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Fabien LEURENT 
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Abstract 

Swappable batteries have been deployed in several services of dockless shared e-scooters. 
This article provides an economic theory of swappable batteries in the production of a shared 
e-scooter service (S3). Explicitly modelled are the operations of battery swapping by “juicing 
tours”, as well as the wearing law of the electric batteries depending on the depth of discharge 
(DoD) that triggers the next swap. In the production model, the daily number of refills and the 
per-refill swapping cost are key variables as they link the field implementation and the 
swapping logistics functions to the other production functions of battery inventory, scooter 
inventory, energy charging, fleet maintenance and commercial. Thus the overall “refill 
strategy” interplays with the respective inventory policies of batteries and of scooters. The 
mathematical optimization of the production cost function is addressed in four stages, by 
optimizing in turn (i)  the swapping tours, (ii) the target DoD, (iii) the battery energy capacity 
(BEC), (iv) the scooter body in terms of lifespan and energy consumption rate. Characteristic 
equations are established for the optimal per-refill cost, DoD, BEC, scooter lifespan and 
energy consumption rate. Two sets of specifications, namely Constant Elasticity and Affine 
Linear, are specified for the battery wearing law, the battery price and the scooter price: under 
either set the model admits an analytical solution. In a numerical study, it is shown that the S3 
cost per unit of fed-in energy is one order of magnitude greater than the out-of-the-grid 
electricity price.  
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Highlights 

• Optimal refill tour productivity as a CES function 
• Refill strategy brings together juicing costs, battery and scooter prices and battery wearing law 
• Battery wearing law linking lifetime number of charging cycles to Depth of Discharge 
• Assuming Constant Elasticity sub-models, optimal battery energy capacity is straightforward 
• Under Affine Linear sub-models, optimal battery energy capacity characterized by a quartic equation 
• Scooter inventory policy involving lifespan and the energy consumption factor 



   Swappable Batteries in Shared e-Scooters Economics 

Revised version R2 : 31 May 2022  2/51 

1. Introduction 

1.1 Background 
Dockless shared e-scooter services (S3) have spread fast from their introduction in 2017 and 
2018 by Bird, Spin, Lime and other operators (Button et al. 2020). Over 2018 they became the 
dominant mode of shared micromobility in the United States, surpassing shared bikes with 
docks as well as dockless ones (Zhang and Guo, 2020).  

Beyond the easy deployment of dockless two-wheels in urban settings, the main reason for S3 
success may well lie in its specific user experience and quality of service: ease of use, 
efficient speed competitive with strongly motorized modes in dense areas, comfort of the 
standing position little exposed to crowding, the pleasure of driving autonomously, 
effortlessly, smoothly and openly in the urban environment (6-t, 2019). An obvious 
requirement pertains to getting an available vehicle in the street: it relates to service coverage, 
fleet size and demand patterns (Leurent, 2021). Another requirement is the willingness-to-pay 
of the users, since service prices are relatively high: typically, $1 or €1 to unlock plus .15 or .2 
per minute of utilization (Nawaro, 2021). On assuming average speeds of 12 to 15 km/h, i.e. 4 
or 5 minutes per km, the variable fee amounts to about $1 or €1 per km, which is higher than 
the average cost of using one’s car and much higher than typical rates of public transit 
(Noland, 2019). 

These prices correspond more to the usage value and the users’ willingness-to-pay than to the 
supply costs: in an economic study of an early Bird service, the BCG (2020) showed that out 
of average revenue of $4.1 per ride, operations costs amounted to one good half, leaving out 
the other half for fleet investment and margin. The perspective of making high margins in an 
easy business has drawn many competitors in the field: as of 2019, more than 10 operators 
deployed their fleets in the streets of Brussels (Moreau et al., 2020), Paris (6-t, 2019) and 
other cities (Button et al. 2020). To date, such competition has not led to price decreases – 
although it may have avoided price increases such as that observed in Los Angeles (up to $.39 
per min in 2019, see BCG 2020). However the operators have endeavoured to reduce their 
supply costs by acting on two main levers (Kamps, 2018): first, improving scooter longevity 
by introducing second and beyond generations of scooters especially designed for shared 
usage; second, turning to more efficient battery charging processes, turning from gig-worker 
“juicers” collecting the scooters to swappable batteries (McKinsey, 2019). According to 
Gaucquelin (2020) the advantages of swappable batteries are twofold: first, increasing the 
uptime of scooter availability in the field and, second, reducing the weight to carry by the 
juicers. By fast adaptation, major service suppliers have adopted sturdier scooter bodies aimed 
to longer lifespans, together with swappable batteries of relatively large capacity and 
swapping processes either by company-operated tours (e.g. Lime, 2020) or by enticing some 
users to swap batteries at specific charging spots (e.g. Tier, 2020). Figure 1 exhibits shared e-
scooters with swappable batteries in Paris streets. Yet, by the end of 2020, some scooter 
makers and S3 operators kept to batteries embedded in the e-scooters, with focus on larger 
battery capacity and better lifecycle management of both the batteries and the scooter bodies, 
each kind in its own respect (Link, 2020, Bird, 2020).  

Here we shall focus on the production of an S3 service, encompassing the operations of 
battery charging and swapping, the inventory of e-scooter bodies and their longevity, as well 
as the inventory of batteries and their own longevity which is related to the depth of discharge 
at swapping. We will look into the interplay of these aspects and their implications on the 
production costs: what are the determinants of the production costs? To which extent do the 
batteries and their energy refills contribute to these costs? Considering that batteries as 
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equipment and the logistics of their refills in energy basically constitute means to feed energy 
in scooters, what is the unit cost of such fed-in-scooter energy? What savings can be 
harvested by suitable battery specification and management – in other words, what value can 
be created? 

 

Fig. 1. Shared e-scooters in Paris streets: the adoption of swappable batteries 

 

1.2 Related work 
In an up-to-date review of scientific literature on electric car-sharing and micromobility, Liao 
and Correia (2022) addressed three folds: first on the patterns of use and travel behaviours i.e. 
the demand side, second on the safety impacts for modal users and also for pedestrians, third 
on the environmental impacts and specially the carbon footprint of such mode. As for 
economic issues pertaining to dockless shared e-scooters, Button et al. (2020) provided a 
high-level analysis addressing successively (i) the demand side of the market, (ii) the 
supplying industry in terms of market structure, market contestability and instability, (iii) the 
supplying firms and related issues of venture capital, labor side and its remuneration, as well 
as pricing, (iv) regulation of negative externalities, (v) stimulation of positive externalities. 
Concerning production cost analysis, these authors referred to “grey literature”: specifically 
the cost breakdown study by Trefis Team (2018) which mainly stated that the core company’s 
expenses pertain to scooter acquisition and charging. In turn this study is based on Kamps 
(2018) who analysed an operator’s margin over one scooter lifetime for three notional e-
scooter models differentiated mainly by their respective longevity: (i) 300 rides, (ii) 500 rides 
owing to somewhat sturdier design and (iii) 1000 rides for a “super-scooter” much sturdier 
and of which the battery would be swappable.  

Pioneering studies of early Bird implementations (Griswold, 2019, BCG, 2020) shed more 
light on pricing, revenues and production costs: the operational expenses (excluding scooter 
acquisition) of nearly $2 per trip were broken down in about 65% for charging and 20% for 
repair, among other expenses. Demoere (2020) built up a quantitative model of production 
costs and revenues for an S3 service in a city: identifying the different functions in 
production, he provided cost formulas for each of them with respect to a common set of 
parameters such as fleet size and demand flow. The model was applied to explore ranges of 
factors and look for conditions of service financial profitability. 
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To the best of our knowledge, e-scooter longevity has not yet been subjected to economic 
analysis. It makes a key issue in Life Cycle Assessments of the environmental impacts: after a 
quick study (Griswold, 2019) pointed out to very short lifetimes of 28 days owing to theft and 
vandalism in Louisville, Kentucky, lifespans of 2 to 7 thousand km were considered for 1st 
generation shared e-scooters (Hollingsworth et al. 2019, De Bortoli and Christoforou 2020, 
ITF 2020), whereas lifespans of 6 to 14 thousand km were put forward for 2nd generation 
scooters (ITF 2020, Moreau et al. 2020, De Bortoli 2021). Yet these are still provisional 
indications, since “as this service is very new, the lifetime is still expanding…, a final 
estimate of the average lifespan of those e-scooters will only be available when all e-scooters 
reach their end-of-life” (Moreau et al. 2020). The statement must be kept in mind on reading 
the claims of e-scooter makers as well as those of shared service operators, such as the 5 year 
lifetime target for Voi’s e-scooters (Voi, 2020) or the respective lifetimes of scooter bodies 
and batteries (Link, 2020). 

1.3 Objective and contribution 
This article provides a technical and economic model of the production of a dockless shared 
e-scooter service with swappable batteries, considered at the city level. It encompasses 
swapping logistics by company-operated tours, scooter inventory, battery inventory and 
mutual interactions such as the influence of the target depth-of-discharge at swapping on 
battery wearing. 

The model is a theoretical one: we postulate mathematical functions between the model 
variables (e.g. fleet size and scooter renewal flow) to state the technical relationships and to 
derive economic relationships of two kinds: first, the formation of production costs, second, 
the optimization of the production cost function with respect to decision variables that depend 
on the service operator: the productivity of swapping tours and the number of juicer duties, 
the target Depth-of-Discharge (DoD) and the Battery Energy Capacity, the scooter lifespan 
and its energy consumption rate. It is shown that the per-refill swapping cost plays a key role 
as it links the logistics of energy feeding, in the short run, to the medium-run setting of target 
DoD to trigger swapping and the long-run specification of battery capacity and scooter 
parameters. 

Battery wearing with respect to DoD at swapping is modelled as a relationship between the 
lifetime number of charging cycles and the DoD. To fix ideas, two simple mathematical 
specifications are put forward as “specific technologies”: Constant Elasticity and Affine 
Linear. 

Under either specification the model is easy to solve. To demonstrate its application, we 
conduct a numerical study that explores some ranges of the parameters and gives some 
insights in cost-optimized conditions of service production. 

1.4 About methodology  
Compared to previous works by the BCG (2020) and Demoere (2020), our model is a 
theoretical one. Explicitly represented are the technical processes of juicing tours and battery 
wearing according to the target DoD. Also explicitly represented are the economic 
consequences of service production and its usage, i.e. its daily traffic, onto the operational 
expenses. Furthermore, to constitute the full service costs we also represent the inventory 
policies for scooter bodies, on the one hand, and removable batteries, on the other hand. 

The resulting mathematical function of production costs is subjected to formal optimization, 
thereby modelling cost-minimizing supplier behaviour. The resulting first-order optimality 
conditions do constitute economic relationships between the decision variables. We will insist 
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on the interplay of juicing tour productivity and technical conditions, of battery conditions 
both short run (DoD) and long run (nominal capacity), and of the price functions of both 
scooter bodies and batteries. 

To sum up, the scientific approach is basically theoretical. The empirical side is restricted to 
the setting up of the model parameters in the numerical study. 

1.5 Article structure 
Following this introductory section, the body of the article is organized in eight parts. Section 
2 builds up the technical model: from juicing tours, to battery wearing and up to battery and 
scooter inventory policies. Section 3 lays out the economic model of service production: a 
cost function is constituted from the specific functional costs of commercial operations, field 
implementation, energy provision, battery logistics, battery inventory and scooter inventory. 
The next three sections deal with cost optimization with respect to, respectively, juicing tour 
productivity in Section 4, battery depth of discharge and energy capacity in Section 5, scooter 
lifespan and energy consumption rate in Section 6. Section 7 provides a numerical 
application. In Section 8, we discuss the outreach and limitations of specific sub-models, 
namely the unit swapping cost, the swapping policy, the juicing strategy, the battery price and 
the scooter body price. Lastly, Section 9 summarizes the economic theory and points out to 
further developments. 
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Main Notation �  demand volume: number of rides per day at the service level ℓ�  average length of e-scooter ride requested by a customer ��  daily commercial traffic at service level ��  daily energy consumption of service usage ��  number of refills per day 

Swapping logistics ��	 or �
,  Battery swap time per scooter on refill tour ���  Base run time per refill tour �
  Depot time per refill tour �� = �
 + ���  Base time per refill tour  ��  Average time of refill tour ��  Daily duration of swapper duty �	  Number of battery swaps per refill tour ��  Daily frequency of refill tours ��  Number of swapper duties ��   Daily cost per swapper duty H  Period of service operations in a typical day ��  daily maintenance cost per scooter, from function Γ� of scooter lifespan 
p~  per-vehicle costs on a daily basis ��  Per-refill cost of swapping strategy 

Battery issues �  Depth of discharge triggering battery removal �  battery nominal energy capacity �	   Daily flow of battery renewals �	   Battery price, from price function P	   !"   number of batteries  #	   Number of charging cycles (number of refills) over battery lifetime  R	   Battery wearing law associated to Lifetime energy intensity function E	  and auxiliary 
function ψ	    E', )  Parameters of Constant Elasticity E	 function  E�, *  Parameters of Affine Linear E	 function  

Scooter issues +, fleet size (number of vehicles) + number of in-field scooters in sufficient energy charge state ��   Daily flow of scooter renewals -�   Scooter lifespan .�  energy consumption of an e-scooter per ride length unit ��   Scooter price, from price function P�   /�   Number of battery refills over scooter lifetime 
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2. Technical Model 
Here we consider one service of shared e-scooters operated in a given urban area. 

2.1 From service traffic to refill needs 
Let � denote the average daily number of rides made using the service and ℓ� their average 
length. Thus, the traffic quantity produced daily amounts to 

�� = �. ℓ� (2.1) 

Indices R and L stand for Ride and Length respectively. 

