an electronic sensor, the resolution of which is finite, potentially
introducing Gaussian noise during analogue-to-digital conversion and subsequent signal
amplification. Moreover, a prolonged exposure time can result in motion blur, while
compression algorithms like JPEG may introduce artifacts in the final rendering of the
digital image.

Figure 4. A diagrammatic representation of a single-lens reflex camera, annotated with ba-
sic labels in accordance with standard reflex camera nomenclature. Jean François WITZ cre-
ated the original foundation picture. According to Astrocog—Original work, CC BY-SA 3.0,
https://commons.wikimedia.org/w/index.php?curid=29334470 (accessed on 14 November 2023).

For the pinhole camera model, image formation is simplified; it assumes a single
point where light rays pass through to form an image on an imaging surface. This model
eliminates lens-induced aberrations, such as defocus and distortions. The simplicity of
the pinhole camera model allows us to isolate other variables, such as exposure, motion
blur, and sensor noise, in our quality assessment framework. The versatility of the pinhole
camera model lies in its simplicity, which proves to be highly suitable for ALPR scenarios
where diverse environmental factors, including fluctuating light conditions and varying
distances from the camera to the license plate, can impact the quality of the captured image.

https://commons.wikimedia.org/w/index.php?curid=29334470
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Figure 5. A diagram of a pinhole camera. By en:User:DrBob (original); en:User:Pbroks13 (redraw)—
http://commons.wikimedia.org/wiki/Image:Pinhole-camera.png (accessed on 14 November 2023),
Public Domain, https://commons.wikimedia.org/w/index.php?curid=4099853 (accessed on 14
November 2023).

With this dual-model approach, we aim to offer a more comprehensive understanding
of how different camera models can affect the quality and utility of TRVs in ALPR systems.

By incorporating the pinhole camera model into our HRC set, we aim to provide a
more tailored approach to the evaluation of the video quality in ALPR applications. This
modification aligns our work more closely with the practical needs of the ALPR community,
which often employs simpler camera models because of their versatility and effectiveness
across a wide range of conditions.

The distortion model is shown in Figure 6.

Processing

Electronic (camera) sensor(s)

Lens elements (camera optics)

Photographic lighting

Figure 6. Schematicrepresentation of the distortion model illustrating the conversion of luminous
flux from the scene into a digital image.

We selected the following HRCs:

• Photographic lighting HRC:

1. Image under/overexposure

• Camera optics lens elements HRC:

2. Defocus (blur)

• Electronic (camera) sensor(s) HRC:

http://commons.wikimedia.org/wiki/Image:Pinhole-camera.png
https://commons.wikimedia.org/w/index.php?curid=4099853


Electronics 2023, 12, 4721 9 of 32

3. Gaussian noise
4. Motion blur

• Processing HRC:

5. JPEG compression

2.2.1. Overview

The selection was made to utilize HRCs by incorporating tools from the resources [14,15],
namely FFmpeg and ImageMagick, which offer a comprehensive suite of relevant filters.
These tools facilitate the generation of the various distortions required; FFmpeg is utilized
for the application of Gaussian noise and the adjustment of exposure levels, while Im-
ageMagick is deployed for JPEG compression, motion blur simulation, and defocus effect
creation.

Under the most demanding conditions, which involve enabling all available filters, the
processing capability of the tool reaches a rate of 439 frames per minute. This performance
benchmark was established through tests conducted on a conventional laptop equipped
with an Intel i5 3317U processor and 16 GB of RAM.

Table 1 presents the established thresholds for various types of distortion, which are
itemized in the rows of the table. These thresholds are typically derived to pinpoint the
HRC value at which recognition ceases to occur; this identification represents the next-to-
last stage, with an additional margin incorporated for precautionary reasons. The sequence
of determination is direct and methodical.

Table 1. Boundaries for specified Hypothetical Reference Circuits (HRCs)—representing different
distortions cataloged in a row-wise manner (based on: [2]).

HRC Unit Min Max

Under-Exposure FFmpeg filter parameter 0 −0.6
Over-Exposure FFmpeg filter parameter 0 0.6
Defocus (Blur) ImageMagick filter parameter 0 6
Gaussian Noise FFmpeg filter parameter 0 48

Motion Blur ImageMagick filter parameter 0 18
JPEG ImageMagick filter parameter 0 100

Table 2 outlines the specific distortions and provides an approximation of the num-
ber of intensity levels for each type of distortion. It is noted that most distortions are
categorized into six intensity levels. Exceptions include JPEG compression and exposure
alterations, which require the number of levels to be doubled to account for their bidirec-
tional impacts. Moreover, when distortions are combined (as shown in the last three rows,
each corresponding to a distinct subsection), only five levels are delineated, because the
most severe levels are already captured in the creation of individual distortions (referenced
in the preceding subsections of the table).

The order of distortion application is pivotal when employing multiple distortions:

• For the combination of motion blur and Gaussian noise, motion blur is applied initially;
• In the case of over-exposure combined with Gaussian noise, over-exposure precedes;
• For the under-exposure and motion blur combination, motion blur takes precedence

due to technical constraints related to potential interpolation issues, despite under-
exposure ideally being first.

Additionally, it is essential to include the scenario of “without distortion” (pristine
SRC) within our distortion range. In total, this results in 64 HRC options (plus one unal-
tered SRC).

With the SRC selection finalized and the HRCs established, we can proceed to the
actual video processing. This leads to the generation of a collection of processed video
sequences, or PVSs, which are SRC frames affected by the HRC scenarios. The PVS corpus
represents the anticipated result for this process.
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Table 2. Types of Distortion Arising from Hypothetical Reference Circuits, HRCs (reference: [2]).

HRC #HRC

Over/Under-Exposure (Photography) 12
Defocus (Blur) 6
Gaussian Noise 6

Motion Blur 6
JPEG 19

Motion Blur + Gaussian Noise 5
Over-Exposure + Gaussian Noise 5
Under-Exposure + Motion Blur 5

#PVS 6720

The following is a detailed explanation of distortions and their applications. Our de-
tailed description of the algorithms and configurations aims to add rigor and reproducibility
to our methodology.

