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Egress times of railway passengers from train alighting up to station exit typically amount to some tens of seconds, but with much
variability even at the train level. Here, we first model the egress time as the ratio of the walk length to the preferred walk speed,
under free-flow conditions. )en, we model the possible occurrence of congestion among the users alighting from a train as a
traffic bottleneck affecting those passing at a “queue focal point” during a “queued time interval.” Analytical formulas are provided
for the CDF and PDF of egress times, covering the free-flow case and the congested case.)eir computation is straightforward for
bivariate Gaussian length-speed walk pair. A maximum-likelihood method is developed, together with a quick estimation
procedure. A case study of four contrasted trains serving an urban mass transit station in Paris is reported. One train experienced
free-flow alighting conditions, whereas each of the other three had its own bottleneck. )e MLE method enabled us to recover all
parameters but one, due to an issue of identifiability: the solution was to take the mean walk speed as exogenous.

1. Introduction

)e rail mode is the best suited to the mass transit of
passengers in big cities, as it can provide a high level of
service to very large numbers of passengers (TCQSM, 2013).
)e busiest lines can flow up to 100,000 passengers per hour
and per direction on their trunk links: this is achieved for
instance by the RER A line in the Greater Paris Area (RER
for Regional Express Railways), owing to a peak frequency of
30+ trains per hour, times large train capacities of about
3,000 passengers (using duplex trains about 210m long).

Train passenger loads give rise to proportional flows of
alighting and boarding passengers at the stations along the
line. )e boarding flows may experience specific congestion,
notably so when some users are not able to board the first
train that services the station just after their arrivals—thus
being “left-behind” and having to wait for the next train [1].
User exposure to such boarding congestion can be mitigated
by selecting one’s waiting position along the platform: this

position will give rise to the user’s longitudinal position on
board. Indeed, the train length size is purported to supply
passenger capacity all along the train, supposedly in a ho-
mogenous way to limit crowding and make the best use of
seats. )e resulting spreading of passengers along the train
will also exert some less direct consequences: it influences
the length to walk in the station of alighting and in turn the
platform egress time up to the station exit point. Further-
more, as the alighting passengers all egress from the train at
about the same instant, specific congestion is likely to occur
and to increase the platform egress times.

Up to now, the alighting traffic has been studied in two
ways. First, in the perspective of network planning and
passenger route choice, the egress times of individual pas-
sengers from the train alighting position to the station access
point have been modeled in macroscopic models of traffic
simulation, static or dynamic, as an average time exoge-
nously specified for each station platform and train service
(Cf. [2]). Second, in the perspective of railway operations,
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the flow volume and platform clearance times have been
studied using microscopic simulation models of pedestrian
traffic (e.g., [3]).

)is article is focused on the platform egress times of
train passengers. We are interested in the egress time as a
physical variable involving both a space length to walk and a
pedestrian speed. )e physical variable is subjected to im-
portant variations among the train alighting passengers, due
to the different alighting positions along the long platform as
well as to the distribution of pedestrian speeds [4]. )e
article deals with the following three research questions.
First, what are the influences of the on-board position and
the pedestrian walking speed onto the passenger egress time?
Second, when congestion occurs among the alighting pas-
sengers, what are its specific effects on their respective egress
times? )ird, what information on on-board positions and
pedestrian speeds can be gained from the observation of
platform egress times?

To answer the questions, we put forward a physical and
stochastic model of platform egress times for transit users,
which involves a statistical distribution of alighting positions
and a statistical distribution of free-flow walking speeds. From
these assumptions and the alighting flow volume, we derive the
possibility of crowding and analyze its consequences on the
individual egress times. Analytical properties are established for
the statistical distribution of the egress times of a given train at a
given station. By assuming either Gaussian or log-normal
distributions for the alighting position and walk speed pair,
closed-form formulas are established for the probability density
function (PDF) of the egress time.

Turning to the issue of traffic observation, we apply the
stochastic model to the estimation of train alighting posi-
tions and pedestrian walk speeds on the basis of egress time
data collected mostly from smart cards (automated fare card
or AFC system) together with train arrival times collected by
an automated vehicle location (AVL) system. )e PDF
function is used to constitute a likelihood function according
to observed egress times for a statistical population at the
train level: by maximum-likelihood estimation, the pa-
rameters of the ex-ante distributions of alighting positions
and walk speeds can be recovered. As an instance of ap-
plication, we study the case of the Noisy-Champs station on
the eastern part of the RER A line in Paris.

)e rest of the article is organized into six sections. Section 2
reviews the related academic literature. Section 3 introduces the
physical and stochastic model. Section 4 provides some dis-
tributional assumptions and derives specific formulas to
compute the PDF and CDF of the Gaussian and log-normal
models. Section 5 develops the estimation methodology, from a
simple scheme to maximum-likelihood estimation. )en,
Section 6 addresses the case study: after describing the traffic
scene and the datasets, we provide the estimation results for four
contrasted trains. Lastly, Section 7 concludes by stating the
article’s contribution and pointing to further developments.

2. Related Work

)e topics of train length, station platform paths for train
users, and passenger egress times have been dealt with for

purposes of either train and platform design and the
management of platform pedestrian traffic (§2.1), of traffic
modeling of pedestrian paths and egress times (§2.2), or the
stochastic modeling and statistical analysis of users’ transit
travel times (§2.3).

2.1. Train Length: From Principle to Effects. According to the
Transit Capacity and Quality of Service Manual (TCQSM)
[5], the passenger capacity of a railway line involves two
factors in a multiplicative relation: line capacity and train
capacity [6]. Line capacity is the maximum number of trains
that can be operated on a line during a given period: it is
typically measured in trains per hour and per track. Train
capacity is the maximum number of passengers that can be
accommodated with sufficient comfort on board a given
train. )e longer the train, the higher its passenger capacity:
the respective capacities of all cars making up the train add
up to the overall train capacity, in the same way as their
respective lengths add up to the overall train lengths (up to
that of connecting elements). Railway operators are accus-
tomed to schedule single or double trains depending on the
expected traffic load.

Not only does the train length enable it to carry a
proportional number of passengers, but it is also convenient
to provide a proportional number of doors to be used as
channels for passengers boarding and alighting. )e re-
spective boarding and alighting throughput capacities de-
pend on doorway width (TCQSM). )ey add up along the
doors and the cars to the overall train boarding and alighting
capacities. )e larger these capacities, the shorter the time
required for train dwelling; thus, the larger the line capacity
in trains and in turn in passengers [7].

To make the best use of the train capacities—on board, at
boarding, and at alighting, it is desirable to split the pas-
senger flows evenly along the train–both on board and on
the platforms prior to boarding. In fact, each train making a
particular run will have a particular passenger load at each
station it will serve, both in volume and in longitudinal
distribution. High volume together with density peak in that
distribution gives rise to the critical door issue, that is, the
door putting the highest requirement on the dwelling time.
)is is why Liu et al. [8] modeled the number of waiting
passengers at each of the 24 waiting positions on line 4 in the
Pinganli metro station, Beijing. Using a multinomial logit
discrete choice model, these authors postulated that the
utility of a given position stems from the expected on-board
density and the length from the station entry point to that
position. Hoogendoorn et al. [9] further analyzed the effect
of spatial densities on passengers’ behaviors on the basis of a
macroscopic fundamental diagram for pedestrian traffic.

)e heterogeneity of passenger loads and crowding
conditions depending on train cars—that is, longitudinal
positions—has motivated the design of traffic management
schemes (TMSs) to spread the flow of users waiting along the
platform in a shape adapted to that of the passenger dis-
tribution along the arriving train. Zhang et al. [10] tested the
provision of crowding information to the users of a metro
line in Stockholm, Sweden. )eir results indicate that users
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can react to the crowding information and adapt their
positioning strategy while waiting. Christoforou et al. [3]
designed alternative information strategies and assessed
their respective effects using a pedestrian microsimulation
model. Related pedestrian TMSs for railway platforms in-
clude the choreography of alighting and boarding flows:
while most platforms use the same platform and train side
for both movements, using a dual-sided platform enables the
operator to clear out the alighting flowmore quickly, as their
side is not impeded by boarding candidates, and reciprocally
to start the boarding phase sooner and make it more fluent
and quicker since it will not be impeded by the alighting
flow. For a one-sided platform in a line metro transfer
station in Santiago, Chile, Muñoz et al. [11] described the
design and simulation assessment of a strategy compelling
the users transferring there to come out of the first part of the
train, by implementing a one-way gate in the platformwidth.
)ere again the primary objective was to minimize the train
dwelling time. )e platform clearing time was also con-
sidered a complementary performance indicator.

2.2. On Passenger Paths and Walk Times in Traffic Models.
While the platform clearing time can be seen as a maximum
time for passenger alighting and exiting the platform, it is of
interest mainly to the line operator—as are the train critical
door and the train dwell time. On an individual basis, the
train users are more interested in their own egress times.
)ese times have long been modeled on an average basis in
traffic assignment models to transit networks. Such traffic
assignment models are especially purported to simulate
individual users along their transit network paths between
their origin and destination points [2]. Such path is com-
posed as a sequence of nodes and links along the network,
and it travel time is decomposed accordingly. In the first and
second generations of transit traffic assignment models
(from [12] to [13]) “in-vehicle links” typically go from one
station to the next one along the transit line and there is one
“in-vehicle node” per station and line direction to depict the
dwelling operation; passenger paths involve such transit
links for their in-vehicle rides, together with walk links for
boarding, alighting, transfers, and station access and egress.
By modeling the alighting path as one link, only the average
egress time has been modeled. Walk lengths and speeds
could be modeled as underlying random variables yielding
distributed egress times in some kind of stochastic traffic
assignment model, but to our knowledge, there has not been
any such modeling attempt, neither for alighting nor for
boarding.

In contrast, the influence of congestion onto the wait-
for-boarding times has attracted several research contri-
butions in the field of transit assignment modeling. In their
macroscopic dynamic assignment models, Poon et al. [14]
and Hamdouch and Lawphongpanich [15] addressed
capacitated boarding as a traffic bottleneck under FIFO
queuing discipline, yielding some delay when the boarding
flow volume is in excess of the train residual capacity. )e
latter authors also suggested modeling the alighting flow in
relation to some platform exit capacity, yet without

providing an associated mathematical formulation. In both
contributions, the platform lengths have not been consid-
ered explicitly. Longitudinal distribution has remained
implicit in the macroscopic theory of dynamic transit traffic
assignment up to Hänseler et al. [16] who introduced lon-
gitudinal detail of train platform and other “pedestrian el-
ements” in a macroscopic framework that goes consistent
from the station level to the line level and up to the network
level. As their model deals with longitudinal positions of
transit users in trains and on platforms in an endogenous
way, the on-board positions as well as the alighting walk
paths and the associated egress times are both distributed
and endogenous. )e model can also encompass different
kinds of traffic congestion: as an instance, the authors
considered macroscopic fundamental diagrams of pedes-
trian traffic to relate local walk speeds along the platform to
the local pedestrian densities.