Denote also .� the average electricity consumption per unit of travelled length. Thus, per day, 
the energy consumption of the e-scooters is simply  

�� = .� . �� = .� . �. ℓ� (2.2) 

Let now � denote the nominal battery capacity in amount of energy. The current battery state 
of charge (SoC) is measured as the proportion of � that is still available. A depth of discharge 
(DoD) is defined as 1-SoC. Let us define � ∈ 20,15 as the maximum DoD that is allowed in 
field operations by the service supplier: when the battery DoD reaches � then after the end of 
the on-going ride the scooter is made unavailable to customers until the low-charge battery is 
removed and replaced with a fresh one. For brevity we shall refer to � as the target DoD or 
just “the DoD”. 

Then, the product �. � measures the amount of energy that is consumed per battery over a 
cycle of usage: on average it is equivalent to the amount received by the battery over a 
charging cycle. Per day, the number of such cycles, ��, induces an energy influx of ��. �. � 
that will balance the in-the-field energy consumption: thus, 

�� = ���. � = .� . �. ℓ��. �  
(2.3) 

On a daily average, the number of charging cycles is also the number of battery swaps, hence 
of scooter refills with fresh batteries. We shall call it the daily number of refills. 

2.2 Juicing as a logistical process 
An elemental battery swap consists in replacing a battery with low energy level ≤ (1 − �). � 
by a full one under nominal energy capacity (load level about �). By assumption, battery 
swapping makes the specific duty of specific service agents called swappers or juicers.  

Denote as �:; the elementary time of scooter identification on the roadway, battery swapping 
and also juicer approach from the traffic flow to the scooter location and return: it pertains to 
the juicer and his or her vehicle. 

Denote ��< the base run time of the juicing tour. Assuming that there are �; scooters to be 
refilled in that cycle, the juicing cycle time amounts to the following 

�< = ��< + �	. ��	 (2.4) 

Furthermore, the Refill task involves recharging the depleted batteries. Assuming that this is 
done off-line in a depot, the juicing tour also involves to drop and plug the depleted batteries 
and to pick a number of recharged batteries at that depot; some rest time may also be allowed, 
leading to a depot time denoted �= per juicer tour.  
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Overall, a juicing tour time amounts to 

�� = �= + ��< + �	. ��	 (2.5) 

Index J stands for “Juicing”. To keep notation simple, the average depot time per battery for 
drop-off and pick-up may be included in ��	. The key thing is that the juicing tour time is a 
linear affine function of the number of refills, �	. As �	 is the refill production at the tour 
level, it measures the productivity of the refill tour. 

Denote as �� the number of swapper duties, by �� the time period of daily activity for each of 
them. Per day, the number of juicing tours amounts to 

�� = ��. ��/�� (2.6) 

Denoting as H the daily time length of service operations (in most cases we can expect that H 
=24h), ��/� is the frequency of refill tours. As �	 is the average number of refills per tour 
the total number ��. �	 is supplied to match the refill demand �?: then it must hold that 

��. �	 = �? (2.7) 

or equivalently that 

 ��. ��. �	 = ��. �?. 

Thus �� stands as a function of �? and �	, among other parameters of the refill process. 
Combining (5) and (7), and denoting �� ≡ �= + ��< and �
 ≡ ��	 for short, we get that 

�� = �?�� (�
 + ���	) 
(2.8) 

2.3 On battery wearing and renewal flow 

The wearing or ageing of an electric battery consists in the progressive decrease of its 
effective capacity: from the nominal level at the beginning of the battery lifetime down to 
some pre-defined level. Electric Vehicle suppliers advise their customers to replace their 
batteries when the effective capacity goes below 80% of nominal (Battery University, 2019), 
while e-scooter suppliers warrant battery replacement of the effective capacity falls below 
70% of nominal in less than 500 charging cycles (De Bortoli, 2021). This reduction is 
achieved after a number of charge and discharge cycles that depends on the target DoD. Let 
us model the number of cycles “up to battery dismissal” as a function R	(�). It is the number 
of refills experienced by a battery. In other words, it indicates the battery lifetime in number 
of charging cycles. 

Then, on an average basis, the daily flow of battery renewals is equal to the daily number of 
refills divided by the battery lifetime: 

�	 = �?R	(�) = �A�. �. R	(�) 
(2.9) 

In the formula, �A depends neither on � nor on �. The influence of � on �	 is twofold as it 
involves first its own magnitude and second the associated battery lifetime. Both influences 
combine in product form. 
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2.4 Scooter inventory 
Coming to the scooters, let us model the endurance of the scooter to wear and tear as a total 
length to be travelled over its technical lifetime, denoted -� and called lifespan. Then, on an 
average basis, the daily flow of scooter renewals �� is equal to the daily travelled length �B 
divided by the scooter lifespan -�: 

�� = �B-� = �. ℓ�-�  
(2.10) 

As for the total fleet size, let us denote it as +,: this number adds up the number + of scooters 
that can be used by customers with no restriction of low energy or bad state and the number +′ of scooters waiting for refill. On average during the period of operations, there are ��. ��/� juicing tours running simultaneously, each of which dealing with �	 scooters. Per 
tour, on average half of the scooters have just been refilled, so that the current number of low 
charge scooters is equal to 

 +′ = ��. �	. DEFG = �? HEFG (2.11) 

We thus obtain that 

+, = + + �? ��2H 
(2.12) 

 

2.5 Battery inventory 

The number of batteries involved in the service, !" , comes from (i) those deployed in the field, 
in number +,, (ii) those transported by juicers, in number �	 per tour, (iii) the batteries at the 
depot either being charged or waiting before or after charging. 

The second part is also proportional to the number of juicing tours running simultaneously: 
we can also measure it as +′. According to Little’s law, the third part may be modelled as the 
product of the daily flow rate of refills, �?, times an average depot time per battery, say �J for 
Recharging.  

On combining the three parts, we obtain that  

!" = +, + +K + �?H �J 

Thus, 

!" = + + �?H (�� + �J) 
(2.13) 
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3. The economic model 

3.1 Service production and related costs 
Service production requires (i) the holding of production means, including scooters, batteries 
and depot, (ii) back office processes of administration and maintenance, (iii) battery refilling, 
(iv) the juicing logistical process, (v) commercial functions, of which the magnitude will be 
roughly proportional to the demand volume. 

All of these functions give rise to specific production costs. We shall model them on a daily 
basis, be they of capital or operational kind of expenditure. 

For the e-scooters the capital expenditures have daily amount as follows: 

L� = ��. �� (3.1) 

Wherein �� is the scooter market price. We model �� as a function P� of scooter features -�, .A, � (since the scooter has to accommodate the battery of such capacity, hence such size and 
mass), together with other features denoted as M: 

�� = P�(-�, .A, �, M) (3.2) 

Factor M could represent driving controls (handles, braking controls), safety devices (lights), 
motor power, tyres and their comfort etc. Of course, under competitive conditions the price 
will reflect the manufacturing costs. 

Similarly, the daily amount of capital expenditures pertaining to batteries is modelled as 

L	 = �	. �	 (3.3) 

Wherein �	 is the battery market price. We shall model �	 as an increasing function P	 of 
battery capacity �: 

�	 = P	(�) (3.4) 

Again, under competitive conditions the price is expected to reflect the manufacturing costs. 

Depot costs are denoted as L
, administration costs as LN, maintenance costs as LO and we 
aggregate them in a function L
NO ≡ L
 + LN + LO. Dependencies onto fleet size +,, battery 
number !"  and number �� of swapper duties have sensitivity coefficients denoted ��, �	 and �� respectively. The daily per scooter cost �� includes maintenance and insurance costs, 
telecommunication costs for scooter connectivity in interaction to the service platform, and 
also parking costs if applicable. As a linear approximation we will consider a base back office 
cost of L
NO�  and an effective back office cost of 

L
NO = L
NO� + ��+, + �	!" + ����  

For model completeness we relate �� to -� in a decreasing way, because longer lifespan 
comes with sturdier body that will decrease maintenance requirement per length unit: let then 

�� = Γ�(-�) (3.5) 

Depending on the city of implementation, specific fees (or subsidies) may apply to the 
service: a fixed daily fee that turns L
NO�  into L?�, plus a per-scooter daily fee of �?. Then, the 
field implementation cost of the service amounts to 

L? = L?� + (�� + �?)+, + �	!" + ���� (3.6) 
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It is hereafter called the “Field cost” function. 

Coming to the juicing logistical process, let us denote as �� the daily cost of one juicer duty: 
it includes the wages of all employees for that duty (taking into account vacations etc) as well 
as the cost of the duty vehicle. Per day, the juicing process costs an amount of 

L� = ��. �� (3.7) 

As for energy costs, we assume that electricity is bought at unit market price �A and that the 
charging process involves some losses. Denoting PA the efficiency rate of this process, per 
unit of fed-in energy the effective price is �AK = �A/PA. Then, the daily energy costs of service 
operations amount to: 

LA = �AK . �A (3.8) 

Commercial costs denoted LQ are linked to the ride volume �: assuming a unit cost of RS, 

LQ = RS. � (3.9) 

Overall, the service costs on a daily basis are measured by the following function: 

LT ≡ L� + L	 + L? + L� + LA + LQ (3.10) 

 

Fig. 2: Influence tree of the technical-economic model. 
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3.2 The per-refill swapping cost 
Figure 2 traces out the influences of the variables +, �	, �, �, -�, .A which are decision 
variables of the service supplier, under technical conditions ��, �
 of juicing tours and demand 
conditions � and ℓJ. The number of refills, �?, holds a remarkable position at the interface 
between the renewals, energy and commercial functions, on one hand, and field 
implementation and swapping logistics, on the other hand.  

A remarkable property of the model is that �? fully conveys the influences of all of its 
upstream factors onto the field and swapping sub-models. It means that the influences of �, ℓJ, �, �, -�, .A onto L? and L� are all conveyed by �?. The sensitivity coefficient of L?� ≡ L? + L� to �? constitutes the per-refill swapping cost, denoted as ��: 

�� ≡ vL?�v�?  
(3.11) 

From the respective constitution of L? in (3.6) and of L� in (3.7), we have that 

L?� = L?� + (�? + ��)+, + �	!" + ��. �� + ��. �� 
= L?� + (�? + �� + �	)+ + (�? + �� + 2�	)+K + �	�? �JH + (�� + ��). �� 

From the constitution of +′ in (2.11) and that of �� in (2.8), and denoting �h� ≡ �� + ��, �w ≡ �? + �� + 2�	 and ��� ≡ �	�J/H, it comes out that 

L?� = L?� + (�w − �	)+ + �?. x��� + ��. y zwFG + {hEDE.|}~�. 
(3.12) 

Given + and �	, the coefficient of �? in the previous formula is precisely ��: thus, 

�� = ��� + ��. x �w2H + �h���. �	� 
(3.13) 

This formula of the per-refill swapping cost involves the swapping logistical process in terms 
of juicing tour time �� and tour productivity �	, together with the augmented juicing wages �h� 
and the composite per-scooter cost �w. The fixed part ��� pertains to the refill time �J and the 
marginal battery cost �	. 

To sum up, independently of the amount of energy that will be fed in the battery, each refill 
entails a specific cost that is the unit cost of the swapping strategy.  

The other influence of �? on the rest of service production costs, LT − L?�, is limited to that 
on battery renewal costs, L	, which is conveyed by �	. It holds that 

vL	v�? = �	 v�	v�? = �	#	 
(3.14) 

Then, the overall sensitivity of the service production costs to the number of refills has 
coefficient 

vLTv�? = vL?�v�? + vL	v�? = �� + �	#	 
(3.15) 

This holistic per-swapping cost adds up the per-refill swapping cost and the per-refill share of 
the battery price, in a lifecycle perspective. 
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3.3 Production cost as a function of action levers 
Most of the variables and parameters represent action levers for different actors as economic 
agents, according to their respective action levers. If energy provision was monopolistic then 
the electricity price �A would be controlled by the energy provider. If the scooter market 
(resp. the battery market) was oligopolistic then any scooter supplier (resp. battery supplier) 
would have some control over �� (resp. �	). The in-field per-scooter daily cost, �?, is 
expected to depend on local regulation and it may serve as an instrument of the local mobility 
policy. 

Yet we shall essentially focus on the S3 service provider. Its action levers include + and �	, �, �, -�, .A. Their respective outreach on the production functions and the associated costs 
is illustrated in figure 3. The order given to the components in the action vector reflects a 
temporal hierarchy of their respective outreach: �	 can be set up in the short run, while -� and .A are long run factors. Factors � and � may be considered as medium run factors: say short-
medium run for � and medium-long run for �.  

Active fleet size + is determined by the supplier according to not only production costs but 
also its revenues: it influences the service density in the field, hence the quality of service and 
in turn the demand volume. Demand volume � will also depend on the service tariff say �. 
The joint influence of + and � onto � is the topic of another article. Here we will trace out the 
direct influences of + and � onto service costs, alongside the influences of the cost-only 
levers �	, �, �, -�, .A. Table 1 provides the sensitivity coefficients of all specific costs to all 
action levers available to the service supplier, save for + which only influences the field costs L? with sensitivity coefficient �w − �	.  

 

 

Fig. 3: The outreach of action levers of the S3 operator on its production costs (a circle 
marks an influence; it is empty if the influence is conveyed by �?). 
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Given + and �, we can model the behavior of the service supplier as that of cost 
minimization with respect to the remaining action levers, �	, �, �, -�, .A. In the next sections 
we shall consider first the short-run optimization of juicing tours with respect to �	, then the 
medium-run optimization of batteries with respect to � and �, next the long-run optimization 
of scooters with respect to -� and .A. 

Table 1: Sensitivity coefficients of specific Costs to Factors.  
Wherein:  ��(') ≡ ��� + (�w ��)/(2H)  and  ��(F) ≡ �� − ��(') = ��h�.  ���/(��. �	) .  