2.2.2. Exposure (Photography)

In the realm of photography, the term “exposure” delineates the quantum of light that
reaches light-responsive substrates such as photographic film or digital sensors, playing
an indispensable role in image capture. The exposure quotient is a composite function of
the shutter velocity, the lens aperture scale, and the ISO sensitivity. Typically quantified
in segments of seconds, exposure governs the duration that the aperture stays agape.
An overabundance of light leads to overexposure, whereas a paucity thereof results in
under-exposure [16].

In creating our HRC set, we utilized the FFmpeg library’s “eq” (equalizer) filter to
adjust attributes such as exposure. The “eq” filter operates through pixel-level trans-
formations that alter the brightness and contrast levels. It is mathematically defined as
P′ = (P − 128) × contrast + 128 + brightness, where contrast and brightness are user-
defined parameters.

The “eq” filter also supports adjustments to the saturation and gamma levels. Standard
image processing techniques are generally applied. Saturation is adjusted using linear
transformations in the color space, whereas gamma adjustments are made through a
power-law function applied to intensity values.

For a complete list of permitted parameters and further details, consult the offi-
cial FFmpeg documentation https://ffmpeg.org/ffmpeg-filters.html#eq (accessed on 14
November 2023).

Excess exposure makes vehicle registration plates appear white and unreadable, while
insufficient exposure leads to dark patches within the image. Details in over-exposed or
under-exposed areas are irrecoverable.

Through intentional over-exposure and under-exposure, the FFmpeg filter allows for
a wide range of exposure adjustments. This facilitates the creation of HRCs to evaluate the
performance of ALPR systems. Extreme exposure settings make the automobile registration
plate unrecognizable to the human eye, ensuring that the HRC spans the full visible range.

2.2.3. Defocus

Defocus is a form of distortion that occurs when an image is not properly focused.
This aberration affects various devices equipped with lenses, such as cameras, telescopes,
or microscopes. Defocus diminishes image contrast and object sharpness, making well-
defined, high-contrast edges appear blurry and eventually unidentifiable. On the contrary,
excessive sharpening results in a noticeable grainy effect [17].

In our research, we used ImageMagick’s “blur” algorithm to introduce image distor-
tions. The blur algorithm generally employs a Gaussian blur, characterized by a Gaussian
distribution. It involves convolution with a Gaussian kernel, specified by two parameters:

https://ffmpeg.org/ffmpeg-filters.html#eq
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radius and standard deviation (σ). The Gaussian function is mathematically represented as

G(x, y) = 1
2πσ2 e−

x2+y2

2σ2 .
ImageMagick offers fine-tuning through various command-line options. For exam-

ple, the “-channel” option applies blur to specific color channels, while “-motion-blur”
introduces directional blur to simulate motion. Motion blur in ImageMagick uses a linear
combination of pixels along a trajectory to mimic object movement.

For a complete list of available options and further details, consult the official Im-
ageMagick documentation http://www.imagemagick.org/Usage/blur/#blur_args (ac-
cessed on 14 November 2023).

In this context, the sigma value serves as an estimate for pixel “dispersion” or blurring.
According to the documentation, it is advisable to keep the radius parameter as small
as possible.

ImageMagick enables accurate defocus degradation, allowing for precise adjustments.
Even a slight change in the sigma parameter can make the vehicle registration plate
unrecognizable. Consequently, in the generation of PVSs, it is imperative to administer the
distortion at a level that precludes precipitous deterioration of the original material.

2.2.4. Gaussian Noise

Gaussian noise, recognized as statistical noise, exhibits a probability density function
that conforms to a Gaussian distribution. Noise levels themselves follow a Gaussian
distribution [18].

Cameras typically include an automated denoising algorithm. Our aim is not arbitrary
noise introduction but rather realistic noise simulation. We add noise using FFmpeg’s
“noise” filter and subsequently apply denoising.

For denoising, we employ FFmpeg’s “bm3d” filter, which uses the Block Matching
and 3D Filtering (BM3D) algorithm. This technique uses the high level of redundancy in
natural video to remove noise while preserving detail. The algorithm involves a two-step
process: block matching and collaborative filtering. In our setup, the denoising strength (σ)
is set to be equal to the added noise level, but it can be fine-tuned.

A higher noise value leads to significant visual distortions, complicating license plate
recognition.

For more details, consult the FFmpeg documentation https://ffmpeg.org/ffmpeg-
filters.html#bm3d (accessed on 14 November 2023).

2.2.5. Motion Blur

Motion blur appears as a motion streak and is only visible in sequences that feature
moving objects. It occurs when the object being recorded changes position during shooting.
The appearance of blurred motion can be attributed to a combination of the fast movement
of objects and prolonged exposure [19].

Although FFmpeg does not provide a standalone motion blur filter, it offers filters
such as “minterpolate” and “tblend” that can be configured to simulate motion blur. The
“minterpolate” filter is based on motion estimation and frame interpolation algorithms, and
“tblend” uses frame blending techniques. Although the specifics may vary depending on
the filter configuration, these are general principles.

To simulate motion blur, we used ImageMagick’s radial blur function. This function is
designed to simulate motion by convolving the image along a specific angle defined by the
user, creating the appearance of a radial motion.

The function takes an angle parameter, which enables us to simulate different rotational
speeds. A lower angle simulates slower rotation, while a higher angle indicates faster spin.

Among the various degradations, motion blur is often considered the most chal-
lenging. ImageMagick filters are our recommended solution to achieve optimal results
when simulating motion blur degradation. For further information, see ImageMagick
documentation at http://www.imagemagick.org/Usage/blur/#radial-blur (accessed on
14 November 2023).

http://www.imagemagick.org/Usage/blur/#blur_args
https://ffmpeg.org/ffmpeg-filters.html#bm3d
https://ffmpeg.org/ffmpeg-filters.html#bm3d
http://www.imagemagick.org/Usage/blur/#radial-blur
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2.2.6. JPEG

The JPEG standard is commonly used for image compression and is a popular digital
format. It plays a pivotal role in the creation of billions of JPEG images each day, especially
in digital photography [20].

