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human settlement in space: An instance of the 
probabilistic consumption model

Fabien Leurent*
International Research Centre on Environment and Development (CIRED), Ecole des Ponts 
ParisTech, France

Abstract
To people living in areas, the denser is the area, the more numerous are the opportunities 
of interpersonal and social interaction, of employment and of amenities of all kinds. The 
spatial density of human settlement is basically studied according to places, that is, area 
weighted. The notion of population-weighted density, or lived density, puts human 
density in the perspective of the people that experience it. Considering, respectively, 
the land units and the people as statistical populations of their own, the article provides 
a probabilistic model of human density in a geographical space, as a random variable 
in each statistical population, with specific probability density functions (PDFs) and 
cumulative distribution functions. The PDF of lived, “Used density” is derived from that 
of the plain, “Offered density” through a consumption model: Thus, their relationship is 
a specific instance of a well-established probabilistic model. The average used density 
is systematically larger than its offered counterpart: The ratio amounts to one plus 
the squared coefficient of variation of offered density. The relation between the two 
statistical distributions is illustrated using a Lorenz curve; the associated Gini index 
constitutes an indicator of population heterogeneity in a geographical space. A case of 
France’s population as of 2019 is studied to demonstrate the methodology.

Keywords: Spatial heterogeneity; Density metrics; Land units; Consumption model; 
Lorenz curve; Gini index

1. Introduction
The spatial density of human settlements stands out as a prominent feature of 
territories. Urban areas are endowed with high density of population and jobs: Typical 
urban residential densities range from 1000 inhabitants per square km to more than 
100,000 in the densest parts of some Asian megacities (e.g., Dhaka). Rural areas, in 
contrast, exhibit sparse human settlements and low densities: Typical values of rural 
density range from near zero to some hundred inhabitants per square km (Aliaga et al., 
2015; Vorobyev, 2019). Thus, density is a relevant indicator of urbanization, together 
with the overall area population which is the primary indicator of city size in human 
geography. Spatial maps exhibiting zones colored according to their respective levels of 
density make a basic tool to understand the spatial structure of territories (e.g., Dijkstra 
& Poelman, 2014).
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Yet, the basic indicator of human density pertains, 
essentially to space. As geographical space is likely to 
exhibit heterogeneity of human occupation, the average 
plain density (rather than “crude density” as worded by 
Craig, 1984) does not indicate much about the effective 
intensity of human occupation that people experience in 
their everyday life, in the places that they frequent – home, 
workplace, etc. This is why alternative, population-
weighted indicators of density have been developed by 
pioneering researchers in the mid-1970s. Stairs (1977a; 
1977b) introduced the person-average density as “the 
local density experienced by people, that is, spatial density 
of human population weighted by the number of people 
experiencing it.” This indicator was called population-
weighted (arithmetic mean) density by Craig (1984). The 
name of “population-weighted density” has popularized 
among geographers and economists that have used the 
indicator to understand “density as lived by people” and 
its effects on urbanization (Eidlin, 2010, Florida, 2012), 
mobility practices (Barnes, 2001), as well as greenhouse 
gas (GHG) emissions of travel (Lee & Lee, 2014). As 
stated by Barnes (2001: p.16), “we are interested in human 
behavior; what we want to know is what people perceive 
density to be: This would be more closely captured by 
giving equal weight to each person, rather than to each 
square mile of land…. thus (we shall) use a new measure 
called ‘perceived density,’ which is defined as a weighted 
average of traffic zone densities, where each zone is 
weighted by the number of residents.” Ottensmann (2018a) 
provided a comprehensive literature review of the concept, 
its applications and the related issues, together with a 
diachronic application to major US cities.

So far, the concept of “lived density” and “population-
weighted density” has been expressed using mathematical 
formulas of weighted averages involving the numbers of 
people living in pre-defined zones (Barnes, 2001; Craig, 
1984; Ottensmann, 2018a; Stairs, 1977). The relationship 
between lived and plain density averages has been 
established by Lewontin & Levins (1989) and Ottensmann 
(2018a) using lengthy proofs. This article is aimed to 
state plain density and lived density in the standard 
probabilistic framework, involving statistical populations, 
respectively, of land units and people, local human density 
as a random variable in either statistical population, their 
respective probability density functions (PDFs), and the 
general relation between them. This relation consists in a 
specific instance of a well-known probabilistic model: The 
“consumption model” that arises in various fields from 
economics to traffic theory. To emphasize the consumption 
model that relates plain density to lived density, we consider 
land units as servers of spatial settlement for people. Then, 
plain density is also the offered density, whereas lived 

density is also the “used density,” since people are the users 
of the settlement services. The relation between the PDFs 
enables one to build average indicators in a straightforward 
way. It also allows for considering classical indicators of 
heterogeneity in a simple way: we introduce interquartile 
ratios and above all the Lorenz curve and the Gini index of 
human density in a given geographical space.

The rest of the article is organized in four parts: After 
stating the methodology, we will apply it to a case study of 
communal density in France as of 2019, before providing 
a discussion and a short conclusion. Four appendices 
provide more details on (A) the notation table, (B) the 
consumption model, (C) the lognormal distribution and 
its use for consumption models, and (D) the linear-log 
model of used density CDF.

2. Theoretical background
We shall first define land units to deal with a geographical 
space as a statistical population of such elementary places 
(§2.1). Then, human density is put as a random variable 
with its own probabilistic distribution, mean and other 
statistical moments, and heterogeneity measures (§2.2). 
The next step is to shift the statistical perspective from 
the statistical population of land units to that of people: 
The random variable of used human density inherits 
its probabilistic features – probability distribution and 
statistical moments including the average value – from its 
offered counterpart on the basis of a consumption model 
(§2.3). We then recall the Lorenz curve and the Gini index 
as classical tools for inequality measurement and adapt 
them to the inequality of human population among land 
units (§2.4). Finally, we recall some previously proposed 
indicators of heterogeneity for human density and we 
restate them using our notation (§2.5).