Such fine representation of platform issues in the frame
of network traffic assignment bridges much of the gap be-
tween the previous generation of macroscopic models and
the stream of dynamic microsimulation of transit traffic. At
the platform level, Zhang et al. [17] devised a cellular
automata microsimulation model of the alighting and
boarding processes of passengers, revealing the potential
mutual influences between passengers, such as the desire to
board and pressure from behind. Haghani and Sarvi [18]
used an error-component mixed logit model to analyze the
differences of passenger’s route choice between an emer-
gency case and a base case. Ji et al. [19] studied the pedestrian
choice between stairway and escalator in the transfer station
by using a logit model, taking into account quantitative
factors and nonquantitative factors. Christoforou et al. [3]
modeled the Noisy-Champs railway station in eastern Paris
using a crowd dynamics model so as to simulate the effects of
passenger orientation strategies on the wait-for-boarding
positions. )ese microsimulation models deal with a specific
traffic issue of pedestrian movement on platforms and
capture the different influencing factors; they represent the
accessing and exiting points, each waiting position, and its
corresponding door through which passengers can board in
or alight from the train. At the network level, the micro-
scopic model “BusMezzo” of Cats [20] is purported to
simulate the bus and train events and on-board crowding for
all lines in a network, but it does not consider the length of
train vehicles, nor the issue of multiple doors. Specialized
microsimulation traffic models including VISSIM, Legion,
and MassMotion have been developed on a commercial
basis and enable for microscopic detail in both time and
space, over a whole network.

2.3. Stochastic Models and Statistical Analysis. )us, there
are some recently developed models of transit traffic sim-
ulation that consider spatial detail explicitly along platforms
and trains. Assuming fine spatial description on both sides of
macro- vs. microsimulation, a salient feature still differen-
tiating macro- and micromodels pertains to the congestion
model—based on either a macroscopic law or the dynamic
simulation of interactions between entities such as
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passengers, vehicle elements, and platform elements. Sto-
chastic modeling constitutes another bridge between micro-
and macromodeling: in a stochastic traffic model, physical
traffic variables such as length, speed, and time are modeled
as random variables with specific distributions. Stochastic
modeling therefore lays the ground for the statistical analysis
of traffic data.

Stochastic modeling of transit paths was pioneered by
Sun et al. [21]: following the path topological decomposition
in network traffic assignment models, they analyzed the user
time along a transit path as a four-tier sequence of (i) access,
(ii) wait, (iii) ride, and (iv) egress. By postulating a specific
statistical distribution for each tier time depending on its
own physical conditions, the authors provided an estimation
method for the parameters of all distributions. )eir method
was applied to a dataset of individual travel times observed
between two validation gates (AFC records of tap-in and
tap-out pairs), complemented by the related times of train
arrival at and departure from the stations of access and
egress (AVL data). Further on, Zhu et al. [4] modeled the
access and egress times as the ratios of walk lengths divided
by walk speeds, so as to estimate the distribution of pe-
destrian walk speeds in railway stations. A key element in
their model is the passenger-to-train assignment probability.
In a parallel work, Leurent et Xie [22] related the walk speed
at the individual level on both sides of the ride (access and
egress): they succeeded to estimate the length distributions
together with the speed distribution owing to specific dis-
tributional assumptions of shifted exponential lengths to-
gether with uniformly distributed speeds. Gaussian
distributed walk speeds were also considered in Xie and
Leurent [23].

In this stream of passenger traffic stochastic modeling,
boarding congestion was addressed by Zhu et al. [24] who
modeled the left-behind phenomena as the failure-to-
board one or more trains serving the station: the number
of missed trains was modeled as a random variable
composed at two levels. Leurent and Jasmin [25] provided
a physical model of failure-to-board, postulating FIFO
among the awaiting users. Hörcher et al. [26] addressed
the influence of on-board crowding conditions onto the
line choice of individual users under a specific subnet-
work configuration: they focused on the passenger egress
times first to assign different usage probabilities to the
successive trains on each line, in a Bayesian way based on
a postulated PDF for egress times, and then to differ-
entiate between the two lines, again on the basis of
Bayesian probabilities. )is Bayesian approach involves
the time of user exit and that of train departure to obtain
the egress time conditionally to that train.

Up to now, no consideration has been paid in this stream
to egress congestion or to traffic bottlenecks on either the
boarding or alighting sides. Leurent and Xie [27] modeled
the on-board positions in relation to both the platform entry
point, in the access station, and, in the egress station, the
platform exit point, together with an individual walk speed
maintained on both platforms.)is corresponds to free-flow
walking conditions unaltered by any kind of congestion on
the access and egress sides.

Overall, the stochastic modeling of individual egress
times, possibly influenced by congestion in bottleneck form,
with distributed walk lengths and speeds, is an original
research topic.

)e notation table is as follows:

(i) u: an individual user
(ii) w: free-flow walk speed, with CDF W

(iii) ℓ′: walk length of individual user from train
alighting point to platform intermediary point

(iv) ℓe: length from platform intermediary point to
station exit point

(v) ℓ: individual walk length, with CDF Sw condi-
tionally to w

(vi) τ: walk egress time along ℓ
(vii) ℓ∗: queue focal point
(viii) [τ∗1 , τ∗2 ]: time interval of queuing at ℓ∗

(ix) v∗: queue moving speed
(x) t∗: queued time from ℓ∗ to station exit point
(xi) k ∈ 1, 2, 3{ }: index of user subset Uk, respectively,

before, during, and after queuing episode at ℓ∗,
with associated probability Pk

(xii) Tk: CDF of effective egress time conditionally to k,
where T denotes the unconditional CDF

(xiii) A number of alighting users, for train-PIP-SAP
triple

3. Physical and Stochastic Model

3.1. Platform Geometry and Walk Lengths. Each station
platform on a given railway line has its own geometry. As a
spatial object of area type, it has a long, rectangular shape,
mirroring the train lengths and the straightness of the in-
frastructure track. Its longitudinal dimension, typically in
the range from 100m to 200m, gives rise to relative longi-
tudinal positions on the platform and in turn on the trains
that dwell there. By contrast, the platform width is relatively
narrow, typically in the 5m–10-m interval: it is designed to
accommodate the flows of alighting passengers and of in-
coming passengers that wait for train arrivals and constitute
waiting stores, yet in a scarce way to spare the urban space.
Let us define an intermediary point along the platform, say
PIP for platform intermediary point, typically at the dwelling
point of the train head (or tail) endpoint.

)e platform is endowed with its own points for pe-
destrian access and egress, each one with a specific longi-
tudinal abscissa with respect to the origin point.)ese points
may be called pedestrian flow injectors, or platform funnels.
Let us call them “platform egress points” (PEPs) to focus on
the alighting flow.

Considering now the station, it has its own points of
passenger access from, and egress to, the outer world: let us call
them station access points (SAPs). As for SAPs, we typically
consider a point equipped with ticket and card validation gates.

Each platform egress point is connected to one or several
SAPs by way of a pedestrian path.
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To an alighting passenger, the length to walk from train
alighting to SAP, say ℓ, adds up that from PIP to SAP, say ℓe,
and the length ℓ′ on the platform from the alighting position
to the PIP. We shall denote this decomposition as

ℓ � ℓe + ℓ′. (1)

As railway station platforms have long, narrow shapes,
for any pair of points along the platform, we shall assimilate
the walked length and the longitudinal difference in
abscissas between the points (Figure 1). A typical PIP sit-
uation is at one endpoint of the platform. For a PIP situated
at some intermediary point, the correspondence between ℓ
and train alighting positions would be 1 : 2 instead of 1 :1.
For ease of discussion, we shall hereafter assume a PIP
situation at a platform endpoint, so as to interpret ℓ′ as the
position along the train.

3.2. Free-Flow Pedestrian Speeds and Egress times. Given the
PEP and the SAP, the egress length ℓ still depends on the
alighting position. As a walk length, it gives rise to the egress
time of the train user from his train alighting point to the
SAP, denoted by t. )e factor linking ℓ to t is the walking
pace or its inverse the walk speed denoted by w: notionally,

t �
ℓ
w

+t
0
e . (2a)

)is formula is an idealization. )e time lag t0e accounts
for specific delay such as on taking an escalator. As for the
walk time τ ≡ ℓ/w, we take w to be about constant along the
length: in other words, it is a cruising speed at the individual
level. Such walk speeds are distributed among the transit
users, according to physical condition, age, luggage, etc.
(TCQSM, 2013). Under this interpretation, w would be a
free-flow speed: postulating the individual user not to be
impeded by other pedestrians.

Let us denote W the CDF of unimpeded pedestrian
speeds for a statistical population of transit users and _W its
PDF. Denote similarly S and _S the CDF and PDF of walk
lengths, respectively. Further statistical description involves
the stochastic dependencies between s and w as random
variables. Conditionally to walk speed w, we shall denote Sw

as the CDF of walk lengths ℓ.
To sum up, under free-flowing, the walk egress time of an

individual user is modeled as

τ ≡ t − t
0
e �

ℓ
w

. (2b)

Let also h0 denote the instant of train arrival to dwell on
the platform, taken homogenous among the alighting flow.
For every user u, the instant hu of passing the SAP and the
egress time τu are straightforwardly related as follows:

τu ≡ hu − h0. (3)

In practice, some caution must be exerted to compare
instants hu and h0. Assumedly, instants hu of user exit are
measured at the validation gates, with respect to the station
clock say, while instants h0 of train arrivals are measured by

the automated vehicle location system, say the train clock.
Between the two-timing systems, there may be some time
lag, especially so if the AVL time is measured at a fixed
sensor located upstream the station. We might denote
h0′ ≡ h0 − Δh0 a corrected train arrival instant. Analogously,
to focus on walk times, we would tend to decrease every hu

by t0e . In the rest of the article, we take such corrections as
given and we consider that τu corresponds to the walk egress
time τ ≡ ℓ/w. Under free-flow pedestrian traffic conditions,
walk speed w is a free-flow one and τ has a statistical dis-
tribution (CDF T and PDF _T) that stems from the joint
distribution of walk lengths and walk speeds.

Let us express the free-flow distribution functions of
egress times: T(x): � Pr τ ≤x{ } � Pr ℓ/w≤x{ } �

Pr ℓ ≤w · x{ } since w> 0.
As

Pr ℓ ≤w · x{ } � Pr ℓ ≤w · x | w{ } · Pr w{ } � Sw(w · x)Pr w{ },
then

T(x) � 􏽚 Sw(w · x)dW(w). (4a)

)is formula stands as the stochastic version of physical
model (2). )e PDF is obtained by partial derivation with
respect to x: _T(x): � d/dxT(x) � 􏽚 dSw(w · x)/dxdW(w),
so that

_T(x) � 􏽚 w · _Sw(w · x)dW(w). (4b)

3.3. On Pedestrian Traffic Conditions and Queuing
Phenomena. On exiting the train, the alighting passengers
become pedestrians willing to get first to a PEP and then to
an SAP. On their walk paths, they may be hindered by other
pedestrians, be it due to conflicting directions or to different
walk speeds and the inability to overtake a slower walker for
lack of available width.

)ree kinds of conflicting directions may arise. First,
between alighting passengers and boarding candidates just
out of the train: under severe platform crowding, the width
available in front of a train door for train passengers to alight
may be very scarce, leading to a train exit bottleneck: here we
do not address that severe kind of congestion.

Second, between alighting passengers and incoming
pedestrians just arriving on the platform to board the train
or cross the platform from one point to another: as the
alighting phase is concentrated in time, while the incoming
flow is relatively homogenous over time, the likelihood of
such conflicts is small and we shall neglect their effects.