We employ ImageMagick to compress the images to JPEG format, specifying the
compression quality parameter using values ranging from 1 to 100: the lower the value, the
higher the compression, and vice versa.

Lossy JPEG compression can cause recognizable artifacts, such as pixelation and a loss
of fine details. In the case of license plates, higher compression ratios may render characters
indistinct, complicating ALPR.

To optimize our methodology, we use the quality parameter to strike a balance between
size and quality. The goal is to ensure that the compressed image retains enough quality to
be useful for the evaluation of the ALPR system.

For details on ImageMagick’s JPEG compression options, consult the official docu-
mentation http://www.imagemagick.org/Usage/formats/#jpg (accessed on 14 Novem-
ber 2023).

2.3. Recognition Experiment

The organization of the recognition experiment is detailed in this subsection. An
extensive overview is presented in the initial subsection (Section 2.3.1), followed by a more
detailed description of the ALPR system in the next subsection (Section 2.3.2). The final
subsection (Section 2.3.3) delves into the discussion of the execution time of ALPR.

2.3.1. Overview of the Recognition Experiment

Every PVS consists of a solitary frame, which is subsequently processed by an Auto-
matic License Plate Recognition (ALPR) system. The flow chart in Figure 7 illustrates the
standard processing pipeline used in the recognition experiment.
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Figure 7. A flowchart depicting the recognition experiment’s processing pipeline.

2.3.2. ALPR System

The ALPR functionality is ensured by the OpenALPR library, which is implemented in
C++. This library is designed to analyze images and videos for the detection and recognition

http://www.imagemagick.org/Usage/formats/#jpg
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of license plates. The algorithm employed by the library is capable of processing various
types of image and videos. In the case of videos, the video file is divided into individual
frames, and each frame is subjected to license plate detection and recognition. The library
then returns ten potential license plates along with their corresponding confidence scores.
Furthermore, an alternative exists to store the results in a JSON file that includes the
coordinates of the identified license plate. Additionally, in light of the global diversity in
license plate designs, OpenALPR offers a country code feature that enables the limitation
of plate comparisons to a particular area, such as the EU or the US. This feature enhances
both the confidence and efficiency of the recognition process. The Listing 1 illustrates an
example of the output generated by OpenALPR for the recognition of license plates.

Listing 1. Example of the number plate recognition output.

1 Frame : 1
2 p l a t e 0 : 10 r e s u l t s
3 − KM77EV confidence : 85 .47
4 − UKM77EV confidence : 80 .7784
5 − DKM77EV confidence : 78 .9068
6 − 8KM77EV confidence : 78 .8557
7 − BKM77EV confidence : 78 .6403
8 − GKM77EV confidence : 78 .5922
9 − OKM77EV confidence : 78 .4122

10 − KM77EW confidence : 76 .9827
11 − KM77E confidence : 74 .4351
12 − KM77V confidence : 72 .7275
13 Frame : 2
14 p l a t e 0 : 10 r e s u l t s
15 − KMI7V confidence : 81 .8354
16 − UKMI7V confidence : 79 .7063
17 − UMI7V confidence : 74 .1094
18 − XMI7V confidence : 71 .0421
19 − DKMI7V confidence : 70 .4233
20 − KMI7W confidence : 70 .0052
21 − 0KMI7V confidence : 69 .4441
22 − BKMI7V confidence : 69 .4185
23 − OKMI7V confidence : 69 .173
24 − GKMI7V confidence : 69 .0276

The OpenALPR library is available on GitHub at https://github.com/openalpr/
openalpr (accessed on 14 November 2023). It is dependent on two additional libraries:
Tesseract and OpenCV. Tesseract, an optical character recognition engine, specializes in
identifying and extracting text from images. On the other hand, OpenCV is utilized for
image processing tasks within the library.

Figures 8–15 display the impacts of various distortions on the confidence parameter of
the ALPR system for the specified values.

2.3.3. ALPR Execution Time

To determine the number of SRCs that can be tested, it is essential to determine
the duration required for all ALPR processes to compute, as mentioned previously. The
computer vision algorithm employed for ALPR typically takes approximately 0.21 s to
process a single video frame. It should be mentioned that the execution times are measured
on the computer system employing an Intel Core i5-8600K CPU.

https://github.com/openalpr/openalpr
https://github.com/openalpr/openalpr
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Figure 9. ALPR for Gaussian noise.
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Figure 12. ALPR for different levels of JPEG compression.
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2.4. Quality Experiment

This section elaborates on the quality experiment, aimed at evaluating various Video
Quality Indicators (VQIs) for their effectiveness and computational efficiency. The purpose
of the experiment is to identify which VQIs are most suited for real-time video quality
assessment. The first subsection (Section 2.4.1) gives a broad overview, while the next
subsection (Section 2.4.2) provides specific information on the VQIs employed. Subsequent
discussion in Subsection (Section 2.4.3) covers the execution time of VQIs. The final
subsection (Section 2.4.4) includes examples of reference data.

2.4.1. Quality Experiment Overview

The procedure of the experiment encompasses the following steps:

1. Each video is broken down into individual frames;
2. A set of 19 VQIs is applied to each frame;
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3. Execution times are recorded;
4. Quality metrics are stored as a vector of results.

Objective: The main objective is to compare the efficiencies of different VQIs to assess
the video quality.

This experiment concentrates on single video frames, barring the Temporal Activity
(TA) Video Quality Indicator (VQI). The application of a set of VQIs yields a vector of
outcomes, with each VQI generating a distinct result. A detailed workflow is illustrated in
Figure 16, adapted from Leszczuk et al. [2]. These findings are merged with those from the
recognition test to produce input data for modeling.

Source video frame

HRCs
(exposure distortion, blurringetc.)

Distortedby HRC #N

Quality Indicators
(BlurVQI, BRISQUE etc.)

