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Abstract
Classifying discourse relations is a hard task: discourse-annotated data is scarce, especially for languages other
than English, and there exist different theoretical frameworks that affect textual spans to be linked and the label
set used. Thus, work on transfer between languages is very limited, especially between frameworks, while it
could improve our understanding of some theoretical aspects and enhance many applications. In this paper, we
propose the first experiments on zero-shot learning for discourse relation classification and investigate several
paths in the way source data can be combined, either based on languages, frameworks, or similarity measures. We
demonstrate how difficult transfer is for the task at hand, and that the most impactful factor is label set divergence,
where the notion of underlying framework possibly conceals crucial disagreements.

Keywords: discourse relation, multilinguality, zero-shot learning

1. Introduction

Discourse analysis examines the representation of
information at a document level, by finding sen-
tences or sentence segments that are logically
and/or structurally connected. These connections
are called rhetorical relations (e.g. contrast, expla-
nation), and they may be explicit (with the pres-
ence of distinct words called connectives) or im-
plicit (without distinct connectives). For example:

1. [Since these statistics are encoded as dense con-
tinuous features,]1 [it is not trivial to combine these
features]2
cause(1,2), eng.dep.scidtb1

2. [Tras obtener el soporte informático con la totalidad
de los textos en ambos idiomas,]1 [hemos procedido
a confrontar y paralelizar las dos versiones,]2
After obtaining the computer support with all the texts
in both languages, we proceeded to compare and
parallelize the two versions,
sequence(1,2), spa.rst.sctb

3. [Sözümü bitirmiştim.]1 [Muammer’den bir su
istedim.]2
I had finished my speech. I asked Muammer for a
glass of water.
temporal.asynchronous(1,2), tur.pdtb.tdb

Even though discourse analysis has been thor-
oughly studied and has brought improvements on
many NLP downstream tasks – e.g. summariza-
tion (Xu et al., 2020), machine translation (Chen
et al., 2020) –, the domain suffers from several lim-
itations: (1) most of the existing work focuses on
specific data, namely a few corpora in English; (2)

1The names used for the corpora come from the DIS-
RPT shared task dataset, and combine the name of the
original corpus, the language and the framework, e.g.
the (English) RST DT is called eng.rst.rstdt.

there are distinct theoretical frameworks, with dif-
ferent definitions of what discourse units are, and
different choices of relation typology.

Concerning multilinguality, the introduction of
discourse-annotated corpora, in different frame-
works, has stimulated work on multilingual dis-
course analysis, e.g. (Braud et al., 2017; Liu et al.,
2021) at least with the RST framework (Rhetorical
Structure Theory, Mann and Thompson, 1988).
There have been attempts to unify frameworks and
corpora annotations, e.g. Benamara and Taboada
(2015), but they have not been adopted in practice.

In order to study discourse relations across
languages and frameworks, the DISRPT Shared
Tasks (Braud et al., 2023)2 have proposed tasks on
discourse segmentation (locating discourse units),
discourse connective identification and discourse
relation identification (identifying the type of rela-
tion between two related discourse units). While
the motivation of the Shared Task is unification
across languages, frameworks, and textual gen-
res, the most successful systems are composed
of monolingual models or small corpora subgroups
with annotation homogeneity.

Discourse analysis should not, however, be lim-
ited to the currently available annotated datasets.
It is important to examine how to efficiently trans-
fer a system to languages with fewer or no re-
sources. This is a standard topic in different
domains of NLP, with the development of cross-
lingual benchmarks used to evaluate few-shot or
zero-shot transfer, such as XNLI (Conneau et al.,
2018), XQuad (Artetxe et al., 2020) or Wikiann
(Pan et al., 2017).

Our work presents experiments on discourse
relation classification across languages and for-
malisms, inspired by the related DISRPT Shared

2Three editions since 2019, cf the latest at https:
//sites.google.com/view/disrpt2023/.



17859

Task. Our goals are to examine methods to im-
prove multi-lingual, multi-framework discourse re-
lation classification, and to explore different con-
texts of zero-shot transfer. We observe the dis-
course analysis issues discussed above; the het-
erogeneity of annotations, annotation overlap, and
theoretical definitions of a discourse unit, as well
as the practical problem of varying corpora sizes.
We train and evaluate jointly-trained multilingual
multi-framework models, based on multilingual
pretrained language models (of different sizes and
transformer architectures), and compare them to
monolingual approaches. We also create zero-
shot models to test whether generalization to an
unobserved language is possible, from training
with the same language family, framework, or
corpora with similar label sets. We make our
code available at https://gitlab.irit.fr/
melodi/andiamo/discret-zero-shot.

2. Previous Work

Discourse relation prediction can be divided into
two tasks: (a) shallow discourse parsing, where
relations occur in the same sentence, or between
two neighboring sentences, and (b) full discourse
parsing, where relations form a structure, usually a
tree, covering a whole document. Work on shallow
discourse parsing is performed with the Penn Dis-
course TreeBank framework (PDTB, Prasad et al.,
2014) and focuses on relation classification, specif-
ically on implicit ones (Example (3), Section 1),
that is relations not triggered by a discourse con-
nective, such as since or tras/after in Examples (1)
and (2). Full discourse parsing consists of various
kinds of structure predictions, plus labeling of the
structure, with the use of other discourse frame-
works (RST, SDRT, or DEP, see Section 4.1).

Work on shallow discourse parsing has focused
predominantly on English, from feature-based ap-
proaches (Pitler et al., 2009; Lin et al., 2009) to
finetuning pretrained models in order to capture
interactions between argument contextual embed-
dings (Liu et al., 2020; Wu et al., 2022). A popu-
lar approach is the use of connective prediction as
an auxiliary task (Kishimoto et al., 2020; Wu et al.,
2023; Liu and Strube, 2023). Recent work has also
leveraged prompt tuning (Zhao et al., 2023). PDTB
relations are defined with a hierarchy of subsenses
with 3 levels, and the most recent work focuses
on the finer-grain levels. The creation of corpora
in other languages led to the CoNLL shared tasks
(Xue et al., 2015, 2016) however limited to Man-
darin and English. Most work assumes relation ar-
guments are already known, and only the relation
label is to be predicted.

For full discourse parsing (RST or SDRT frame-
works), relation prediction is either done jointly with

structure prediction, e.g. (Zhang et al., 2021; Yu
et al., 2022) or as the last stage of processing
(Wang et al., 2017). It is challenging to compare
with PDTB approaches, since work on full parsing
rarely evaluates the relation classification model in-
dependently. In addition, it is difficult to assess the
contribution of relation prediction to the main pars-
ing task. Finally, discourse parsing in a realistic
setting should make no distinction between explicit
or implicit relations, since all relations have to be
labeled to form a covering structure. In our work,
we also adhere to this setting.

Most approaches address English data, with
only a few attempts to leverage joint, multilingual
settings, and only on a subset of existing cor-
pora. Regarding full discourse parsing with the
RST framework, Braud et al. (2017) created a
feature-based approach that is generalized to a
set of languages to evaluate transfer abilities. Liu
et al. (2020) equipped various translation strate-
gies to train one model in a general dataset and
produce predictions in different languages. These
approaches rely on an extensive mapping of dis-
course relations to enable transfer and reduce la-
bel sets as much as possible; in our work, we
opt for as few conversions as possible, only when
needed (e.g. a unique label in one dataset).

The development of the DISRPT Shared Task
was another step toward standardizing evaluations
of discourse processing methodologies (Zeldes
et al., 2021; Braud et al., 2023). The Shared
Tasks provided a unified text format for multiple
discourse annotation frameworks, and included
a task on Discourse Relation Classification since
the 2021 edition, for a variety of languages. In
the first campaign, only two systems were submit-
ted for this task, the most successful being Dis-
CoDisCo (Gessler et al., 2021), with separate mod-
els for each language, built on finetuned monolin-
gual pretrained models, enriched with handcrafted
linguistic and non-linguistic features. Varachkina
and Pannach (2021) used stacked random for-
est classifiers, on top of sentence-level embed-
dings made with SentenceBERT (Reimers and
Gurevych, 2019), to predict coarse relations first
and fine-grain relations in a second step.