)e third kind of conflicting directions would arise
among alighting passengers that would cross one another to
go to different platform egress points. )e potential out-
comes will depend on whether the pedestrian density on the
platform is low or high. Under low densities, such crossings
are easy and the associated elemental delays are negligible.
But under high densities, walking is slowed down and it
would be very tedious for an individual pedestrian to
manage a large number of directional conflicts. )en, the
following collective behavior is likely to arise: the alighting
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flow “naturally” splits with respect to the closest egress
points, so that each egress point will have its own “catchment
area” along the sequence of train doors. In such a case, a
targeted PEP will have a large number of egressing pas-
sengers and queuing is likely to occur among them.

We shall model neither the light kinds of pedestrian
traffic hindrance nor the sharpest kind of overcrowding
when train alighting is delayed for lack of space. We only
model two traffic regimes of either free-flow conditions at
the individual level or a queuing episode upstream of the
SAP from some focal point ℓ∗.

As will be reported in the case study, alighting passengers
targeting a given PEP, when their number is high, will
constitute a pedestrian queue affecting all of its members.
We shall model that kind of queue as a traffic bottleneck.
Here are the main assumptions:

(A1) )ere is some focal point ℓ∗ upstream the SAP, at
which the queue beings at instant h∗1 soon after the
instant h0 of train arrival at the station. To instant, h∗1
corresponds an egress time τ∗1 ≡ h∗1 − h0.
(A2) At ℓ∗, the queue lasts from h∗1 to h∗2 , with related
egress time τ∗2 ≡ h∗2 − h0. Users involved in it, after
passing at ℓ∗, will walk from ℓ∗ to SAP (will null length)
at queued speed v∗, spending time t∗ � ℓ∗/v∗. )eir set
is denoted as 􏽥U3. )e first and last egress times of them
are τ1 ≡ τ∗1 + t∗ and τ2 ≡ τ∗2 + t∗.
(A3) Users unaffected by queuing are of two kinds,
depending on whether they pass the SAP before
h1 ≡ h∗1 + t∗ or after h2 ≡ h∗2 + t∗. )eir respective sets
are denoted U1 and U2, respectively.
(A4) Every un-queued user of the first kind U1 has free-
flow walk speed w from their alighting position ℓ up to
SAP, hence free-flow egress time τ � ℓ/w. )e (ℓ, w)

pair also satisfies that ℓ − ℓ∗ ≤w.τ∗1􏼈 􏼉, that is, either they
alight downstream ℓ∗ if ℓ〈ℓ∗{ } or upstream it but before
the beginning of queuing. )us,

U1 ≡ (ℓ, w): ℓ ≤w · τ1 ∩ ℓ − ℓ∗ ≤w · τ∗1􏼈 􏼉. (5a)

(A5) Every un-queued user of the second kind U2 has
free-flow walk speed w from their alighting position ℓ
up to SAP, hence free-flow egress time τ � ℓ/w. )e
(ℓ, w) pair also satisfies that ℓ − ℓ∗ 〉w.τ∗2􏼈 􏼉; that is, they
pass at ℓ∗ after the queue vanished from it. )us,

U2 ≡ (ℓ, w): ℓw〉 · τ2 ∩
​ ℓ− ℓ∗〉w · τ∗2􏼈 􏼉. (5b)

Consequently, the set of users affected by the queue
amounts to the complementary set:

U3 ≡ U\ U1⋃U2( 􏼁. (5c)

It holds that 􏽥U3 ⊂ U3, which also contains users passing
at ℓ∗ before τ∗1 or after τ∗2 but who join the queue at some
point from ℓ∗ to SAP due to their own free-flow speed in
relation to v∗.

3.4. 3e Effective Distribution of Platform Egress Times.
For a train and a PEP giving rise to a queuing episode, within
the statistical population of train-alighting users, the pro-
portion of the three user groups is, respectively,

P1 ≡ Pr ℓ ≤w · τ1 ∩
​ ℓ − ℓ∗ ≤w · τ∗1􏼈 􏼉. (6a)

P2 ≡ Pr ℓ >w · τ2 ∩
​ ℓ − ℓ∗ 〉w · τ∗2􏼈 􏼉. (6b)

P3 ≡ 1 − P1 − P2. (6c)

Users in U1⋃
​
U2 enjoy free-flow egress times τ � ℓ/w.

From the definition of their sets and the non-negativity of
walk speeds, we have that

In U1: ℓ ≤w.τ1,

τ ≤ τ1. (7a)

In U2: ℓ >w · τ2,

τ > τ2. (7b)

)en, users with τ ∈ [τ1, τ2] belong to U3. Among that
set, the users are subjected to some queuing effect. We
further assume the following:

(A6) Most of the queued users are involved in a traffic
bottleneck originating at ℓ∗, and the bottleneck exit
flow rate is about constant (at some capacity value).
)en, among those queued users the egress time up to
ℓ∗ is distributed uniformly from τ∗1 to τ∗2 . In turn, as
queued walk time t∗ is assumed from ℓ∗ to SAP, the
egress time from alighting to SAP will be distributed

Train dwell place

Waiting store

Free space

FunnelAbscissa ℓ’

Len
gth

 ℓ e

Alighting
position

PIPSAP

Figure 1: Platform layout.
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uniformly from τ1 to τ2. )is applies strictly to the
queued users in 􏽥U3, and we further assume that:
(A7) It extends to all users involved in U3.

)us, among U3, the CDF of egress time is

T3(x) � 1 x≥τ1{ } ·
min x, τ2􏼈 􏼉 − τ1
Δτ

, (8a)

where Δτ ≡ τ2 − τ1. By partial differentiation, the associated
PDF is

_T3(x) ≡
d

dx
T3(x)

� 1 x∈ τ1 ,τ2[ ]{ }.
1
Δτ

.

(8b)

For users in U1, the egress times are distributed with the
following conditional CDF:T1(x) ≡ Pr τ ≤ x | τ � ℓ/w{

∩ ​ ℓ ≤w · τ1 ∩ ​ ℓ − ℓ∗ ≤w · τ∗1 }, � (1/P1)Pr ℓ/w≤x∩ ​ ℓ ≤{ w ·

τ1 ∩ ​ ℓ − ℓ∗〈w · τ∗1 } , so that

T1(x) �
1

P1
Pr ℓ ≤min w · x, w · τ1, ℓ

∗
+ w · τ∗1􏼈 􏼉􏼈 􏼉. (9a)

)e probability Pr ℓ ≤y∩ ​ w􏼈 􏼉 is simply
Pr ℓ ≤y | w􏼈 􏼉 · Pr w{ }, that is, Sw(y)Pr w{ }. By integration, it
comes out that

T1(x) �
1

P1
􏽚 Sw min w.x, w.τ1, ℓ

∗
+ w.τ∗1􏼈 􏼉( 􏼁dW(w). (9b)

As P1 does not depend on x , we get the associated PDF
by straightforward differentiation: _T1(x) ≡ d/dxT1

(x) � (1/P1) 􏽚 dSw(min w · x, w · τ1, ℓ
∗

+ w · τ∗1􏼈 􏼉)/ dxdW

(w)� (1/P1) 􏽚 w · _Sw(w · x) · 1 x≤τ1 ∩ ​ w·x≤ ℓ∗+w·τ∗1{ } dW(w),

so that

_T1(x) �
1

P1
1 x≤τ1{ } 􏽚 w _Sw(w.x)1 w·x≤ℓ∗+w·τ∗1{ }dW(w). (10a)

Let us distinguish two cases depending on whether
x≤ τ∗1􏼈 􏼉 or x 〉τ∗1􏼈 􏼉. In the former case, as walk speeds are
positive and so is ℓ∗ ; then, the condition w · x≤ ℓ∗ + w · τ∗1􏼈 􏼉

holds true for every w≥ 0. In the latter case, the condition is
equivalent to w · (x − τ∗1 )≤ ℓ∗, that is, w≤ ℓ∗/(x − τ∗1 ). )us,

defining Mx(y) ≡ 􏽚
∞

y
w _Sw(w · x)dW(w),

_T1(x) � (1 x≤τ1{ } /P1)[1 x≤τ∗1{ } 􏽚 w _Sw(w.x)dW(w) + 1

x 〉τ∗1􏼈 􏼉 􏽚
ℓ∗/(x− τ∗1 )

w _Sw(w.x)dW(w)], � (1 x≤τ1{ }/P1)[1 x≤τ∗1{ }

Mx (0) + 1 x 〉τ∗1{ }(Mx(0) − tMxn(ℓ∗/(x − τ∗1 )))] and finally

_T1(x) �
1 x≤τ1{ }

P1
Mx(0) − 1 x 〉τ∗1{ }Mx

ℓ∗

x − τ∗1
􏼠 􏼡􏼢 􏼣. (10b)

Analogously, for users in U∗2 : the CDF from above,
T2(x) ≡ 1 − T2(x), satisfies that

T2(x) � Pr τ 〉x | τ � ℓ/w ∩ ​ ℓ 〉w · τ2 ∩
​ ℓ − ℓ∗ 〉w · τ∗2􏼈 􏼉

� (1/P2)Pr ℓ 〉w · x∩ ​ ℓ 〉w · τ2 ∩
​ ℓ 〉ℓ∗ + w · τ∗2􏼈 􏼉

,

� (1 / P2)Pr ℓ 〉max w.x, w.τ2, ℓ∗ + w.τ∗2􏼈 􏼉􏼈 􏼉, so that

T2(x) �
1

P2
􏽚 Sw max w · x, w · τ2, ℓ

∗
+ w · τ∗2􏼈 􏼉( 􏼁dW(w).

(11a)

As P2 does not depend on x , we get the associated PDF
by straightforward differentiation:

_T2(x) ≡ dT2(x)/dx � − dT2(x)/dx � (1/P2)

􏽚(dSw)(max w.x, w.τ2, ℓ
∗

+ w.τ∗2􏼈 􏼉)/dx dW(w),

� (1 x 〉τ2{ }/P2) 􏽚 w. _S(w.x).1 w.(x− τ∗2 ) ≥ ℓ∗{ } dW(w).
Finally, as x − τ∗2 〉0 when x 〉τ2,

_T2(x) �
1 x>τ2τ2{ }

P2
Mx

ℓ∗

x − τ∗2
􏼠 􏼡. (11b)

We are now able to express the overall CDF and PDF,
denoted as TU(x) and _TU(x), respectively, by combining the
conditional distributions according to the three cases:
TU(x) ≡ Pr τ ≤ x{ } � 􏽐

3
k�1 Pr τ ≤x∩ ​{ u ∈ Uk}� 􏽐

3
k�1

Pr τ ≤x | u ∈ Uk􏼈 􏼉 · Pr u ∈ Uk􏼈 􏼉 � 􏽐
3
k�1 PkTk(x), and

analogously,
_TU(x) � P3

_T3(x) + P1
_T1(x) + P2

_T2(x). (12a)

Substituting, we obtain that

_TU(x) � 1 x∈ τ1 ,τ2[ ]{ } ·
P3

Δτ
+ 1 x≤τ1{ } Mx(0) − 1 x 〉τ∗1{ }Mx

ℓ∗

x − τ∗1
􏼠 􏼡􏼢 􏼣 + 1 x 〉τ2{ }Mx

ℓ∗

x − τ∗2
􏼠 􏼡. (12b)

3.5. An Incomplete Congestion Model. In a preliminary ap-
proach, we defined the sets of users egressing before or after

the queuing episode on the basis of incomplete conditions as
follows:
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􏽥U1 ≡ (ℓ, w): ℓ ≤w · τ1􏼈 􏼉, (13a)

􏽥U2 ≡ (ℓ, w): ℓ 〉w · τ2􏼈 􏼉. (13b)

Both definitions make no reference to focal point ℓ∗.
)ey are consistent with the definition of 􏽥U3, which is
equivalent to 􏽥U3 ≡ U\( 􏽥U1⋃

​ 􏽥U2).
As U1 � ℓ ≤w.τ1 ∩ ​ ℓ ≤ ℓ∗ + w.τ∗1􏼈 􏼉, it imposes a stronger

condition on lengths ℓ: it may occur that ℓ∗ + w.τ∗1〈w.τ1 if
w(τ1 − τ∗1 ) 〉ℓ∗, that is, if w.t∗ 〉ℓ∗ and if when w 〉v∗. So,
users in 􏽥U1 but with ℓ∗ + w.τ∗1 ≤ ℓ〈w.τ1 and w 〉v∗ do not
belong to U1.