49.2 23.2 10.2 ... 79.2

A vector of results for the frame
distortedby HRC #1

32.1 17.4 9.8 ... 23.1

A vector of results for the frame
distortedby HRC #2

91.5 34.6 55.8 ... 61.2

A vector of results for the frame
distortedby HRC #N

Distortedby HRC #2

Distortedby HRC #1

Figure 16. A flowchart depicting the quality experiment’s processing workflow.

The choice of programming language varies depending on the specific Video Quality
Indicator (VQI) being utilized. For some VQIs, we employ C/C++ code, while for others,
MATLAB code is used.

In order to streamline the execution of the experiment, we encapsulate all necessary
components within a Python script. This script is designed to receive a list of filenames as
input, allowing us to process a sizable batch of video frames simultaneously.

The quality experiment is just one of several software modules used in our workflow.
All of these modules are controlled by a central Python script, known as the “master script”.
As a result, the script employed in this particular experiment can generate its results either
in the form of a JSON file or as a Python return value. An example of a JSON output file is
provided in Listing 2.

Listing 2. An exemplary output JSON file, as produced by the Python script (performing the quality
experiment).

1 {
2 " image1 . png " : {
3 " blur " : 1 0 . 2 ,
4 " c o n t r a s t " : 1 3 . 4 ,
5 " br isque " : 4 . 3
6 } ,
7 " image2 . png " : {
8 " blur " : 9 . 2 ,
9 " c o n t r a s t " : 4 . 3 ,

10 " br isque " : 2 . 1
11 }
12 }

2.4.2. Indicators

We selected a total of 19 VQIs based on their potential effectiveness and computational
requirements.

Our AGH Video Quality (VQ) team provided eleven (11) of these VQIs (they can be
downloaded from the link provided in Section “Supplementary Materials”):
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• AGH:

1. Commercial Black: An indicator that measures the level of black coloration in
commercial content;

2. Blockiness [2,21]: Refers to the visual artifacts caused by block-based coding
schemes, often seen as grid-like structures in the image or video;

3. Block Loss [22]: Measures the instances where data blocks are lost during trans-
mission or encoding, leading to visual corruption;

4. Blur [1,2,21]: Quantifies the loss of edge sharpness in an image or video, leading
to a less clear representation;

5. Contrast: An indicator of the difference in luminance or color that makes objects
in an image distinguishable;

6. Exposure [2]: Evaluates the balance of light in a photo or video, indicating
over-exposure or under-exposure;

7. Interlacing [23]: Relates to the visual artifacts arising from interlaced scanning
methods in video, usually observed as a flickering effect;

8. Noise [23]: Measures the amount of random visual static in an image or video,
often arising from sensor or transmission errors;

9. Slice [22]: Assesses the impact of slice loss, which refers to the loss of a data
segment that leads to noticeable visual errors;

10. Spatial Activity [2,21]: Measures the level of detail or texture in a still image or
in each frame of a video;

11. Temporal Activity [2,21]: Gauges the rate of change between frames in a video,
usually related to the amount of motion or action.

The remaining eight (8) VQIs are provided by external laboratories:

• LIVE:

12. BIQI [24]: A Blind Image Quality Index that provides a quality score without
referencing the original image;

13. BRISQUE [25]: The Blind/Reference-less Image Spatial Quality Evaluator, which
aims to assess the quality of images without a reference image;

14. NIQE [26]: The Naturalness Image Quality Evaluator evaluates the perceptual
quality of an image in a completely blind manner;

15. OG-IQA [27]: Object Geometric-Based Image Quality Assessment focuses on
evaluating the image quality based on geometric distortions;

16. FFRIQUEE [28]: A Free-Energy-based Fractal Reference-less Image Quality Eval-
uator that operates without needing a reference image;

17. IL-NIQE [29]: The Information-theoretic Local Naturalness Image Quality Evalu-
ator uses local image statistics for the quality assessment;

• UMIACS:

18. CORNIA [30]: The Codebook Representation for No-Reference Image Assessment
evaluates the quality of images using a learned codebook representation;

• BUPT:

19. HOSA [31]: The Higher-Order Statistics Aggregation for Blind Image Quality
Assessment employs higher-order statistics to evaluate image quality.

The selection of MATLAB or C/C++ code depends on the specific VQI being uti-
lized. The rationale behind the selection and omission of certain VQIs is detailed in the
supplementary material section.

Table 3 presents a comprehensive list of all employed VQIs, accompanied by their
descriptions and relevant references. The indicators highlighted with an asterisk (*) may
not directly correlate with the precise objectives of the investigation, but they are included
due to their potential value during the modeling stage. Additionally, their inclusion does
not significantly impact the computation time overhead. UMIACS and BUPT are the initials
for the University of Maryland Institute for Advanced Computer Studies (Language and
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Media Processing Laboratory) and the Beijing University of Posts and Telecommunications
(School of Information and Communication Engineering, respectively.

Table 3. List of Video Quality Indicators (VQIs) employed in the quality assessment experiment
(source: [2]).

No Name Authors Language

1 Commercial Black

VQ AGH

C/C++
2 Blockiness * [2,21] C/C++
3 Block Loss * [22] C/C++
4 Blur [1,2,21] C/C++
5 Contrast C/C++
6 Exposure [2] C/C++
7 Interlacing [23] C/C++
8 Noise [23] C/C++
9 Slicing [22] C/C++
10 Spatial Activity [2,21] C/C++
11 Temporal Activity [2,21] C/C++

12 BIQI [24]

LIVE

MATLAB
13 BRISQUE [25] MATLAB
14 NIQE [26] MATLAB
15 OG-IQA [27] MATLAB
16 FFRIQUEE [28] MATLAB
17 IL-NIQE [29] MATLAB

18 CORNIA [30] UMIACS MATLAB

19 HOSA [31] BUPT MATLAB

During the preparatory phase of the experiment, we decided to exclude two measures,
specifically (i) DIIVINE [32] and (ii) BLIINDS-II [33]. The removal of these indicators was
due to their high computational demands, with BLIINDS-II requiring around 3 min to
assess a single image’s quality. This exclusion was essential to maintain the experiment’s
relevance concerning the quantity of Source Reference Codes (SRCs) that could be evaluated.
Put simply, including DIIVINE and BLIINDS-II would significantly increase the duration
of the experiment, rendering the assessment of a considerable number of SRCs impractical.