Factor 

Cost 

�	 � � -� .A � 

L� = ��. �� - - ��. �
�|� ��(�
�|� − ��-�) ���
�|. L�/� 

L	 = �	. �	 - − �	�?� #	 + �#
 	#	F  �	(�
	 − �	� ) - �	#	
�FχA  L	/� 

L�? ≡ L?� − L�� �w. �
2H �? −�J(1)�F/� −�J(1)�F/� +, vΓ�v-� ��(')�F/.A ��(')�F/� 

L�� ≡ �h�. �� − �h��0�	F �J �F −�J(2)�?/� −�J(2)�?/� - ��(F)�F/.A ��(F)�F/� 

LA = �AK . �A - - - - �AK �L LA/� LQ = RS. � - - - - - RS 

 

4. Juicing tours optimization 

4.1 The optimal tour productivity 

From Table 1, we have that  

vLTv�	 = �w �? �
2H − �h� �? ��H� �	F  
 

Cost minimizing behaviour with respect to �	 amounts to giving it the value that satisfies the 
first-order optimality condition for minimization, i.e. 

vLTv�	 = 0 
 

The solution is easily obtained as: 

�	∗ = �2HH�
�h�. ���w. �
  

(4.1) 

Put in words, the optimal tour productivity is equal to the square root of the ratio of twice the 
period duration times the tour base time �� times the augmented daily cost per juicer duty �h�, 
on the numerator side, to the product of the juicer duty duration H�, times the swapping time 
per-scooter �
, times the composite in-field daily cost per scooter �w, on the denominator side. 
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Thus the optimal productivity depends only on technical conditions ��, �
, operational set-ups H, H� and resource costs �h�, �w. It involves neither the battery features nor the scooters 
attributes. 

4.2 The optimal tour time 

The tour productivity �	 is the key factor of the tour time T�. Based on its formula (2.5), its 
optimal value stems from �	∗  as follows: 

��∗ = �� + �
. �	∗ = �� + �2HH�
���w ���
 (4.2) 

 

4.3 The optimal number of juicer duties 

From �	∗  stems the optimal daily number of juicer duties ��∗ owing to (2.8): 

��∗ = �?( �
H� + � �
. ��. �w2H. H�. �h�) 
(4.3) 

It is proportional to the daily number of refills �?, times a coefficient that only involves 
technical conditions ��, �
, operational set-ups H, H� and resource costs �h�, �w. Again, the battery 
and scooter features exert no direct influence. 

 

4.4 The optimal unit cost of battery swapping 

At optimum, the unit cost of battery swapping �� defined in (3.11) takes on the following 
value ��∗ such that:  

��∗ − ��� = ��∗( zwFG + {hEDE.|}∗ ) = �� zwFG + � zw.{hEFG.GE ���
 + {hEDE (�
 + ��|}∗ )  

= �� zwFG + � zw.{hEFG.GE ���
 + {hEDE �
 + � zw.{hEFG.GE ���
 = (��
.{hEGE + ���.zwFG )F, yielding that 

��∗ = ��� + x��
 .{hEGE + ���.zwFG �F
  

(4.4) 

In this formula, the term �
. �h�/H� is the juicer-based cost of the elementary time �
, whereas 
the other term ��. �w/2H conveys the influences of both the base tour time and the composite 
in-field daily cost per scooter. 
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5. Battery optimization 

5.1 The optimal depth of discharge 
From Table 1 we get the sensitivity coefficient of production costs to target DoD �: 

vLTv� = − �?� �� − �?� �	 R	 + �R
 	R	F  

We restate it as 

vLTv� = − �?� (�� + �	 R	 + �R
 	R	F ) 
(5.1) 

Let us define function ψ;: � ↦ −(R	 + �R
 	)/R	F  that stems from the wearing law. Using 
function ψ;, the sensitivity coefficient of production costs to � restates as: 

vLTv� = �?� �	 yψ;(�) − ���	~ 
(5.2) 

From its definition, DoD � takes its values in 50,12. Let us restrict its range by introducing an 
upper bound �� ≤ 1 to avoid the undesirable effects of excess discharge. 

The operator’s behavior of cost minimization with respect to � ∈ 50, ��2 is expressed as the 
following mathematical program: 

min� LT w.r.t. � ∈ 50, ��2. (5.3) 

Its first-order optimality condition is therefore 

vLTv� . �. (�� − �) = 0 
(5.4a) 

� ∈ 20, ��5  ⇒   vLTv� = 0 
(5.4b) 

� = ��  ⇒   vLTv� ≤ 0 
(5.4c) 

� = 0 ⇒   vLTv� ≥ 0 
(5.4d) 

The null value can be dismissed if ψ;(0) = 0, making 
�<��� → −∞ when � → 0�. Let us 

assume more generally that ψ;(0) < ��/�	. Then, owing to (5.2) the optimality condition can 
be restated as: 

yψ;(�) − ���	~ . (�� − �) = 0 
(5.5a) 

� ∈ 20, ��5  ⇒   ψ;(�) = ���	 
(5.5b) 

� = �� ⇒   ψ;(�) ≤ ���	 
(5.5c) 

We shall call “Partial Discharge” the case when the optimal � is strictly less than ��, and “Full 
Discharge” the case when it is bound to �� because ψ;(��) ≤ ��/�	. Postulating that the ψ; 
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function is nonnegative and increasing, we can then consider the inverse function ψ	(¡') which 
is well-defined, nonnegative and increasing. Using this inverse function the optimal DoD 
policy can be put as follows: 

�∗ = min ¢��, ψ	(¡')( ���	)£ (5.6) 

Proposition 1: existence and uniqueness of an optimal DoD. Assume that function ψ; is 
continuous and increasing and that ��/�	 > ψ;(0). (i) If ��/�	 < ψ;(��) then there exists an 

optimal DoD �∗ = ψ	(¡')(��/�	) in 20, ��5: it is unique if ψ; is strictly increasing at �∗. (ii) If ��/�	 ≥ ψ;(��) then �� is the optimal DoD. 

The proof is easy and its details are provided in Appendix A. 

Thus, given wearing law R; hence function ψ;, the ratio of the per-refill cost �� and the 
battery price �	 is the key variable driving the DoD policy. 

Another way to look at the Partial Discharge condition, ψ;(�) = ��/�	, is to involve the 

lifetime energy intensity function E;(�) ≡ �. R	(�)  and replace ψ; with – E
 	/R	F , yielding 
that  

− E
 	R	 = ��. R	�	  
(5.7) 

As R	 = E;/�, in the left hand side we recognize the elasticity ϵA:� of lifetime energy 
intensity E; to DoD: then −ϵA:� = ��. R	/�	 meaning that, at optimum target DoD below ��,  

��. R	 = −ϵA:�. �	 (5.8) 

Put in words, under Partial Discharge the optimal number of refills times the per-refill 
swapping cost, ��. R	 that is the battery lifetime swapping cost, balances |ϵA:�| times the 
battery price �	. 

5.2 The Constant Elasticity technology of battery lifetime energy intensity 

Let us now introduce a specific technology function R	 by postulating that the E	 function of 
lifetime energy intensity is a constant elasticity function of � as follows: 

E	(�) = E'�¡§ (5.9a) 

Parameter E' = E	(1) > 0 stands for the minimum lifetime energy intensity. Parameter ) > 0 makes E	 a decreasing function of σ .Thus  

R	(�) = �¡'E	(�) = E'�¡§¡' (5.9b) 

Then, E
 	 = −)E'�¡§¡' = −)R	, so that  

ψ;(�) = − E
 	R	F = )R	 = ) �§�'
E'  

(5.10a) 

Thus ψ; is an increasing function of �, with inverse function such that )�§�' = E'¨, hence R	(�) = )/¨  and  

ψ	(¡')(¨) = (E'¨) ) '§�' 
(5.10b) 
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For the value of ψ	(¡')(¨) to be less than �� it requires that  

¨ < ψ;(��) = ) ��§�'
E'  

If ¨ < ψ;(��), the lifetime effective intensity is obtained as E	 ∘ ψ	(¡')(¨) = E'(Aª«§ ) ¬­­®ª, i.e. 

E	(�) = E' '§�' ()̈) §§�' (5.11) 

As for DoD optimization, depending on whether ��/�	 < ψ;(��) or not, the optimal DoD is 
less than �� i.e. partial discharge or equal to �� i.e. full discharge. The following table provides 
the associated outcomes under the specific battery technology with constant elasticity lifetime 
energy intensity: 

Condition �∗ R	(�∗) E	(�∗)  

��/�	 < ψ;(��) 

Partial discharge 
(E'��) �	) '§�' ) �	��  E' '§�'() �	�� ) §§�' 

(5.12a,b,c) 

��/�	 ≥ ψ;(��) 

Full discharge 
�� E'��¡§¡' E'��¡§ 

 

A specific property of the constant elasticity wearing law under Partial discharge stems from 
(5.8): the per-refill share of battery price, �	/R	, is proportional to ��. 
 

5.3 The optimal battery energy capacity 
The nominal battery energy capacity � does determine the battery price �	 and in turn the 
optimal target DoD �∗. Let us now take a full view of its influence on the service production 
costs and its outreach for cost minimization. From Table 1 and the definition of the per-refill 
swapping cost ��, the sensitivity coefficient of production costs to BEC � is: 

vLTv� = − �?� . �� + ��. P
�|� + �?R	 yP
	 − P	� ~ 
(5.13) 

Indeed, the influence of � on production costs pertains to (i) juicing logistics and field 
implementation, with sensitivity coefficient −���?/�, (ii) scooters’ inventory with sensitivity 
coefficient ��. P
�|�, (iii) batteries’ inventory with a twofold sensitivity of plus �	. P
	 minus the 
indirect influence of � via the number of refills.  

Let us denote the number of refills over a scooter lifetime as  /� ≡ .A. -�/(A. �). The ratio of 

battery refill number and scooter refill number, ° ≡ �}±² = N.�.�}³´.�² , is also the ratio of lifetime 

energy flows between one battery and one scooter. As �? = �B. .A/(A. �) and �� = �B/-�, 
the sensitivity coefficient states as: 

vLTv� = − �B. .AA. � µ��A + P	/� − P
	R	 − P
�|�/� ¶ 
(5.14) 

Cost minimizing behaviour with respect to � amounts to giving it the value that satisfies the 
first-order optimality condition for minimization, i.e. 
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vLTv� = 0 

It is equivalent to 

P
	R	 + �
�|�/� = 1A (�� + P	R	) 

Put in words, an optimal BEC balances the marginal per-refill price of the mobility equipment 
(including the battery and the scooter body) with the holistic per-swapping cost per unit of 
energy capacity. 

Using the elasticities ·	|� and ·�|� of battery and scooter prices to �, the condition becomes 

·	|� P	R	 + ·�|� P�/� = �� + P	R	 
(5.15) 

Another statement of the optimal BEC is then 

/� = ·�|�P�
�� + (1 − ·	|�) P	R	

 
(5.16) 

With respect to BEC, from /� and ·�|�P� = �. P
�|� we can also state the optimal BEC as 
follows: 

�F = .A. -��. P
�|� (�� + (1 − ·	|�) P	R	) 
(5.17) 

As the Right Hand Side is a function of �, the condition is a Fixed Point Problem in �. 

Proposition 2: existence of an optimal BEC. Assume that (i) P
�|� is continuous and takes its 
values in a bounded interval ¸P
�|�¹º| , P
�|�¹»¼ ½ with P
�|�¹º| > 0, (ii) P	 and ·	|� are continuous 
and ·	|� ∈ 50,12. Then, given �, there is at least one BEC ��∗  that satisfies the optimality 
condition. 

The proof is given in Appendix A. 

5.4 Optimal capacity under linear battery price 

Under linear battery price �	 = �. �
	, � is related to ratio ̈ ≡ ��/�	 as follows: 

� = ��¨�
	 

Partial discharge is optimal if ¨ ≤ ψ;(��) hence, denoting ψ¾; ≡ ψ;(��), if  

� ≥ � ≡ ���
	ψ¾;   (5.18) 

Given ��, capacity � is the threshold value of the Partial discharge regime, hence also the 
ceiling value of the Full discharge domain. 

Now, linear battery price has elasticity ·	|� = 1 and the BEC optimality condition (5.17) 
becomes  
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�F�
�|� = .A. -�� �� (5.19) 

hence 

�� = /���·�|� 

The scooter price must be equal to the swapping cost over the scooter lifetime, divided by the 
elasticity of scooter price to battery capacity. 

Under linear affine scooter price P� = ��� + �. �
�|N and given the target DoD �, equation 
(5.19) provides an easy rule to determine the optimal battery capacity as follows: 

�∗ = �.A. -�� ���
�|� 
(5.20) 

While it is in principle more valuable to optimize the (�, �) pair jointly, in practice it may 
well arise that full discharge � = �� is optimal: then the previous formula applied to � = �� 
suffices to optimize the capacity. 