Three systems competed in the 2023 edition of
the discourse relation classification task, on an ex-
tension of the 2021 data. The best-performing
system on this edition, HITS (Liu et al., 2023),
used a combination of monolingual and multilin-
gual framework-based finetuned classifiers, built
mainly on large pretrained models (e.g. RoBERTa-
large, Conneau et al., 2020). They also used ad-
versarial training and bootstrap aggregating strate-
gies to improve performance. The average accu-
racy score overall was 63.4% on the test set, how-
ever, compared to the 2021 data, they do not out-
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perform DisCoDisCo.
DiscReT (Metheniti et al., 2023) also used pre-

trained models (mBERT base cased, Devlin et al.,
2019) and jointly trained all the corpora of the
task. We also used adapters (Houlsby et al., 2019)
trained on the same task and with frozen layers.
Our approach tried to reduce the large joint la-
bel space by creating reversible label mappings
in cases of label overlap among frameworks. We
also incorporated modifications on the label distri-
bution in order to reduce the total number of labels
across all corpora, however, we were not able to
correctly revert the labels in time for the evaluation
process. Averaged on the test set, accuracy was
54.4%.

Finally, DiscoFlan (Anuranjana, 2023) relied on
the Flan-T5 generative language model (Chung
et al., 2022) to generate relation labels, by query-
ing with a prompt made of the two arguments.
Models were trained separately for each language,
and the output was processed to match labels from
each corpus label set, with a high variance be-
tween datasets. Averaged on the test set, accu-
racy was 31.2%.

Regarding multilingual classification tasks,
there are not many comparable multilingual
datasets with a similar task of predicting a relation
between two spans of text. One of the most recent
and notable sources is the XNLI Dataset (Conneau
et al., 2018), an evaluation corpus for language
transfer and cross-lingual sentence classification
in 15 languages, with 112.5k annotated pairs. This
dataset has been used as a benchmark for down-
stream tasks such as natural language inference.
Common approaches to NLI are multi-modal and
are motivated by multilinguality; for example, per-
forming machine translation between languages,
using parallel corpora for enhancing the training
set, or cross-lingual templates for enhancing the
masked language modeling objective (Qi et al.,
2022).

A recent approach on zero-shot multilingual
transfer with a low-resource motivation has been
proposed under the scope of the AmericasNLI
dataset (Kann et al., 2022). For NLI, Ebrahimi
et al. (2022) used multilingual pretrained models in
a few-shot/zero-shot setting for low-resource lan-
guages, and proposed model adaptation via con-
tinued pretraining. They also observe that transla-
tion as a preprocessing step improves NLI results.

3. Methodology

3.1. Multilingual discourse relation
classification across formalisms

As a take-off point for our experiments, we reprise
the Discourse relation classification Shared Task,

gathering inspiration from submitted systems. We
are using multilingual transformer-based architec-
tures for our experiments that have already been
tested by the participating teams in the Shared
Task (mBERT and XLM-RoBERTa), or not (Dis-
tilmBERT). We aimed for reproducibility rather
than state-of-the-art, thus we use exclusively base-
sized pretrained models and propose optimiza-
tions to bring them on par with large models. The
objective is also to compare the impact of different
changes, irrespective of the model size.

3.2. Zero-shot discourse relation
classification

Our main motivation is to study the capacity of
models for zero-shot adaptation to a new lan-
guage, i.e. predicting discourse relation labels in
a language, while trained on a model that has not
seen that language (but has been trained on the
given task in other languages). The goal is to ob-
serve under what conditions a model can adapt
to new but similar data on which it has not been
trained. We evaluate different scenarios of lan-
guages, frameworks, and label similarity with the
Jaccard similarity coefficient.

Formally, given a set of corpora C, in which
each corpus c belongs to a language l(c) and a
framework f(c) and has a label set A(c), we let
s(L) = {c ∈ C|l(c) = L} the set of corpora in a
language L, and we train a model on a set:
• SLF ⊆ C of corpora in the same language fam-

ily, where we remove successively corpora in a
language L and test on s(L).

• similarly on a set of corpora from the same frame-
work SF = {c ∈ C|f(c) = F}, for each language
L: train on SF /s(L), test on s(L) ∩ SF .

• similarly on sets of corpora S = {c1, .., ck} where
∀(c, c′) ∈ S2, JC(A(c), A(c′)) > t, with JC the
Jaccard coefficient, and t an a priori threshold.

4. Experimental Settings

4.1. Data
DISRPT Benchmark We use the datasets (pub-
lished with a unified text format) from the 2023
edition of the DISRPT Shared Task (Braud et al.,
2023) for Task 3: Discourse Relation Classifi-
cation across Formalisms.3 The data is com-
posed of 26 datasets for 13 languages covering
4 theoretical frameworks: PDTB (Penn Discourse
Treebank Prasad et al., 2004), RST (Rhetorical
Structure Theory, Mann and Thompson, 1988),

3The data used for the 2023 Shared Task and
this work corresponds to the 1.0 release: https://
github.com/disrpt/sharedtask2023
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Corpus Source Language Framework Train set Dev. set Test set Relations
deu.rst.pcc Stede and Neumann (2014) German RST 2164 241 260 26
*eng.dep.covdtb Nishida and Matsumoto (2022)

English

DEP 0 2399 2586 11
eng.dep.scidtb Yang and Li (2018) DEP 6060 1933 1911 24
eng.pdtb.pdtb Prasad et al. (2019) PDTB 43920 1674 2257 23
*eng.pdtb.tedm Zeyrek et al. (2018) PDTB 0 178 351 20
eng.rst.gum Zeldes (2017) RST 19496 2617 2575 31
eng.rst.rstdt Carlson et al. (2001) RST 16002 1621 2155 17
eng.sdrt.stac Asher et al. (2016) SDRT 9580 1145 1510 16
eus.rst.ert Iruskieta et al. (2013) Basque RST 2533 614 678 27
fas.rst.prstc Shahmohammadi et al. (2021) Persian RST 4100 499 592 17
fra.sdrt.annodis Afantenos et al. (2012) French SDRT 2185 528 625 18
ita.pdtb.luna Tonelli et al. (2010) Italian PDTB 955 209 380 15
nld.rst.nldt Redeker et al. (2012) Dutch RST 1608 331 325 30
por.pdtb.crpc Mendes and Lejeune (2022)

Portuguese
PDTB 8797 1285 1248 21

*por.pdtb.tedm Zeyrek et al. (2018) PDTB 0 190 364 20
por.rst.cstn Cardoso et al. (2011) RST 4148 573 272 32
rus.rst.rrt Toldova et al. (2017) Russian RST 28868 2855 2843 22
spa.rst.rststb da Cunha et al. (2011) Spanish RST 2240 383 426 27
spa.rst.sctb Cao et al. (2018) RST 439 94 159 25
tha.pdtb.tdtb Braud et al. (2023) Thai PDTB 8278 1243 1344 21
tur.pdtb.tdb Zeyrek and Kurfalı (2017) Turkish PDTB 2451 312 422 23
*tur.pdtb.tedm Zeyrek et al. (2020) PDTB 0 213 364 23
zho.dep.scidtb Cheng and Li (2019)

Chinese
(Mandarin)

DEP 802 281 215 23
zho.pdtb.cdtb Zhou et al. (2014) PDTB 3657 855 758 9
zho.rst.gcdt Yi et al. (2021) RST 6454 1006 953 31
zho.rst.sctb Cao et al. (2018) RST 439 94 159 26

Table 1: A comprehensive list of the datasets used for the DISRPT 2023 Shared Task. Datasets with
an *asterisk are OOD (Out-Of-Domain, i.e. no training set). The sizes of datasets are the numbers of
relation instances. “Relations” is the count of unique discourse relation labels in each dataset. Language
abbreviations: deu: German, eng: English, eus: Basque, fas: Farsi, fra: French, nld: Dutch, por: Por-
tuguese, rus: Russian, spa: Spanish, zho: Chinese, ita: Italian, tha: Thai, tur: Turkish.