DIIVINE was excluded from the experiment in favor of a more refined alternative. We
predict that FFRIQUEE will perform at least as well as DIIVINE. This assumption stems
from the fact that FRIQUEE is built on the basis of DIIVINE.

In contrast, there is no alternative indication for BLIINDS-II at the moment. We chose
to remove it, because it does not have the potential to outperform others. Based on existing
research [34], we do not expect BLIINDS-II to be one of the best performing indicators.

2.4.3. VQI Execution Time

This subsection provides an empirical analysis of the time complexity of each VQI
to help to determine the feasibility of a real-time assessment. As mentioned above, to
determine the number of SRCs that can be tested, it is important to know the computational
time required for all VQIs. Table 4 presents a summary of the execution times for each VQI.
It is important to note that these timings were recorded on a laptop featuring an Intel Core
i7-3537U CPU.
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Table 4. Execution duration for each operational Video Quality Indicator (VQI). The total time for
AGH VQIs represents the cumulative execution times of each VQI, as sourced from [21].

Algorithm Name Duration [s]

BIQI 1.60
BRISQUE 1.67

NIQE 3.92
OG-IQA 5.72

FRIQUEE 40.79
IL-NIQE 10.70
CORNIA 7.71

HOSA 0.43
VQ AGH VQIs 0.12

Overall Total 72.66

2.4.4. Data as an Example

This section contains instances of collected data.
Finally, we present examples of the data to give a snapshot of the type of results that

can be expected from this experiment. Various forms of distortion were applied to the
video frames to simulate real-world conditions.

In the imaging process, we utilize four types of distortion (HRC): defocus, Gaussian
noise, motion blur, and JPEG. For each HRC, two graphs are presented. The initial chart
depicts eight representative visual indicators developed by our AGH team, including
BLOCKINESS, BLOCK-LOSS, BLUR, CONTRAST, EXPOSURE, INTERLACE, NOISE, and
SA. The subsequent graph illustrates eight visual indicators developed by various research
groups: BIQI, BLUR-SAWATCH, CORNIA, FRIQUEE, HOSA, ILNIQE, and NIQE.

Figure 17 presents a comparative analysis of “our indicators” against defocus distor-
tion. It is evident from the graph that this distortion significantly affects the BLUR indicator
and has a somewhat lesser effect on the SA indicator.
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Figure 17. “Our” indicators vs. defocus [σ/pixels].

The comparison between “other indications” and the defocus distortion is shown
in Figure 18. It is evident from the chart that this distortion notably impacts the FRIQUEE
and, to a lesser degree, the NIQE indicators.
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Figure 18. “Other” indicators vs. defocus [σ/pixels].

Figure 19 displays the correlation between “our indicators” and the Gaussian noise
distortion. It is evident from the figure that this distortion primarily affects the NOISE
indicator, with a minor impact on the SA indicator.

Gaussian Noise level

N
or

m
al

is
ed

 IQ
I l

ev
el

0.00

0.25

0.50

0.75

1.00

96 80 64 48 32 16

BLOCKINESS BLOCKLOSS BLUR CONTRAST EXPOSURE
INTERLACE NOISE SA

Figure 19. “Our” indicators vs. Gaussian noise [σ/pixels].

In Figure 20, the relationship between “other indicators” and Gaussian noise is de-
picted. This distortion evidently affects the FRIQUEE and NIQE indicators, and, to a more
moderate extent, the BRISQUE indicator.
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Figure 20. “Other” indicators vs. Gaussian noise [σ/pixels].

Figure 21 illustrates the relationship between “our indicators” and motion blur. It is
discovered that this distortion has no discernible effect on any of the indicators.
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Figure 21. “Our” indicators vs. motion blur [σ/degrees].

Figure 22 depicts the relationship between “other indicators” and motion blur. The
analysis reveals that this distortion does not have any noticeable impacts on any of the
indicators.
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Figure 22. “Other” indicators vs. motion blur [σ/degrees].

Figure 23 illustrates the correlation between “our indicators” and the distortion of the
JPEG. It is evident that this distortion predominantly triggers a pronounced response in the
BLOCKINESS indicator, which is expected, since this indicator is specifically designed for
detecting JPEG artifacts.
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Figure 23. “Our” indicators vs. JPEG [quality units].

Figure 24 shows the relationship between the “other indicators” and the JPEG distor-
tion. This distortion clearly generates substantial responses from practically all indicators,
particularly those in the lower range. However, the BLUR-SAWATCH indicator does not
exhibit a strong response to JPEG distortion.
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Figure 24. “Other” indicators vs. JPEG [quality units].

3. Results

This section outlines the results of developing a new objective video quality assessment
model tailored for ALPR applications.

By leveraging data from both the quality and recognition experiments, models capable
of forecasting recognition results based on VQIs can be constructed. This approach leads
to the formation of a distinctive quality model. In particular, this model is applicable in
situations where no particular target is defined for identification. Adaptations can be made
to both the details of the recognition algorithm and the model itself.

We categorize the VQIs into two groups for modeling purposes. The first group, called
“All metrics” includes both our own VQIs and those provided by other parties. The second
group, called “only ours”, comprises only our own VQI.

In our analysis, we employ precision, recall, and the F-measure, which are common
metrics in the domains of pattern recognition, information retrieval, and machine-learning-
driven classification. Precision, also termed a positive predictive value, indicates the
proportion of correct instances among the retrieved cases. Recall, or sensitivity, reflects
the proportion of all pertinent instances that are accurately identified. Both precision and
recall are rooted in the notion of relevance. The F-measure, being the harmonic mean of
precision and recall, merges these metrics into a singular measure, offering a comprehensive
evaluation of performance [35].

Among the various modeling approaches used for the ALPR system, decision trees
emerged as the most effective method.