On the other side, U2 � ℓ 〉w · τ2 ∩ ​ ℓ 〉ℓ∗ + w · τ∗2􏼈 􏼉 im-
poses a stronger condition on lengths ℓ than does 􏽥U2: it may
occur that ℓ∗ + w.τ∗2 〉w.τ2 when w(τ2 − τ∗2 )〈ℓ∗, that is,
when w.t∗〈ℓ∗ hence when w〈v∗. So, users in 􏽥U2 but with
ℓ∗ + w.τ∗2 〉ℓ ≥w.τ2 and w〈v∗ do not belong to U2.

In the incomplete congestion model, we would have the
following:

􏽥P1 ≡ Pr ℓ〈w · τ1􏼈 􏼉

􏽥P2 ≡ Pr ℓ 〉w · τ2􏼈 􏼉

􏽥P3 ≡ Pr ℓ ∈ [w · τ1, w · τ2]􏼈 􏼉

_􏽥T(x) � 1 x∈[τ1 ,τ2]{ } ·
􏽥P3/Δτ + 1 x〈τ1{ }Mx(0) + 1 x 〉τ2{ }Mx(0); hence,

_􏽥T(x) � Mx(0) − 1 x∈ τ1 ,τ2[ ]{ } Mx(0) −
􏽥P3

Δτ
􏼠 􏼡. (14)

It is easy to compare the incomplete congested PDF to the

free-flow one in (4b): as Mx(0) � 􏽚 w · _Sw(w · x)dW(w), the

two PDFs are identical out of [τ1, τ2], that is, out of the queued
interval, on which the free-flow density Mx(0) is replaced by its
queued counterpart 􏽥P3/Δτ.

Between the incomplete and full congested models, the
respective PDFs have similar queued parts up to the defi-
nition of P3 instead of 􏽥P3, whereas the free-flowing parts are
subjected to subdomain restriction in the full model that
considers only those speeds above ℓ∗/(x − τ∗k ). )ese dif-
ferences vanish when ℓ∗ � 0{ }: the incomplete congestion
model can be seen as a restricted version of the full con-
gestion model such that ℓ∗ � 0{ }, leading to t∗ � 0 and
τ∗k � τk, so that 􏽥Uk � Uk and 􏽥Pk � Pk.

3.6. Capacity Issues. Let us denote A as the total number of
alighting passengers, for that train andPEP and SAP.)en, there
are A.P3 queued users that exit in time length Δτ. Defining the
flow rate capacity for that train, KA, it holds that

KA �
A · P3

τ2 − τ1

� A
TU τ2( 􏼁 − TU τ1( 􏼁

τ2 − τ1
.

(15)

In the incomplete congestion model where queuing
originates at point ℓ∗ � 0{ }, we would expect the flowing
regime to change from free-flow to queued at τ1 in a smooth

way, yielding equivalent flow rate on both sides of τ1 be-
tween A. _TU(τ1) from below and KA from above. )is
condition is equivalent to

_TU τ1( 􏼁 �
T τ2( 􏼁 − T τ1( 􏼁

τ2 − τ1
. (16)

Since P1 � T(τ1) and P2 � 1 − T(τ2) in the incomplete
congestion model, yielding P3 � T(τ2) − T(τ1).

Under the bottleneck postulate, formula (16) therefore
constitutes a characteristic condition associated with
ℓ∗ � 0{ }. By contrast, a significant flow rate discontinuity at
time τ1 indicates that ℓ∗ 〉0{ }.

Figure 2 depicts the statistical distribution of egress times
either free-flow or including a queuing episode at ℓ∗ � 0.)e
free-flow distribution corresponds to users’ arrivals at the
potential bottleneck, whereas the effective one corresponds
to their departures from the potential bottleneck.

4. Distributional Assumptions

Basically, free-flow egress time τ is modeled as the ratio of
space length l and cruising walk speed w. At first glance,
statistical independence between l and w looks a reasonable
assumption. On second thoughts, however, there may be
correlation between them: for instance, hurried train users
would both walk faster and position themselves on board so
as to alight closer to their platform egress point.

Let us recall the free-flow CDF and PDF of egress times
in (4a) and (4b):

T(x) � 􏽚 Sw(w · x)dW(w),

_T(x) � 􏽚 w · _Sw(w · x)dW(w).

(17)

In (4a) and (4b), we expressed the free-flow CDF and
PDF of egress times. Let us now put forward specific dis-
tributional assumptions of two kinds: either a bivariate
Gaussian distribution for (ℓ, w) or a bivariate Gaussian
distribution for (􏽥ℓ, 􏽥w), where 􏽥ℓ ≡ ln(ℓ) and 􏽥w ≡ ln(w),
called the log-normal model.

4.1. Model with Gaussian Components

4.1.1. Basic Definitions and Free-Flow Properties. We may
assume Gaussian distributions for lengths and speeds: or
more precisely that the (ℓ, w) pair is a bivariate Gaussian
vector with ℓ ≈ N(mℓ, s2ℓ ), w ≈ N(mw, s2w) and
χ � cov(ℓ, w). Given x, the spacings around the coma are too
large yx ≡ (s2ℓ + s2wx2 − 2χx)0.5, we have that
ℓ − x.w ≈ N(mℓ − xmw, y2

x) so that the free-flow CDF in
(4a) takes on the specific form as follows:

T(x) � Φ
xmw − mℓ

yx

􏼠 􏼡, (18a)

where Φ denotes the CDF of the reduced Gaussian variable.
)e associated reduced PDF will be denoted as
ϕ(z) ≡ exp(− (1/2) z2)/

���
2π

√
.
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)e resulting distribution of τ is not Gaussian, because
the influence of x on the CDF (both through x and yx) is a
complex one.

By straightforward derivation, _T(x) � (mw/yx − (1/2)

(xmw − mℓ)(2s2wx − 2χ)/ (yx)3) _Φ((xmw − mℓ)/yx).
)us, we get the free-flow PDF of the egress times as

_T(x) �
mw s

2
ℓ − χx􏼐 􏼑 + mℓ s

2
wx − χ􏼐 􏼑

yx( 􏼁
3 ϕ

xmw − mℓ

yx

􏼠 􏼡. (18b)

Both (18a) and (18b) are easy to compute. )e complex
influence of x is obvious in (18b), both through ϕ and out of
it as a quotient of functions such that the denominator
involves an exponentiation to power 3/2.

Of course, the Gaussian postulate is somewhat farfetched
for walk speeds as it gives support to some negative values: in
each model estimation, we will have to check ex-post that the
estimated parameters give rise to “almost certain” positive
speeds.

4.1.2. Properties for Trains with Alighting Queues. It is
shown in the appendix that the law of ℓ conditionally to w is
N(mℓ | w, s2ℓ | w) for sℓ | w ≡ sℓ

�����
1 − ρ2

􏽰
with ρ ≡ χ/(sℓ · sw) and

mℓ | w ≡ mℓ + (w − mw)β with β ≡ χ/s2w.

Furthermore, functionMx(y) ≡ 􏽚
∞

y
w _Sw(w · x)dW(w)

satisfies that.
Mx(y) � 􏽚

∞

y
(w/sℓ | w)ϕ((w.x − mℓ | w)/sℓ | w)(1/sw)ϕ((

w − mw)/sw)dw � Kx(sx/sℓ | w) · sw(mxΦ((mx − y)/sx) + sx

ϕ((y − mx)/sx)), where sx ≡ ((x − β)2s− 2
ℓ | w + s− 2

w )− 1/2, mx ≡

s2x((x − β)(mℓ − βmw)s− 2
ℓ | w + mws− 2

w ) and Kx � (1/
���
2π

√
)exp

(1/2)((mx/sx)2 − (mℓ − βmw/sℓ | w)2 − (mw/sw)2).
)ese formulas enable us to calculate the PDF of egress

times in the congested model.

As for the subset probabilities Pk, we have to calculate P1
and P2 numerically:

P1 � 􏽚 Sw(min w · τ1, ℓ
∗

+ w · τ∗1􏼈 􏼉)dW(w) and

P2 � 􏽚 Sw(max w · τ2, ℓ
∗

+ w · τ∗2􏼈 􏼉)dW(w).

)e computation needs be done once for each set of
parameters.

In the incomplete model, the probabilities 􏽥P1 and 􏽥P2 are
easy to calculate:

􏽥P1 � Pr ℓ〈w.τ1􏼈 􏼉 � Φ((mwτ1 − mℓ)/
�������������
s2ℓ + s2wτ21 − 2τ1χ

􏽱
)

and 􏽥P2 � Pr ℓ 〉w.τ2􏼈 􏼉 � Φ((mℓ − mwτ2)/�������������
s2ℓ + s2wτ22 − 2τ2χ

􏽱
).

A similar approach yields fairly good approximations for
P1 and P2

P1 ≈ Pr ℓ − ℓ∗〈w.τ∗1􏼈 􏼉 � Pr{ ℓ − w.τ∗1〈ℓ
∗} � Φ((ℓ∗ − mℓ

+ mw τ∗1 )/
���������������
s2ℓ + s2wτ ∗ 21 − 2τ∗1χ

􏽱
), P2 ≈ Pr ℓ − ℓ∗ 〉w.τ∗2􏼈 􏼉 � 1 −

Pr ℓ − w.τ∗2〈􏼈 ℓ∗} � Φ ((mℓ − mwτ∗2 − ℓ∗)/
���������������
s2ℓ + s2wτ ∗ 22 − 2τ∗2χ

􏽱
)

4.2. Log-NormalModel. When two positive real variables are
involved in a product or quotient relationship, it is con-
venient to model them as bivariate log-normal, because the
composed variable will be log-normal, too. We shall indent
with tildes the variables to denote their natural logarithms
concisely: let then 􏽥ℓ ≡ ln(ℓ), 􏽥w ≡ ln(w), and 􏽥τ ≡ ln(τ). As
for parameterization, let 􏽥ℓ ≈ N(μℓ, σ2ℓ), 􏽥w ≈ N(μw, σ2w) and
ξ � cov(􏽥ℓ, 􏽥w).

As ln(1/w) � − 􏽥w, the log-egress time 􏽥τ satisfies that

􏽥τ � 􏽥ℓ − 􏽥w ≈ N μτ , σ
2
τ􏼐 􏼑with μτ � μℓ − μw and σ2τ � σ2w + σ2ℓ − 2ξ.