Let us now utilize the affine linear specification of prices to investigate some general 
conditions for Partial or Full discharge to apply, depending on battery capacity. Full discharge 
involves � = �� and � ≤ �, hence �F ≤ �F: combining with (5.19) yields 

³´.�²�¾¿
²|À �� ≤ ÁEÂ(¿
}Ã¾ Ä)Â , hence 

�� ≥ �Å� ≡ .A. -���. �
�|� (�
	ψ¾;)F 
(5.21a) 

The per-refill swapping cost �Å� is a threshold value for Full discharge to possibly occur. It 
implies that values of �� below �Å� only give rise to Partial discharge in DoD optimization. But 
it does not mean that only Full discharge could be the optimal policy for values of �� above �Å�. 
Given ��, we can also put the Full discharge condition as an upper limit on the scooter energy 
flow during its lifetime: 

.A. -� ≤ Æ�� ≡ ��. �
�|� (�
	ψ¾;)F �� (5.21b) 

Or as an upper limit on just the scooter lifespan: 

-� ≤ -�� ≡ ��. �
�|� .A(�
	ψ¾;)F �� (5.21c) 

Variables above their Full discharge ceiling give rise to slack lifespan -� − -��, slack lifetime 
energy .A. -� − Æ�� , slack capacity � − � that enable for Partial discharge to hold, i.e. for 
higher battery lifetime energy intensity than just E	(��). 
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5.5 The joint optimization of DoD and battery capacity 
To optimize the (�, �) pair jointly, let us then bring together the optimality conditions that 
pertain to DoD � and capacity � respectively: from (5.6) and (5.15), 

�∗ = min ¢��, ψ	(¡')(��P	)£ (5.22a) 

·	|� P	R	 + ·�|� P�/� = �� + P	R	 
(5.22b) 

Two cases may arise depending on whether ��/P	(�) is less or greater than ψ;(��), i.e. Partial 
vs. Full Discharge. Under Full Discharge the joint optimization reduces to optimization with 
respect to BEC only, yielding solution ��¾∗ . If furthermore ��/P	(A�¾∗ ) ≥ ψ	(��) then both 
optimality conditions are satisfied jointly. Under Partial Discharge, we may take � as a 

function of �, namely ��∗ = ψ	(¡')(��/P	), so that the joint optimization reduces to a modified 
fixed point problem in � only as follows: 

�F��∗ = .A. -�P
�|� (�� + (1 − ·	|�) P	R	) 
(5.23) 

Proposition 3: existence and uniqueness of joint optimal BEC-DoD. Assume that (i) P	 
increases with � and (ii) (1 − ·	|�)P	 decreases with � while remaining nonnegative, 
(iii) P
�|� is nonnegative and (iv) P
�|��F increases indefinitely with �. Then the Partial 
Discharge optimality condition in � only has one unique solution �∗, with associated DoD ��∗∗ ≡ ψ	(¡')(��/P	(�∗)). If ��/P	(�∗) < ψ	(��), then ��∗∗ ∈ 20, ��5 and the pair (�∗, ��∗∗ ) is the 
unique optimal pair, meaning that Partial Discharge is optimal. Otherwise, if ��/P	(�∗) ≥ψ	(��) then Full Discharge is optimal and the pair (A�¾∗ , ��) is the unique optimal pair.  

The proof is given in Appendix A. 

 

5.6 Optimal BEC and DoD under constant elasticity prices 
Let us assume here that the battery price is a constant elasticity function of battery capacity, P	 = Ç	�È, and similarly that the scooter price has constant elasticity with respect to �, say P� = Ç��É.  

Then the optimality condition (5.15) on BEC becomes 

Ê P	R	 + Ë P�/� = �� + P	R	 
(5.24) 

Under Partial discharge and the constant elasticity battery technology, 
Ì}J} = ÁE§  owing to (5.8). 

Substituting in (5.24) yields that P�/� = �� ) + 1 − ÊË )  

Thus the per-refill scooter price is proportional to the unit swapping cost, as is the per-refill 
battery price.  

Recalling that /� = ³´.�²N.�  and � from (5.12a), we get  
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Ç��É�'
.A. -� ( E'��) Ç	�È) '§�' = �� ) + 1 − ÊË )  

( Ç�.A. -�)§�'�(É�')(§�')¡È E'��) Ç	 = (�� ) + 1 − ÊË ) )§�' 

�(É�')(§�')¡È = Ç	E' (��) )§(.A. -�Ç�
) + 1 − ÊË ) )§�' 

Thus, in the constant elasticity model under Partial Discharge, the optimal BEC comes out in 
a straightforward way: 

�∗ = (Ç	E') '(É�')(§�')¡È(��) ) §(É�')(§�')¡È(.A. -�Ç�
) + 1 − ÊË ) ) §�'(É�')(§�')¡È 

(5.25) 

If (Ë + 1)() + 1) > Ê then �∗ is an increasing function of ��, .A, -� and Ç	, but a decreasing 
function of E' and Ç�. 

The associated optimal DoD comes from (5.12a): 

(�∗)§�' = E'��) Ç	 �∗¡È 

�∗(§�') = (E'Ç	)'� È(É�')(§�')¡È(��) )'¡ §È(É�')(§�')¡È( Ç�.A. -�
Ë )) + 1 − Ê) (§�')È(É�')(§�')¡È 

Hence 

�∗ = (E'Ç	) É�'(É�')(§�')¡È(��) ) É�'¡È(É�')(§�')¡È( Ç�.A. -�
Ë )) + 1 − Ê) È(É�')(§�')¡È 

(5.26) 

If (Ë + 1)() + 1) > Ê then �∗ is an increasing function of E' and Ç�, but a decreasing 
function of .A, -� and Ç	. If furthermore Ë + 1 > Ê then it is an increasing function of ��. 
Partial Discharge is optimal if the resulting �∗ is less than the upper bound ��. When this 
condition is not met, then Full Discharge applies: the target DoD is set to �� and yields a 
battery lifetime number of refills of #�	 ≡ R	(��). The optimality condition on �, say (5.24), 
becomes 

Ê Í}�Î
��} + Ë Í²�Ï

±² = �� + Í}�Î
��} , hence 

Ë Ç��É�'
.A. -� �� = �� + (1 − Ê) Ç	�È

#�	  
(5.27) 

This equation is a fixed point problem in � only, to which there is a solution that is unique 
(see Appendix A). 

To sum up, the model with constant elasticities gives us insight into the influences of �� and 
other factors onto the cost optimization of battery parameters � and �. Among the other 
factors are the scooter parameters -� and .A that will be studied in the next Section. In the 
numerical study, we shall recourse to not only the Constant Elasticity battery technology and 
prices but also to Affine Linear battery technology and prices: the formulas for battery 
optimization under the AL set of assumptions are given in Appendix B. 
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6. Scooter optimization 
The optimization of service production costs with respect to battery energy capacity involves 
the scooter price together with the battery price and the swapping cost per refill: this stems 
from the model influence tree, see Figure 2. We will now study the role of scooter lifespan -� 
energy consumption rate .A in cost optimization through the scooter price �� = P�(-�, .A, �, M): we shall denote the local sensitivity coefficient of that price to -� as �
�|� ≡ ���² �� and that to .A as �
�|³ ≡ ��³´ ��. We shall state the specific cost optimality 

conditions and associate a specific unit cost of service production to each scooter attribute. 

6.1 The optimal lifespan 
From Table 1, the sensitivity coefficient of production costs to -� is 

vLTv-� = �� y�
�|� − ��-�~ + +,  vΓNv-S  
(6.1) 

Indeed, the influence of -� on production costs pertains to (i) scooter inventory and 
(ii) scooter maintenance as stated in Γ�. 

The service supplier’s behaviour of cost minimization with respect to -� consists in giving it 
the value that satisfies the first-order optimality condition, namely vLTv-� = 0 

It is equivalent to 

�
�|� = ��-� − +,��  vΓNv-S  
(6.2) 

Recalling our assumption that vΓN/v-S ≤ 0, the condition states that marginal scooter cost 
will be in excess of average cost. The ratio +,/�S between scooter inventory and its daily 
renewal flow measures the average scooter lifetime in number of days, according to Little’s 

law. Product Ò,�S  vÓÔv�² states the marginal influence of -� on the maintenance costs over the 

scooter lifetime. 

Under scooter price with constant elasticity ·�|� to lifespan i.e. P� = ���( �²�²�)Õ²|Ö, eqn. (6.2) 

implies that  

(·�|� − 1) P�-� = − +,��  vΓNv-S  
(6.3) 

As �� = �B/-� the optimum lifespan would satisfy that  

(·�|� − 1) ���(-��)Õ²|Ö -:Õ²|Ö¡F = − +,�B  vΓNv-S  

i.e.  

-:∗ = ((·�|� − 1)���
-:�Õ²|Ö(− vΓNv-S )

�B+, ) 'F¡Õ²|Ö 
(6.4) 

Wherein �B/+, is the daily commercial traffic per scooter. 
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6.2 The optimal energy consumption factor 
The sensitivity of production costs to .A is more complex: from Figure 2,  vLTv.A = ��. �
�|³ + vLTv�?

v�?v.A + vLAv.A 

We know that  
�<��×Ø = �� + z}�}.  As  

�×Ø�³´ = ×Ù��, it comes out that 

vLTv.A = �B-� �
�|³ + �B�� (�� + �	#	) + �AK �B 
(6.5) 

The supplier behaviour of cost minimization with respect to .A consists in assigning to it the 
value that satisfies the first-order optimality condition, vLTv.A = 0 

It is equivalent to 

�
�|³ = −-� y�AK + 1�� (�� + �	#	)~ 
(6.6) 

At optimum, the marginal value of the energy consumption factor is proportional to the 
scooter lifetime length, with a coefficient that includes the effective cost per unit of fed-in 
energy �AK  plus the holistic cost per swapping divided by the refill productivity ��. 

 

6.3 The holistic cost of fed-in-scooter energy 
We may extend the lifecycle perspective to the scooter body as well. The energy related part 
of the scooter price, say ∆��, is amortized over /� refills each of �� energy flow. Thus the 
scooter-specific cost per unit of energy flow is 

��(A) ≡ ∆��/��� = ∆��.A-� 

By gathering the respective costs, we obtain the overall service cost per unit of fed-in energy: 
this holistic energy unit cost amounts to 

�̂� ≡ �AK + 1�� (�� + �	#	 + ∆��/� ) 
(6.7) 

Put in words, the marginal service cost per energy unit fed in the scooter includes the energy 
provision price augmented by charging losses, plus the cost of carrying the energy up to the 
scooter and those of using the battery and the scooter. 

Under optimal capacity and linear prices (cf. Appendix B, eqn. (B5)), then ∆�� = /��� so that 
the holistic energy unit cost becomes 

�̂� = �AK + 1�� (2�� + �	#	) 
(6.8) 
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6.4 On the service cost per unit of ride length 
The production cost function LT constituted in Section 3 can be restated as follows: 

LT = LQ + LA + L?� + L� + L	 

= RS� + �AK �A + L?� + (�? + ��)+, + �	!" + ���� + ���� + ���� + �	�	 

LT = L?� + (�? + �� + �	)+ + �(RS + ℓ� ¢P�-� + .� Ü�AK + (��)¡' ¢ P	R	 + ��£Ý£ (6.9) 

The holistic cost per energy unit encompasses the term factored by .� plus the battery-related 
part of the scooter price. The term factored by ℓ� is a service cost per unit of ride length: it 
encompasses the swapping process, energy charging, the scooter and battery inventories and 
part of the field implementation costs – notably �?�� involves the field costs for that part of 
the fleet that is waiting for swapping. Let us denote it as: 

Rℓ ≡ P�-� + .� Ü�AK + (��)¡' ¢ P	R	 + ��£Ý (6.10) 

We may further extend the assignment of production costs to ride lengths by adding to Rℓ: 

• The commercial costs per ride length unit, i.e. RS/ℓ�, 
• The other costs i.e. fixed field cost L?� and fleet-related costs (�? + �� + �	)+, 

divided by the service commercial traffic i.e. �ℓ�. 

This gives a holistic service cost per unit of ride length: 

R̂ℓ ≡ Rℓ + RSℓ� + L?� + (�? + �� + �	)+�ℓ�  
(6.11) 

It is the unit cost that corresponds to the -� scooter lifespan, in the same way that the holistic 
unit cost of energy corresponds to the .� scooter energy consumption rate. 
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7. Numerical study 
To illustrate the theory, we shall investigate the potential value of the per-refill cost and 
beyond it of battery price, scooter price, inventory costs and the service total cost per unit of 
fed-in energy. After establishing plausible ranges for the different model parameters (§7.1), 
we will study juicing logistics and quantify the per-refill cost (§7.2). Turning to battery 
wearing, we will model wearing laws on the basis of empirical data and prepare for DoD 
optimization (§7.3). Then we can address the optimization of both DoD and battery energy 
capacity �, by parametric analysis according to the scooter price sensitivity to �, �
�|N (§7.4). 
After that, we will draw consequences on the component lifetimes in number of refills (§7.5), 
on the scooter lifespan (§7.6), on the component prices and their per-refill values (§7.7) and 
on the S3 cost per unit of fed-in energy (§7.8). 