DEP (Dependency structures, Yang and Li, 2018),
or SDRT (Segmented Discourse Representation
Theory, Asher and Lascarides, 2003). The list
of source datasets is presented in Table 1, for
each language, the size of each dataset, and the
number of relations—after processing, explained
in Section 4.1.

Label harmonization Due to the different frame-
works of the datasets, the relation labels are not
uniform throughout all datasets, a persistent prob-
lem in discourse analysis (Rutherford et al., 2017).
The total number of relation labels in all the DIS-
RPT datasets is 163 distinct labels. However, the
proposals for unified label sets are limited to spe-
cific frameworks or do not cover all relations in
our corpora (Benamara and Taboada, 2015; Braud
et al., 2017; Varachkina and Pannach, 2021). We
follow the label harmonization that we originally
proposed for the DISRPT Shared Task, based on
(reversible) label substitutions and lower-casing,
reducing the label set from 163 to 136 (Metheniti
et al., 2023).

The discrepancies in the level of detail among
datasets led us to examine them further; while
we decided to not get rid of fine-grained relations,
we were able to revert some relations from sim-
plified classes to more complex relations. We ob-

served that the GUM corpus’ labels in DISRPT
2023 (eng.rst.gum) used high-level classes of
sense (e.g. adversative), while the GCDT corpus
(zho.rst.gcdt) used fine-grained, level 2 senses
(e.g. adversative-antithesis). Therefore, we used
level 2 senses for GUM, which further reduced the
label set size from 136 to 128.

Finally, we decided to reorder the segment pairs,
when necessary, in order to unify the relation di-
rection in all inputs. Some discourse relations are
asymmetrical / directed, meaning that the order of
the arguments is meaningful: e.g. with cause(1,2),
the segment 2 is the cause of 1, while it is reversed
for cause(2,1). In the DISRPT data, the arguments
are presented in the linear order of the text, and the
direction of the relation is encoded separately. We
switched the input order of pairs when the direc-
tion does not follow the linear order, in accordance
with previous studies. An example can be found in
Table 2.

Feature augmentation with tokens We are
training the classification models with all training
sets joint and shuffled, across corpora and frame-
works. In order to help the training process, we
inject various information as prefixes to the input:
either the input language name (e.g. German), the
framework (rst, pdtb, sdrt, dep), or the name of the
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Corpus: spa.rst.rststb

unit1_txt

Los niños que tienen este trastorno sufren,
en ocasiones, la incomprensión de otros
padres , de sus compañeros y profesores
que tienden a etiquetar los de lo que no
son.

unit2_txt
Por ello es conveniente contar con la
ayuda de expertos que informen y
asesoren sobre este trastorno

dir 1<2
label solutionhood

input

[CLS] Spanish spa.rst.rststb rst Por ello es
conveniente contar con la ayuda de
expertos que informen y asesoren sobre
este trastorno [SEP] Los niños que tienen
este trastorno sufren, en ocasiones, la
incomprensión de otros padres , de sus
compañeros y profesores que tienden a
etiquetar los de lo que no son.

Table 2: Example of an input with feature augmen-
tation: the additional tokens are added at the start
of the sequence, in the order of language, corpus,
and framework.

corpus the input is taken from (e.g. deu.rst.pcc).
An example can be seen in Table 2.

Classification label filtering A classification
model, in the prediction stage, returns a probability
distribution of all labels in the training set. Anuran-
jana (2023) used a generative LLM that produces
a human-readable string of text as label output,
which may not belong to existing training set labels.
Thus they proposed to filter the LLM output and
select only outputs that exist as labels. Inspired by
this, we are also post-processing the outputs of our
classification models to pick the most probable la-
bel that belongs to the framework of the target cor-
pus. This prevents the prediction of a label present
in the merged training corpus but not in the target
framework label set. We are filtering based on the
framework and not on corpus-specific labels, in or-
der to better examine the knowledge transfer be-
tween corpora of the same framework in the joint
training process. This also means we don’t need
to have the label set of the unseen corpus, just its
framework (RST, SDRT, PDTB, or DEP), and we
build the label sets by merging the known corpora
from each framework.

Jaccard similarity The Jaccard similarity coeffi-
cient (Jaccard, 1912) is a statistical method to cal-
culate the similarity/diversity of sample sets. For
two sets A and B, the ratio J(A,B) is calculated
as seen in Equation 1:

J(A,B) =
|A ∩B|
|A ∪B|

=
|A ∩B|

|A|+ |B| − |A ∩B|
(1)

In our experiments, we calculate Jaccard similar-
ity between sets of discourse relation labels. First,
we collect all unique labels of each dataset (as
seen in Table 1). Then we calculate the similar-
ity using scikit-learn (Pedregosa et al., 2011). The
similarities between each individual pair of DIS-
RPT 2023 datasets can be found in Appendix, Ta-
ble 14. For the zero-shot learning experiments, we
also calculated the similarity of the target dataset’s
label set and the aggregated source datasets’ la-
bel sets.

4.2. Finetuning pretrained models
Our classification models are based on fine-tuning
models with pretrained, multilingual embeddings,
which were created with transformer architectures.

Pretrained models Multilingual BERT (mBERT)
was introduced alongside the BERT architec-
ture (Devlin et al., 2019) and was pretrained on
Wikipedia data for 104 languages, with a masked
language modeling (MLM) objective. The base
and cased version of the model contains 12 layers,
12 heads, and 177M parameters. We also con-
ducted experiments with DistilmBERT (Sanh et al.,
2019), a multilingual distilled version of mBERT,
trained on Wikipedia data in 104 languages but
with fewer parameters (134M). We also experi-
mented with a larger model used by some partici-
pants of the DISRPT shared task: XLM-RoBERTa
(Conneau et al., 2020), a multilingual language
model built on the RoBERTa architecture and pre-
trained on 2.5TB of filtered CommonCrawl data of
100 languages. The base version of the model has
12 layers and 279M parameters.

Fine-tuning Finetuning is the process of adapt-
ing a pretrained model for a specific task, by train-
ing the model a second time with a new set of
specialized data for the target task. Instead of up-
dating the weights of the entire architecture, dur-
ing fine-tuning, only the final task-specific softmax
layer is updated. The fine-tuning process is com-
putationally lighter and the training set can be
much smaller than the original model’s training set,
thus it has become a common method for NLP
tasks.

The pretrained models we fine-tuned are:
bert-base-multilingual-cased, distilbert-base-
multilingual-cased, and xlm-roberta-base.4 We
built the classification models on PyTorch, and we
trained each classification model for 10 epochs,
keeping the best result out of the 10 epochs,
based on a development set evaluation.

4All versions taken from https://huggingface.
co
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Zero-shot learning The specificities of zero-
shot learning can be found in Section 3.2. For
zero-shot classification, we trained with the corre-
sponding source datasets for each target dataset.
The models were built with mBERT, with feature
augmentation (language/corpus name/framework
tokens at the beginning of each input sequence)
and label filtering, keeping the best performance
out of 10 epochs of finetuning.

To put in perspective the zero-shot experi-
ments, we trained an mBERT classifier, indi-
vidually for each target corpus with a training
set, as a kind of upper bound. For the four
out-of-domain datasets that do not have a train-
ing set, we trained a monolingual classifier with
the dataset closest to the OOD model’s label
set, according to the Jaccard similarity coeffi-
cient. The eng.dep.covdt dataset was evalu-
ated with eng.rst.rstdt, and the eng.pdtb.tedm,
por.pdtb.tedm, and tur.pdtb.tedm datasets were
evaluated with eng.pdtb.pdtb.