(19)
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Figure 2: PDF (a) and CDF (b) of egress times.
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)us, the egress time is distributed log-normal with
parameters μτ and σ2τ . Its CDF and PDF are, respectively:

T(x) � Φ
ln(x) − μτ

στ
􏼠 􏼡. (20a)

_T(x) �
1

στ .x
ϕ

ln(x) − μτ
στ

􏼠 􏼡. (20b)

5. Estimation Methodology at the Train Level

We shall first establish some basic properties and provide a
simple, empirical estimation method to recover alighting
positions from free-flow egress times, taking as exogenous
the distribution of free-flow walk speeds. )en, we devise a
“train likelihood function” of observed egress times, en-
abling for the maximum-likelihood estimation of model
parameters: queue focal point ℓ∗ and time bounds τ∗1 and τ

∗
2 ,

queued walk speed v∗, and the capacity flow rate K∗, as well
as the parameters in the joint distribution of the free-flow
walk speeds and walk lengths.

5.1. Simple Properties for Independent Lengths and Speeds
under Free Flow. Let us establish some properties for free-
flow egress times under the simplifying assumption of
statistical independence between lengths and speeds.

5.1.1. Signal Analysis. Let us focus on the influence of length
ℓ onto egress time τ � ℓ/w: we take this influence as the
“signal,” as opposed to the influence of walk speed w, which
is taken as the “noise.” Here, we want to assess the im-
portance of the signal in the phenomenon and measure the
ratio between the signal and the noise. To do that, we shall
decompose the variance V[τ] with respect to V[ℓ] and
V[w− 1]. Postulating here the independence of ℓ and w, it
holds that E[τ] � E[ℓ].E[w− 1] and V[τ] � E[ℓ]2
·V[w− 1] + V[ℓ] · (E[w− 1]2 + V[w− 1]).

)e latter decomposition, after division by E[τ]2, gives
the following relationship between the squared relative
dispersions:

c
2
τ � c

2
w− 1 + c

2
ℓ + c

2
ℓ · c

2
w− 1 . (21)

As first-guess assumptions on the lengths and speeds, let
us take the following:

(i) About lengths, that alighting users would spread
evenly along a 200m train (resp. 100m long train),
then (up to se) length ℓ is distributed uniform on [0,
200m] (resp. 100m). )en, E[ℓ] � 100m and V[ℓ]
� (200m)2/12 so that c2

ℓe
� 1/3 (resp. the same for a

100-m long train).
(ii) About walk speeds, a normal distribution with mean

at 4 km/h and most values from 2 to 6 km/h, that is,
spread 6 − 2 � 4 representing about 4 times the
standard deviation. )en, SD � 1 km/h and cw � 1/
4. As the value is small, it follows that

c2
w− 1 ≈ c2

w ≈ 1/16 ≈ .07. Furthermore, E[w] � 1.1m/
s and E[w− 1] ≈ (1 + c2

w)/E[w] ≈ .95s/m.

On applying the formulas, we recover an average egress
time of E[τ] � E[ℓ] · E[w− 1] equal to either 90 s or 45 s
depending on train length of 200m or 100m. As for relative
dispersions, c2

τ � c2
w− 1 + c2

ℓ + c2
ℓ .c

2
w− 1 � (1/16) + (1/3) + (1/

3) × (1/16) � 20/48 � 5/12 ≈ 0.40.
)e signal share is c2ℓ /c

2
τ � (1/3)/(5/12) � 4/5 � 80%,

and the signal-to-noise ratio is c2
ℓ /(c2

τ − c2
ℓ) � 80%/20% � 4.

)is quick numerical application encourages us to look
for the influence of the length signal in the egress time
phenomenon, and conversely to utilize observed egress
times to infer the associated lengths and the alighting po-
sitions behind them.

5.1.2. A Quick Estimation Procedure. From platform ge-
ometry and free-flow traffic conditions, it is easy to measure
the values of parameters ℓe and t0e . Furthermore, let us
consider an exogenous distribution of walk speeds, so that the
statistical moments E[w− 1], E[w− 2], and V[w− 1] are known.

Now, from a dataset of egress times associated with a
particular train at the station of interest, it is easy to obtain
E[τ] and V[τ]. From the abovementioned expectation
formula, we can then recover the mean alighting position
E[ℓ′] from the mean length E[ℓ] as follows:
E[ℓ] � E[ℓ′] + ℓe � (E[τ] − t0e)/E[w− 1].

Similarly, from the variance formula of the quotient var-
iable, the variance of alighting positions can be recovered as

V ℓ′􏼂 􏼃 � V[ℓ] � V[τ] − (E[ℓ])2 · V w
− 1

􏽨 􏽩􏼐 􏼑/E w
− 2

􏽨 􏽩. (22)

)is estimation procedure is particularly straightforward
for log-normal variables. In this case, from E[τ] and V[τ],
we obtain c2

τ � V[τ]/E[τ]2 and the log-normal parameters:
variance of log-egress times is σ2τ � ln(1 + c2

τ) and average
log-egress time is μτ � ln(E[τ]) − (1/2)σ2τ . If the exogenous
distribution of speeds is log-normal, too, then we similarly
get σ2w and μw. Next, in the independent case, the log length
is distributed Gaussian with mean μℓ � μτ + μw and variance
σ2ℓ � σ2τ − σ2w (the minus sign comes from (19)). It remains to
derive first the squared relative dispersion c2

ℓ � exp(σ2ℓ ) − 1,
then the average E[ℓ] � exp(μℓ + (1/2)σ2ℓ), and lastly the
variance V[ℓ] � E[ℓ]2c2

ℓ .
)e quick estimation scheme pertains to alighting po-

sitions on the basis of a prior knowledge of the distribution
of walk speeds. Furthermore, it is based on the assumption of
independence between lengths and speeds, and it is re-
stricted to free-flow egress times.

5.2. 3e Likelihood Function of a Train Sample of Egress
times. Let us consider the sample of all users alighting from
a train at a given station; its size A is the number of alighting
users. We index the users with u ∈ 1, 2 . . . A{ } in the order of
increasing egress times τu: thus, our observation dataset is
O � τu: u ∈ 1, 2 . . . A{ }􏼈 􏼉, and it is an exhaustive sample for
that train.
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5.2.1. Free-Flow Case. )e users that egress under free-flow
conditions can be considered independent of the other ones.
When all of the alighting users enjoy free-flow, their egress
times contain no information about any queuing episode.
)e set of parameters that can be recovered by statistical
estimation then pertains to the joint distribution of walk
speeds and lengths, say ΘFF ≡ Θ(ℓ,w). )e PDF of any ob-
served egress time, _T(τu |ΘFF), contains information on
ΘFF and constitutes an elementary likelihood function
Lu(ΘFF | τu), with associated log-likelihood function
Λu(Θ | τu) ≡ lnLu(Θ | τu) � ln _T(τu |Θ).

As free-flowing egress times are statistically indepen-
dent, the train sample gives rise to a train likelihood function
under product form:

LO(Θ) � 􏽙
u∈O

Lu Θ | τu( 􏼁, (23a)

with associated log-likelihood function under additive form:

ΛO(Θ) � 􏽘
u∈O

ln _T τu |Θ( 􏼁. (23b)

5.2.2. Train with Queuing Episode. When queuing occurs
among the users alighting of the train, we expect that the
egress times of queued users contain some information on
the queuing parameters, ΘQ ≡ [ℓ∗, τ∗1 , τ∗2 , v∗, K∗]. )en, the
overall vector of parameters that may be estimated is
Θ ≡ [Θ(ℓ,w),ΘQ].

All users egressing under free-flow pedestrian conditions
can still be taken as mutually independent and independent
from the other ones, so that their joint likelihood function is
under product form.

It remains to state the likelihood function of queued
users. Statistical independence between them is not obvious
since some FIFO rule applies within the queue. However, we
will also take _T(τu |Θ) as a likelihood function of Θ and
assume that the joint likelihood of queued users is under
product form, and further that the queued users are inde-
pendent of the free-flowing ones. )en, overall,

LO(Θ) � 􏽙
u∈O

Lu Θ | τu( 􏼁. (24a)

And the associated log-likelihood function is under
additive form:

ΛO(Θ) � 􏽘
u∈O

ln _T τu |Θ( 􏼁. (24b)

Given ΘQ, hence τ1 and τ2, the set of alighting users, O,
can be split into three subsets O1 � τu〈τ1􏼈 􏼉, O2 � τu 〉τ2􏼈 􏼉,
and O3 � τu ∈ [τ1, τ2]􏼈 􏼉, with respective sizes Ak that add up
to A. From the formula of _TU, the log-likelihood of the
queued users amounts to

ΛO3
� A3ln

P3

Δτ
. (25)

While for those users in O1 and O2, we have that, re-
spectively, Λu(Θ | τu) � ln[Mx(0)− 1 x 〉τ∗1{ }Mx(ℓ∗ /(x

− τ∗1 ))] if x ≤ τ1, Λu(Θ | τu) � lnMx(ℓ∗/(x − τ∗2 )) if x 〉τ2.

In fact, the involvement in the queue tends to erase the
information on Θ(ℓ,w) in τu, analogously to the absence of
information on ΘQ in the egress times of free-flowing users.
If the queuing episode is long and involves a vast majority of
alighting users, then we expect the sample to carry infor-
mation mostly on ΘQ but little if any on Θ(ℓ,w). )us, a wise
estimation strategy could be to set up Θ(ℓ,w) on the basis of
prior knowledge and to focus on ΘQ as the “active” set of
parameters for that train.

5.3. Maximum-Likelihood Estimation. Maximum-likelihood
estimation is a fundamental method for statistical estima-
tion, owing to both theoretical properties and tractability.
Given a sample of observations, it consists in maximizing
numerically the likelihood function associated with the
sample (or, more conveniently, its logarithm called the log-
likelihood function), with respect to the vector of
parameters.

)e train log-likelihood function is quite tractable for
standard optimization algorithms. Yet some caution is in
order about discontinuities in the function: changing the
queuing parameters may change the assignment of observed
times from free-flow regime to queuing and reversely,
thereby changing the associated elementary log-likelihood
function from one specification to another one, at the risk of
discontinuity.

5.3.1. MLE of the Model with Gaussian Components. In the
model with Gaussian lengths and speeds, both the CDF and
PDF of τ, and in turn Lu in the free-flow case as well as in the
queued case, depend on the five parameters: mw, s2w, mℓ, s2ℓ ,
and χ. )ese are involved together starting from relationship
(4a); that is, ℓe ≤w · Δx􏼈 􏼉. As this relation puts ℓ andw on the
same level, in a linear way, it will make the (ℓ, w) joint
distribution identifiable only up to some scale factor that will
affect the mean parameters at order 1 and the variance-
covariance parameters at order 2. )ese influences are easy
to trace out in both CDF and PDF formulas (18a) and (18b).

In turn, the system of five first-order optimality con-
ditions for likelihood maximization with respect to the five
parameters will be underdetermined: only four out of five
parameters may be identified. Our intuition here is to take
the average walk speed as given and to restrict the appli-
cation of MLE to the other four parameters.

5.3.2. MLE of the Log-Normal Model under Free Flow.
In the absence of queuing, the bivariate log-normal speci-
fication of pair (ℓ, w) yields a simple log-normal model of
the egress time τ � ℓ/w . )e associated pair of logs, (􏽥ℓ, 􏽥w), is
bivariate normal with μℓ, σ2ℓ , μw, σ2w, and ξ as parameters.
)en, the log-egress time 􏽥τ � 􏽥ℓ − 􏽥w is normal with mean
μτ � μℓ − μw and variance σ2τ � σ2w + σ2ℓ − 2ξ.