2.1. Geographical space as a statistical distribution 
of land units

2.1.1. Territory, zoning system, and population

To analyze human density in a geographical space, it is 
convenient to model that space using a set Z of zones  z. 
Each zone has its own ground area, Az, and human 
population, Pz. Its spatial density of human population is 
simply:

xz z z= P A/ � (1)

The territory has total ground area of A AZ
Z

�
�
�
z

z
 and 

total population of P PZ
Z

�
�
�
z

z
. Its human density averaged 

over space is therefore
xZ Z ZP A= / � (2)

https://doi.org/10.36922/ijps.v8i2.297


Volume 8 Issue 2 (2022)	 36� https://doi.org/10.36922/ijps.v8i2.297 

Used versus Offered densities of human population

International Journal of 
Population Studies

2.1.2. Spatial units as a statistical population

When zones are used to analyze the statistical distribution 
of some spatial variables in a discrete way, they are often 
called “spatial units.” Here, we shall rather refer to zones 
as “spatial entities” and define “land units” as elementary 
places of unit ground area, say a1. Such land units are more 
convenientthan zones to constitute the statistical population 
of places since, being identical in area, it is easier to compare 
them in other respects such as the human population.

The assignment of land units o to any zone z is an 
idealization: Thinking of the unit ground area a1 as 1 
square km or 1 hectare, we expect most zones to involve a 
non-integer number of land units. We nevertheless denote 
as “ o∈z” the composition of zone z out of land units o. 
To every land unit o, with population denoted by po, is 
associated a human density as follows:

xo o= p a/ 1 � (3)

Notionally, the zone area adds up those of the land units 
in it, and similarly, the zone population adds up those of 
its land units:

A az
o z

�
�
� 1

� (4a)

P pz
o z

o�
�
� � (4b)

2.2. Human density in the statistical population of 
land units

Human density x constitutes a random variable in the 
statistical population of land units, with PDF and CDF 
denoted by fO and FO, respectively.

2.2.1. Average human density over space

The average human density over space stems from the 
probability density function fO in the usual way (e.g., 
Blitzstein & Hwang, 2015):

x x x dxO Of� � �� . � (5)

This general version of average human density over 
space is equivalent to the discretized one: Denoting as O  
the total number of land units, it holds that:

x
x

o o
O

O

O
� ��

As O a A. 1 = Z , replacing xo with po/a1 and a O1  with AZ 

due to (4a) aggregated over zone set Z, it comes out that

xO
Z

Z

P
A

= � (6)

Thus x xO Z= , as could be expected.

2.2.2. On the statistical moments of human density

Higher order moments of human density in the statistical 
population of land units are defined in the usual way (e.g., 
Blitzstein & Hwang, 2015): At order r,

E fO O[ ] .x x x dxr r� � �� � (7)

Under the idealized assumption that human density 
would be homogenous among the land units composing 
any zone (i.e., no intra-zonal heterogeneity of density), 
then E EO Zx xr r�� �� � [ ] , wherein the inter-zone average EZ 
of density moment xr is defined as

E
A
A

P
AZ

Z Z

[ ] ( )xr

z

z z

z

r�
�
� � (8)

The formula enables one to calculate EO xr�� ��  in an 
exact way under intra-zonal homogeneity of density, or in 
an approximate way otherwise.

2.2.3. Indicators of offered human density 
heterogeneity

Local human density is likely to be heterogeneous among 
land units, even inside every zone z. The intra-zone variance 
of human density is a metric for that heterogeneity within z. 
It is defined as V E | E |O O O

( ) ( )z x x o z x o z�� �� � ��� �� � ��� ��
2 2 , 

and satisfies that

V
a
AO

( )z

o z z
o zx x x�� �� �

�
�
�

��

�
�
�

��
�

�
� 1 2 2 � (9)

Over the territory, the overall variance of human 
density can be measured using the law of total variance, 
that is, its decomposition into within-group variance and 
between-group variance (e.g., Blitzstein & Hwang, 2015):

V
A
A

V
A
AO

Z Z
O

Z Z
Ox x x x

z

z z

z

z
z�� �� � �� ��

�
�
�

��

�
�
�

��
� �
�
�
�

��� �
� �( ) ( )2 ��

�
�

��
� (10)

The associated standard deviation (SD) and relative 
dispersion (coefficient of variation, CV) are therefore

SD VO Ox x�� �� � �� �� � (11a)

�O O OSDx x x�� �� � �� �� / � (11b)

In empirical distributions, the variance and, in turn, the 
SD and CV are sensitive to outliers, that is, values falling 
out of the ordinary range of the variable. As the quantile 
values FO

�� �1 ( )�  at probability level α neither too small nor 
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too high are less sensitive to extreme values, they are taken 
as “robust statistics” (Wonnacott & Wonnacott, 1990). 
Thus, for non-negative real variables, the ratios between 
corresponding pairs FO

�� �1 ( )� , FO
�� � �1 1( )�  constitute 

robust indicators of heterogeneity in the distribution: 
These include the inter-quartile ratio at level α = 1/4 as well 
as the inter-decile ratio at level α = 1/10.

For instance, a log-normal distribution LN (m,s2) 
yields the following interquartile ratio at order α 
(cf. appendix C), with Φ(−1) the inverse CDF of the reduced 
Gaussian variable:

F

F
O

O

se
�� �

�� �
�� ��� �

� �
�

�� �
1

1

2 11 1�

�
� �

2.3. Human density as lived by the statistical 
population of inhabitants

Any individual u inhabits a zone zu and inside it a land unit 
o(u). One defines the “used density” or “lived density” as 
the human density in the land unit inhabited by the user:

x xu u≡ o( )
� (12)

Among the population of users, of size U P= Z , the 
user-centric density is a random variable, with specific 
PDF and CDF denoted, respectively, as fU and FU.

2.3.1. Relationship between fo and fU

The PDF fU of used human density is related to that fO of 
offered human density by a “consumption model” well-
known in probabilistic theory, especially in renewal theory 
(Kleinrock, 1975):

f fU Ox x x� � � . ( ) � (13)

The reason is that the land units of which the human 
density belongs to x x x, ��� ��� , in proportion fO(x).δx in 
their distribution, do contain x.a1 users each: Hence, their 
total number of users amounts to a f OO1. . ( ). .x x xδ . These 
users are those with user-centric density in x x x, ��� ���  
and those users only: Thus, their number is also 
f UU x x� �. .� . On combining both formulas, as O a A. 1 = Z  
and U P= Z , it comes out that

f
A
P

fU
Z

Z
Ox x x� � � � �.