5. Results and Discussion

5.1. Multilingual discourse relation
classification across formalisms

First, we experiment with a multilingual model
trained over all the datasets jointly, in order to in-
vestigate language model performance, as well as
the usefulness of the two enhancements proposed:
filtering the output labels to ensure that predicted
labels pertain to the target framework, and feature
augmentation to inform the model about the nature
of the source and target corpora.

5.1.1. Models with label filtering

In Table 3 we present the results for the three trans-
former architectures we tested, comparing their re-
sults before and after filtering the predicted labels
per framework. For comparison, we also down-
loaded and trained the most successful system of
DISRPT 2023, of the HITS team (Liu et al., 2023),
with lowercased labels. We also compare our re-
sults with the reference monolingual classifiers (ex-
plained in Section 4.2). As it can be seen, dis-
course relation classification is a hard task, with
rather low performance in general: 0.62 in accu-
racy at best on average, and around only 0.50 for
a third of the corpora. Note that the high accuracy
for thai.pdtb.tdtb comes from the fact that only ex-
plicit relations (triggered by a connective) are anno-
tated in this corpus.

The HITS model outperforms our multilingual
models in most corpora, but generally only for a
1-3% improvement. It should be noted that HITS
is trained with larger specific pretrained language
models and optimizations.

On the other hand, the multilingual models per-
form better than the monolingual ones in most
cases, except for the larger English datasets and
some Chinese datasets. Smaller datasets bene-
fit moderately (e.g. ita.pdtb.luna, rus.rst.rrt) or
significantly (e.g. fra.sdrt.annodis, spa.rst.sctb,
zho.rst.sctb) from the multilingual setting. We
also note that some datasets have uniformly low
accuracies with all models, such as deu.rst.pcc
and nld.rst.nldt, a problem that is consistent with
DISRPT 2023 results.

Regarding filtering per framework, for some
frameworks there is no discernible improvement,
meaning that the model was able to predict
framework-related labels. However, for frame-
works and corpora less represented in the data, we
notice a large improvement (e.g. eng.dep.covdtb,
eng.pdtb.tedm, zho.dep.scidtb).

Comparing the pretrained models we used, over-
all mBERT slightly outperformed XLM-RoBERTa
(XML-R), the latter outperforming the former on cer-
tain corpora. DistilmBERT (DmBERT), even with
its smaller parameter size, was still on par with
the other two models and greatly benefited from la-
bel filtering. This finding supports our use of base
models, instead of the large models used for the
Shared Task, allowing for better reproducibility and
interpretability.

5.1.2. Models with feature augmentation

The results for classification models with fea-
ture augmentation are presented in brief in Ta-
ble 4 and in full in Appendix, Table 15. Models
with feature augmentation outperform the base-
line in all corpora except for eng.sdrt.stac and
*eng.dep.covdtb. The features overall improve
performance compared to models without features
(see Section 5.1.1 and Table 3). These models
also came even closer to the performance of the
HITS system but did not outperform the system.

The most successful configuration was the pres-
ence of all three tokens, language-corpus name-
framework, especially for mBERT which was the
most successful model overall, almost equalling
the performance of HITS. XLM-RoBERTa bene-
fited from the presence of any feature tokens. Ex-
periments with DistilmBERT (which are omitted for
brevity) showed that the smaller model benefited
from either the presence of the language token or
the presence of all three tokens. Feature augmen-
tation has been greatly explored in discourse rela-
tion classification (e.g. with syntactic information
for the DISRPT task by Gessler et al., 2021), and
has proven to improve accuracy with all types of
models. Our proposed approach does not require
manually calculated features, yet it improves re-
sults and supports our use of base models over
models with more parameters and optimizations.
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Model HITS mBERT DmBERT mBERT XLM-R
monol. No F. Filt. No F. Filt. No F. Filt.

deu.rst.pcc 0.40 0.32 0.31 0.31 0.35 0.35 0.37 0.37
*eng.dep.covdtb 0.69 *0.63 0.25 0.41 0.18 0.47 0.12 0.30
eng.dep.scidtb 0.75 0.72 0.68 0.71 0.71 0.74 0.69 0.71
eng.pdtb.pdtb 0.75 0.73 0.69 0.71 0.71 0.73 0.71 0.73
*eng.pdtb.tedm 0.61 *0.52 0.17 0.37 0.25 0.41 0.20 0.35
eng.rst.gum 0.64 0.54 0.39 0.41 0.44 0.45 0.42 0.43
eng.rst.rstdt 0.67 0.64 0.46 0.54 0.49 0.57 0.47 0.54
eng.sdrt.stac 0.62 0.62 0.58 0.61 0.58 0.60 0.59 0.60
eus.rst.ert 0.51 0.42 0.42 0.42 0.45 0.45 0.48 0.48
fas.rst.prstc 0.54 0.52 0.53 0.53 0.54 0.54 0.55 0.55
fra.sdrt.annodis 0.55 0.46 0.46 0.47 0.51 0.52 0.46 0.46
ita.pdtb.luna 0.65 0.52 0.53 0.53 0.55 0.56 0.51 0.53
nld.rst.nldt 0.49 0.43 0.45 0.45 0.46 0.46 0.47 0.47
por.pdtb.crpc 0.74 0.66 0.67 0.67 0.68 0.69 0.65 0.67
*por.pdtb.tedm 0.46 *0.44 0.49 0.50 0.53 0.54 0.49 0.51
por.rst.cstn 0.63 0.57 0.59 0.59 0.61 0.62 0.64 0.64
rus.rst.rrt 0.62 0.59 0.59 0.59 0.60 0.60 0.60 0.60
spa.rst.rststb 0.65 0.56 0.58 0.59 0.63 0.63 0.62 0.62
spa.rst.sctb 0.61 0.43 0.61 0.61 0.66 0.66 0.55 0.55
tha.pdtb.tdtb 0.96 0.94 0.93 0.93 0.94 0.94 0.95 0.95
tur.pdtb.tdb 0.46 0.41 0.40 0.41 0.43 0.43 0.49 0.49
*tur.pdtb.tedm 0.48 *0.35 0.42 0.42 0.46 0.46 0.46 0.46
zho.dep.scidtb 0.68 0.55 0.58 0.61 0.64 0.66 0.54 0.58
zho.pdtb.cdtb 0.85 0.83 0.72 0.79 0.72 0.80 0.76 0.82
zho.rst.gcdt 0.61 0.60 0.57 0.57 0.59 0.59 0.59 0.59
zho.rst.sctb 0.55 0.46 0.51 0.52 0.49 0.49 0.40 0.44

AVERAGE 0.62 0.56 0.52 0.55 0.55 0.58 0.53 0.56

Table 3: Classification results of multilingual clas-
sifiers, compared to the best system of DISRPT
2023 (HITS) and multiple monolingual mBERT
classifiers (mBERT monol.). No F. is the accu-
racy score of the model before filtering and Filt. af-
ter filtering predicted labels per framework. Train-
ing was performed without feature augmentation.