7.1 Setting up the parameters 
Let us put forward numerical values and ranges for the model parameters. 

Field costs. Our interest lies in variable costs, hence in the per-vehicle daily cost �w: it is a 
complex parameter that involves regulatory fee �? together with telecommunication, smart 
payment, maintenance, insurance and other administration costs �� + �	. Regarding 
regulatory fees, a twofold per-scooter fee of $50 per year plus $1 per day was reported by 
Griswold (2019) for Louisville; another two-fold combination of $1 per day plus $.25 per ride 
is mentioned about Portland by Button et al. (2020). As the latter combination applied to 5 
rides per day, all in all we shall consider a regulatory per-scooter fee of say €1.5/day. The 
telecommunication cost may amount to €2 per month per scooter, i.e. about €.065 per day. An 
insurance cost of $.05 per ride (Griswold, 2019) is turned in a €.25 per day. As for 
maintenance, per ride costs of $.50 and $.32 were reported for Bird’s 1st and 2nd generations 
with associated average ride length of about 2km (BCG 2020): taking a unit cost at €.17/km, 
we will multiply it by the daily commercial traffic per scooter, at either 7 km (ITF, 2020), or 
12 or 20 km to aim for better productivity, yielding €1.0 / 1.7 / 3.4 as base / middle / high 
values. As it pertains to e-scooters including batteries, the corresponding parameter is �� +�	. Assuming that �	 = ��/2, its low / middle / high values are €.33 / .57 / 1.1. All in all, we 
will take €3.1 / 4.1 / 6.3 as low / middle / high values for �w.  
Juicing issues. Under French conditions typical of 2019 (Insee, 2021), the daily cost of a 
juicer duty may be estimated by assuming a gross salary of €1800/month (2nd decile in wage 
distribution of full-time workers), plus 65% of social contributions, times 3 employees per 
duty, and 30 days in the month: we thus obtain a daily cost �� of almost €300. As the wages 
are relatively low, in France they may be exempted from social contributions, yielding a 40% 
abatement. The service operator could further reduce its costs by reducing the number of 
employees per duty measured in “full time equivalent” (fte): our initial estimate of 3 could be 
reduced to 2 fte, possibly by employing part-time workers rather than full-time ones. This 
could yield a further reduction of say 30%. To sum up, applying a 40% drop followed by a 
30% drop starting from €300/day for ��, would reduce it to 42% of €300, i.e. €126/day. To 
include the juicer vehicle, we shall add an amount of €10 to €20 per day. Concerning the 
duty-based daily expense for depot administration and service management, ��, let us make a 
rough estimate: 10m² per duty as resting space in depot, at floor rental price of say €1/m² per 
day, makes €10/day: doubling it for management expenses yields �� at €30/day. All in all, we 
obtain a range from €165 to €347 per day for �h�. 
Assuming average charging and waiting time �J of 12h, the fixed part ��� ≡ �	�J/H of the 
unit swapping cost will take low / middle / high values of €.17 /.28 / .57. 
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The time parameters ���, ��	  and �
 are also important for juicer duties and tour productivity. 
The range for base cycle time ��� is 15-90 min: within this rather broad interval, local 
conditions will be decisive to narrow down a specific estimate. As for depot time �
, a lower 
bound could be 15 minutes for a very short break of 10 min added to 3 min of battery 
manipulation and 2 min of vehicle parking: driving manoeuvres, door opening and closing 
etc. An upper bound of 30 min would enable for a more proper break of 20 min, combined to 
2 min of vehicle manoeuvres and 8 min of battery manipulation – this task should indeed be 
kept short, by suitable depot layout and logistical organization of the depot process. Coming 
to the inter-swap time ��	, which encompasses not only the time to change batteries at a 
plugging spot (1) but also the time to go from one such spot to the next one, we shall consider 
low / middle / high values of 2’ / 3’ / 5’. 

Energy and battery issues. An average energy price of €.10/kWh (excluding VAT) applied to 
firms in France as of 2020 (Datalab, 2021). Yet there is a rising trend in French prices 
because the share of renewable sources is growing in the national electricity mix. Let us then 
consider a range from €.10/kWh to €.40/kWh for �A. By involving an efficiency factor PA of 
about 90% (Ellingsen et al. 2016), we obtain a range from €.11/kWh to €.44/kWh for �AK . 

Coming to battery price �	, a range of $100-500 was reported by Strobel (2021), 
encompassing batteries for all kinds of kicked e-scooters from low-end models with battery 
capacity less that .1kWh, to mid-tier with BEC of .2-.3kWh, and up to high-end with BEC at 
1.2kWh enabling for 80+km range. For shared e-scooters with swappable batteries we 
consider the .3 – 1.0 kWh range of energy capacity and the price range of €200-400 per 
battery. On assuming battery price linear with respect to energy capacity, we obtain price 
sensitivity to capacity �
	|N of €286/kWh of battery capacity. Knowing that in 2020 the price 
of LIB cells had fallen down to €120/kWh for NMC and €100/kWh for LFP (Henze, 2020), 
the factor of 286/110≈2.6 would account for the manufacturing of e-scooter swappable 
batteries from cell components. Yet the operator is likely to obtain bulk prices with reduction 
of say 40%, making a low value of €170/kWh for �
	|N. Concerning the lifetime number of 
refills R	 and the associated lifetime energy intensity E	, we shall consider two different 
chemistries of Lithium-Ion Batteies, hence two alternative pairs of parameters (E', )) for the 
Constant Elasticity technology as well as two alternative pairs of parameters (E�, *) for the 
Affine Linear technology: the details are given in §7.3. 

Scooter-related parameters. Kamps (2018) inferred a bulk price of $300 for a 1st generation 
shared e-scooter and conceived a target price of $800 for a Next generation model that came 
later to existence with much sturdier design and swappable batteries. BCG (2020) reported 
Bird’s per scooter acquisition costs of $375 for 1st generation in 2018 and $630 for 2nd 
generation in 2019. These figures are fairly consistent with public unit prices reported by 
Strobel (2021): about $300 for an entry-range adult model, mid-tier models between $500-
1500 and high-end models above $1500, all including batteries. Considering an $800-1,800 
range of upper mid-tier and lower high-end models, with corresponding battery energy 
capacity ranging from .3 to 1.0 kWh, adding connectivity device at say $80 (Kamps, 2018) 
but subtracting the swappable battery from the e-scooter price, applying bulk reduction factor 
of 40% and converting to euros at 1:1 rate, we obtain a price range of €528-888 for a shared 
e-scooter ready for swappable battery but without it. The range variation of ∆��=€360 can be 
related to three factors: (i) sturdier design hence increased lifespan -�, (ii) larger battery hence 
increased �, and (iii) improved equipment – motors, braking system, handles and controls, 

                                                 

1 Voi (2020) claims that 30 seconds would be enough for a rider to change batteries at a plugging spot 



   Swappable Batteries in Shared e-Scooters Economics 

Revised version R2 : 31 May 2022  28/51 

tyres and lights (Strobel, 2021). Let us assume respective shares of 60%, 10% and 30% of 
range variations.  

The influence of battery capacity may then be estimated as �
�|N = '�%.∆z²'.�¡�.à = €51/kWh. We 

take it as low-end estimate and also consider values in €/kWh of 102 and 153 that would 
respectively attribute 20% and 30% of ∆�� to ∆�.  

As for scooter lifespan -�, in the Introduction (§1.3) we mentioned reference values that are 
still under construction: taking 14,000 km as high-end and 4,000 km as low-end, the 

sensitivity coefficient of �� to -� may be estimated as �
�|B= 
ã�%.∆z²'ä,���¡ä,��� = €. 022/km. But 

setting the high-end lifespan to 7,000 km (ITF, 2020) would yield a �
�|B of €. 07/km: we shall 
consider values of 0.02 / 0.05 / 0.07 in € per km for �
�|B. 

Regarding the energy consumption rate .A, an average value of 0.014kWh/km was reported 
in Ademe (2016): let us take 0.015 as mid-tier and 0.020 as high-end. The rate is expected to 
influence scooter price �� in a decreasing way. To our knowledge, no regenerative braking 
has yet been implemented on commercially-available scooters. Such set-up and others such as 
special tyre specification could entail a 30% reduction in our initial estimate: let us then 
consider a [.010, .020] kWh/km interval for .A. 

Table 2 summarizes our set of numerical assumptions. Parameter �� of base time per tour adds 
up the tour base run time ��� and the depot time �
. 
 

Tab. 2: Parameters and their ranges. 

Notation Meaning Unit Low value Mid-tier High value �w Per-vehicle cost €/day 2.8 3.5 5.2 �h� Augmented juicer duty cost €/day 165 223 347 

��� Fixed part of unit swap cost € .13 .28 .37 

�� Base time per tour  Min 30 70 110 �
 = ��	 Juicer inter-swap time Min 2 3 5 �AK  Effective Energy price €/kWh .11 .20 .44 �	 Battery price € 100 200 400 P
	|N Sensitivity to capacity €/kWh 170 286 350 

�� Scooter price (body only) € 250 528 
A=.3kWh 

888 
A=1.0kWh P
�|N Sensitivity to capacity €/kWh 51 102 153 

P
�|B Sensitivity to lifespan €/km .02 .05 .07 

-� Scooter lifespan Km 4,000 7,000 14,000 .A Energy consumption kWh/km .010 .015 .020 
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7.2 Juicing logistics and the per-refill cost 
Prior to any optimization, let us study the variables in juicing logistics. Assuming an ex-ante 
tour productivity �	 of 30, by combining the values at each level we obtain tour times �� of 
90, 160 or 260 minutes respectively. Furthermore, involving the low, best guess and high 
values of the economic parameters �w and ��, we obtain per-refill costs �� of 1.3, 3.0 and 7.4 
euros respectively. The higher value compares to the €5 fee paid to independent juicers in the 
early times of S3 services. 

Coming now to optimization, the three set-up levels yield refill tour productivity �	∗  of 69, 87 
and 85 respectively: the values are fairly consistent and quite high. The related tour times ��∗ 
would be of 168, 332 and 536 minutes respectively – i.e. all significantly high, from 40% to 
110% of an 8 h duty day. The related per-refill costs, ��∗, would be of 1.18, 2.52 and 6.3 euros 
respectively: the variations mirror essentially those of the �
. �h�/�� part which dominates the 
other part ��. �w/2� by two orders of magnitude.  

Thus the optimization enables for some savings of 10% to 20% compared to base case at �	 =30. Admittedly, the outreach of optimization depends strongly on the base case 
specification (figure 4): setting �	 =20 yields per-refill costs �� of 1.45, 3.5 and 8.6 euros 
respectively, with related savings of 20% to 30%. For the following steps of numerical 
exploration, we shall consider a range of 1 to 6 euros for the per-refill cost ��, together with an 
ambitious target of €.5. Table 3 gathers the results and also points to the ratio of juicer duties 
and refills, ��/�?. As a point of reference, the Tier service that involves its riders to swap the 
batteries by themselves rewards each swap by one free unlock worth €1 plus a free ride worth 
€.2 times the ride length in km, say €.8 for a 4 km ride, totalling €1.8 per swap (Scammell, 
2020). 

Fig. 4: Per-refill swapping cost according to tour productivity �	. 

 

Tab. 3: From prior beliefs to optimized values in juicing logistics. 

 Prior to optimization With optimization 

 Low Median High Low Median High �	 30 30 30 69 87 85 �� (min) 90 160 260 168 332 536 �� (€) 1.3 3.0 7.4 1.18 2.52 6.3 

��/�? .006 .011 .018 .0047 .0071 .012 
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7.3 Battery wearing laws and DoD optimization 
The wearing law � ↦ R	 and the associated functions E	 and ψ	 play a key role in battery 
optimization. We introduced two alternative mathematical specifications for technologies (E	, R	, ψ	), namely Constant Elasticity (CE) in Section 5 vs. Affine Linear (AL) in 
Appendix B: 

• CE function E	 = E'�¡§ with elasticity −) and minimum lifetime energy intensity E', 
• AL function E	 = E�(1 − �/*) with linear coefficient −E�/* and maximum lifetime 

energy intensity E�. 

At total discharge with � = 1, consistency is expected between values of E' on the CE side 
and E�(1 − 1/*) on the AF side; they should also coincide with R	(1). But at � = 0 value E� is finite on the AL side whereas E'�¡§ → ∞ on the CE side, in sharp contrast. 

Both specifications need be tailored for any given chemistry of electric battery. We referred to 
“expert-say-that” data supplied by the Battery University (2) about two chemistries of 
Lithium-Ion Batteries (LIB), namely NMC for Nickel-Manganese-Cobalt and LFP for 
Lithium-Fer(Iron)-Phosphate as the chemical components of the cathode part in the electric 
cells. Table 4 provides the original R	 data and the associated predictions for the two 
chemistries. Figure 5 depicts both the wearing functions R	(�) (left part) and the associated E	(�) (right part).  

Under CE the respective minimum intensity parameters E' are about 300 for NMC vs. 620 for 
LFP i.e. more than double; the respective elasticity parameters ) are about .25 for NMC vs. 
.44 or .68 for LFP – depending on taking the first data point at � = .1 in or out of the 
regression. 

Under AL the respective maximum intensity parameters E� are about 530 for NMC vs. 1771 
for LFP i.e. thrice. The respective * parameters are close to 2 for NMC and to √2 for LFP.  

Tab. 4. Estimation of wearing laws and lifetime energy intensity laws. 
   NMC chemistry   

Sigma RB_Data RB_AL RB_CE EB_Data EB_AL EB_CE 

0,1 6 000 5 035 5 459 600 504 546 

0,2 2 000 2 385 2 279 400 477 456 

0,4 1 000 1 060 952 400 424 381 

0,6 600 618 571 360 371 343 

0,8 400 398 397 320 318 318 

1 300 265 300 300 265 300 

 

   LFP chemistry   

Sigma RB_Data RB_AL RB_CE EB_Data EB_AL EB_CE 

0,1 15 000 16 454 15 975 1 500 1 645 1 597 

0,2 9 000 7 599 5 888 1 800 1 520 1 178 

0,4 3 000 3 171 2 170 1 200 1 269 868 

0,6 1 500 1 696 1 210 900 1 017 726 

0,8 900 958 800 720 766 640 

1 600 515 580 600 515 580 

 

                                                 
2 https://batteryuniversity.com/article/bu-808-how-to-prolong-lithium-based-batteries  
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Fig. 5: CE and AL functions R	 (left) and E	 (right) depending on the LIB chemistry. 

For a given chemistry, the matching E' ≈ E�(1 − 1/*) at � = 1 is expected to hold between 
CE and AL, all the more so as both estimations come from the same dataset: the relative 
difference is limited to 10% for NMC and to 15% for LFP, which looks tolerable. 

Note that while the LFP seems to dominate NMC, it is in fact less used in electric mobility 
because its energy density per mass unit is lower by one third: the storage of 1 kWh requires 
about 6 kg of NMC LIB but 8 kg of LFP LIB (Battery University, 2019). 

Turning to the associated functions ψ	 and ψ	(¡'), it comes out that the functional 
specification, CE or AL, is much more determinant than the LIB chemistry, NMC or LFP. 