Which implies (13) with proportionality coefficient of 
A PZ Z O/ /=1 x . To sum up,

f fU
O

Ox
x

x x� � � 1 . ( ) � (14)

2.3.2. Relationship between the statistical moments of 
the two distributions

From (14) stems a generic relation between the statistical 
moments of the two distributions (Kleinrock, 1975): At 
any order r, it holds that

E EU
r

O
O

r[ ]x
x

x� �� ��
�1 1 � (15)

This relation corresponds to the zone-based formula 
in Stairs (1977). At order r = 1, the average density as 
experienced by the users satisfies that

x
x

x xU
O

O O OE� �� �� � �
1 12 2( )� � (16a)

It is equivalent to a ratio of the average densities (RADs):

RADU O
U

O
O| � � �

x
x

1 2� � (16b)

Both relations correspond to formulas established by 
Lewontin & Levins (1989) using zones as statistical units 
and Ottensmann (2018a) using land units. If the human 
density is homogenous in the territory, then γO = 0 and the 
average human densities according to either statistical 
population are equal. However, the larger the heterogeneity 
(as measured by the relative dispersion), the higher the 
ratio x xU O/  of used to offered average human densities.

Figure 1 illustrates both the used and offered PDFs. Its 
assumptions are the following: That xO is distributed log-
normal with parameters mO = 3.24 (mean of ln(xo)) and 
sO  = 1.76 (standard deviation of ln(xo)), stemming from 
France-like conditions xO =120 p/km² and �O � 4 6. . The 
related xu is log-normal, too, with parameters mU = 6.34 
and sU=sO, hence xU = 2 661,  p/km² and γU = 4.6, too. In 
that particular instance, the ratio of average human 
densities, x xU O/ , amounts to 22 – indeed a very large 
value.

2.3.3. Indicators of used human density heterogeneity

The indicators of heterogeneity recalled in §2.2.3 for the 
random variable of offered density also apply to that of 
used density. Its variance stems from moments of the 
offered density in a specific way: From (15) at order r=2,

E EU
O

Ox
x

x2 31�� �� � �� ��

Combining with (16a), it comes out that

V E
E

U
O

O
O

O

[ ] ( )x
x

x
x

x
� �� �� �

�� ��1 3
2

2 � (17)
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When xO follows a log-normal distribution, then so 
does xU (cf. appendix C), with same variance s2 of the law 
of ln x: Then, the interquartile ratios of xU are identical to 
their offered counterparts.

2.4. Lorenz curve and Gini index

2.4.1. Recalling the classical theory of inequality 
measurement

In Gini’s classical analysis of income inequalities (Gini, 1912; 
1955; Gionanni & Gubbiotti, 2015), the sum of all individual 
incomes in a group of people is decomposed according to 
specific subgroups of people. A  typical subgroup gathers 
the people that each earn less than a given level of income. 
Then, to the proportion FP (x) of-people whose income is 
<x is associated the proportion FI (x) of total income that 
stems from the aggregation of their individual incomes. As 
both proportions are increasing functions of x, they depend 
on each other in a unique way. Their relationship is known 
as the “Lorenz function” denoted L and defined as follows 
(Cowell, 2009; Lorenz, 1905):

� � �� �L F FI P( ) ( )� � ��1

The reason is that each value of x gives rise to population 
proportion α ≡ FI (x), therefore satisfying x � �FP

( ) ( )1 � , and 
to income proportion FI (x), which is thus equivalently 
expressed as F FI P( )�� � � �1 � .

The derivative L  of L  satisfies that

L
f

f

I p

P p P
P�

�

�

�� � �
� �
� �

�
� �

� �
� �

x

x x
x1 � (18)

It is non-negative and increasing with α since FP
( )−1  is 

increasing: This makes L an increasing and convex 
function. Thus, in the diagram of F1 versus Fp in [0,1]×[0.1], 
the graph of function L, called the “Lorenz curve,” lies 
below the straight line from point (0,0) to point (1,1) 
(Figure  2). The area between the straight line and the 

Lorenz curve, divided by the area below the straight line, 
that is, 0.5, is known as the Gini index, with mathematical 
formula as follows (Cowell, 2009):

G d� � � ��2
0

1

( )� � �L � (19)

The Gini index takes its value in [0,1]. Between different 
income distributions, the larger the heterogeneity, the 
larger the Gini index: It is a metric of inequality (Cowell, 
2009). In appendix C, a log-normal instance is addressed 
to give insight in the consumption model and illustrate 
the properties of relative dispersions and the Gini index.

2.4.2. Adaptation to human density

Gini’s line of reasoning applies to the distributions of 
human density: To the FO (x) share of space with density <x 
corresponds the FU (x) share of people each experiencing 
individual density <x. Here, the Lorenz function is 
L F FU O� �



( )1 . The resulting Gini index constitutes another 
metric of density heterogeneity, along with γO and γU. 
Figure  3 exhibits a Lorenz curve of population density, 

Figure 2. Lorenz function and Gini index
x designates an individual income
Source: Author’s adaptation from https://en.wikipedia.org/wiki/Gini_
coefficient [Last accessed 8.11.2022]

Figure 1. Used and offered PDFs of human density
(A) Standard scales, (B) abscissas in log-scale
Source: author’s elaboration

BA
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assuming the same used and offered distributions of 
human density, as shown in Figure  1. This particular 
instance exhibits a Gini index of 0.79, which is a very high 
value for that kind of index (Cowell, 2009).