Tokens L L+C L+C+F

Model (filt.) mBERT XLM-R mBERT XLM-R mBERT XLM-R

deu.rst.pcc 0.32 0.36 0.32 0.37 0.35 0.36
*eng.dep.covdtb 0.49 0.34 0.26 0.23 0.24 0.22
eng.dep.scidtb 0.73 0.72 0.69 0.74 0.75 0.73
eng.pdtb.pdtb 0.73 0.74 0.74 0.75 0.73 0.76
*eng.pdtb.tedm 0.46 0.33 0.54 0.52 0.59 0.52
eng.rst.gum 0.46 0.44 0.52 0.54 0.57 0.55
eng.rst.rstdt 0.54 0.55 0.64 0.64 0.65 0.65
eng.sdrt.stac 0.60 0.58 0.58 0.60 0.61 0.61
eus.rst.ert 0.45 0.46 0.43 0.47 0.51 0.45
fas.rst.prstc 0.53 0.52 0.49 0.53 0.54 0.50
fra.sdrt.annodis 0.50 0.48 0.44 0.47 0.51 0.51
ita.pdtb.luna 0.60 0.57 0.54 0.59 0.60 0.57
nld.rst.nldt 0.47 0.47 0.45 0.49 0.49 0.46
por.pdtb.crpc 0.69 0.69 0.69 0.69 0.74 0.71
*por.pdtb.tedm 0.52 0.54 0.52 0.53 0.59 0.53
por.rst.cstn 0.64 0.63 0.60 0.62 0.67 0.62
rus.rst.rrt 0.60 0.61 0.58 0.61 0.62 0.60
spa.rst.rststb 0.63 0.59 0.56 0.61 0.66 0.63
spa.rst.sctb 0.68 0.60 0.69 0.65 0.70 0.64
tha.pdtb.tdtb 0.94 0.96 0.93 0.95 0.95 0.95
tur.pdtb.tdb 0.46 0.47 0.39 0.47 0.52 0.47
*tur.pdtb.tedm 0.45 0.47 0.42 0.45 0.48 0.42
zho.dep.scidtb 0.65 0.60 0.62 0.64 0.68 0.68
zho.pdtb.cdtb 0.81 0.83 0.83 0.84 0.84 0.84
zho.rst.gcdt 0.58 0.56 0.58 0.59 0.60 0.62
zho.rst.sctb 0.51 0.41 0.64 0.60 0.67 0.61

AVERAGE 0.58 0.56 0.57 0.58 0.61 0.58

Table 4: Classification results for mBERT/XLM-
RoBERTa models with label filtering and feature
augmentation. The additional tokens at the start
of the sequence are L (language in English), C
(name of the corpus), and F (name of the frame-
work).

5.2. Zero-shot discourse relation
classification

In the following zero-shot experiments, we study
whether transfer learning is possible for the task
of fine-tuning for discourse relation classification,
and under which conditions. Since mBERT was
the most successful in previous multilingual exper-
iments, we keep this model for the zero-shot set-
ting with feature augmentation and label filtering.
In Tables 5-13 presenting the results, we report the
average Jaccard similarity score (see Section 4.1)
between (1) the label set of the target corpus (i.e.
the corpus hidden from training) and (2) the joint
label sets of the corpora used for training (source).
For example, in Table 5 for zero-shot learning with
Germanic languages, the Jaccard similarity of the
German corpus deu.rst.pcc is calculated between
(1) the German label set and (2) the joined label set
of the Dutch and English corpora.

5.2.1. Zero-shot with language families

For the first set of zero-shot learning experiments,
we wanted to test prediction with a model trained
on languages of the same family, omitting the tar-
get language. The corpora of DISRPT 2023 con-
tain 13 languages, with great typological variety.
In order to maintain the motivation of multilingual-
ism and variation, but also ensure enough data for
finetuning, we looked for language families signifi-
cantly present. It is the case for the Germanic fam-
ily, with German, English, and Dutch corpora, and
for the Romance languages with French, Italian,
Portuguese, and Spanish corpora. An example
of zero-shot learning per language is: a model is
trained on all Germanic language corpora except
for all the English ones, thus predictions on English
corpora are zero-shot.

In Table 5 we present the zero-shot results for
languages of the Germanic family. We observe an
expected steep drop in accuracy for most corpora.
Some English corpora almost had zero accuracy,
which is expected, since the corpora labels never
existed in the training set. The eng.rst.rstdt and
nld.rst.nldt are the only ones whose loss in accu-
racy is not catastrophic, because they are the ones
with the less variation in labels and their labels ex-
ist in the German and Dutch RST datasets. The
eng.dep.covdtb had a relatively high accuracy be-
cause it has a high occurrence of the elaboration
label, making prediction easier for models trained
on a few labels.

The zero-shot results for languages of the Ro-
mance family are presented in Table 6. Simi-
larly, accuracy is as expected very low for the Por-
tuguese PDTB corpora that have unique labels.
The rest of the corpora demonstrate lower accu-
racies, with part of the problem being their smaller
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dataset sizes and low label similarity.

Monolingual Zero-shot Jac. Similar.
deu.rst.pcc 0.32 0.15 0.20
*eng.dep.covdtb *0.63 0.52 0.12
eng.dep.scidtb 0.72 0.06 0.20
eng.pdtb.pdtb 0.73 0.03 0.04
*eng.pdtb.tedm *0.52 0.02 0.04
eng.rst.gum 0.54 0.05 0.10
eng.rst.rstdt 0.64 0.40 0.20
eng.sdrt.stac 0.62 0.09 0.11
nld.rst.nldt 0.43 0.26 0.22

Table 5: Classification results for zero-shot models
and Germanic languages.

Monolingual Zero-shot Jac. Similar.
fra.sdrt.annodis 0.46 0.23 0.11
ita.pdtb.luna 0.52 0.20 0.15
por.pdtb.crpc 0.66 0.04 0.16
*por.pdtb.tedm *0.44 0.05 0.15
por.rst.cstn 0.57 0.29 0.38
spa.rst.rststb 0.56 0.25 0.32
spa.rst.sctb 0.43 0.35 0.29

Table 6: Classification results for zero-shot models
and Romance languages.

Monolingual Zero-shot Jac. Similar.
eng.pdtb.pdtb 0.73 0.55 0.54
*eng.pdtb.tedm *0.52 0.55 0.50
ita.pdtb.luna 0.52 0.42 0.27
por.pdtb.crpc 0.66 0.48 0.46
*por.pdtb.tedm *0.44 0.45 0.51
tha.pdtb.tdtb 0.94 0.57 0.49
tur.pdtb.tdb 0.41 0.37 0.51
*tur.pdtb.tedm *0.35 0.40 0.59
zho.pdtb.cdtb 0.83 0.47 0.22

Table 7: Classification results for zero-shot models
of the PDTB framework.

Monolingual Zero-shot Jac. Similar.
deu.rst.pcc 0.32 0.20 0.28
eng.rst.gum 0.54 0.10 0.40
eng.rst.rstdt 0.64 0.42 0.21
eus.rst.ert 0.42 0.33 0.35
fas.rst.prstc 0.52 0.40 0.21
nld.rst.nldt 0.43 0.30 0.37
por.rst.cstn 0.57 0.49 0.37
rus.rst.rrt 0.59 0.40 0.24
spa.rst.rststb 0.56 0.46 0.33
spa.rst.sctb 0.43 0.60 0.32
zho.rst.gcdt 0.60 0.01 0.40
zho.rst.sctb 0.46 0.48 0.33

Table 8: Classification results for zero-shot models
of the RST framework.

Monolingual Zero-shot Jac. Similar.
eng.sdrt.stac 0.62 0.19 0.48
fra.sdrt.annodis 0.46 0.24 0.48

Table 9: Classification results for zero-shot models
of the SDRT framework.

Monolingual Zero-shot Jac. Similar.
*eng.dep.covdtb *0.63 0.11 0.29
eng.dep.scidtb 0.72 0.35 0.79
zho.dep.scidtb 0.55 0.41 0.79

Table 10: Classification results for zero-shot mod-
els of the DEP framework.

5.2.2. Zero-shot with frameworks

These experiments were conducted with corpora
of the same framework. For example, the zero-
shot model for the spa.rst.rststb corpus is trained
on all the other RST corpora, except the Spanish
spa.rst.sctb corpus.

The results for zero-shot classification for PDTB
corpora are presented in Table 7. For most cor-
pora, zero-shot predictions have a lower accuracy;
accuracy drops significantly for tha.pdtb.tdtb (a
corpus with mostly explicit relations, compared to
the mix of implicit/explicit relations in other cor-
pora) and zho.pdtb.cdtb (a corpus with smaller
variation). However, for *por.pdtb.tedm and
*tur.pdtb.tedm, two of the OOD datasets, there
is a performance improvement when the classi-
fier is trained with all PDTB corpora (except for
the target language), compared to the monolingual
eng.pdtb.pdtb classifier. The eng.pdtb.pdtb cor-
pus was chosen because it has the closest label
set overlap with these corpora, but the larger and
more varied zero-shot training set was beneficial
for the target predictions.