Given the specification, the ψ	(¡') functions of the two chemistries are fairly close. Figure 6 

shows that under AL the respective laws ψ	(¡') of NMC and LFP differ by at most .1 on the 

[0, .006] range of abscissas. Under CE the laws ψ	(¡') are even closer to each other. But both 
CE functions increase much more quickly than their AL counterparts. Looking at the value ¨ 

at which function ψ	(¡') reaches 1, i.e. the threshold value ψ	(1) from which Full discharge 
becomes the best strategy for DoD management, the CE functions predict values of ¨ =ψ	(1) = )/E' around .0008 (.00087 for NMC vs. .00076 for LFP) while the AL functions 
predict theoretical values of ψ	(1) = */((* − 1)FE�) that amount to .0038 for NMC vs. 
.0048 for LFP: the one fourth relative difference between the two chemistries under AL is 
minor compared to the factor 4 (for NMC) or 6 (for LFP) between the AL and CE outcomes.  

Let us summarize that CE laws predict threshold ψ	(1) of about 0.8‰ vs. about 4‰ 
according to AL laws. These values represent ratios of about 1/1200 or 1/250 for comparison 
to ratio V�/P	 that is key to DoD optimization. Thus, an intermediary value of 2‰ i.e. 1/500 
gives a gross order of magnitude for the split between Partial discharge policies (below 
threshold) and Full discharge policies (above threshold). Yet the factor of 10 between the 
respective thresholds of the theoretical laws calls for further statistical analysis of battery 
wearing. 
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Fig. 6: The CE and AL ψ	(¡')
 functions, depending on the LIB chemistry. 

In the next sub-sections we will rely upon AL technologies only: this is because our empirical 
ground for scooter and battery prices with respect to battery energy capacity is scarce, so that 
affine linear price functions look more robust than constant elasticity functions. 

7.4 Optimal battery energy capacity 

While DoD optimization only involves the cost ratio V�/P	, that of battery energy capacity � 
depends essentially on the sensitivities of battery and scooter prices to �, with respective 
sensitivity coefficients �
	 and �
�|N. As for �
	 we take a median estimate of €250/kWh.  

From §5.4 we know that Partial discharge is optimal when � is greater than its specific 
threshold value  

� ≡ ���
	. ψ	(1) 

Under AL values ψ	(1) of 4‰, the value €250/kWh of �
	 makes �
	. ψ	(1) ≈€1/kWh, 
thereby enabling for a quick numerical equivalency between � in kWh and �� in euros. Under �� ≥ €2 then Partial Discharge would require BEC beyond 2kWh – which is impractical with 
respect to battery mass and scooter weight.  

Let us then focus on the scooter price sensitivity to capacity, �
�|N. When Full discharge is 
optimal, under linear battery price and affine linear scooter price the optimal BEC satisfies 
(5.19) i.e.: 

�∗ = �.A. -��� ���
�|� 
 

Thus under Full discharge we expect �∗ to increase with ��, .A and -� (proportionally to their 
square roots) and to decrease with �
�|� (proportionally to (�
�|�)¡.ë). 

As there is little evidence about it from market prices and no specific study available, we shall 
study its specific variations over a large range of 5 to 500 euros per kWh of battery capacity, 
within which the 50-150 sub-range looks more plausible. 

Figure 7 depicts the variations of �∗ (left part) and the implications on �∗ (right part) 
according to �
�|N, assuming also �
	 = €250/kWh, .A =.015 kWh/km and -� =10,000 km, 
considering the two battery chemistries and different values of ��, namely .5, 1, 3 and 6 euros. 
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It turns out that the two chemistries yield very similar optimal capacities but specific optimal 
DoDs: Partial discharge is optimal for LFP on larger ranges than for NMC.  

  

Fig. 7. Optimal capacity (left part) and DoD (right part) according to �
�|N. 

Given �
�|N, both the optimal capacity and the optimal DoD increase with ��: higher per-refill 
swapping cost triggers the development of the �. � amount of energy per refill, so as to reduce 
swapping frequency per scooter as well as per battery. 

Given ��, increasing �
�|N decreases the optimal capacity, from high values of several kWh 
down to lower ones that keep above .5 kWh. The mass requirements make the values above 2 
kWh unsuitable for implementation. At �� = €3 the best guess range of [50, 150] yields 
optimal capacities decreasing from 5 down to 2.5 kWh – quite impractical masses. The 
corresponding ranges of variations are from 3 down to 1.5 kWh under �� = €1 and from 2 
down to 1 kWh under �� = €.5 that would make an ambitious target. 

All in all, we may infer that optimal battery energy capacity would lie between 1 and 3 kWh. 
The lower bound is akin to the capacity of batteries embedded in e-scooters but not swappable 
(Link, 2020). It is larger than the .7 kWh of Tier’s swappable batteries as of 2021 (swapping 
by service users) and much higher than the .3 kWh capacity of Lime’s swappable batteries 
(company-operated tours). 

Let then take the other view around: given capacity �, Partial discharge is cost-optimal if �� is 
less than the “ceiling function” ψ	(��). P	 which amounts to ψ	(��). �
	� under linear battery 
price. Under �
	. ψ	(1) ≈€1/kWh, capacity � of .3 or .7 kWh requires swapping cost �� of 
less than €.3 or €.7, respectively, for Partial discharge to be cost-optimal. Both conditions 
look unlikely for the service implementations as of 2021. 

7.5 Component lifetimes in number of refills 

Given �� and under cost-optimization of both BEC and DoD, the lifetime number of refills per 
battery, R	, and per scooter, r�, vary with �
�|N in opposite ways, increasing for scooter bodies 
but decreasing for batteries (figure 8). Even if the optimal capacity and DoD are similar 
between the two battery chemistries, the battery lifetimes would differ greatly: the LFP one 
would be twice that of NMC.  

Given �
�|N, increasing unit swapping cost �� would decrease both r� and R	, i.e. reduce the 
frequency of refilling per scooter as well as per battery. 

Figure 8 shows that low per-refill swapping cost �� and/or low sensitivity of scooter price to 
capacity can make Partial discharge the most economical policy: in turn, Partial discharge 
enables for higher lifetime energy intensity i.e. for better use of the battery in a circular 
economy perspective. 
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Fig. 8. Lifetime refill number of scooters (left) and batteries (right) according to �
�|N. 
 

Regarding scooter bodies, the lifetime number of refills involves primarily .A, -� and the 
optimal �∗, together with the optimal �∗. It does not depend on the battery chemistry (yet the 
lower energy density of LFP would induce a higher �
�|N, all other things equal). When full 
discharge is optimal, r� varies with �∗ in a simple way. The variations of r� according to �
�|N 
exhibit an increasing trend which is sub-linear: the reason is that higher �
�|N yield lower �∗, 
hence requiring more frequent refills over a given lifespan, thereby mitigating part of the 
increasing influence of �
�|N. 

On comparing the respective lifetime refill numbers between the batteries and the scooter 
bodies, we will get some idea of which kind of component has the longer technical lifetime in 
an S3 system. The idea is quite rough because we should compare T	 ≡ !"/�	 and T� ≡ +,/�� 
to put the issue clearly. On assuming that !"  and +, are about the same, say +′ ≪ + in theory 
or !"/+, ≤ 150% in practice, then �	/�� stands as a proxy for T�/T	.  

From �� = �B/-� and �	 = ³´×Ù���}, we get the following proxy of T�/T	: 

�	�� = .A-�� �#	 = /�#	 

Figure 9 depicts the variations of /�/#	 according to �
�|N for both battery chemistries, 
depending on the unit swapping cost ��. Given chemistry and �
�|N, the lifetime ratio decreases 
when �� increases: this is because r� decreases with �� more quickly than does R	, all the 
more so under Full discharge hence constant, minimal R	. 

For every chemistry and unit swapping cost, the ratio increases with �
�|N i.e. as the adaptation 
of P� to � becomes more costly. The LFP chemistry would definitely make battery lifetime 
longer than its scooter counterpart. Under the NMC chemistry, battery lifetime is longer than 
scooter lifetime over the more plausible range of �
�|N. 

References on such lifetime issues are (Link, 2020) which indicated the 150% ratio between 
the numbers of batteries and scooters in a swapping-based service. The respective lifetimes of 
batteries and scooters were under debate in 2020: Link (2020) and Bird (2020) advocated that 
embedded batteries would endure twice as much refills as their embedding scooter bodies, but 
Voi (2020) claimed the more recent generations of scooters to have larger lifespans up to 5 
years – a claim too recent at the time to have been tested in the field. 
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Fig. 9. Ratio /�/#	 of technical lifetimes with respect to �
�|N, depending on ��. 
 

For each kind of component the number of refills over the lifetime looks relatively low: down 
to 300 or 530 for batteries depending on the chemistry and even lower for scooter bodies. The 
rationale is both technical and economic. For batteries the technical rationale pertains to the 
chemistry-specific wearing laws and their bottom values, while the economic rationale is that 
high DoD up to Full discharge is more economical than low DoD. For scooter bodies the 
technical rationale pertains to the lifespan -�: we postulated a value of 10,000 km so that 
larger values twice or n times that would lead to greater lifetime number of refills /� by a 
corresponding factor (given .A, �� and �). The economic rationale is the scooter price 
sensitivity to sturdier design as conveyed by sensitivity coefficient �
�|N. 

7.6 On scooter lifespans 
On setting up the parameters we established low / middle / high values of �� for 2nd 
generation shared e-scooters with expected lifespan of 7,000 km, based on BCG (2020). This 
study also provided daily maintenance costs of 1st generation scooters, at about one half more, 
along with lower lifespan at say 4,000 km. By attributing the change in the per scooter daily 
maintenance cost between the two generations, ∆��, to the change in lifespan, ∆-�, the ratio ∆��/∆-� constitutes a basis for vΓ�/v-�. Its low / middle / high values are respectively −1. 10¡ä / −1.9 10¡ä / −3.7 10¡ä  in €/km. 

Concerning scooter prices, let us infer its elasticity to lifespan on comparing (��, -�) pairs at 
(€400, 4000km) and (€900, 7000km). The price ratio 9/4 and the lifespan ratio 7/4 yield an 
elasticity ·�|� of about 1.45. We shall also consider elasticity values of 1.3, 1.5 and 1.6 to 
enlarge the range of exploration. The following table gives outcomes -�∗  for rounded values of vΓ�/v-� and for the different elasticity values, depending on a daily traffic per scooter of 
either 10 km (left part) or 20 km (right part).  

 �B/+, = 10 km   �B/+, = 20 km 

− �ÓÔ��²  (€/km)

·�|� 

1. 10¡ä 2. 10¡ä 4. 10¡ä  − �ÓÔ��²  (€/km)

·�|� 

1. 10¡ä 2. 10¡ä 4. 10¡ä 

1.3 2,652 985 366  1.3 7,139 2,652 985 

1.45 4,955 1,405 398  1.45 17,474 4,955 1,405 

1.5 6,250 1,563 391  1.5 25,000 6,250 1,563 

1.6 11,023 1,949 344  1.6 62,354 11,023 1,949 
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The table shows that lower sensitivity of maintenance costs to lifespan fosters larger 
lifespans; only the low maintenance cost values yield plausible optimal lifespans. Larger 
elasticity yields larger optimal lifespan. Furthermore, doubling the daily traffic per scooter 
exerts a more than proportional effect on the optimal lifespan. 

7.7 Component prices and their per-refill values 
Let us now study the component prices that would stem from cost minimization with respect 
to BEC and DoD. It is assumed again that battery price is a linear function of � with 
coefficient �
	 of €250/kWh. As for scooter price we take the median set-up in §7.1 as the 
base value ��� of the affine linear function  P� = ��� + �
�|N. �. Figure 10 depicts the 
respective variations of P� and P	 with respect to �
�|N, given �� and battery chemistry. The 
component prices vary with �
�|N in opposite ways, increasing for scooters but decreasing for 
batteries. 

  

Fig. 10. Scooter price (left) and battery price (right) with respect to �
�|N. 
 

The inventory costs of scooter bodies, on one hand, and batteries, on the other hand, are easy 
to estimate on a per refill basis as ��//� and �	/#	: figure 11 depicts their variations with 
respect to �
�|N for different per-refill swapping costs �� and the two battery chemistries. Given 
the chemistry and �
�|N , both per refill inventory costs increase with ��. The scooter per-refill 
inventory costs are analogous between the two chemistries. Regarding the battery per-refill 
inventory costs, the LFP chemistry is much more economical than NMC, yielding half price 
owing to its more advantageous wearing law.  

Note that as the refill numbers /� and #	 are inversely proportional to the renewal flows �� 
and �	, the per-refill component costs are proportional to their respective inventory costs at 
the service level.  

  

Fig. 11. Per-refill inventory costs of scooters (left) and batteries (right) with respect to �
�|N. 
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7.8 On S3 costs per energy unit and scooter optimization 

The consumption of one unit of energy entails several costs to the service supplier: 

(i) the effective price of fed-in energy �AK ,  

(ii) the swapping cost ��/�� per unit of energy flow,  

(iii) the capacity cost of the battery �	/��#	 per unit of energy flow,  

(iv) the cost of the scooter battery capacity per unit of energy flow, (�� − ���)/��/� = ¿
²|ð�±² .  

At low �� =€.5 the total energy cost per kWh varies from €1.3 to €3.8 according to �
�|N, i.e. 
from 6 to 19 times our middle value of �AK . The last step of energy transport is much more 
expensive than its out-of-the-grid cost (left part in figure 12). This is confirmed at high �� =€6 (right part in figure 12), given which the total energy cost per kWh varies from €1.2 to 
€12 according to �
�|N, i.e. from 6 to 60 times �AK .  

Denoting �A# ≡ �AK + (�� + �	/#	)/ ��, from (6.6) the product -�. �A# indicates the marginal 
value of reducing the energy consumption factor .A: the .5-7 range of �A# in €/kWh times -� =10,000 km gives a range of 5-70 thousand €.km/kWh. From the mid-tier value .A =.015 
kWh/km, a 5% decrease can be valued at €40-560 for a shared e-scooter.  
 