The Lorenz curve depicts the relation between land and 
people as it relates a proportion of people, on the vertical 
axis, to the proportion of land that accommodates them, 
on the horizontal axis. The relation pertains to the spatial 
density of human settlement: Both the land units 
(horizontal axis) and the individuals (vertical axis) are 
ranked in increasing order of density x. Given a specific 
value x of human density, the proportion Fo (x) of land 
accommodates the proportion FU (x) of people, all of them 
at density lower than x. Conversely, the residual 1− FO ( )x  
share of land accommodates the residual 1− FU ( )x  share 
of people, all of them at density greater than x. Thus, the 
point ( F FO Ux x� �, ( ) ) splits the diagram in two parts: Lower 
density space and people on the left side, higher density 
space and people on the right side. The average densities 
on the lower and higher sides are proportional to 

F
F

U

O

( )
( )
x
x

 

and 
1
1
−
−

F
F

U

O

( )
( )
x
x

, respectively, with coefficient of P AZ Z O/ .= x

The ratio of higher and lower average densities (RADs) is 
thus equal to

RAD
F

F
F

FH L
U

U

O

O
|

( )
( )

( )
( )

�
�

�
1

1
x

x
x

x
� (20)

For instance, in Figure 3, it appears that about 20% of 
people are accommodated in 80% of space. The used 
offered ratio of 20

80
%
%

 on the lower side, compared to 80
20

%
%

 

on the higher side, imply that the average density in the 
higher part is about 16 times that in the lower part.

Figure 3. Lorenz function of human density
Source: Author’s elaboration

2.5. On alternative average indicators of density

Stairs (1977) introduced generic weighting systems for 
averaging the population-weighted density and measuring 
the heterogeneity of human density. Denoting a weighting 
system as a function x w x ( )  of density level x, the 
associated average density is stated as follows:

x
w
ww ≡

E
E

U

O

[ ]
[ ]

� (21)

Stairs (1977) also considered “generalized population 
density” as the r-th order root of the ratio of moments at 
orders k + r and k:

x
x

xk
r

k r

k

r

�
�� ��
�� ��

�

�

�
�

�

�

�
�

�E

E
O

O

1

� (22)

Average lived density xU  is a particular instance 
associated to (k,r) = (1,1).

It is shown in appendix C that, when the offered density 
follows a log-normal distribution with median Mo and 
relative dispersion γO, then this average indicator satisfies 
that,

x x xk
r k r� � �M (1+ ) MO O

2 k+r/2
O U O� ( / ) /2

Therefore, it is basically a power function of the ratio of 
used and offered average densities, x xU O/ .

Complementarily to the population-weighted arithmetic 
mean density, Craig (1984) also considered the logarithm of 
density as an indicator of the magnitude of density. He 
argued that magnitude-based density indicators would be 
especially relevant to assess the variations of local density 
over time by laying the emphasis on local significance, 
since the local meaning of a given change of density 
depends on the initial, local density level. Using our 
notation, the average indicator of density magnitude states 
as EU[ln ]x  and gives rise to the geometric mean of used 
density,

x x≡ exp [ln ]EU � (23)

Craig (1984) related the geometric mean to “the ideas of 
information gain and entropy” and insisted on its property 
of decomposability along spatial sub-divisions. It is also 
akin to the Theil index of heterogeneity (Cowell, 2009). 
When the offered density follows a log-normal distribution 
LN( , )m s2 , then the used density is log-normal, too, with 
identical relative dispersion γ (cf. appendix C) and the 
average log value EU[ln ]x  is equal to m s+ 2 , that is, to 
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E lnO ln ( )x�� �� � �
1
2

1 2� . Therefore, the related geometric 
mean x  satisfies the following equalities which makes it a 
geometric midpoint between xO  and xU :

x m s x s x
x

� � � �

�
�

�

�
� � � �

�
exp( ) exp2 2 2

2

1
2

1
1

O O
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Thus, based on the case of log-normal distributions, it 
may be conjectured that alternative indicators of average 
density do not yield much gain beyond considering the 
( , )x xO U  pair of average densities.

3. A case study of France as of 2019
3.1. The territory under study

Metropolitan France comprises about 34,750 municipalities 
called “communes” (INSEE, 2021a). We take them as zones 
in the country. The country area of about 543 thousand 
square km yields an average commune area of 15.6 km² 
(Aliaga et al., 2015).

As of 2019, the French metropolitan population 
amounts to about 65 M inhabitants (INSEE, 2021b). 
Thus, the average commune population is 1800 people 
only and the overall spatial density of population is about 
120 persons per km². Figure 4 exhibits the map of French 
communes colored according to density level in the way of 
either the INSEE (Aliaga et al., 2015), the French National 
Institute for Economic Statistics, or Eurostat, the statistical 
body of the European Union (Eurostat, 2019). It shows that 
most of the country area has low population density.

3.2. Used density versus Offered density

To obtain the statistical distribution of used density, we made 
the following assumption: That each commune’s population 

is distributed evenly in its area. Of course, this is only an 
approximation as large communes (meaning communes of 
large area) are likely to exhibit significant intra-communal 
heterogeneity of human settlement. Based on this assumption, 
we ranked the communes of increasing average density. 
According to the ranking, we calculated two cumulated 
variables: First the land area, second the population. By 
dividing the cumulated area up to commune z by the total 
country area, the Fo CDF is obtained at point xz. Similarly, by 
dividing the cumulated population up to commune z by the 
total country area, the Fu CDF is obtained at point xz.

The next step is to draw the diagram of Fu versus Fo, that is, 
the Lorenz curve (Figure 5A). The Gini index is easy to calculate, 
by accumulating 2 1F F F FO U O Ox x x xz z z z� � � � �� � � � � � ��.( )  
over communes z. The outcome is 0.76, again a very large value. 
Furthermore, easy to calculate are the mean value, variance, 
standard deviation, and relative dispersion of the density 
variable either offered or used. The results are, in persons per 
square kilometer:

• for xO : EO x�� �� �120  and SDO x�� �� � 548 , yielding 
�O � 4 58.  (dimensionless).

• for xU : EU x�� �� � 2 628,  and SDU x�� �� � 4 691, , yielding 
�U � 1.79 (dimensionless).

Figure 5B and C depicts the empirical CDFs FO and FU, 
together with log-normal approximations that mimic the 
mean and variance of each distribution. To obtain PDFs 
(Figure 5D and E), we discretized the CDFs and derived 
the respective PDFs as the average value between two 
successive points. On trying to model the offered density as 
a lognormal distribution, a close match was obtained: Yet, 
a perfect lognormal model would entail identical relative 
dispersions between the offered and used distributions – a 
conclusion definitely not supported by the data. Looking 
for alternative conventional distributions to fit the data, 
Singh-Maddala CDFs were found appropriate (Figure 6).