Regarding zero-shot classification for RST cor-
pora (see Table 8), results vary. For most cor-
pora, the same small deterioration was observed
as in the PDTB corpora. The two Spanish RST cor-
pora showed improvement compared to the mono-
lingual model; the presence of many common la-
bels was beneficial to the zero-shot setting. Cor-
pora with unique label sets had accuracies close
to zero: eng.rst.gum and zho.rst.gcdt are very
dissimilar to any other corpora, even after label har-
monization, and eng.rst.rstdt is only similar to the
much smaller fas.rst.prstc.

The results for the SDRT corpora can be found
in Table 9. Given that these corpora are much
smaller, it is expected that accuracy would be quite
low, despite their similar label sets (0.48 on the Jac-
card index).

For DEP corpora (see Table 10),
eng.dep.scidtb has a bigger drop in zero-
shot accuracy compared to zho.dep.scidtb, due
to the smaller size of the Chinese dataset. The
*eng.dep.covdtb dataset shows the same low
accuracy as in many of the multilingual settings.

5.2.3. Zero-shot with groups with similar
label sets

Our previous experiments on zero-shot learning
demonstrated that the best results came from com-
binations of corpora with similar label sets, regard-
less of languages or annotation frameworks. To
confirm this observation, we calculated the Jac-
card correlation coefficient between pairs of cor-
pus label sets and created groups with at least 0.4
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Monolingual Zero-shot Jac. similar.
eng.pdtb.pdtb 0.73 0.55 0.71
*eng.pdtb.tedm *0.52 0.55 0.67
por.pdtb.crpc 0.66 0.47 0.55
*por.pdtb.tedm *0.44 0.46 0.74
tha.pdtb.tdtb 0.94 0.58 0.65
tur.pdtb.tdb 0.41 0.38 0.68
*tur.pdtb.tedm *0.35 0.42 0.79

Table 11: Classification results for zero-shot mod-
els of the Jaccard PDTB group.

Monolingual Zero-shot Jac. similar.
deu.rst.pcc 0.32 0.18 0.47
eus.rst.ert 0.42 0.36 0.57
nld.rst.nldt 0.43 0.31 0.62
por.rst.cstn 0.57 0.46 0.60
rus.rst.rrt 0.59 0.31 0.40
spa.rst.rststb 0.56 0.49 0.55
spa.rst.sctb 0.43 0.61 0.54
zho.rst.sctb 0.46 0.51 0.55

Table 12: Classification results for zero-shot mod-
els of the Jaccard RST group.

Monolingual Zero-shot Jac. similar.
eng.dep.scidtb 0.72 0.40 0.73
eng.rst.rstdt 0.64 0.37 0.55
fas.rst.prstc 0.52 0.46 0.50
zho.dep.scidtb 0.55 0.43 0.69

Table 13: Classification results for zero-shot mod-
els of the Jaccard DEP-RST group.

similarity.5 We created three groups with the re-
quired similarity and adequate training data,6 and
we train without including the target language.

The first group is composed of PDTB corpora,
as seen in Table 11. As with the framework zero-
shot models, we observe a large drop in accuracy
in the Thai corpus, because of its explicit relations.
The rest of the corpora show slightly lower accu-
racy, even without the presence of the language in
the training set. Additionally, two of the OOD cor-
pora, the Portuguese and Turkish, show improve-
ment in the zero-shot setting compared to mono-
lingual systems; the larger training sets and label
sets are beneficial, compared to only training with
English corpora.

The second group includes many of the RST
corpora (see Table 12). While the Spanish and
Chinese models showed improvement or no sig-
nificant loss compared to monolingual models, the
German, Dutch, and Russian models had lower
performance. These corpora have been hard to
classify in other monolingual and multilingual set-
tings as well, and further investigation into the an-
notation quality may be required.

The third group is composed of DEP corpora
and two RST corpora (see Table 13), not part of the

5Note that it is not a purely zero-shot setting, since
we use information about the target corpus label set.

6The corpora not belonging to any of these groups
are eng.rst.gum, eng.sdrt.stac, fra.sdrt.annodis,
ita.pdtb.luna, zho.pdtb.cdtb, and zho.rst.gcdt.

previous group: eng.rst.rstdt and fas.rst.prstc.
For this group, Jaccard similarities were slightly
lower than for the other groups, given that there
are two frameworks and varied training sizes. All
accuracies are quite low, even for the English cor-
pora, and there was no improvement for DEP cor-
pora with the addition of the RST corpora (as seen
in Table 10) or vice versa.

6. Conclusion

In this paper, we presented our work toward zero-
shot classification of discourse relations. Our
goal was to adhere closely to a multilingual, multi-
framework approach, even if it would not outper-
form the current state-of-the-art. We first explored
the relation classification systems of the DISRPT
Shared Task, in order to find an adequate solution
for multilingual multi-framework classification. We
found out that a classifier based on mBERT per-
forms the same level as monolingual approaches
with large models, for most corpora, with the addi-
tion of feature augmentation and label filtering.

We proceeded with our zero-shot experiments,
testing knowledge transfer with a multilingual pre-
trained model among language families, datasets
with the same framework, and datasets with sim-
ilar label sets. Zero-shot learning was challeng-
ing as expected, but gave interesting results. It
worked best for models trained with similar label
sets and an adequate amount of data, and the mul-
tilingual embeddings were capable of handling the
exclusion of the target language. This is a hopeful
finding for research in this direction, for the future
introduction of under-represented languages into
discourse analysis, and for the integration of dis-
course analysis into other tasks.

7. Limitations

This study aims to evaluate the capacities of mul-
tilingual models fine-tuned on discourse relation
prediction to transfer to other languages. It is de-
pendent on existing discourse corpora for training
models and the evaluation of zero-shot predictions.
Since such corpora are rather rare we can only
evaluate on a dozen languages, not representative
of the diversity of existing language families.

Given the disparity of annotations of the same
phenomenon (discourse relations), results are de-
pendent on how much overlap there is between
relation types across frameworks, or even across
corpora with the same framework. Ideally, those
types should be more aligned, so that transfer ca-
pacities could be evaluated more precisely for the
languages considered, but this goes beyond the
present study.
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A. Jaccard similarities between DISRPT 2023 corpora
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tur.pdtb.tdb 0.04 0 0 0.84 0.79 0.02 0 0.03 0.04 0 0 0.27 0.04 0.63 0.79 0 0 0.04 0.04 0.69 1 0.84 0 0.03 0.02 0.04
*tur.pdtb.tedm 0.04 0 0 0.92 0.87 0.02 0 0 0.04 0 0 0.31 0.04 0.63 0.87 0 0 0.04 0.04 0.83 0.84 1 0 0.07 0.02 0.04
zho.dep.scidtb 0.2 0.31 0.88 0 0 0.02 0.43 0.11 0.25 0.43 0.14 0.03 0.18 0.05 0 0.2 0.25 0.25 0.26 0 0 0 1 0.19 0.02 0.26
zho.pdtb.cdtb 0.17 0.11 0.18 0.03 0.04 0 0.18 0.14 0.16 0.18 0.13 0.14 0.11 0.07 0.04 0.08 0.15 0.2 0.17 0.07 0.03 0.07 0.19 1 0 0.17
zho.rst.gcdt 0.08 0 0.02 0.02 0.02 1 0 0 0.12 0 0.02 0.02 0.11 0.02 0.02 0.09 0.06 0.12 0.12 0.02 0.02 0.02 0.02 0 1 0.12
zho.rst.sctb 0.68 0.16 0.25 0.04 0.05 0.12 0.26 0.14 0.89 0.26 0.16 0.05 0.7 0.04 0.05 0.53 0.5 0.89 0.96 0.04 0.04 0.04 0.26 0.17 0.12 1

Table 14: The Jaccard similarity of the discourse relation label sets of each pair of corpora from the
DISRPT 2023 Shared Task. The similarity is calculated between two corpora, after lowercasing and
label harmonization. Datasets with an *asterisk are OOD (Out-Of-Domain, i.e. no training set).