  

Fig. 12. S3 system costs per unit of energy flow depending on �
�|N: low vs. high ò\ . 
 

8. Discussion 
Let us now discuss the outreach and limitations of specific parts, say sub-models of the 
model. 

8.1 On the unit swapping cost 
By adding up the field implementation costs and the swapping costs, we obtained an affine 
function of the number of refills, �?: its coefficient denoted as �� is the unit cost per 
swapping. The basic �� formula involves the technical conditions of swapping tours, along 
with costs �w per scooter deployed in the field and �h� of augmented juicer wages. From the 
mathematical optimization of swapping logistics, we obtained more elaborate formulas for ��∗ 
and the associated �	∗ , ��∗, ��∗. Beyond the mathematical formulas, the major model property is 
that the �� variable sums out the sub-models of swapping logistics and field implementation 
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and constitutes a basic input to the medium and long term management policies concerning 
target DoD �, BEC � and scooter body specifications. 

It may be conjectured that other processes for swapping, e.g. user-based swapping, are 
similarly summarized by their specific cost per swapping. Thus, the rest of the management 
model would still hold for alternative swapping strategies. 

8.2 On the swapping strategy by company-operated tours 

Our model of an S3 service with swappable batteries only considers a specific process of 
battery swapping in the form of juicer tours operated by the company. Alternative processes 
call for specific alternative models. For instance, gig workers could be involved to collect 
recharged batteries at a company depot, make the swapping tour and bring back the associated 
depleted batteries: then the term �� would have a different composition. Alternatively, gig 
workers could be involved not only to make the swapping tours but also to perform battery 
charging by their own means; this would lead to specific battery inventory and heterogeneous 
depot conditions. As for user-based swapping, the depot function would be divided between a 
number of charging spots, each with specific charging equipment (called a wall or a kiosk): 
then there would be per-spot costs, specific battery inventory, as well as revenue losses 
associated to the compensation of the swapping users. 

The per-refill time �
 is likely to depend on the specific process of swapping tours: firm 
economies of operational coordination are expected for company-operated tours. This should 
be taken into account in a comparison of such processes. Of course, the �
 parameter also 
depends on the space and time conditions of the service implementation: demand density is a 
key driver. 

On setting up the numerical study we provided some hints of practical composition for the 
parameter of juicer wages, ��: it embeds the cost of the purported service vehicle, which we 
considered lower than the exact juicer wages by one or more order of magnitude. Additional 
specification would be required to compare cargo e-bikes, on one hand, to vans powered 
either by fuel or electricity, on the other hand (Bilboe, 2021, Lime, 2020, Voi, 2020). The 
kind of vehicle will impact not only �� but also the tour time parameters �� and �
, in line with 
the respective speeds of the vehicles and the right-of-way conditions attributed to bikes and 
cars, respectively. 

Yet an even greater difference pertains to the maximum number of batteries that a tour vehicle 
may carry: as each battery weighs a couple of kg, assigning two or three tens of them to a 
cargo-bike looks like a maximum. The weight issue is not covered here and it certainly 
deserves further research. 
 

8.3 On battery wearing laws and management strategies 

We introduced the R	 function and the companion functions E	 and ψ	 as a technology 
function for battery wearing and lifetime in number of cycles. The mathematical specification 
is an abstract one. The Affine Linear specification of E	 and its Constant Elasticity 
counterpart are convenient for model tractability. We estimated each specification for two 
chemistries of Lithium-Ion batteries, respectively NMC and LFP. The estimation data taken 
from the Battery University (2019) stem from car batteries that are larger than e-scooter 
batteries by 2 or 3 orders of magnitude. As the charging conditions in terms of voltage and 
above all of amperage are quite different, wearing data series should specifically be collected 
for e-scooter batteries. 
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The two regression estimations of  E	 functions pertain to their respective chemistries and are 
likely not relevant to alternative chemistries.  

We have not considered the progressive reduction of effective capacity along battery life. This 
certainly deserves further research that will lead to a deeper understanding of the relationship 
between the target DoD and BEC. 

Another issue of battery wearing is specific to swappable ones: that of fixers. In operators and 
OEMs that did not turn to swappable batteries, some engineers evocated “wire connectors 
being worn down over time, or enclosure latches” (Eric Barber from Superpedestrian, quoted 
by Link, 2020). We did not model such wearing which is of another kind than that of battery 
cells. Neither did our numerical application take into account the effect on battery price of 
“hinges and locking mechanisms which supplant battery space” (Link, 2020). 

8.4 On battery capacity and its price effects 

We already mentioned the issue of battery weight that stems from battery capacity in an about 
proportional way. 

The assumption of battery price with respective to battery capacity was taken from electric car 
makers. It may be less well-suited to e-scooter batteries due to their much smaller sizes.  

We specified nothing about the end-of-life treatment of batteries: it may alter the price 
function, especially if the battery is given a second life in another field of application. 

The postulate that the scooter body price, excluding the battery, will depend on the battery 
capacity may look a heroic assumption. Yet for relatively large scooter batteries, a significant 
increment in battery capacity induces a significant increase in weight to be distributed over 
the scooter body, in such way as to limit the inconvenience to the riders. Specific adaptations 
to the scooter layout are likely to be costly. A heavier battery requires a stronger scooter body 
and this makes the scooter & battery combo even heavier. This may be inconvenient to 
potential customers and deter some of them from using the service.(3) In the model, the 
scooter price function P� may include not only the purchase price of the scooter but also the 
opportunity cost of service characteristics on the demand volume.  

The functional specification of the e-scooter price as a linear affine function of the battery 
capacity can be thought of as a local linear approximation. As the associated local slope, P
�|�, 
has no obvious reference value, we made it the main dimension of sensitivity analysis in our 
numerical study and we spanned a very large range for it. 

8.5 Scooter body parameters 
The second generation of shared e-scooters was purported to be much sturdier than the first 
one, involving much bulkier bodies and about once more weight: from 11 to 22 kg, including 
batteries (ITF, 2020). The next generations have gone on the increasing trend, up to weight of 
30+ kg as of early 2022, out of which aluminium alloy still contributes more than one half 
(Okai’s models exhibited at the Autonomy meeting in Paris, March 2022). There are even 
some e-scooter makers such as the Swiss-based Micro-Mobility that aim for everlasting 
bodies (Hénin, 2022): this corresponds of course to modular design allowing for then 
progressive replacement of worn parts by spares. 

                                                 
3 Cf. Mona (2021) comparing the Tier e-scooter to its Lime and Dott counterparts in Paris 
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The electric engine contributes a significant part of the weight: 4 kg in 2nd generation models 
(ITF, 2020), and more for dual-motor scooters that are more powerful and improve user 
experience. Both the sturdier design and more powerful engines enable e-scooters to 
accommodate bigger people, thereby enlarging the customer basis. 

Coming to the energy consumption rates, we have not yet heard of regenerative braking for 
kicked e-scooters. Such function would enable to reduce the average net consumption rate .A, 
at the expense of additional weight and acquisition cost. While the saving in fed-in energy 
would not look profitable, in fact an economic comparison should take into account the full 
value of such investment, notably the reduction in swapping frequency. Yet the effect of 
regenerating braking on battery wearing is unclear. 

In the same vein, some innovators proposed to add photovoltaic panels on top of the scooter 
baseboard: the expected yield would be 1 mile of additional range per hour of sunny weather 
(Ridden, 2013). 

9. Conclusion 

9.1 Summary 

The article provides a technical and economic model of service production for a Shared 
Scooter Service (S3) under free-floating and with swappable batteries. The model has 
modular architecture with sub-models that pertain to specific functions of service production, 
namely (i) commercial operations, (ii) energy feeding, (iii) in-field implementation, 
(iv) juicing logistics, (v) battery inventory, (vi) scooter inventory. The model logical structure, 
exhibited as an influence tree (figure 2), enables us to address the problem of Cost 
optimization in a hierarchical way, from short-run factor of tour productivity, to medium-run 
factors of battery DoD and energy capacity, and up to long-run factors of scooter lifetime 
length and energy consumption rate.  

It comes out that the daily number of refills is a key variable in the economic model as it links 
the field implementation and swapping logistics functions to the other functions in service 
production (scooter inventory, battery inventory, energy charging and commercial). The 
sensitivity coefficient of production costs to the number of refills is a holistic per-swapping 
cost made up of a unit swapping cost plus a per-refill share of the battery acquisition cost. 

The joint optimization of field and swapping costs with respect to swapping tour productivity 
yields a unit swapping cost that is essentially a CES function of two composite factors. 

The juicing strategy also involves setting up the battery DoD that triggers refilling: the 
optimization of service production costs with respect to the target DoD yields an optimal 
number of refills over the battery lifetime that is a specific function of the ratio between the 
unit swapping cost and the battery price.  

As for battery energy capacity, it influences the battery price and also the scooter price. Thus, 
its optimization involves the juicing strategy as well as battery inventory and scooter 
inventory. On a per-refill basis, the optimal battery energy capacity balances the marginal cost 
of battery and scooter capacity with the augmented swapping cost. 

Turning to scooter optimization, the optimal lifespan balances the marginal cost of acquisition 
and the average acquisition cost augmented by marginal maintenance gains over the scooter 
lifetime. The optimal energy consumption factor balances the marginal scooter price divided 
by the lifespan with the overall energy cost per unit of ride length, including the effective 
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price of fed-in energy and the holistic per-swapping cost divided by the amount of refilled 
energy. 

Analytical formulas are available for all variables of interest, thereby making the model both 
theoretical and tractable. A specific battery technology (i.e. a battery wearing function of the 
DoD, yielding a lifetime number of charging cycles) with constant elasticity was introduced: 
combined to battery and scooter prices that are constant elasticity functions of battery energy 
capacity, it allows for straightforward solution of the cost optimization problem. We also 
introduced an Affine Linear technology which combines conveniently to linear battery price 
and affine linear scooter price. 

9.2 Outreach and limitations 

Coming back to the original research question on the value of swappable batteries for shared 
e-scooters, it can be answered on two levels, theoretical and applied. On the theoretical level, 
the model provides a clear understanding of the “systemic economy” of swappable batteries 
by company-operated tours: the swappability enables not only for more efficient juicing 
logistics, but also for a juicing strategy combining juicing logistics with a specific discharge 
policy taking into account the battery wearing law, together with a cost-efficient choice of 
battery capacity that involves both the battery price and the scooter price. This way, 
swappable batteries link together the juicing strategy and the inventory policies of batteries 
and scooters. Figure 13 traces out the influence graph of the per-refill swapping cost on the 
realm of service supply policies. 

On the applied level, we substantiated some hints about the per-refill swapping cost: it would 
lie between €1 and €3 or €6 at most. Thus the €5 bounty paid to gig juicers in the early times 
of shared e-scooters appears as an upper bound. As for Lithium-Ion chemistries, the better 
endurance of LFP compared to NMC would enable for saving one half of the battery 
inventory costs, i.e. about 15% of the holistic energy cost (see figures 11 and 12). Of course, 
such hints do not constitute empirical outcomes. Econometric studies are in order on the sub-
models, from battery wearing laws, to battery prices with respect to chemistry and nominal 
capacity, to scooter prices with respect to battery capacity and body weight as a proxy of 
longevity, and up to the longevity of specific e-scooters. 

Among the theoretical limitations of the model, let us mention first the absence of a fleet 
repositioning process (which may induce a major part of service production costs) and second 
the lack of a scooter wearing function: such function would be essential to understand scooter 
lifespan in a deeper way. Another direction for further research would be to link this 
production model to a model of service traffic and revenues, so as to study the conditions of 
economic viability of an S3 system and to look for its potential areas of relevance, beyond the 
initial niche of high density urban areas. 



   Swappable Batteries in Shared e-Scooters Economics 

Revised version R2 : 31 May 2022  42/51 

 

Fig. 13: Influence graph of S3 System Optimization. 
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11. Appendix A 
Proof of Proposition 1.  

Considering the wearing law R	, we shall assume that the lifetime energy intensity function E;: � ↦ �. R	(�) is decreasing. Thus, its derivative E
 	 = R	 + �R
 	 is less than zero. 

Function ψ;: � ↦ −(R	 + �R
 	)/R	F  satisfies that ψ;(�) = −E
 	R	¡F. If E; is decreasing 
then function ψ; is nonnegative. Assuming further that E; is a concave function, then its 
derivative is decreasing, so that −E
 	 is nonnegative and increasing. The decreasingness of E; 
implies that of R	, which is positive, so that function R	¡F is positive and increasing. Then, as 
a product of two nonnegative increasing functions, so is function ψ;. Then the inverse 

function ψ	(¡') is well-defined and it is also nonnegative and increasing. 

Now, given ̈ ≡ ��/�	, either ψ;(��) ≥ ¨ or ψ;(��) < ¨. In the latter case, as ψ; is increasing 
then no � ∈ 50, ��2 can satisfy ψ;(�) = ¨, leading to claim (ii) in the proposition and the 
optimality of full discharge. In the former case, it holds that ψ;(0) < ¨ ≤ ψ;(��). From the 
continuity postulate, by the Bolzano-Weierstrass theorem there exists at least an intermediary 
value �∗ ∈ 50, ��2 that satisfies ψ;(�∗) = ¨. Under global increasingness of ψ; and its local 
strict increasingness, this �∗ is unique. Thus the existence and uniqueness are established in 
both cases. 

Proof of Proposition 2.  
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Proposition 2: existence of an optimal BEC. Assume that (i) P
�|� is continuous and takes its 

values in a bounded interval ¸P
�|�¹º| , P
�|�¹»¼ ½ with P
�|�¹º| > 0, (ii) P	 and û	|� are continuous and û	|� ∈ 50,12. Then, given �, there is at least one BEC that satisfies the optimality condition. 