We considered two classification scenarios for this ALPR system: binary classification,
where the classes are “license plate recognized” and “license plate not recognized”, and
multiclass classification, where the classes are “license plate recognized”, “license plate
recognized with one error”, “license plate recognized with two errors”, “license plate
recognized with three errors” and “license plate not recognized”.

We obtained the results for two classes, as delineated in Table 5. Each column in the
table represents a specific metric used to evaluate the model’s performance. Specifically,
the column labeled “F-measure” represents the F1 score, providing a balanced measure
of the accuracy and completeness of a model. This F-measure parameter has a value of
0.777 for the “All metrics” row, indicating the model’s performance when considering all
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metrics together. For further details on how each metric is calculated, the reader can refer
to the following link: https://scikit-learn.org/stable/modules/generated/sklearn.metrics.
precision_recall_fscore_support.html (accessed on 14 November 2023).

Table 5. General results received for ALPR for two classes (source: [2]).

Precision Recall F-Measure

All metrics 0.779 0.776 0.777
Only ours 0.758 0.759 0.764

We obtained results for five classes, which are presented in Table 6.

Table 6. The general results received for ALPR for five classes (source: [2]).

Precision Recall F-Measure

All metrics 0.415 0.425 0.407
Only ours 0.401 0.405 0.394

The outcomes for the test set are notably inferior, even when considering the subop-
timal results for the validation set. The key reason for this difference is the substantial
influence of the source, which seems to exert a greater effect than the distortion itself. In
terms of cognitive thinking, this means that letters such as “D” and “O” are more likely to
be misidentified than other more distinct letters such as “K”.

The evaluation results of the model, which is designed to handle two distinct classes
and includes a comprehensive set of performance metrics, reveal that its overall perfor-
mance is not up to the mark when subjected to tests on the test set. Specifically, the
model’s capability for accurately detecting the correct classes falls short, with an estimated
success rate of approximately two-thirds. This is corroborated by the data presented in
Tables 7 and 8, which provide a detailed breakdown of these performance metrics.

Table 7. Confusion matrix for the test set, ALPR scenario, all metrics, and two classes (source: [2]).

Algorithm

Not more than
2 errors Other cases

Truth
Not more than

2 errors 292 302

Other cases 138 628

Table 8. Performance parameters for the test set, ALPR scenario, all metrics, and two classes
(source: [2]).

Precision Recall F-Measure Support

Not more than
2 errors 0.679 0.492 0.570 594

Other cases 0.675 0.820 0.741 766
Macro average 0.677 0.656 0.655 1360

Weighted
average 0.677 0.676 0.666 1360

The performance evaluation of the model, which is configured to categorize data
into five distinct classes and incorporates a comprehensive suite of metrics for assessment,
shows that it achieves particularly strong results on the test set, especially for the two
primary classes. This outcome is generally expected, given that these two classes contain the
largest number of instances within the dataset. In addition to excelling in the classification

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.precision_recall_fscore_support.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.precision_recall_fscore_support.html
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of the two main classes, the model also shows a satisfactory level of accuracy when it
comes to identifying instances where no license plate is detected. These evaluations and
conclusions are supported by the information displayed in Tables 9 and 10, where a more
detailed analysis of performance metrics is available.

Table 9. Confusion matrix for the test set, ALPR scenario, all metrics, and five classes (source: [2]).

Algorithm

Correct recogn. 1 error 2 errors 3+ errors No detection

Truth

Correct recogn. 190 30 21 6 29
1 error 109 48 14 11 43
2 errors 22 24 14 4 29

3+ errors 25 16 6 6 43
No detection 101 102 12 23 432

Table 10. Performance parameters for the test set, ALPR scenario, all metrics, and five classes
(source: [2]).

Precision Recall F-Measure Support

Correct recognition 0.425 0.688 0.526 276
1 error 0.218 0.213 0.216 225
2 errors 0.209 0.151 0.175 93

3+ errors 0.120 0.062 0.082 96
No detection 0.750 0.645 0.693 670

Macro average 0.344 0.352 0.338 1360
Weighted average 0.515 0.507 0.502 1360

The performance of the two-class model using AGH metrics closely mirrors the results
observed across all classes, as depicted in Tables 11 and 12.

Table 11. Confusion matrix for the test set, ALPR scenario, our metrics, and two classes (source: [2]).

Algorithm

Not more than
2 errors Other cases

Truth
Not more than

2 errors 232 362

Other cases 118 648

Table 12. Performance parameters for the test set, ALPR scenario, our metrics, and two classes
(source: [2]).

Precision Recall F-Measure Support

Not more than 2 errors 0.663 0.391 0.492 594
Other cases 0.642 0.846 0.730 766

Macro average 0.652 0.618 0.611 1360
Weighted average 0.651 0.647 0.626 1360

The results of the five-class model using AGH metrics again show a similarity to the
results acquired for all metrics, as illustrated in Tables 13 and 14.

The numerical study sought to determine the susceptibility of the model to various
distortions. As demonstrated in Figure 25, the model displayed a consistent error sensitivity
in several types of HRC. The error rates for Gaussian noise, defocus, motion blur, and JPEG
compression were relatively similar, with percentages hovering around the thirty percent
mark.
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Table 13. Confusion matrix for the test set, ALPR scenario, our metrics, and five classes (source: [2]).

Algorithm

Correct recogn. 1 error 2 errors 3+ errors No detection

Truth

Correct recogn. 165 40 13 12 46
1 error 102 40 18 9 56
2 errors 27 18 16 5 27

3+ errors 21 8 12 11 44
No detection 138 50 31 25 426

Table 14. Performance parameters for the test set, ALPR scenario, our metrics, and five classes
(source: [2]).

Precision Recall F-Measure Support

Correct recognition 0.364 0.598 0.453 276
1 error 0.256 0.178 0.210 225
2 errors 0.178 0.172 0.175 93

3+ errors 0.177 0.115 0.139 96
No detection 0.711 0.636 0.671 670

Macro average 0.337 0.340 0.330 1360
Weighted average 0.491 0.484 0.479 1360

Figure 25. Share of erroneous predictions for a given HRC in an ALPR.