B. Complete results of feature augmentation

Tokens: L L, C L, C, F

Model Monolingual DistilmBERT mBERT XLM-R DistilmBERT mBERT XLM-R DistilmBERT mBERT XLM-R

Corpus No F. No F. F. No F. F. No F. F. No F. F. No F. F. No F. F. No F. F. No F. F. No F. F.

deu.rst.pcc 0.32 0.28 0.28 0.32 0.32 0.36 0.36 0.18 0.18 0.32 0.32 0.37 0.37 - 0.34 0.34 0.35 0.35 0.36 0.36
*eng.dep.covdtb - 0.16 0.38 0.24 0.49 0.16 0.34 0.22 0.38 0.26 0.26 0.19 0.23 0.24 0.24 0.24 0.24 0.20 0.22
eng.dep.scidtb 0.72 0.62 0.66 0.71 0.73 0.70 0.72 0.35 0.36 0.69 0.69 0.74 0.74 0.73 0.73 0.75 0.75 0.73 0.73
eng.pdtb.pdtb 0.73 0.67 0.69 0.72 0.73 0.73 0.74 0.36 0.39 0.74 0.74 0.75 0.75 0.73 0.73 0.73 0.73 0.76 0.76
*eng.pdtb.tedm - 0.16 0.37 0.29 0.46 0.18 0.33 0.01 0.02 0.54 0.54 0.52 0.52 0.51 0.51 0.59 0.59 0.52 0.52
eng.rst.gum 0.54 0.36 0.37 0.44 0.46 0.43 0.44 0.16 0.17 0.52 0.52 0.54 0.54 0.52 0.52 0.57 0.57 0.55 0.55
eng.rst.rstdt 0.64 0.46 0.53 0.46 0.54 0.48 0.55 0.42 0.48 0.64 0.64 0.64 0.64 0.64 0.64 0.65 0.65 0.65 0.65
eng.sdrt.stac 0.62 0.50 0.53 0.59 0.60 0.56 0.58 0.53 0.53 0.58 0.58 0.60 0.60 0.61 0.61 0.61 0.61 0.61 0.61
eus.rst.ert 0.42 0.40 0.40 0.45 0.45 0.46 0.46 0.37 0.37 0.43 0.43 0.47 0.47 0.41 0.41 0.51 0.51 0.45 0.45
fas.rst.prstc 0.52 0.52 0.52 0.53 0.53 0.52 0.52 0.40 0.40 0.49 0.49 0.53 0.53 0.53 0.53 0.54 0.54 0.50 0.50
fra.sdrt.annodis 0.46 0.31 0.32 0.50 0.50 0.48 0.48 0.32 0.32 0.44 0.44 0.47 0.47 0.44 0.44 0.51 0.51 0.51 0.51
ita.pdtb.luna 0.52 0.52 0.52 0.60 0.60 0.56 0.57 0.36 0.36 0.54 0.54 0.59 0.59 0.57 0.57 0.60 0.60 0.57 0.57
nld.rst.nldt 0.43 0.42 0.42 0.47 0.47 0.47 0.47 0.31 0.31 0.45 0.45 0.49 0.49 - 0.43 0.43 0.49 0.49 0.46 0.46
por.pdtb.crpc 0.66 0.65 0.66 0.69 0.69 0.68 0.69 0.22 0.23 0.69 0.69 0.69 0.69 0.65 0.65 0.74 0.74 0.71 0.71
*por.pdtb.tedm - 0.46 0.47 0.52 0.52 0.54 0.54 0.13 0.13 0.52 0.52 0.53 0.53 0.52 0.52 0.59 0.59 0.53 0.53
por.rst.cstn 0.57 0.56 0.56 0.63 0.64 0.62 0.63 0.30 0.30 0.60 0.60 0.62 0.62 0.59 0.59 0.67 0.67 0.62 0.62
rus.rst.rrt 0.59 0.57 0.57 0.60 0.60 0.61 0.61 0.43 0.43 0.58 0.58 0.61 0.61 0.58 0.58 0.62 0.62 0.60 0.60
spa.rst.rststb 0.56 0.48 0.48 0.63 0.63 0.59 0.59 0.37 0.37 0.56 0.56 0.61 0.61 0.58 0.58 0.66 0.66 0.63 0.63
spa.rst.sctb 0.43 0.57 0.57 0.68 0.68 0.60 0.60 0.49 0.49 0.69 0.69 0.65 0.65 0.66 0.66 0.70 0.70 0.64 0.64
tha.pdtb.tdtb 0.94 0.92 0.92 0.94 0.94 0.96 0.96 0.49 0.49 0.93 0.93 0.95 0.95 0.93 0.93 0.95 0.95 0.95 0.95
tur.pdtb.tdb 0.41 0.39 0.39 0.46 0.46 0.47 0.47 0.34 0.34 0.39 0.39 0.47 0.47 0.43 0.43 0.52 0.52 0.47 0.47
*tur.pdtb.tedm - 0.37 0.37 0.45 0.45 0.47 0.47 0.22 0.22 0.42 0.42 0.45 0.45 0.45 0.45 0.48 0.48 0.42 0.42
zho.dep.scidtb 0.55 0.51 0.53 0.63 0.65 0.59 0.60 0.41 0.43 0.62 0.62 0.64 0.64 0.62 0.62 0.68 0.68 0.68 0.68
zho.pdtb.cdtb 0.83 0.68 0.77 0.75 0.81 0.78 0.83 0.33 0.42 0.83 0.83 0.84 0.84 - 0.8 0.8 0.84 0.84 0.84 0.84
zho.rst.gcdt 0.60 0.52 0.52 0.58 0.58 0.56 0.56 0.40 0.40 0.58 0.58 0.59 0.59 0.59 0.59 0.60 0.60 0.62 0.62
zho.rst.sctb 0.46 0.40 0.40 0.51 0.51 0.39 0.41 0.39 0.39 0.64 0.64 0.60 0.60 0.54 0.54 0.67 0.67 0.61 0.61

AVERAGE 0.57 0.48 0.51 0.55 0.58 0.54 0.56 0.33 0.34 0.57 0.57 0.58 0.58 0.56 0.56 0.61 0.61 0.58 0.58

Table 15: Classification results for DistilmBERT, mBERT, and XLM-RoBERTa models with label filtering
and feature augmentation. The additional tokens at the start of the sequence are L (language in English),
C (name of the corpus), and F (name of the framework). Datasets with an *asterisk are OOD (Out-Of-
Domain, i.e. no training set).
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C. Complete Zero-shot results

Datasets with an *asterisk are OOD (Out-Of-Domain, i.e. no training set).

C.1. Zero-shot with language families

Corpus Zero-shot
None DEU ENG NLD

deu.rst.pcc 0.31 0.15 0.32 0.33
*eng.dep.covdtb 0.22 0.21 0.52 0.23
eng.dep.scidtb 0.76 0.75 0.06 0.74
eng.pdtb.pdtb 0.74 0.73 0.03 0.73
*eng.pdtb.tedm 0.53 0.55 0.02 0.54
eng.rst.gum 0.53 0.53 0.05 0.53
eng.rst.rstdt 0.64 0.64 0.4 0.65
eng.sdrt.stac 0.61 0.6 0.09 0.62
nld.rst.nldt 0.47 0.44 0.42 0.26

Table 16: Results of mBERT models trained on
Germanic languages. “None” is the monolin-
gual model trained only on the target dataset.
Each column shows the results of one zero-
shot model for a target language: each model
is trained without the greyed-out datasets of
their respective column.