In the application of MLE to a sample of free-flow egress
times τu hence of 􏽥τu, only two parameters μτ and σ2τ are
identifiable. )e optimality conditions of the MLE in that
case are well known:
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μτ �
1
A

􏽘
u∈O

􏽥τu, (26a)

σ2τ �
1
A

􏽘
u∈O

􏽥τu − μτ( 􏼁
2
. (26b)

At that stage, the line of attack in the quick estimation
procedure is appropriate: it is a wise strategy to take μw and
σ2w as given and to focus on the estimation of walk length
parameters, namely, μℓ and composite parameter σ2ℓ − 2ξ, as
the respective influences of σ2ℓ and ξ would be hard to
disentangle.

6. Case Study

6.1. 3e Site and Its Observation

6.1.1. Site Location and Platform Geometry. Line A of the
Regional Express Railways (RER) is the busiest urban rail
transit line in the Paris region “Ile-de-France” and maybe
Europe, carrying more than 1M passengers on every
workday. )e line is serviced by duplex trains about 210m
long, each with 10 cars (and per car 3 doors each 2m wide)
and a nominal capacity of 2,800 passengers (assuming 4 p/
m2 of standing space). Along that line, the Noisy-Champs
station (48°50′34.55″ N, 02°34′55.06″ E) is located in the
eastern part of the Paris conurbation on the edge of the
Noisy-le-Grand and Champs-sur-Marne communes. Its
attendance was of 4.4 million travelers in year 2015. On
weekdays, there are significant flows of travelers, especially
workers and students coming to work in the “Cité Des-
cartes,” a district of offices, high schools, and activity parks.
Figure (3(a)) shows the outline of the station and the fa-
cilities around the Noisy-Champs train station. To the west
of the station (Noisy-le-Grand side) is a residential area and
to the east (Champs-sur-Marne side), there are offices and
residences as well as the Cité Descartes of many high schools
and universities. On peak periods of weekdays, important
flows of passengers arrive to, and exit from, the east side of
the station, which provides direct access to park and ride
facilities and to bus stops.

Regarding the shape of the station, the platform extends
over 230m along an east-west axis on each side of the two
rail tracks: each side has a width of about 5 meters. )e
northern platform is utilized by train runs in the direction
from Paris to Marne-la-Vallée, whereas the southern plat-
form serves for the inverse direction. Per platform side, there
are two PEPs (platform egress points) at the east and west
endpoints. On the northern platform, there are stairs and
escalators that connect the PEPs to the SAPs (station access
points) with validation gates for tap-in and tap-out. On the
southern platform, there are only stairs to connect the PEPs
to the SAPs.

)is study is focused on the northern platform and more
specifically the station access point to the Cité Descartes.
From the geographical situation of the station within the
metropolitan area, employment, and activities are relatively
scarce eastwards compared to those westwards and even to
local opportunities (jobs and schools): thus, on the northern

platform (from Paris to Marne-la-Vallée EuroDisneyland),
the boarding flow is much lower than the alighting flow and
the alighting users are not impeded by the boarding
candidates.

Figure 3(b) details the geometry of the eastern station
access point. )e platform is located on level -1 and the
validation gates on level 0. )ere is an escalator for one or
two people abreast and a parallel staircase about 2.5meters
wide. As the two vertical elements are parallel and of limited
height (about 4 meters), their respective pedestrian times are
quite similar (from field observation, also in accordance with
Wardrop’s 1st principle): this is why no distinction will be
made between them. When a train arrives and disembarks
the alighting flow, passengers destined to the City Descartes
use the exit and a traffic jam may arise on the platform in
front of the escalator (Figure 3(d)). After the travelers
climbed the escalator or the staircase, the validation gates are
about five meters at the bottom. )e distance from train
head to gates is from 25 to 30 meters depending on the
validation gates. )ere are three entrance gates and six exit
gates. During peak hours passengers who took the escalators
and stairs may queue in front of the six exit gates. )e
different positions of those validation gates may induce
further difference in the egress times.

6.1.2. AFC and AVL Datasets. We made use of two datasets
obtained from two systems of automated fare collection
(AFC) and automatic vehicle location (AVL), respectively.
Both datasets were constituted for all weekdays from the
16th to the 29th of March 2015, that is, 10 days in total. )e
time stretch enabled us to pinpoint peak periods of weekdays
unaffected by disturbances.

In the Paris region, the AFC information system (named
SIDV) records all validations at fare gates in stations for rail
modes or on board for buses and trams. Every gate has a
particular index, and every card has one unique number.
)us, per validation, the AFC record contains spatial-
temporal attributes of line, station, gate, time, user, etc. Our
AFC dataset contains 4,675,672 validations along line A,
including 83,740 validations in Noisy-Champs; it pertains to
a total of 723,185 travelers, among whom 21,822 passing by
Noisy-Champs.

)e AVL system uses track circuits to detect events of
train passage at given points: the resulting train timestamp
(geolocation and instant) is transmitted by radio. )ree
kinds of train and track events are monitored: either outside
stations or in them—the ARR and DEP types. ARR and DEP
provide the exact instants of arrival and of departure of
trains in stations. Our AVL dataset records 6,608 train runs
on the RER A line, among which 2,954 stop by Noisy-
Champs.

Based on the within-day variations of validations at
Noisy-Champs, five daily subperiods were identified:
morning peak (7 : 30–9:30) with an average flow of 221
passengers per 15min (standard deviation of 58), evening
peak (17 : 30–19 : 30) with an average flow of 234 passengers
per 15min (standard deviation of 62), together with three
off-peak periods: 5 : 50–7:30, 9 : 30–17 : 30 and 19 : 30–23 : 00,
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during which the average validation flows amount to 17, 62,
and 38 passengers per 15min, respectively (standard devi-
ations of 21, 28, and 31).

6.1.3. Empirical Evidence from Field Survey. We also
designed a specific field survey, which was carried out by
four engineering students on Friday 25/09/2020 from 8 a.m.
to 9 a.m.)e purpose was to measure passenger egress times
according to different train cars, to describe congestion
events and understand their mechanisms. A specific four-
fold protocol was set up as follows.

)e first part consisted in observing the distribution of
egress times. Students were posted near to the validation
gates in order to count the number of passengers tapping out
at each second after the opening of doors. Four trains were
observed, yielding a sample of 405 individual times. )e
average headway of these 4 trains is 4.1 minutes. Among the
observed egress times, from the shortest value of 19 s to the
longest one of 242 s, the mode was 60 s, the average 73.9 s,
and standard deviation 35 s (see Figure 4). )e second part
consisted in following randomly selected alighting passen-
gers from their car to the validation gates so as to measure
their walk time. )e results were consistent with the first
part. )e third part was devoted to counting the number of
alighting passengers passing by a specific point along the

platform, namely, between cars 4 and 5 from train head (out
of ten). )e fourth and last part focused on queuing phe-
nomena. Two queues were observed: one at the foot of the
escalator (PEP) and the other in front of the gates (SAP). At
the PEP, queuing occurred around 15s from train arrival and
lasted 32 s on average (among the trains). At the gates, some
queuing occurred around 50s from train arrival [28].

6.1.4. An Ex-Ante Convention to Identify Queuing Time
Ranges. Based on both field observation and the analysis of
AFC and AVL data, we estimated on a provisional basis an
exit flow capacity at validation gates of about 10 people in 5
seconds, that is, 2 people per second. Once the flow rate
reaches this threshold, the queuing phenomenon appears.
All the gates are used and waiting lines appear at both the
gates and the escalator. )en, based on provisional exit flow
capacity, a “provisional queuing interval” was determined in
the following way: from AFC data, the entire egress period
was sliced in 5s sub-intervals and we took as “initial queuing
instant” the start of the first 5s slice containing 10+ and as
“final queuing instant” the end of the last 5s slice with 10+
validations. From these educated guesses, we derived times
τ1, τ2, τ2 − τ1 (duration of congestion) for every train in the
AVL and AFC datasets. )e resulting distribution of τ1 has
mean of 57.6 s and standard deviation of 8.7s.)at of τ2 has a
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Figure 3: (a) Satellite photo of the site, (b) eastern side exit/entrance of the station, (c) train head, first two cars, and their doors (around
green bands), and (d) eastern PEP of northern platform.
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mean of 81.0s and a standard deviation of 20.1 s. )at of
congestion duration has a mean of 23.4 s and a standard
deviation of 21.1 s.

6.2. Model Estimation. We selected 4 consecutive trains in
the evening peak onMarch 16, 2015.)eir respective time of
arrival is 18 : 32 :14, 18 : 35 : 03, 18 : 46 : 33, and 18 : 59 : 09.
)ese trains have various profiles and characteristics that
make them typical cases for study. We applied the model
with Gaussian components to the 4 trains. Both the free-flow
(FF), incomplete congestion (IC), and full congestion (FC)
models were tested.

6.2.1. Train at 18 : 35 : 03. At Noisy-Champs on March 16,
2015, the 18 : 35 eastwards train followed the previous one with
a 3′ interval that is relatively short. )e alighting flow includes
A ≡ 76 passengers only. )e empirical distribution of their
egress times, depicted as the green plot in Figure 5(a), exhibits
one primary statistical mode around 60 s and a second, minor
mode around 100 s, with an associated subpopulation proba-
bility of about 15% (from the .007 density level times the
80–110 s range, minus the tail of the distribution associated with
the primary mode). Such secondary mode involving about 10
passengers may correspond to a specific group, for instance a
bunch of students coming back to their residences. To cir-
cumvent the randomness of such events, we decided to focus on
the primary mode and subpopulation in the following way. All
egress times up to threshold 􏽥τ ≡ 80s are assumed to belong to
the primary subpopulation, and their individual values are kept
in the sample: there areA′ ≡ 46 of them. As for values above 􏽥τ,
only one-third of them is taken to belong to the primary
subpopulation: their number is 􏽥A ≡ (A − A′)/3. While this
number is known, we do not consider the individual values and
keep to the information that these values are greater than 􏽥τ.)e
associated log-likelihood amounts to 􏽥A · ln[1 − T(􏽥τ |Θ)].

)en, the total log-likelihood function of the primary
sample amounts to

􏽥Λ(Θ) ≡ 􏽥A · ln[1 − T(􏽥τ |Θ)] + 􏽘

u: τu>􏽥τ

ln _T τu |Θ( 􏼁.
(27)

Looking for parameter vectorΘ(ℓ,w) ≡ [mℓ, sℓ, mw, sw, χ],
we set up initial values of [130, 60, 1.2, 0.25, 0], meaning (i)

constant mw ≡ 1.2m/s to maintain identifiability, (ii) prior
knowledge of .25m/s about the standard deviation of
walking speeds, (iii) null covariance χ as first round postulate
of independence between lengths and speeds, (iv) prior
assumption of alighting positions uniformly distributed
along the 200m long train, shifted by se ≡ 30m from train
head to validation gates.

By maximizing the log-likelihood function with respect
to [mℓ, sℓ, sw], starting from value 􏽥Λ0 �-255.0, an optimal
value of 􏽥Λ∗FF �-212.8 was obtained at point
[68.04, 18.28, 0.302]. )e 􏽥sw estimate looks quite reasonable.
About lengths, estimate 􏽥mℓ of 68m minus shift se of 30m
yields an average alighting position of 􏽥ℓ′ ≡ 􏽥mℓ − se � 38m,
which corresponds to the third and last door of the second
car along the train. )en, taking 􏽥ℓ′ ± 2􏽥sℓ as a quick estimate
for a 95% confidence interval of alighting positions, the
resulting interval [1.5m, 74.7m] corresponds broadly to the
first four cars out of the 10 car train, that is, most of its first
half.

