\

How to shape Computer Science Education in the AI
Era?

Paul-Antoine Bisgambiglia, Marie-Laure Nivet, Evelyne Vittori

» To cite this version:

Paul-Antoine Bisgambiglia, Marie-Laure Nivet, Evelyne Vittori. How to shape Computer Science
Education in the AI Era?: Bridging Technology, Humanities, and Inspiring the Desire to Learn.
Undone Computer Science, Laboratory of Digital Sciences of Nantes, Feb 2024, Nantes (France),
France. hal-04483945

HAL Id: hal-04483945
https://hal.science/hal-04483945
Submitted on 29 Feb 2024

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-04483945
https://hal.archives-ouvertes.fr

How to shape Computer Science Education
in the Al Era?

Bridging Technology, Humanities, and Inspiring the Desire to Learn.

Paul-Antoine Bisgambiglia, Marie-Laure Nivet, Evelyne Vittori
SISU, UMR CNRS 6134, SPE Laboratory
University of Corsica
Corte, France
bisgambiglia_pa@univ-corse.fr, nivet_m@univ-corse.fr, vittori_e @univ-corse.fr

Given the rapid growth of generative Al, Undone Science
could fundamentally question our educational role in light
of a tool for which it is really difficult to define progress
and limits. This question can be seen as a near incursion
on the side of science fiction, where individuals must coexist
with a “knowing entity”. How can individuals sustain their
motivation to acquire knowledge, find their place, cultivate
personal growth, discover their purpose, encourage the devel-
opment of a critical mind, establish and maintain autonomy
and independence? Considering that reflection is always more
difficult in the absolute, we, as computer scientists, decided to
focus on teaching programming and computational thinking in
higher education.

Some experts predict the end of programming as we know
it today [Wel23]. Many others wonder about the impact of
specialised tools such as Copilot and generative Al on the
learners and professional developers who are already using
them [Ove23|. Either way, there seems to be no doubt that
the developer profession is about to change radically. Faced
with this evidence, it is our responsibility to ask ourselves
about the nature and modalities that must guide computing
curricula in the future.

If we hypothesise that generative Al will become increas-
ingly powerful and able to solve most of the programming
tasks we actually give to students, what about the need to learn
programming? More generally, what about the need to learn?
What skills will be needed? How to teach in this context? How
- from the students’ point of view - can the desire to learn,
the motivation, be maintained?

Historically, the teaching of programming skills has fol-
lowed technological advances. From the first imperative lan-
guages, teaching methods and tools have reflected the evolu-
tion of the sector. The developer, who could be considered
a code maker, has become a technical solution architect. He
plays an increasing role in the design and implementation
of complex systems. Search engines marked a turning point.
The teacher has become a guide rather than a repository of
knowledge. The increased accessibility of information has
allowed for greater autonomy for students, but also their
tendency to “copy/paste” without real understanding.

It has long been clear that the teaching of programming
needs to focus on understanding concepts and methods. It is a
matter of computational thinking rather than simply learning
programming skills. Despite this, there is no real consensus
on what these concepts and methodologies should be [Bel22],
[LSd™20]. Our task is to educate and shape students’ minds
in a technological context that is constantly changing. There
will always be emerging languages, as well as economic,
environmental, social and ethical challenges. Our students
must constantly adapt. Learning to learn is more important
than ever.

There is no doubt that we are entering a new dimension with
generative Al It could be related to the questions, pitfalls and
controversies surrounding the use of calculators in education
when it was introduced in schools [Suy80], [Banl1] even on
a smaller scale.

Al improves productivity and helps with some tasks. They
can help students produce code and text quickly. They can
support learning by providing immediate feedback on their
work. Teachers can also use them to prepare their courses and
exercises, grade or create assignments, or summarise articles
[LG23].

However, these tools are not perfect. Among many limi-
tations, they make mistakes, “hallucinations”, most of them
are unable to cite their sources, they are biased and do not
understand the concepts they manipulate [RTT23|], [MPF™23].
Far from being negative, these imperfections can be viewed as
an educational asset. They can be used as a starting point to
educate the student’s critical mind. Knowing the shortcomings
of these tools, students are encouraged to be careful and
attentive to the proposals in order to validate and improve
them [UNE23]. In this context, students must have acquired
the minimum knowledge necessary to analyse the proposed
solutions.

If the technology were to be halted in its development, we
could reasonably consider incorporating generative Al as a
novel pedagogical tool that does not challenge the significance
of fundamental skills. What if, tomorrow, the proposed solu-
tions became “perfect” in the sense of “without error”? The
advantages of the current limitations could disappear. What



will students have to learn if Al can immediately give good
answers and optimal code with respect to a given criterion?
What will be the new basic skills in computer sciences?

Considering all these facts, it seems that a major rethink
is needed. As scholars and educators in tertiary education, it
is imperative that we collaborate to determine the essential
skills necessary for the forthcoming computational thinking
foundation [LSd"20]. While these core skills will necessarily
be part of traditional computing courses, they will need to be
complemented by a broader knowledge base.