More simply, it turned out that the used density CDF, 
FU, is about an affine linear function of Inx from its first to 
8th deciles. A straightforward consequence is that, on the 
interval between the two deciles, ˘ ( )fU x x� �1 . In turn, the 
offered density is about inverse quadratic, ˘ ( )fO x x� �2 . 
Both approximations are well supported by the data 
(Figure 7). Some related analytical properties are provided 
in appendix D.

3.3. Decile values and the heterogeneity of human 
density

The decile values of the offered and used distributions 
of human density were derived from their respective 

Figure 4. Human density of French communes as of 2015 and 2018
Sources: Aliaga et al. (2015), Eurostat (2019)
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CDF  (Table  1). The median value of offered density is 
much lower than the offered mean – its significance is 

only to state that a major share of France’s territory lies 
under very low density. The 80 – 20% shares of low versus. 

Figure 6. Used and offered CDF, with log-normal, Singh-Maddala, and linear-log approximations
Abscissas in log-scale
Source: Author’s estimations based on INSEE data (2021a; 2021b)

Figure 5. Human density in France, 2019
(A) Lorenz curve, (B) used and offered CDFs of human density, (C) same with abscissas in log-scale, (D) used and offered PDFs of human density, and 
(E) same with abscissas in log-scale
Source: Author’s calculations based on INSEE data (2021a; 2021b).
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high density land are associated to 20 – 80% shares of low 
versus high density people. Such striking contrast calls 
for quantitative metrics to complement density maps in 
spatial analysis.

The deciles pave the way to the qualitative assessment 
of low to high levels of density. With respect to people 
living in France, the median used density, that is, 600 
persons per square kilometer may be taken as “medium 
level of density,” low densities for the bottom 20%, that 
is, below 92  p/km², high densities for the top 20%, that 
is, above 4000 p/km². These people-based values are close 
to the values selected by the Regional and Urban General 
Directorate of the European Commission (Eurostat, 2019). 
The land-based deciles have little relevance to depict urban 
conditions. The average offered density is just a ratio to 
summarize the intensity of human occupation over a given 
stretch of land – nothing less, nothing more, especially not 
about the used density of population.

The average densities are meaningful metrics. The 
standard deviation of offered density makes little sense 
to people: and not much more for land, in fact. The Gini 
index is much more meaningful and so are the relative 
dispersions of used and offered density.

As for interquartile ratios to measure distribution 
heterogeneity, the outcomes are:

• For offered density, inter-decile ratio (RID) of 186/7 = 27 
and inter-quartile ratio (RIQ) of 80/15 = 5.3.

• For used density, inter-decile ratio (RID) of 7000/46= 152 
and inter-quartile ratio (RIQ) of 3000/120 = 25.

The RID and RIQ of xO are quite high for their kinds of 
indicators. As for xU, the RID and RIQ values are still much 
higher: they reveal the very large heterogeneity of used 
density, that is, of human density as lived by the people.

We utilized the dataset to calculate the alternative 
indicators of average density recalled in §2.5. Craig’s 
geometric mean of the used density has a value of 
x =  590 p/km²: Thus, it is close to the geometric midpoint 

between xO  and xU , since x x≈ 4 45. O  and x xU ≈ 4 93.  . 
Both ratios are close to value 1 4 692� ��O .  that was 
expected using a lognormal approximation of xo.

The Stair’s generalized indicators xk
r  in (22) were 

computed for indices k from 0 to 9 and r from 1 to 5. Figure 8 
exhibits the reduced indicators ln( / ) / ( )x k rk

r MO +
1
2

 as 
functions of k depending on r. The salient values are those 
associated to pairs k r, ( , )� � � 0 1  and (1,1), that is, to xO  
and xU , while the other pairs yield an overall pattern about 

value 1 that corresponds to lognormal distributions.

4. Discussion
4.1. On the statistical populations and random 
variables of human density

The history of statistics began with early censuses of the 
human population in a couple of countries, that is, with 
human populations as statistical populations – hence, 
the very name of the latter concept. In such a historical 
perspective, the used density lends itself to be modeled 
as a random variable in the human population. However, 
as geography and cartographic methods have been well 
developed long before the advent of computers, the plain, 
offered density has been introduced long before the used, 
lived density. In the pioneering contributions of Craig 
(1975; 1979; 1980; 1984) and Stairs (1977a), it has been 
clearly stated that the average plain density is area weighted, 
whereas the average lived density is a population-weighted 

Table 1. Deciles of offered density versus used density 
(France, 2019), in persons per km²

α 10% 20% 30% 40% 50% 60% 70% 80% 90%

xO (α) 7 12 17 24 33 46 64 96 186

xU (α) 46 92 167 306 600 1,146 2,213 3,872 6,999

Source: Author’s calculations based on INSEE data (2021a; 2021b).

Figure 7. Approximations of (a) offered density PDF and (b) used density PDF
Abscissas in log-scale.
Source: Author’s calculations based on INSEE data (2021a; 2021b).
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one: This points to the respective statistical individuals. 
Lewontin & Levins (1989) went further in the probabilistic 
representation of human density by considering spatial 
cells of unit ground area as the statistical individuals in 
geographical space as a statistical population: The cell 
attribute of local human density is inherited by the people 
inhabiting the cells, therefore constituted the used density 
as an RV in the human population. Yet, the probabilistic 
framework of Ottensmann (2018a) is limited to the two 
statistical populations, the human density RVs on both 
sides and the relations between the average values.

In the present article, we introduced the respective PDFs 
of human density in either statistical population and we 
related them using a consumption model. This affiliation to 
(simple) probabilistic theory yields several benefits, from 
the mathematical statement of the PDF relationship which 
is a fundamental one, to the relation between statistical 
moments, and up to the consideration of the Lorenz 
function and the related Gini index. The relation between 
the respective averages of used versus offered density is 
a prominent instance of the relation between statistical 
moments. The reference to theory provides the general 
relation between moments in a straightforward way, 
compared to the former derivations of the relation between 
average densities (Lewontin & Levins, 1989; Ottensmann, 
2018a). Stairs (1977a) had stated the relation between the 
statistical moments in a concise and general way, yet with 
no explicit consideration of PDFs.