On the contrary, the model showed a considerably lower error rate for the HRC
exposure, only 11%. This suggests that the model is significantly more robust to variations
in exposure than to other distortions tested. On the other hand, the JPEG HRC resulted in a
higher error rate than expected, which is a point of interest and could be explored further
in future work.

4. Conclusions

In closing, this work addresses the gap identified in the Introduction by providing an
objective evaluation methodology for TRVs, with a specific focus on ALPR systems under
challenging conditions. The validity of the methodology is evidenced by an F-measure of
0.777, confirming the predictive power of our system under diverse scenarios. This reflects
the fulfillment of our aim of constructing models that accurately predict the utility of TRVs
in various applications.
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We have presented a comprehensive dataset and an assessment system, which offers
significant contributions to both academic and industrial spheres in the domain of the TRVs.
These efforts extend the scope of traditional quality metrics, underscoring the importance of
specialized evaluations for recognition tasks which traditional metrics overlook. Although
the limitations of our current model, specific to ALPR tasks, are noted, the F-measure of
0.764, despite AGH VQI restrictions, suggests strong potential for broader application.

The initial scene qualities play a pivotal role in the recognition accuracy and present a
challenge for current VQIs, which our future work will aim to address. Adhering to the
foundations laid out in this paper, our subsequent research will expand the applicability of
our model to encompass a wider range of conditions and recognition systems.

Prospective research will focus on refining the JND threshold to enhance the CV per-
formance, with the aim of developing a lossless quality model. This model will be subjected
to an extensive set of CV algorithms and a variety of image distortions. Through these
efforts, we aim to establish a robust framework that can predict lossless CV performance,
accelerating advances in high-precision recognition systems [2].
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Appendix – The ALPR Subset Files

Below, please find the list of selected SRC frames for the ALPR:

1 a g h _ s r c 1 _ h r c 0 _ 0 7 3 . png
2 a g h _ s r c 1 _ h r c 0 _ 1 2 5 . png
3 a g h _ s r c 1 _ h r c 0 _ 2 5 0 . png
4 a g h _ s r c 1 _ h r c 0 _ 3 4 1 . png
5 a g h _ s r c 1 _ h r c 0 _ 5 0 0 . png
6 a g h _ s r c 4 _ h r c 0 _ 0 3 0 . png
7 a g h _ s r c 4 _ h r c 0 _ 1 2 5 . png
8 a g h _ s r c 4 _ h r c 0 _ 2 5 0 . png
9 a g h _ s r c 4 _ h r c 0 _ 4 1 8 . png

10 a g h _ s r c 4 _ h r c 0 _ 4 8 0 . png
11 a g h _ s r c 5 _ h r c 0 _ 1 1 0 . png
12 a g h _ s r c 5 _ h r c 0 _ 2 5 0 . png
13 a g h _ s r c 5 _ h r c 0 _ 3 7 5 . png
14 a g h _ s r c 5 _ h r c 0 _ 4 7 0 . png
15 a g h _ s r c 6 _ h r c 0 _ 1 0 0 . png
16 a g h _ s r c 6 _ h r c 0 _ 1 6 9 . png
17 a g h _ s r c 6 _ h r c 0 _ 2 5 0 . png
18 a g h _ s r c 6 _ h r c 0 _ 3 1 0 . png
19 a g h _ s r c 6 _ h r c 0 _ 5 0 0 . png
20 a g h _ s r c 7 _ h r c 0 _ 0 1 0 . png
21 a g h _ s r c 7 _ h r c 0 _ 1 2 5 . png
22 a g h _ s r c 7 _ h r c 0 _ 2 5 0 . png
23 a g h _ s r c 7 _ h r c 0 _ 3 7 5 . png
24 a g h _ s r c 7 _ h r c 0 _ 5 0 0 . png
25 a g h _ s r c 8 _ h r c 0 _ 0 4 0 . png
26 a g h _ s r c 8 _ h r c 0 _ 1 6 9 . png
27 a g h _ s r c 8 _ h r c 0 _ 2 5 0 . png
28 a g h _ s r c 8 _ h r c 0 _ 3 7 5 . png
29 a g h _ s r c 8 _ h r c 0 _ 4 9 0 . png
30 a g h _ s r c 1 0 _ h r c 0 _ 0 9 0 . png
31 a g h _ s r c 1 0 _ h r c 0 _ 2 5 0 . png
32 a g h _ s r c 1 0 _ h r c 0 _ 3 7 5 . png
33 a g h _ s r c 1 0 _ h r c 0 _ 4 8 0 . png
34 a g h _ s r c 1 1 _ h r c 0 _ 1 9 0 . png
35 a g h _ s r c 1 1 _ h r c 0 _ 2 5 0 . png
36 a g h _ s r c 1 1 _ h r c 0 _ 3 7 5 . png
37 a g h _ s r c 1 1 _ h r c 0 _ 4 9 0 . png
38 a g h _ s r c 1 2 _ h r c 0 _ 1 0 0 . png
39 a g h _ s r c 1 2 _ h r c 0 _ 2 5 0 . png
40 a g h _ s r c 1 2 _ h r c 0 _ 3 7 5 . png
41 a g h _ s r c 1 2 _ h r c 0 _ 5 0 0 . png
42 a g h _ s r c 1 3 _ h r c 0 _ 0 1 0 . png
43 a g h _ s r c 1 3 _ h r c 0 _ 1 2 5 . png
44 a g h _ s r c 1 3 _ h r c 0 _ 2 5 0 . png
45 a g h _ s r c 1 3 _ h r c 0 _ 3 9 0 . png
46 a g h _ s r c 1 5 _ h r c 0 _ 0 1 0 . png
47 a g h _ s r c 1 5 _ h r c 0 _ 1 2 5 . png
48 a g h _ s r c 1 5 _ h r c 0 _ 2 5 0 . png
49 a g h _ s r c 1 5 _ h r c 0 _ 3 7 5 . png
50 a g h _ s r c 1 5 _ h r c 0 _ 4 9 0 . png
51 a g h _ s r c 1 8 _ h r c 0 _ 0 9 0 . png
52 a g h _ s r c 1 8 _ h r c 0 _ 2 5 0 . png
53 a g h _ s r c 1 8 _ h r c 0 _ 3 7 5 . png
54 a g h _ s r c 1 8 _ h r c 0 _ 4 7 0 . png
55 a g h _ s r c 2 0 _ h r c 0 _ 0 9 0 . png
56 a g h _ s r c 2 0 _ h r c 0 _ 2 5 0 . png
57 a g h _ s r c 2 0 _ h r c 0 _ 3 7 5 . png
58 a g h _ s r c 2 0 _ h r c 0 _ 4 2 0 . png
59 a g h _ s r c 2 1 _ h r c 0 _ 0 7 0 . png
60 a g h _ s r c 2 1 _ h r c 0 _ 2 5 0 . png
61 a g h _ s r c 2 1 _ h r c 0 _ 3 7 5 . png