Further attempts to estimate [mℓ, sℓ, sw, χ] starting from
initial point [130, 60, 0.25, 0] conducted to the same optimal
value and [68.04, 18.28, 0.302, 0.00]; that is, the MLE esti-
mate of the covariance parameter χ is zero: thus, the train
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sample strongly supports the assumption of statistical in-
dependence between walk lengths and speeds among the
alighting passengers.

Based on the estimated values together with the inde-
pendence property, we can recover some properties of the
egress time RV and analyze the signal-to-noise ratio (cf. §5.1.1).
As cw ≈ 25%, we can safely approximate c1/w ≈ cw ≈ 25% and
derive E[w− 1] ≈ (1 + c2

w)/E[w] ≈ .89 s/m.
In turn, E[τ] � E[ℓ] · E[w− 1] ≈ 60.3 s.
c2
τ � c2

w− 1 + c2
ℓ + c2

ℓ .c
2
w− 1 � .14; hence, cτ �.37 and

SD[τ] ≈ 22.6s. )us, the share of c2
ℓ in c2

τ amounts to 52%,
leading to a signal-to-noise ratio of 1.06.

6.2.2. Train at 18 : 59 : 09. At Noisy-Champs, the 18 : 59 train
has a 13′ headway and disembarks an alighting flow of A ≡
196 passengers. )e empirical profile of egress times (green
curve in Figure 6) strongly suggests the occurrence of
queuing. However, we began by estimating the basic free-
flowmodel (FF) with a bivariate Gaussian distribution of the
length-speed pair. Initial values of [130, 60, 1.2, 0.25, 0] were
set up for parameter vector Θ(ℓ,w) ≡ [mℓ, sℓ, mw, sw, χ]. By
maximizing the log-likelihood function with respect to
[mℓ, sℓ, sw], starting from value Λ(0)

FF �-996.12, an optimal
value of Λ∗FF �-922.65 was obtained at point [106.96,

20.21, 0.254]. Adding the χ parameter, we obtained a slightly
improved value of -922.56 at point [107.03, 23.77,

0.285, 1.858]. )e log-likelihood improvement is very small
and does not justify considering a nonzero covariance.

Turning to the incomplete congestion model (IC), we set
the [τ1, τ2] interval to [52s, 116s], according to the provi-
sional exit capacity of 2 people per second. At starting point
[mℓ, sℓ, mw, sw, χ] � [130, 60, 1.2, 0.25, 0], the initial value of
the IC log-likelihood amounts to -998.27. Optimization with
respect to [mℓ, sℓ, sw] yielded an optimal value
Λ∗IC � -918.86 at point [100.65, 14.16, 0.289]. )e 3 point
improvement over the free-flow model would strongly
support the addition of one parameter to the free-flow
model. Considering the FF model as an IC model with τ1 �

τ2 set to 52s, adding the complementary parameter τ2 − τ1
with value set to 64s constitutes a statistically significant
improvement.

)e next step is to estimate the full congestion model.
We considered not only the speed and length parameters but
also the queuing parameters ΘQ ≡ [ℓ∗, τ∗1 , τ∗2 , v∗]. Starting
from the IC estimates together with Θ(0)

Q ≡ [0, 52, 116, 0.80],
hence from initial log-likelihood value of Λ∗IC, by a com-
posite estimation process alternating steps of automated
optimization with manual search, we obtained an optimal
value of Λ∗FC � − 913.7 for the parameter vector of Θ(FC)

(ℓ,w) �

[102.20, 15.594, 0.283, 0] and Θ(FC)
Q � [4.00, 61.65, 107.65,

0.92]. By the way, the resulting estimates of
[τ1, τ2] � [66s, 112s] taken together with ℓ∗ ≡ 0 provide an
IC model with a log-likelihood of -918.01, which improves
on the previously estimated Λ∗IC by almost one point. From
this re-estimated IC model to the optimized FC model, the
log-likelihood is improved by more than 4 points, thus
providing satisfying justification for considering a queuing
focal point ℓ∗ greater than 0.

Let us now comment on the estimates in the FC model.
)at of the standard deviation of walk speeds is fairly
standard. About lengths, estimate mℓ of 102-mminus shift
se of 30-m yields an average alighting position of ℓ′ ≡ mℓ −

se � 72m, which corresponds to the medium tier of the
fourth car along the train. )en, taking ℓ′ ± 2sℓ as a quick
estimate for a 95% confidence interval of alighting po-
sitions, the resulting interval [41m, 103m] corresponds
broadly to cars 3 to 5 out of the 10 car train. )is may
correspond to the first two cars being occupied mostly by
other passengers destined downstream Noisy-Champs, as
well as to some relocation behavior before boarding the
train by Noisy-Champs users in order to benefit from
better on board comfort (more available seats and less
crowded standing spaces). Coming to the queuing char-
acteristics, the queue focal point at 4 meters from the
validation gates corresponds to the exit point of the
vertical element (escalator and stairways), while queuing
would arise at its entry point according to our field survey:
this difference may be linked to the fact that people have
little if any possibility to overtake one another on the
vertical element, therefore making its exit point a replica
of its entry point. )e queue moving speed of .92 m/s is
about one-fourth less than the average speed, which looks
consistent.

By depicting the CDFs of the travel time distributions in
the FF, IC, and FC models, respectively (in the right-hand
part of Figure 6), a typical bottleneck pattern arises: the free-
flow CDF mimics the cumulated flow of user arrivals in a
bottleneck, whereas the IC and FC CDFs each mimics a
cumulated flow of bottleneck exits. From the PDF curves (on
the left-hand side of the figure), it is obvious that the
congested models are much better fits to the empirical
observations than the free-flow one. From either congested
model, it is possible to estimate exit capacity based on the
train data rather than on the provisional basis. From the FC
model, the bottleneck flow rate amounts to A × .015s− 1 �

2.94 people per second.
From the free flow to the full congestion estimates of
Θ(ℓ,w), the FC length parameters correspond to alighting
positions closer to train head (by 6m on average) and more
concentrated (SD reduced from 20.2m to 15.6m). Both walk
speed distributions comply to the same exogenous average of
1.2m/s; under null covariance, the estimated SD of FC is
10% higher than the FF one, but the FF estimation with
nonzero covariance yields the same speed SD estimate as the
FC. )is suggests that nonzero covariance in the FF model
may point out to the occurrence of queuing.

6.2.3. Train at 18 : 32 :14. )e 18 : 32 train has a 10′ interval
and disembarks 156 alighting passengers at Noisy-
Champs. )e empirical profile of egress times (in Fig-
ure 7) suggests the occurrence of queuing in the 70–100-s
interval. Yet we first applied the free-flow model to es-
timate the vector of parameters of the joint distribution of
walk speeds and lengths, Θ(ℓ,w) ≡ [mℓ, sℓ, mw, sw, χ].
Starting from initial values of [100, 20, 1.2, 0.3, 0] and
keeping mw � 1.2 m/s for the sake of identifiability, we
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obtained the MLE estimates of [96.11, 21.85, 0.281, 0],
with a log-likelihood of -741.88. )e length parameters, as
well as the speed SD, are fairly consistent with those of the
18 : 59 train.

Coming to the incomplete congestion model, the [τ1, τ2]
interval is set to [48s,68s], based on our ex-ante convention.
)eMLE ofΘ(ℓ,w) yielded an optimized vector of parameters
of [96.66, 20.76, 0.280, 0] for [mℓ, sℓ, sw, χ], with a log-
likelihood value of -739.21. )ese estimates are very close to
those of the FF model.

Lastly, we applied the full congestion model to esti-
mate both the walking parameters Θ(ℓ,w) and the queuing
parameters ΘQ. )e estimated values are [95.600, 21.70,
0.279, -0.07] for [mℓ, sℓ, sw, χ] and [3.190, 63, 83, 0.798] for
[ℓ∗, τ∗1 , τ∗2 , v∗], with a log-likelihood value of − 738.638.
Again, the estimate ofΘ(ℓ,w) is very close to those in the FF
and IC models. )e nonzero value of covariance χ is close
to zero, and it may be neglected with no loss of statistical
significance (log-likelihood level at -738.77). As for
queuing parameters, the queuing focal point is located at
3.2 m from the validation gates and the average queue
moving speed of 0.798 m/s is both plausible and con-
sistent with the estimation for the 18 : 59 train.

Applying the ex-post analysis of §5.1.1 to the FC out-
comes, the distribution of w− 1 has a relative dispersion of
23% and a mean of 0.88 s/m. )en, the underlying distri-
bution of free-flow egress times has a relative dispersion of
0.32 and mean of 84s and SD of 26.88. Length variations
contribute to 47% of egress time variations, yielding signal-
to-noise of 90%—on the other side of 1 compared to the 18 :
35 train.

Looking into the PDF profiles, the congestion range of
[63s, 83s] estimated under the FCmodel looks more relevant
than the provisional convention of [46s, 105s]. )e asso-
ciated bottleneck capacity amounts to 156 × .017s− 1 � 2.6
people per second.

Overall, the 18 : 32 train yields a large alighting flow
giving rise to some queuing, in a lighter way than the 18 : 59
train. Modeling the light queuing by the IC and FC models,
rather than neglecting it by keeping to the FF model, pro-
vides an improvement of 2 or 3 points in log-likelihood.)is
falls in a gray area between “little significance” and “marked
significance.”

6.2.4. Train at 18 : 46 : 33. )e 18 : 46 train has a service
interval of 11′ and disembarks 230 alighting passengers.
Under the free-flow model with mw set to 1.2m/s, the es-
timated parameters are [104.37, 27.84, 0.357, 0.761] for
Θ(ℓ,w) ≡ [mℓ, sℓ, sw, χ], with a log-likelihood value of
-1163.56. )e length parameters are consistent with our
previous findings, whereas the speed SD is higher by one-
fourth.)e non-null though small estimate of the covariance
parameter suggests the occurrence of congestion, which is
further substantiated by the empirical PDF profile in
Figure 8(a).

We then resorted to the incomplete congestion model,
by setting χ to zero and conventional congestion range of
[44s, 120s]. )e resulting estimate is
[mℓ, sℓ, sw] � [98.29, 22.01, 0.376] , with a log-likelihood
value of -1160.31—a 3 point improvement upon the FF
model.)e length parameters have estimates consistent with
the FF model and the other trains. )e speed SD estimate is
consistent with the FF model only.

Turning to the full congestion model and making the
queuing parameters endogenous, the log-likelihood was
further increased to -1158.91 – indeed a small improvement,
again suggesting light congestion for that train arrival. )e
walking and queuing parameters have respective estimates
of [mℓ, sℓ, sw, χ] � [102.5, 24.36, 0.352, − 0.10] and
[ℓ∗, τ∗1 , τ∗2 , v∗] � [4.340, 56.06, 87.07, 0.880]. Once again the
queue focal point is located about 4m from the validation
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Figure 6: PDF (left side) and CDF (right side) of egress times for the train at 18 : 59.
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gates, and the queue moving speed is close to 0.9m/s. )e
queuing interval of [56 s, 87 s] is much shorter than under
our provisional convention. As for the walking parameters,
the length parameters are consistent with our previous
findings both for that train and the other ones; the speed SD
is similar to its FF and IC counterparts.