In the application to France as of 2019, the PDFs of 
offered and used densities were easy to study on a standalone 
basis. Yet, to visualize both functions jointly, the standard 
diagram (Figure 5D) depicted mainly the quasi-disjunction 
of their supporting sets – lower values of x giving most 
of the probability weight to xo versus much higher values 
giving significant probability weight to xU. The recourse 
to log-scale on the x-axis (Figure 5E) was instrumental to 
exhibit the PDF values on the y-axis and enable for some 
visual comparison. In such a diagram, however, it is less 

easy to visualize that the area below the PDF curve amounts 
to 1. The CDF functions are easier to depict jointly than 
their PDF counterparts. Using conventional abscissas 
(Figure 5B), function FU increases in a smooth way paved 
by the decile values, while function FO increases in a one-
shot way at low values of x, making the decile values hardly 
legible. The recourse to log-scale on the x-axis (Figure 5C) 
enables one to visualize the magnitude of the deciles. The 
graphical practicality of density magnitudes, that is, of the 
logarithms of the human density, provides another reason 
to utilize them, beside the point made by Craig (1984) that 
relative changes in local population densities are more 
significant than absolute ones to assess the variations over 
time of human density in a geographical space.

4.2. On land units and the heterogeneity of land-use

Ottensmann (2018a) studied and discussed the definition 
of spatial cells, in other words, the zoning system to 
consider for local density and its assignment to people 
according to their zones of residence. Craig (1984) studied 
the effects of three zoning systems on the values of the 
used density in Great Britain as of 1971: He stated that 
“both the means (of offered and used density) increase as 
the (spatial) units are progressively subdivided.” This is a 
straightforward consequence of the law of total variance 
applied progressively to finer and finer subgroups. It 
emphasizes that the notion of used density strongly depends 
the underlying system of residence zones. This must be kept 
in mind in the consideration of any set of numerical values 
of used density indicators. Such sensitivity also pertains to 
any indicator of heterogeneity in offered densities, since the 
zoning sensitivity of the average used density, on the left side 
of (16a), comes from that of the relative dispersion of the 
offered density, on the right side of (16a). In fact, the zoning 
system to estimate both offered density heterogeneity and 
average used density has to satisfy a twofold condition on 
zone sizes: A  trade-off between, on the one hand, zones 
small enough to capture the spatial heterogeneity finely 
and, on the other hand, zones large enough to grasp the “life 
basins” where people live.

4.3. On indicators of heterogeneity in human density

For positive real variables, the relative dispersion is 
a heterogeneity indicator derived from the standard 
deviation divided by the mean. The explicit modeling of 
the PDFs of human densities, that is, fo and fU, induces their 
respective CDFs fo and fU: From these stem, the quantiles 
of their respective distribution, and in turn robust 
statistics, including the median as a middle value and also 
interquartile ratios as measures of heterogeneity, including 
the inter-quartile ratio and the inter-decile one. Not only 
are the interquartile ratios simpler than the alternative 

Figure  8. Stair’s generalized density indicators under reduced form 
ln( / ) / ( )x k rk

r MO +
1
2

Source: author’s calculations based on INSEE (2021a; 2021b)
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indicators of average density put forward by Craig (1984) 
and Stairs (1977a), but also they are more informative in 
the case of France as of 2019.

The Gini index constitutes a heterogeneity indicator of 
its own kind. It is a statistical summary of the full Lorenz 
curve, which is a more comprehensive tool but also more 
disaggregate to apprehend heterogeneity in both xO and 
xU. Some hints of that appeared in previous studies such 
as Aliaga et al. (2015) who mentioned that 35% of French 
people are living in even 90% of French communes: Up to 
the difference between spatial entities and land units, the 
mention is analogous to one point on the Lorenz curve. 
The full Lorenz curve contains much more information. In 
the 2019 France case, it was found that 80% of people live 
in 20% of space and conversely that the remaining 80% of 
space accommodate the remaining 20% of people. Thus, it 
constitutes yet another instance of the Pareto principle that 
arises in many distributions from incomes in populations 
to the sizes of firms. It is consistent with the linear-log 
model of the used density CDF, since this model makes the 
used density PDF a limit Pareto law and the offered density 
a truly Pareto law.

4.4. On the applications of used density

The local density of a place is a specific attribute of 
individual people living there. The notion of xU and its 
probabilistic features from fU to xU  and γU constitute a 
simple statistical model to analyze human population 
according to human spatial density.

Ottensmann (2018a) pointed out to the existing areas 
of application of the used density: (i) Primarily as “a 
descriptive measure of distribution, often in comparison 
with conventional density,” (ii) urbanization patterns 
and their dynamic variations, including urban sprawl, 
(iii) mobility analysis relating residential and job densities 
to the modal share of transit modes of transportation 
(Barnes, 2001), (iv) agglomeration economies, relating 
used density to total urban factor productivity (Rappaport, 
2008a) and to urban consumption amenities (Rappaport, 
2008b), and (v) energy use and GHG emissions from 
household residential and travel patterns (Lee & Lee, 
2014).

In recent years, the concept of population-weighted 
density has disseminated, notably through web online 
contributions showing its descriptive power (Bradford, 
2008a-c; Florida, 2012; NENAD, 2021; Ottensmann, 2016) 
and above all in the academic literature of its various fields 
of applications: (i) Geographical analysis (Hanberry, 2022) 
including studies on the COVID epidemiology (Pascoal 
& Rocha, 2022), (ii) urbanization patterns (Townsend & 
Ellis-Young, 2018) and urban sprawl (Ottensmann, 2018b), 

(iii)  mobility analysis (An et al., 2022), (iv) economics 
(Albouy & Stewart, 2012; Faberman & Freedman, 2016; 
Krugman, 2013), and (v) environmental impacts (Huang 
& Brown, 2021) and potentials (Lu et al., 2022). However, 
as of end 2022, population-weighted density still had not 
an entry of its own in the English-speaking Wikipedia, 
where “living density” is just mentioned as an alternative 
measure of human density (Wikipedia, 2022).

4.5. Further developments

The notion of population-weighted density was introduced 
in the mid-1970s by a demographer (Craig) and a 
chemistry scientist (Stairs), perhaps because quantitative 
socioeconomic analysis is a science of composition as is 
chemistry. Since then it has been adopted by geographers, 
economists interested in regional science and urban 
economics, and transport scientists.