In fact, in a world where technology has such a huge impact
on our daily lives, the role of the developer cannot be limited to
their technological domain bubble. Computer scientists need to
be educated to understand not only how to build systems, but
also why they should build them and with what kind of impact.
We need to make students aware of the social, political and
cultural consequences of their actions. They need to be active
and aware citizens, with a sharp critical mind. Interdisciplinary
cooperation will be essential. The integration of courses in
the humanities and social sciences into computing curricula
should enable students to gain a holistic view of their work.
Philosophy, ethics, sociology, psychology, but also law courses
are areas that will enrich the education of computer scientists.
They could be open to the tools of these external disciplines,
providing them with the means to question and contextualise
their practices. Nor will we be able to avoid talking about
the environmental impact of these Al solutions and, more
generally, of technology.

The question of pedagogical approaches also seems essen-
tial. How will the psychology of learning be affected by the
use of Al tools? Will the traditional trial-and-error approach
always be relevant [MRMG22]? How to encourage effort,
which seems to be essential for the growth of motivation and
self-esteem [JSHT22]?

Even if "perfect” Al is still science fiction, we believe that
it is crucial to anticipate it in order not to react, as usual,
to a technological evolution imposed by digital companies.
We must be prepared for this evolution in order to best train
the next generation of computer scientists, who will play a
fundamental role in the next 50 years in balancing social
mutations. This reflection questions our role as academics,
but also as citizens or, more generally, as social beings in a
world in which we will live continuously with an Al that could
be of superior reliability. So what is an infallible AI? Who
should and who can define it? How can the public education
and research system, everywhere in the world, help to define
what must be, what should be the nature of these tools? All
of these fundamental questions require a real interdisciplinary
approach, which we have been dreaming of for so long. We
will have to address the ethical use of Al, its energy and
environmental impact, as well as its societal impact, when
defining computing curricula. Finally, our role will be to
educate autonomous and enlightened citizens cultivating their
desire to learn.

To conclude, we would like to call on the educational
science community, philosophers, ethicists, social scientists,

neuroscientists, economists, digital sobriety experts and more
generally all colleagues interested in working together to
define the knowledge, skills and teaching methods needed to
train the next cohort of technology developers in the era of
AL

REFERENCES

[Banl1] Sarah Banks. A Historical Analysis of Attitudes Toward the Use
of Calculators in Junior High and High School Math Classrooms
in the United States Since 1975. Cedarville University, 2011.
Héctor Belmar. Review on the teaching of programming and
computational thinking in the world. Frontiers in Computer
Science, 4, 2022.

Huw Jarvis, Isabelle Stevenson, Amy Q. Huynh, Emily Babbage,
James Coxon, and Trevor T.-J. Chong. Effort Reinforces Learn-
ing. J. Neurosci., 42(40):7648-7658, October 2022. Publisher:
Society for Neuroscience Section: Research Articles.

Sam Lau and Philip Guo. From ”Ban It Till We Understand It” to
”Resistance is Futile”: How University Programming Instructors
Plan to Adapt as More Students Use Al Code Generation and
Explanation Tools such as ChatGPT and GitHub Copilot. In
Proceedings of the 2023 ACM Conference on International
Computing Education Research V.1, pages 106-121, Chicago
IL USA, August 2023. ACM.

Yeping Li, Alan H. Schoenfeld, Andrea A. diSessa, Arthur C.
Graesser, Lisa C. Benson, Lyn D. English, and Richard A.
Duschl. Computational Thinking Is More about Thinking than
Computing. Journal for STEM Educ Res, 3(1):1-18, April 2020.
Kamil Malinka, Martin Peresini, Anton Firc, Ondrej Hujnak,
and Filip Janus. On the Educational Impact of ChatGPT: Is
Artificial Intelligence Ready to Obtain a University Degree?
In Proceedings of the 2023 Conference on Innovation and
Technology in Computer Science Education V. 1, ITiCSE 2023,
pages 47-53, New York, NY, USA, June 2023. Association for
Computing Machinery.

[MRMG?22] Yeray Mera, Gabriel Rodriguez, and Eugenia Marin-Garcia.
Unraveling the benefits of experiencing errors during learning:
Definition, modulating factors, and explanatory theories. Psy-
chon Bull Rev, 29(3):753-765, June 2022.

Stack Overflow. Stack Overflow Developer Survey 2023, 2023.
Jirgen Rudolph, Samson Tan, and Shannon Tan. ChatGPT:
Bullshit spewer or the end of traditional assessments in higher
education? Journal of Applied Learning and Teaching, 6(1),
January 2023. Number: 1.

Marilyn N. Suydam. International Calculator Review: Working
Paper on Hand-Held Calculators in Schools. Technical report,
Information Reference Center (ERIC/IRC), The Ohio State Univ,
March 1980. ERIC Number: ED190408.

UNESCO. Guidance for generative Al in education and re-
search - UNESCO Bibliotheque Numérique. Technical report,
UNESCO, 2023.

Matt Welsh. The End of Programming.
66(1):34-35, January 2023.

[Bel22]

[JSHT22]

[LG23]

[LSd*20]

[MPF123]

[Ove23]
[RTT23]

[Suy80]

[UNE23]

[Wel23] Commun. ACM,



	References