Applying the ex-post analysis in §5.1.1 to the FC out-
comes, the underlying free-flow distribution of w− 1 has a
relative dispersion of 29% and a mean of 0.90 s/m. )en, the
underlying distribution of free-flow egress times has relative
dispersion of 0.38 and mean of 92.25s and SD of 35s. Length
variations contribute to 39% of egress time variations,
yielding signal-to-noise of 33%—that is, speed variations
would be twice more influent than length variations in the
variations of free-flow egress times.

6.3. Synthesis. We presented the estimation of the three
traffic models FF/IC/FC for four trains with different levels
of alighting flow yet taken from the same time period–half an
hour in the evening peak on a given working day. )e
presentation was ordered so as to demonstrate first the FF
model on the basis of the 18 : 35 train and then the congested
models using the 18 : 59 train for which it is most advan-
tageous to model congestion in an explicit way. )ese two
trains constitute the extreme points of a range, which en-
compasses the two other trains at 18 : 32 and 18 : 46.

On MLE computation. For every train, we applied the traffic
model in a progressive way, from FF to IC and then to FC.
)is enabled us to compare the resulting estimates for that
train and to characterize the queuing phenomenon pro-
gressively. )e application of MLE to the FF model is easy:
using the standard optimization algorithms provided in
Excel as well as in Python libraries, the convergence was
straightforward. Also endowed with straightforward

convergence is the application of MLE to the incomplete
congested model under exogenous queuing parameters—the
ex-ante determination of the [τ1, τ2] interval under the
educated guess of a 2p/s exit capacity. But the endogeni-
zation of the queuing parameters introduces discontinuities
in the log-likelihood function, therebymaking the numerical
optimization a much more demanding task. In practice,
using an Excel spreadsheet for each train, we resorted to a
heuristic alternation of automated search (using the Excel
solver) and manual adjustment to get to the “optimal
points,” where local optimization was obtained. We got
satisfied with the resulting estimations because they induced
fairly good reproduction of the PDF and CDF profiles of the
empirical distributions of the egress times.

At the train level, the model estimation enables us to
recover the underlying distribution of walking lengths and
speeds, under preset mean speed to ensure identifiability.
)e estimates of walk speed SD range from 0.28 to 0.38m/s,
with some interplay with the covariance parameter. From
the free-flow model applied to the fluid train at 18 : 35, the
statistical independence between walk speeds and lengths is
strongly supported. Conversely, a nonzero covariance es-
timate would capture some part of the queuing phenome-
non. )is may be useful when applying the free-flow model
in order to detect the occurrence of congestion—therefore
calling for the application of congested models.

As for the distribution of walk lengths, the mean and SD
estimates of the congested models are consistent at the train
level: they differ from the corresponding free-flow estimates
by a reduction in both the mean and SD, meaning that
neglecting the queuing phenomenon by applying only the FF
model will lead to biased results.

)e estimates of the mean length parameters seem to
vary in a systematic way depending on the train: larger
alighting flow comes along with larger mean length,
meaning larger alighting positions from the train head in the

0,000

0,005

0,010

0,015

0,020

0,025

20 50 80 110 140 170

Emp_PDF

FF_PDF

IC_PDF

FC_PDF

Egress time (s)

0,0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9
1,0

20 50 80 110 140 170

Emp_CDF

FF_CDF

IC_CDF

FC_CDF

Egress time (s)

Figure 7: PDF (a) and CDF (b) of egress times for the train at 18 : 32 :14.
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platform configuration at Noisy-Champs. )is suggests that
on-board positions are influenced both by the exit condi-
tions and the passenger load conditions along the train.

Coming to the queuing phenomenon, the bottleneck
behavior has been evidenced by three out of the four trains in
the half hour period under study. )e time range of queuing
depends on the train: the larger alighting flow decreases the
queue beginning time and increases its end time. While
empirical data exhibit significant instantaneous variations in
the exit flow rate, the bottleneck postulate enables us to
identify the average exit capacity in a straightforward way.
From the two most congested trains, this capacity falls in the
range of [2.5, 3] p/s; that is, it is much higher than our ex-
ante convention of 2 p/s.

)e notion of queuing focal point ℓ∗ is supported by the
estimation results of the FC model. )e estimated positions
at about 4m from the validation gates correspond to the exit
point of the vertical element, which combines an escalator
and a stairway. )e queue moving speed v∗ was estimated
consistently between the three congested trains, around
0.9m/s, that is, one-fourth less than the mean free-flow walk
speed. )e queue focal point and the queue moving speed
are strongly complementary parameters: their ratio
t∗ � ℓ∗/v∗ is a propagation time to transport the queuing
time range from ℓ∗ to length 0.

7. Conclusion

7.1. Summary

Physical 3eory and Stochastic Model. Individual egress
times from train alighting to station exit constitute a sta-
tistical population at the train level, with much variability
across the individuals. We modeled the magnitude and
variations of egress times as a random variable and captured
its dependencies onto underlying factors of (i) walk length,

(ii) pedestrian speed, (iii) and possibly congestion among the
alighting passengers (in the form of a traffic bottleneck). As
the train is long, the alighting positions are stretched out
over it, giving rise to distributed walk lengths. Also dis-
tributed among the individual users are the walk speeds in
the “free-flow” regime. In turn, so is the egress time under
free flow (FF). We provided a stochastic model of FF egress
times, with explicit analytical formulas for its CDF and PDF
depending on the joint distribution of walk lengths and FF
speeds. As for congestion, we modeled it in the form of a
traffic bottleneck based on a queue focal point ℓ∗, a con-
gested interval [τ∗1 , τ∗2 ] at that point and a queue moving
speed v∗ up to the station exit. Decomposing the train
population of egress times depending on whether the user
would pass at ℓ∗ before, after, or during the queued interval,
an explicit analytical formula was obtained for the PDF of
the egress time in the so-called full congestion (FC) model.
)us, both the FF and FC models are endowed with ana-
lytical formulas. Between them, an intermediary model
called “incomplete congestion” (IC) assimilates the queue
focal point to the station egress point.

By postulating a bivariate Gaussian distribution for the
walk pairs of length and FF speed, straightforward com-
putable formulas are available for the CDF and PDF of the
FF egress time and for the PDF of the IC/FC egress time.

Estimation Methodology. )e physical and stochastic
model of egress times pertains to a triple of train, plat-
form exit point and station access point, since the dis-
tribution of walk lengths depends on the positions on
board the train of the alighting users, as well as on the
walk pathway topology. Under free flow, we devised a
simple estimation method to recover the length distri-
bution from that of egress times, under exogenous dis-
tribution of walk speeds. More generally, a maximum-
likelihood estimation (MLE) method was devised on the
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basis of the PDF and CDF formulas to construct the
likelihood function of the model parameters depending
on an observed egress time.

Case Study. )e model and its MLE method were applied to
the train station “Noisy-Champs” in Paris. )e four trains
serving the eastwards platform during half an hour on the
evening peak of a typical workday were studied on an in-
dividual basis. As their respective alighting flows are con-
trasted, one gives rise to free-flow conditions, whereas the
other three experience a queuing episode. )e datasets of
egress times were constituted from AFC records of pas-
senger station exit times, related to AVL records of train
platform arrival times. Estimation results were reported and
commented, as well as the MLE applicability.

7.2. Outreach, Limitations, and Further Research. )e model
is sensitive to train characteristics: notably, the probability
distribution of the alighting positions and also the alighting
flow volume. It is also sensitive to platform and station
features, through the distribution of walk lengths as well the
walk pathway and its width available to pedestrians. FF walk
speeds are featured as preferred speeds at the individual
level, that is, cruising speeds rather than instantaneous
speeds.

)e traffic theory in the model pertains to a specific kind
of congestion among the train-alighting users, with little or
no disruption by other users waiting for boarding or staying
on board.

)e model involves a simple topological configuration
for the triple of train dwelling position, platform exit point,
and station access point (validation gates). When dealing
with a platform exit point situated at an intermediary po-
sition on the dwelling length, the alighting positions must be
considered with respect to that point.

As for the estimation methodology, it requires the
identification of the abovementioned triple in the dataset of
train egress times. Such dataset enables one to identify all
except one components in the parameter vector of the walk-
length pair distribution, and all of the queuing parameters
when queuing occurs.

Our four cases of model application demonstrate the
model ability to simulate the empirical distribution of egress
times in an efficient way. Both the walking features and the
queuing characteristics were uncovered, with outcomes
endowed with much plausibility. )e assumption of a bi-
variate Gaussian distribution of walk lengths and free-flow

speeds is merely instrumental: it enables for straightforward
interpretation of the estimation results as well as for easy
computation. More general distribution may also be con-
sidered: yet the computational cost would be higher.

)e discontinuity of the likelihood function for the
congested model is more problematic. It may be attacked
from three different sides: either by refining the physical
theory to smooth out the contours of the queuing episode, or
by refining the stochastic theory to allow for some speed
variability at the individual level, or by utilizing a more
sophisticated optimization algorithm to deal with discon-
tinuity and local optima (e.g., a genetic algorithm).

Other directions for further research include the
following:

(i) )e critical review of the likelihood function, with
special attention to the queuing part and the as-
sociated assumptions of independence

(ii) )e consideration of nonparametric estimation for
the walk and speed distribution

(iii) )e theorization of other kinds of passenger con-
gestion, involving the alighting users in interaction
with other platform users that wait for boarding or
simply go through it form an entry point to another
exit point, and maybe also with those train users
remaining on board

Appendix

In themodel with Gaussian components, the bivariate vector
(ℓ, w) has mean vector m � (mℓ, mw) and covariance matrix

Σ �
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2
ℓ χ
χ s

2
w

􏼢 􏼣, which is inverted as Σ− 1 � 1/Δ s
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2
w − χ2. Define ρ ≡ χ/(sℓ · sw) such

that Δ � s2ℓs
2
w(1 − ρ2).

Now, letting ω ≡ [(ℓ, w) − m]TΣ− 1[(ℓ, w) − m], the joint
PDF of the (ℓ, w) pair is
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A. Distribution of Lengths
Conditionally to Speed

Conditionally to w, the ω function reduces to a function of ℓ
only, such that
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Letting s2ℓ | w ≡ Δ/s2w � s2ℓ(1 − ρ2) and mℓ | w ≡ mℓ + (w −

mw)β for β ≡ χ/s2w, the conditional variable ℓw has PDF
proportional to exp(− (1/2)ω), hence to
exp(− (1/2)(ℓ − mℓ | w/sℓ | w)2): thus, it is a Gaussian variable,
ℓw is N(mℓ | w, s2ℓ | w).

B. Auxiliary Function

Let us now consider function Mx(y) ≡

􏽚
∞

y
w _Sw(w · x)dW(w): it holds that
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whereas sx ≡ ((x − β)2s− 2
ℓ | w + s− 2

w )− (1/2), mx ≡ s2x((x − β)(mℓ
− βmw)/s2ℓ | w + mw/s2w), and Kx � (1/

���
2π

√
)exp(1/2)

((mx/sx)2 − (mℓ − βmw/sℓ | w)2 − (mw/sw)2).
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Hence, the definition of sx and mx. )us,
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Data Availability

Data are available on request from the authors.

Additional Points

A physical theory of platform egress times, involving
walking features together with a pedestrian traffic bottle-
neck. Analytical model of egress time PDF, either free flow
or congested, depending on the joint distribution of walk
lengths and free-flow speeds, together with queuing char-
acteristics. Straightforward numerical computation for bi-
variate Gaussian pair of length and speed. Maximum-
likelihood estimation method at the train level to uncover
the underlying walking features as well as the queuing
characteristics. Application report for four contrasted trains
of urban mass transit in the Paris urban area.
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