Lived density may well be viewed as a simple form of 
spatial accessibility, as theorized by Hansen (1959), Poulit 
(1974) and Koenig (1974; 1980): The Hansen accessibility 
index, taken at a given zone as origin of trip-making, 
aggregates opportunities of a given kind over a larger 
territory, with numbers weighted by a declining function 
of origin-destination distance – or travel time or cost in the 
Poulit-Koenig formulation. This indicator has taken a central 
position in agglomeration economics (Fujita & Thisse, 2002) 
and geography economics (Krugman, 1997; Fujita et  al., 
1999); it is also called the effective density in economic 
geography (Graham & Gibbons, 2019). It still remains to be 
considered as a property of the people residing in the origin 
zone, for all origin zones and all people, and to be analyzed as 
a random variable among the statistical population of people.

5. Concluding Remarks
The gist of the article is to model human density in 
geographical space using basic probability theory: 
(i)  Statistical populations of land units and of people, 
respectively, (ii) putting human density as a random 
variable in both statistical populations, with specific PDFs 
and CDFs, (iii) relating the used density PDF to the offered 
density PDF through the probabilistic consumption model, 
(iv) deriving the statistical moments of the used density 
from those of the offered density, and (v) considering the 
Lorenz curve and the Gini index. The original contribution 
is 3-fold: The formal statement as random variables, 
the identification of the consumption model, and the 
consideration of heterogeneity indicators for human 
density in space (interquartile ratios and Gini index).

All of the concepts are well established in their own field, 
geography, or probabilistic modeling: The article provides 
a fresh perspective to relate the two fields – casting one 
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more bridge between them. The explicit consideration of 
used density enables for better understanding the spatial 
occupation. The progress to harvest is the same one as 
in other instances of consumption models: Not only 
(i) Gini’s analysis of income inequality, but also (ii) the 
queuing theory of waiting times (e.g., Kleinrock, 1975), 
(iii) Wardrop’s model of temporal vs. spatial distributions of 
vehicular speeds on roadways (Wardrop, 1952), and (iv) a 
model of transit vehicle loads and transit users’ exposure to 
crowding conditions (Leurent et al., 2012; 2017).
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Appendix
Appendix A: Nomenclature

 �z zone, a spatial entity in set Z covering the territory under 
study

 Az, ground area of zone z

 Pz, population in zone z

 Az, overall ground area of territory

 Pz, overall population in territory

 a1, unit ground area

 o, a land unit

 Po, population in o

O,  total number of land units (equal to A aZ / 1 )

U,  total number of people in territory (equal to PZ,)

 x, density level

 fO & FO, PDF & CDF of x regarding land units, with mean 
xO  and relative dispersion γO

 �fU & FU, PDF & CDF of x regarding people, with mean xU  
and relative dispersion γU

 L, Lorenz function

 G, Gini index

Appendix B: Consumption model

A consumption model can be stated in a generic fashion as 
follows. It relies on a consumption function say 
c x x: ( ), c  which takes nonnegative real values and 
measures the amount of consumption made by an 
individual with attribute x.

Let then fO denote the PDF of attribute x in the statistical 
population of such individuals. The consumed units of all 
the individuals make up a statistical population of their 
own, with PDF function fU that satisfies the following 
relation:

f fU Ox c x x� � � ( ). ( ) � (B-1)

Postulating that the consumption function is 
monotonous, then eqn. (B-1) can be demonstrated using 
the same proof as for Equation (13). The proportionality 
coefficient is the reciprocal of c fO O� � � � ��c x x dx . Thus

f
c

fU
O

Ox c x x� � � 1 ( ). ( ) � (B-2)

Appendix C: Log-normal distributions and their 
basic properties

The log-normal distribution

The log-normal distribution is especially well-suited 
to consumption models of two kinds: Power laws, on the 
first hand (e.g., Cowell, 2009), and log-normal CDFs, on 
the other hand. The latter kind has been used by Cramer 
(1962) to study the diffusion of car motorization among 
a population of households. Here, we shall focus on the 
former kind, with some power r that needs not be an 
integer:

c x xr� � � c1. � (C-1)

Of course, factor c1 needs be nonnegative to make some 
sense.

Basic properties of log-normal distributions

Let us recall the definition of a unidimensional log-
normal distribution: A real random variable X is said to 
be distributed LN( , )m s2  if it is positive and its natural 
logarithm is Gaussian, that is, ln N( ) ( , )X m s∼ 2 . Denoting 
as Φ the CDF of a reduced Gaussian variable and 
� �t t� � � �� �exp / /2 2 2  the associated PDF, and letting 
t x m sx � � � �(ln ) / , the following outcomes are derived 
successively in a straightforward way (e.g., Cowell, 
2009):

FO x tx� � � �( )

F expO
�� � �� �� � � � � �1 1� �( . )m s �

fO x
s x

tx� � � 1
.

( )�

E expO x m s�� �� � �( )1
2

2

V E expO Ox x s�� �� � �� ��� � �
2 2 1( ( ) )

�O exp� �( )s2 1

Hence s � �ln O( )1 2� .

Furthermore, any derived random variable Y Xr≡ c1.  
with c1 0>  is a log-normal variable, too. This is because 
Y ≥ 0  and ln ln . ( )Y r X� � � � � �c ln1 , implying that 
ln N c( ) (ln . ,( ) )Y r m rs� � � �1

2 , making Y an LN variable 
with parameters ln .c1� � � r m  and ( )rs 2 .
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Moment formulas for log-normal distributions

The “Truncated Moments” formula

Coming to the population of consumed units in a 
consumption model with power function, we can avail 
ourselves of the “truncated moment” formula, namely:

a

b
r r m rsx d x e

b m
s

rs

a m
s

rs
� � � �

� � �
�

�

�
��

�

�
��

�
� � �

�

�FO
( / )

ln

(
ln

)

2 2

Φ

Φ

��

�

�
�

�

�
�

�

�

�
�




�
�

� (C-2)

An immediate consequence is that

E expO x rm r sr�� �� � �( )1
2

2 2

Proof of (C-2). The reason is that

a

b
r

t

t
r m st r m rs

t

t

x d x e t dt e t rs dt
a

b

a

b

� � �� � � � � � �� �� �FO
( ) ( / )� �

2 2

�in which we replace 
t

t

a

b

t rs dt� �� ��  with 

Φ Φt rs t rsb a�� � � �( ) .