Corpus Zero-shot
None FRA ITA POR SPA

fra.sdrt.annodis 0.41 0.23 0.44 0.46 0.45
ita.pdtb.luna 0.37 0.37 0.2 0.4 0.35
por.pdtb.crpc 0.33 0.36 0.33 0.04 0.3
*por.pdtb.tedm 0.24 0.24 0.22 0.05 0.19
por.rst.cstn 0.37 0.39 0.36 0.29 0.37
spa.rst.rststb 0.36 0.41 0.36 0.42 0.25
spa.rst.sctb 0.48 0.46 0.47 0.56 0.35

Table 17: Results of mBERT models trained on
Romance languages. “None” is the monolin-
gual model trained only on the target dataset.
Each column shows the results of one zero-
shot model for a target language: each model
is trained without the greyed-out datasets of
their respective column.

C.2. Zero-shot with frameworks

Zero-shot
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eng.pdtb.pdtb 0.74 0.55 0.74 0.74 0.73 0.74 0.74 0.74 0.74 0.74
*eng.pdtb.tedm 0.55 0.55 0.55 0.54 0.52 0.55 0.56 0.55 0.55 0.53
ita.pdtb.luna 0.61 0.58 0.61 0.42 0.58 0.61 0.57 0.59 0.61 0.58
por.pdtb.crpc 0.69 0.68 0.69 0.69 0.48 0.69 0.69 0.69 0.69 0.69
*por.pdtb.tedm 0.55 0.54 0.55 0.53 0.45 0.55 0.56 0.54 0.55 0.54
tha.pdtb.tdtb 0.94 0.94 0.94 0.95 0.94 0.94 0.57 0.93 0.94 0.94
tur.pdtb.tdb 0.46 0.45 0.46 0.44 0.44 0.46 0.44 0.37 0.46 0.44
*tur.pdtb.tedm 0.45 0.43 0.45 0.43 0.39 0.45 0.43 0.4 0.45 0.43
zho.pdtb.cdtb 0.83 0.82 0.83 0.83 0.85 0.83 0.82 0.84 0.83 0.47

Table 18: Results of mBERT models trained on the PDTB framework datasets. “None” is the monolingual
model trained only on the target dataset. Each column shows the results of one zero-shot model for a
target language: each model is trained without the greyed-out datasets of their respective column.
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Zero-shot
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deu.rst.pcc 0.33 0.2 0.34 0.32 0.32 0.35 0.34 0.34 0.34 0.33 0.32 0.34 0.34
eng.rst.gum 0.54 0.54 0 0.55 0.54 0.55 0.55 0.54 0.54 0.55 0.54 0.54 0.54
eng.rst.rstdt 0.64 0.64 0.64 0 0.64 0.65 0.64 0.64 0.64 0.64 0.64 0.64 0.65
eus.rst.ert 0.48 0.47 0.46 0.47 0.33 0.46 0.46 0.46 0.47 0.47 0.45 0.47 0.47
fas.rst.prstc 0.53 0.52 0.52 0.53 0.53 0.4 0.53 0.52 0.53 0.53 0.53 0.52 0.52
nld.rst.nldt 0.49 0.49 0.48 0.46 0.5 0.47 0.3 0.48 0.47 0.48 0.49 0.47 0.49
por.rst.cstn 0.62 0.61 0.61 0.6 0.6 0.6 0.63 0.49 0.6 0.62 0.63 0.6 0.61
rus.rst.rrt 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.4 0.6 0.6 0.59 0.6
spa.rst.rststb 0.63 0.63 0.64 0.64 0.64 0.64 0.63 0.62 0.64 0.57 0.62 0.63 0.65
spa.rst.sctb 0.72 0.68 0.69 0.69 0.69 0.67 0.72 0.67 0.68 0.72 0.66 0.65 0.7
zho.rst.gcdt 0.61 0.61 0.59 0.6 0.61 0.6 0.6 0.6 0.59 0.61 0.62 0.03 0.6
zho.rst.sctb 0.57 0.56 0.54 0.55 0.55 0.56 0.56 0.59 0.55 0.54 0.57 0.57 0.19

Table 19: Results of mBERT models trained on the RST framework datasets. “None” is the monolingual
model trained only on the target dataset. Each column shows the results of one zero-shot model for a
target language: each model is trained without the greyed-out datasets of their respective column.
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fra.sdrt.annodis 0.49 0.24 0.49
eng.sdrt.stac 0.61 0.62 0.12

Table 20: Results of mBERT models trained
on the SDRT framework datasets. “None” is
the monolingual model trained only on the tar-
get dataset. Each column shows the results
of one zero-shot model for a target language:
each model is trained without the greyed-out
datasets of their respective column.
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*eng.dep.covdtb 0.22 0.22 0.11 0.21
eng.dep.scidtb 0.74 0.74 0.35 0.75
zho.dep.scidtb 0.63 0.63 0.57 0.41

Table 21: Results of mBERT models trained on the
DEP framework datasets. “None” is the monolingual
model trained only on the target dataset. Each col-
umn shows the results of one zero-shot model for a
target language: each model is trained without the
greyed-out datasets of their respective column.
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C.3. Zero-shot with Jaccard similarity groups
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eng.pdtb.pdtb 0.74 0.55 0.74 0.73 0.74 0.74 0.74 0.74
*eng.pdtb.tedm 0.55 0.55 0.55 0.54 0.55 0.53 0.54 0.55
por.pdtb.crpc 0.69 0.68 0.69 0.47 0.69 0.69 0.68 0.69
*por.pdtb.tedm 0.53 0.53 0.53 0.46 0.53 0.55 0.53 0.53
tha.pdtb.tdtb 0.94 0.94 0.94 0.94 0.94 0.58 0.94 0.94
tur.pdtb.tdb 0.44 0.44 0.44 0.41 0.44 0.43 0.38 0.44
*tur.pdtb.tedm 0.42 0.43 0.42 0.43 0.42 0.45 0.37 0.42

Table 22: Results of mBERT models trained on PDTB datasets with the highest Jaccard similarity. “None”
is the monolingual model trained only on the target dataset. Each column shows the results of one zero-
shot model for a target language: each model is trained without the greyed-out datasets of their respective
column.
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deu.rst.pcc 0.33 0.18 0.33 0.34 0.34 0.29 0.33 0.36 0.29
eus.rst.ert 0.46 0.47 0.36 0.48 0.46 0.47 0.45 0.45 0.47
nld.rst.nldt 0.47 0.47 0.47 0.31 0.48 0.44 0.47 0.47 0.45
por.rst.cstn 0.61 0.6 0.6 0.6 0.46 0.59 0.61 0.6 0.6
rus.rst.rrt 0.6 0.59 0.59 0.6 0.6 0.31 0.6 0.6 0.59
spa.rst.rststb 0.62 0.67 0.61 0.63 0.63 0.61 0.55 0.6 0.62
spa.rst.sctb 0.64 0.65 0.65 0.66 0.69 0.62 0.66 0.59 0.67
zho.rst.sctb 0.56 0.59 0.53 0.55 0.6 0.55 0.54 0.56 0.51

Table 23: Results of mBERT models trained on RST datasets with the highest Jaccard similarity. “None”
is the monolingual model trained only on the target dataset. Each column shows the results of one
zero-shot model for a target language: each model is trained without the greyed-out datasets of their
respective column.

Zero-shot
Corpus None *eng.dep.covdtb eng.dep.scidtb eng.rst.rstdt fas.rst.prstc zho.dep.scidtb

*eng.dep.covdtb 0.23 0.23 0.59 0.21 0.24 0.22
eng.dep.scidtb 0.74 0.74 0.31 0.74 0.76 0.74
eng.rst.rstdt 0.64 0.64 0.63 0.29 0.64 0.63
fas.rst.prstc 0.54 0.54 0.53 0.54 0.46 0.53
zho.dep.scidtb 0.65 0.65 0.59 0.63 0.62 0.43

Table 24: Results of mBERT models trained on DEP and RST datasets with the highest Jaccard similarity.
“None” is the monolingual model trained only on the target dataset. Each column shows the results of
one zero-shot model for a target language: each model is trained without the greyed-out datasets of their
respective column.