62 a g h _ s r c 2 1 _ h r c 0 _ 4 4 0 . png
63 a g h _ s r c 2 2 _ h r c 0 _ 0 1 0 . png
64 a g h _ s r c 2 2 _ h r c 0 _ 1 2 5 . png
65 a g h _ s r c 2 2 _ h r c 0 _ 2 5 0 . png
66 a g h _ s r c 2 2 _ h r c 0 _ 3 7 5 . png
67 a g h _ s r c 2 2 _ h r c 0 _ 4 8 0 . png
68 a g h _ s r c 2 3 _ h r c 0 _ 0 1 0 . png
69 a g h _ s r c 2 3 _ h r c 0 _ 1 2 5 . png
70 a g h _ s r c 2 3 _ h r c 0 _ 2 5 0 . png
71 a g h _ s r c 2 3 _ h r c 0 _ 3 7 5 . png
72 a g h _ s r c 2 3 _ h r c 0 _ 5 0 0 . png
73 a g h _ s r c 2 4 _ h r c 0 _ 0 3 5 . png
74 a g h _ s r c 2 4 _ h r c 0 _ 1 1 9 . png
75 a g h _ s r c 2 4 _ h r c 0 _ 2 5 0 . png
76 a g h _ s r c 2 4 _ h r c 0 _ 3 7 5 . png
77 a g h _ s r c 2 4 _ h r c 0 _ 4 9 0 . png
78 a g h _ s r c 2 5 _ h r c 0 _ 0 3 6 . png
79 a g h _ s r c 2 5 _ h r c 0 _ 2 5 0 . png
80 a g h _ s r c 2 5 _ h r c 0 _ 4 2 7 . png
81 a g h _ s r c 2 5 _ h r c 0 _ 4 6 9 . png
82 a g h _ s r c 2 5 _ h r c 0 _ 5 0 3 . png
83 a g h _ s r c 2 6 _ h r c 0 _ 0 1 0 . png
84 a g h _ s r c 2 6 _ h r c 0 _ 2 5 0 . png
85 a g h _ s r c 2 6 _ h r c 0 _ 3 0 1 . png
86 a g h _ s r c 2 6 _ h r c 0 _ 4 3 0 . png
87 a g h _ s r c 2 7 _ h r c 0 _ 0 7 0 . png
88 a g h _ s r c 2 7 _ h r c 0 _ 2 5 0 . png
89 a g h _ s r c 2 7 _ h r c 0 _ 3 7 5 . png
90 a g h _ s r c 2 7 _ h r c 0 _ 5 0 0 . png
91 a g h _ s r c 2 8 _ h r c 0 _ 0 5 4 . png
92 a g h _ s r c 2 8 _ h r c 0 _ 1 2 5 . png
93 a g h _ s r c 2 8 _ h r c 0 _ 2 5 0 . png
94 a g h _ s r c 2 8 _ h r c 0 _ 3 9 0 . png
95 a g h _ s r c 3 0 _ h r c 0 _ 0 4 2 . png
96 a g h _ s r c 3 0 _ h r c 0 _ 0 5 2 . png
97 a g h _ s r c 3 0 _ h r c 0 _ 0 5 6 . png
98 a g h _ s r c 3 0 _ h r c 0 _ 1 6 9 . png
99 a g h _ s r c 3 0 _ h r c 0 _ 1 7 2 . png

100 a g h _ s r c 3 0 _ h r c 0 _ 5 1 0 . png
101 a g h _ s r c 1 4 _ h r c 0 _ 1 1 5 . png
102 a g h _ s r c 1 7 _ h r c 0 _ 0 5 8 . png
103 a g h _ s r c 1 9 _ h r c 0 _ 0 0 4 . png
104 a g h _ s r c 1 9 _ h r c 0 _ 0 6 8 . png
105 a g h _ s r c 1 9 _ h r c 0 _ 2 5 7 . png
106 a g h _ s r c 1 9 _ h r c 0 _ 5 1 0 . png
107 a g h _ s r c 2 9 _ h r c 0 _ 0 0 4 . png
108 a g h _ s r c 2 9 _ h r c 0 _ 2 2 8 . png
109 a g h _ s r c 2 9 _ h r c 0 _ 4 5 2 . png
110 a g h _ s r c 2 _ h r c 0 _ 1 6 0 . png
111 a g h _ s r c 3 1 _ h r c 0 _ 1 2 5 . png
112 a g h _ s r c 3 1 _ h r c 0 _ 2 5 0 . png
113 a g h _ s r c 3 1 _ h r c 0 _ 3 5 1 . png
114 a g h _ s r c 3 1 _ h r c 0 _ 4 5 2 . png
115 a g h _ s r c 3 _ h r c 0 _ 1 1 3 . png
116 a g h _ s r c 3 _ h r c 0 _ 1 3 9 . png
117 a g h _ s r c 9 _ h r c 0 _ 0 2 9 . png
118 a g h _ s r c 9 _ h r c 0 _ 1 9 1 . png
119 a g h _ s r c 9 _ h r c 0 _ 2 4 1 . png
120 a g h _ s r c 9 _ h r c 0 _ 5 1 0 . png
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