It follows that FU x
s

x m rs� � � � � � �Φ( (ln ) )1 , i.e., that, 

in the population of consumed units, level x is distributed 
LN( , )m rs s+ 2 2 .

Thus E expU x m rs s�� �� � � �( )2 21
2

 and 

γ γU Oe� � �s2

1 .

The case of r = 1

When r = 1, FU x
s

x m s� � � � � � �Φ( (ln ) )1  and 

E expU x m s�� �� � �( )3
2

2 .

It is then easy to obtain

x
x

sU

O
O exp� � �1 2 2γ ( ) � (C-3)

On Stairs’ generalized population density

If the offered density is distributed x m sO LN∼ ( , )2  then 
we have that

E expO x km k sk�� �� � �( )1
2

2 2  and similarly

E expO x k r m k r sk r��� �� � � � �(( ) ( ) )1
2

2 2

Yielding that

E

E
expO

O

x

x
rm r rk s

k r

k

��� ��
�� ��

� � �( ( ) )1
2

22 2

And in turn, a Stairs’ generalized density indicator of

x
x

x
m s r k

x x

k
r

k r

k
r

k r

�
�� ��
�� ��

� � �

�

�

�

( ) ( ( )

( / )

/

/

E

E
exp

M

O

O

O U O

1 21
2

2

22

since exp( )m  is the median MO of xO and s2 21� � γO .

Lorenz curve and Gini index

Here, the Lorenz function, L F FU O� �


( )1 , involves 
F expO

�� � �� �� � � � � �1 1� �( . )m s Φ  together with 

FU x
s

x m s� � � � � � �Φ( (ln ) )1 . It thus is a function of α 

parameterized by s:

Ls s� �� � � � � ��� �Φ Φ( )1 � (C-4)

The Gini index, G ds s� � � ��2
0

1

( )� � �L , can be 

considered as a function of s. It holds that

G s s� � � �

�
�

�

�
� �2

2
1Φ � (C-5)

Proof of (C-5). At point s = 0, as Φ Φ �� � � � �1 � � , then 

G0
0

1

2 0� � ��( )� � �d .

Differentiating Gs with respect to s, we get that:

G
G

s
d
ds

s ds� � � � � � �� �� �2
0

1
1ϕ Φ( )� �

Changing variables according to t � � ��� �Φ 1 �  hence 
d t dt� � ϕ( ) , we get that

G s t s t dt� � � �� �
�

�

�2
�

�

ϕ ϕ. ( )

Rearranging

t s t t ts s t s s

t s s

�� � � � � � � ��

�
�

�

�
� �

� � �

2 2 2 2
2

2

2 2

2 2 2 1
2

1
2

2
2 2

( ) ( )
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It follows that ϕ ϕ ϕ ϕt s t t s s
�� � � � � �

�

�
�

�

�
�. . ( )2

2 2
 

and in turn that

G s s t s dt

s u du

� � � �
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By integration,

0 0 0

2

2
2

2

2
2

0

s s
s

v dv v dv w dw
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�
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�
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�
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�

�
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�

G ϕ ϕ

Φ Φ
��
�

Lastly, formula (C-5) is obtained on making use of: 

G G Gs v dv
s

� � � � � ��0
0

 . 

Appendix D: Linear-log model of used density CDF

Here, it is assumed that, on a range A B,�� ��  of x, the 
used density CDF, Fu, is an affine linear function of ln x: 
thus, for x��� ��A B, ,

F F A
F B F A

B A
AU U

U Ux x� � � � � � � � � � �
�

�
ln ln

(ln ln ) .� (D-1)

Differentiating with respect to x, the used density PDF 
is obtained as a hyperbolic function:

f
F B F A

B AU
U Ux

x
� � � � � � � �

�
1

ln ln
 for x��� ��A B, .

From the general relationship (14), the offered density 
is determined as

f
F B F A

B AO
O U Ux

x
x

� � � � � � � �
�2 ln ln

 for x��� ��A B, .

From this stem the offered density CDF on the range:

F F A
A

F B F A
B AO O O

U Ux
x

x� � � � � � �
� � � � �

�
( )

ln ln
1 1 � (D-2)

On the [A,B] range, formulas (D-1) and (D-2) enable 
one to recover the quantiles of xU and xO.

For � � � � � ��� ��F A F BU U, , the quantile xU
[ ]α  of xU at 

order α satisfies that

� � � �
� � � � �

�
�
�

F A
F B F A

A
B A

U

U U

ln ln
ln ln

x , therefore

xU

F A
F B F AA B

A

U

U U[ ] ( )�

�

�
� � �
� �� � �

The quantile xO
[ ]α  of xO at order � � � � � ��� ��F A F BO O,  

satisfies that
� � � �
� � � � �

� ��

�
�

�

�
� �

F A
F B F A A B A

O

U U

O1 1
x

x
ln ln , therefore

x
xO

O

O

U UA
B A F A

F B F A
[ ] / ln ln� �
� �

� � � �
� � � � �

�

�
��

�

�
��1 1

If the linear-log assumption is valid on the full range of 
xU, then F AU � � � 0  and F BU � � �1 , yielding that

xU A B
A

A B[ ] ( ) ( ) ( )� � � �� � �1 � (D-3)

xU
B A
B A

�
�
�ln ln

From F AO � � � 0  and F BO � � �1 , xO
B A

A B

�
�

�

ln ln
1 1

1 1
xO A B[ ]�

� �
�

�
� .

Applying (D-3) to order � �
1
2

, the median MU  of xU  

satisfies M ABU = . Applying it again to orders ¾ and ¼, the 

interquartile ratio RIQU  satisfies RIQ B AU
U

U

� �
�� ��

�� ��

x

x

0 75

0 25

.

.
/ .

From the empirical MU  and RIQU , the A and B parameters 
for France as of 2019 are recovered as

A
M

RIQ
U

U

= =  24 p/km²,

B M RIQU U= =  14,895 p/km².
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