Proof. Let us define F(�) ≡ ÁE��'¡ý}|À�Ì}/J}Ì
 ²|À.�Â . Then eqn. (5.17) restates as F(�) = �³´.�². The 

continuity of P
�|� with respect to � and its specific range of variations, together with the 
continuity of P	 and û	|� , ensure the continuity of F on 20, ∞5. From the assumption that û	|� ∈ 50,12, we first get that the numerator in F is greater than �� hence positive, and second 
that P	/� is bounded when � → +∞. Under the additional postulate P
�|� ∈ ¸P
�|�¹º| , P
�|�¹»¼ ½ 
with P
�|�¹º| > 0, it comes out that F → +∞ when � → 0� and  F → 0� when � → +∞. 
Finally, as F ranges from 0� to +∞ and is continuous, by the Bolzano-Weierstrass theorem 
there is at least one value � such that F(�) = �³´.�² > 0, i.e. an optimal BEC. 

Proof of Proposition 3.  

Proposition 3: existence and uniqueness of joint optimal BEC-DoD. Assume that (i) P	 
increases with � and (ii) (1 − û	|�)P	 decreases with � while remaining nonnegative, 
(iii) P
�|� is nonnegative and (iv) P
�|��F increases indefinitely with �. Then the Partial 
Discharge optimality condition in � only has one unique solution �∗, with associated DoD ��∗∗ ≡ ψ	(¡')(��/P	(�∗)). If ��/P	(�∗) < ψ	(��), then ��∗∗ ∈ 20, ��5 and the pair (�∗, ��∗∗ ) is the 
unique optimal pair, meaning that Partial Discharge is optimal. Otherwise, if ��/P	(�∗) ≥ψ	(��) then Full Discharge is optimal and the pair (A�¾∗ , ��) is the unique optimal pair.  

Proof. Let us address the Partial Discharge case by restating the fixed point problem (5.23) as 

P
�|��F = .A. -���∗ (�� + (1 − û	|�) P	R	) 

P
�|��F − �� .A. -���∗ = .A. -�R	��∗ (1 − û	|�)P	 

By Assumption (i), P	 increases with � hence ��/P	 decreases with � and so does ��∗ =ψ	(¡')(��/P	) since ψ	(¡') is increasing: thus −��.A. -�/��∗ is an increasing function of �. As 
from (iv) P
�|��F is increasing, we get that the LHS is an increasing function of �. Conversely, 
from (ii) (1 − û	|�)P	 is decreasing and nonnegative, while R	��∗ = E	(��∗) increases with � 
hence 1/R	��∗ decreases with �: thus, as the product of two nonnegative decreasing functions 
of �, the RHS is a nonnegative decreasing function of �. All in all, the fixed point problem is 
cast as the intersection between the increasing LHS curve and the decreasing RHS curve. 
Both curves are continuous. The LHS takes negative values at � → 0� but tends to infinity 
when � does so. Thus, by the Bolzano-Weierstrass theorem there is an intersection point 
(�∗, ¨) between the two curves, with nonnegative ordinate ¨ due to the nonnegative RHS. 
From the increasing and decreasing behaviors this point is unique.  

Now, if ��/P	(�∗) ≤ ψ	(��) then the (�∗, ��∗∗ ) pair satisfies both optimality conditions and it 
is the only one to do so, meaning that it is an optimal solution and the unique one: thus, 
Partial Discharge is optimal. But if ��/P	(�∗) > ψ	(��) then Partial Discharge cannot be 
optimal: then, Full Discharge is in order and the (A�¾∗ , ��) pair is optimal. Furthermore, due to 
the stronger assumptions in Proposition 3 than in Proposition 2, A�¾∗  is the unique solution of 
optimal BEC problem associated to �� , making pair (A�¾∗ , ��) the unique optimal point.  
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Full discharge optimal BEC under Constant Elasticities 

Let us demonstrate the existence and uniqueness of solution to equation (5.27). 

Proof: The LHS increases with � from 0 to +∞. Consider first the case Ê < 1: then the RHS 
decreases with � from �� to −∞: as both the LHS and RHS are continuous, there is an 
intersection point and it is unique. Consider then the case with Ê ≥ 1: then the RHS is sub-
linear in � while LHS is super-linear, so that LHS will catch up RHS at a point �∗ where the 
LHS derivative is greater than its RHS counterpart: beyond that value the gap between the 
derivatives will go on increasing, so there won’t be any other intersection, ensuring the 
uniqueness of �∗. 

12. Appendix B: affine linear model of battery lifetime energy 
intensity, battery price and scooter price 

12.1 A specific battery technology of affine linear lifetime energy intensity 
In Section 5 we introduced a specific law, say technology, of battery wearing with respect to 
target DoD: the constant elasticity battery wearing technology. Let us now introduce an 
alternative specification by postulating that the E	 function of lifetime energy intensity is an 
affine linear function of � as follows: 

E	(�) = E�. (1 − �/*) (B1a) 

Parameter E� stands for the maximum lifetime energy intensity. The effective intensity 
depends on σ  in a decreasing way, proportional to 1 − �/* with parameter * > 1 (recall that � ∈ 20,15).Thus  

R	(�) = �¡'E	(�) = E�. (�¡' − *¡') (B1b) 

Then, R
 	 = −E�/�F and E
 	 = −E�/* , so that  

ψ;(�) = − E
 	#	F = E�*. #	F = (�¡' − *¡')¡F
*. E�  

(B2a) 

Thus ψ; is an increasing function of �, with inverse function such that (�¡' − *¡')¡F =*. E�. ¨, hence  �¡' − *¡' = (*. E�. ¨)¡.ë  yielding that  R	(�) = þE�/*¨  and  

ψ	(¡')(¨) = *1 + þ*/(E�¨) 
(B2b) 

For the value of ψ	(¡') to be less than ��, it must hold that 

¨ < ψ;(��) = (��¡' − *¡')¡F/(*E�) 

If ¨ < ψ;(��), the lifetime effective intensity is obtained as  

E	(�) = E�1 + þE�¨/* 
(B3) 

Put in words, the effective intensity is the maximum intensity divided by 1 + þE�¨/*. 

As for DoD optimization, depending on whether ��/�	 < ψ;(��) or not, the optimal DoD is 
less than �� i.e. partial discharge or equal to �� i.e. full discharge. The following table provides 
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the associated outcomes under the specific battery technology with linear lifetime energy 
intensity: 

Condition �∗ R	(�∗) E	(�∗)  

 ��/�	 < ψ;(��) 

Partial discharge 

*
1 + � *E�

�	��
 �E� �	* ��  

E�
1 + �E� ��* �	

 
(B4a,b,c) 

��/�	 ≥ ψ;(��) 

Full discharge 
�� E�(��¡' − *¡') E�(1 − ��/*) 

 

Under partial discharge the optimal number of cycles combines a technical ratio, E�/*, with 
an economic ratio, ��/�	.  

12.2 Optimal capacity and DoD under linear prices 

Let us assume here that not only the battery price is an affine linear function of battery 
capacity, P	 = �	� + �. �
	, and also the scooter price, say P� = ��� + �. �
�|N. Then from 
(5.16) the optimal number of refills in a scooter lifetime becomes 

/� = �. �
�|N�� + �	�/R	 = P� − ����� + �	�/R	 
(B5) 

The lifetime refill number, which is essentially a technical parameter, is entirely determined 
on economic grounds. 

Thus 
³´.�²N.� = �ÁE�¿}�/J} �
�|N, implying as in (5.18) that 

�F� = .A-� �� + �	�/R	�
�|�  
(B6) 

Under Partial Discharge, � is itself a function of � via P	 so that the optimal BEC is 
characterized by the following condition: 

�Fψ	(¡')( ���	� + �. �
	) = .A-��
�|� (�� + �	�
R	 ∘ ψ	(¡')( ���	� + �. �
	)) 

It is a fixed point problem in � only.  

Under the affine linear battery technology, owing to (B4a,c) it gives rise to 

�F* = �1 + � *E�
�	� + �. �
	�� �.A-��
�|� ��� + �	�� * ��E� (�	� + �. �
	)� 

Which is a fifth-order equation in þ�	� + �. �
	. 

Under null base battery cost �	� = 0 the condition simplifies into the following 

�F = .A-���*�
�|� + .A-��
�|� ��
	��*E� � 



   Swappable Batteries in Shared e-Scooters Economics 

Revised version R2 : 31 May 2022  49/51 

Denoting � ≡ ³´�²ÁE�¿
²|À  and � ≡ ³´�²¿
²|À �¿
}ÁE�A� , the optimal capacity satisfies the following equation 

�F − �√� − � = 0 (B7) 

It is a quartic equation in √�. The analytical solution is given in the next subsection. 

Under Full Discharge i.e. � = ��, the optimal capacity is straightforwardly recovered as 

�∗ = �.A. -���. P
�|� �� 
(B8) 

Under linear battery price, the Full Discharge condition ��/�	 ≥ ψ;(��) becomes that 

�� ≥ � P
	 ψ;(��)  

Combining the two conditions, we obtain that 

�� ≥ �Å� ≡ .A. -���. P
�|� (P
	. ψ;(��))F 
(B9) 

The per-refill swapping cost �Å� is a threshold value for Full discharge to possibly occur. It 
implies that values of �� below �Å� give rise to Partial discharge in DoD optimization. But it 
does not mean that only Full discharge could be the optimal policy for values of �� above �Å�. 
In (5.18) we provided a threshold BEC of Partial discharge that is also a ceiling capacity of 
Full discharge:  

� ≡ ���
	ψ;(��)  (B10) 

Under the specific battery wearing law with linear lifetime energy intensity, after solving the 
quartic equation in √�, one has to compare the resulting � to �: if � < � then the solution is 
consistent with partial discharge, otherwise full discharge is optimal and the optimal capacity 
stems from (B7). 

12.3 Optimal battery energy capacity under partial discharge 
Under linear scooter and battery price functions and specific battery technology with linear 
lifetime energy intensity, if Partial Discharge is optimal then the optimal capacity �∗ satisfies 
a characteristic condition (B7) that is a quartic equation in √�. Let us recall it: 

�F − �√� − � = 0  

Wherein the composite parameters � ≡ ³´�²ÁE�¿
²|À  and � ≡ ³´�²¿
²|À �¿
}ÁE�A�  are positive. 

As the fourth-order equation Çä − �Ç − � = 0 has no third-degree term, it is straightforward 
to apply the Ferrari solution scheme. Let us look for a parameter � such that  

0 = (ÇF + �)F − 2�ÇF − �F − �Ç − � 

⟺ 0 = (ÇF + �)F − 2� yÇF + �2� Ç + �2 + �2�~ 
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⟺ 0 = (ÇF + �)F − 2� ¢(Ç + �4�)F − ( �4�)F + �2 + �2�£ (B11) 

And such that ( {ä�)F = �F + �F�. Thus, the equation parameterized by � is both equivalent to the 

original quartic equation and in the form of a well-known remarkable identity. The condition 
on � is equivalent to a cubic equation in canonical form, namely 

�à + �� − �F
8 = 0 

(B12) 

Let us solve this “resolvant cubic” equation by applying Viete’s method. We look for ̈ such 
that � = ¨ − �à«, so that 	 ≡ ¨à satisfies the following quadratic equation  

	F − �F
8 	 − �à

27 = 0 
(B13) 

In our instance, as both � and � are real and � is positive, then the discriminant of the 
quadratic equation is positive:  

Δ≡ (�F
8 )F + 427 �à > 0 

Letting û ∈ �−1, +1�, the quadratic equation is solved as  

	ý = �F
16 + û2 √Δ 

(B14) 

As 
'F √Δ > {Â

'ã , it holds that 	�' > 0 and 	¡' < 0. We then recover the associated cubic roots 

that have the same signs: 

ý̈ = þ	ý� = ��F
16 + û2 √Δ�

 

(B15) 

The next step is to recover Ferrari’s parameter from ̈ ý: 

�ý = ý̈ − �3 ý̈ (B16) 

It turns out that the sign of �ý is identical to that of ̈ý and 	ý: the reason is that  

�ý > 0 ⇔  ý̈F > �à  ⇔  ý̈ã > ��F�⇔  	ýF > ��F�  ⇔  {Â
� 	ý > 0 owing to (B12).  

As � is positive, by using (B12) once again it comes out that � must be positive, too. 
Considering from now on the value ��' of �, we can restate the original quartic equation as 

(ÇF + �)F − 2� �Ç + �4��F = xÇF + � − √2� �Ç + �4��� . xÇF + � + √2� �Ç + �4��� 

= y(Ç − þ�/2 )F + �2 − �√8�~ . y(Ç + þ�/2 )F + �2 + �√8�~ 

In our instance with positive �, as � is positive only the first term may be null (looking for 

real roots only). Yet the existence of a solution still requires that 
�F − {√�� < 0 i.e. that �à < {Â

F : 
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from (B12) it is equivalent to −�� + {Â
� < {Â

F  i.e. −�� < à {Â
�  which holds true since both � 

and � are positive. 

Then, any (real) solution of the quartic equation has the following form: 

Ç = �12�± � �
þ8�− 12� (B17) 

The upper root is obviously positive. For the lower root to be greater than 0, the condition is 
'F� > �þ8� − 'F�  i.e.  � > {√��  and in turn  �à − {Â

� > 0. But (B12) implies that �à − {Â
� = −�� 

which is negative, yielding negative lower root. 

In all, there is one and only one real and positive solution to the quartic equation in √�:  

√� = �1
2 � + � �√8� − 1

2 � 
(B18) 

Wherein  � = √	� − �à √��   and  	 = {Â
'ã + 'F �({Â� )F + äF� �à. 

Of course, the existence and uniqueness of the solution could also be demonstrated on simple 
functional considerations. 

 


