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Abstract

This paper addresses the problem of active diagnosis in Timed Event
Graphs for the localization of time failures. Active diagnosis is the pro-
cess of controlling the system in order to refine a previous diagnosis. A
first algorithm is proposed which sets up a multi-input control policy
that ensures that the system’s observable response is informative enough
to identify the source of the delay more precisely, with an analysis of the
propagation paths through the TEG. A second algorithm extends the first
one to improve the performance of the localization by adding a specific
method to analyze the effect of circuits when a time failure propagates.

Keywords : Model-based diagnosis, Active diagnosis, Time failure local-
ization, Timed event graph, (Max,+) algebra, Control.

1 Introduction

This paper introduces the active diagnosis problem in Timed Event Graphs.
Timed Event Graphs (TEGs) are a subclass of timed Petri nets which can be
represented in a (max,+)-algebraic linear system ([1]). They are characterized
by the fact that each place has precisely one upstream and one downstream
transition and all arcs have weight 1. This paper specifically addresses non-
autonomous TEGs that contain environmental inputs and outputs. Such TEGs
are well suited to model timed discrete event systems with synchronization and
delay phenomena for manufacturing, logistics and transportation systems, dig-
ital twins, communication networks, embedded microcontrollers, etc. This for-
malism has its own theory of control ([17, 8, 22]) and more recently some con-
tributions to failure diagnosis have also been developed ([20, 14, 19, 13]). In
particular, in [20] and [13], the first step of a diagnosis task consists in detecting
time failures (unexpected delays associated with some places of the TEG) by
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measuring the inputs and the outputs of the system and analyzing through the
use of indicators. Based on this detection, the second task is to localize the
place that actually holds the unexpected delay ([14, 13]). As only the inputs
and outputs of the TEG can be measured, the localization of the place within
the TEG can be very uncertain and the effective result of the diagnosis can be
rather poor.

The motivation of this paper is to improve the precision of the diagnosis
by applying an active diagnosis method on the system, refining previous, very
uncertain diagnosis results. The idea consists in combining the previous control
and diagnosis theories to provide a better localization of the time failure. Active
diagnosis is indeed the problem of setting up and applying a control policy on
the system that ensures that the system’s observable response is informative
enough to better identify the source of any previously detected malfunctions.
Once a failure has been detected at operating time, an active diagnosis session
is opened on the system ([5]) to ensure the algorithm has full control to actively
perform the diagnosis (offline method) and identify the source of the failure
within the system.

The paper is organized as follows. Section 2 details the related work. Sec-
tion 3 then recalls the theoretical background of timed event graphs and their
representation as (max,+)-linear systems. Section 4 introduces the active diag-
nosis problem investigated in the paper. A first algorithm for the localization
of a time failure in TEGs is then fully detailed in Section 5. It relies on the
algorithm CAMI (Control Algorithm for Multiple Inputs), which synthesizes a
set of controlled inputs that aim at improving the localization of the time fail-
ure by suspecting a subset of paths along the TEG. The proposed method is
proved to be sound and is generally more precise than the passive localization
of [14, 13] by providing a smaller set of candidate places that could hold the
time failure. Then, Section 6 proposes an extension of the previous algorithm
whose objective is to focus on the discrimination of candidate places involved
in the circuits of the TEG, and which improves the localization precision of
the first method. By combining a specific analysis of circuits with the previous
algorithm, an extended and more optimal version of CAMI is proposed, called
CAMIC (Control Algorithm for Multiple Inputs and Circuits). Finally, the
global localization algorithm, called ATFLAT (Active Time Failure Localiza-
tion Algorithm for TEGs) uses the CAMIC control strategy to solve the active
localization problem. ATFLAT is proved to be sound and is generally more ac-
curate than the localization algorithm proposed in Section 5. Section 7 finally
concludes and gives some perspectives.

2 Related work

Active diagnosis is the process of applying a set of actions, such as tests and
controls, on a system in order to monitor its observable responses and then get
or refine a fault diagnosis of the system [24].

In the context of discrete event systems, most of the contributions investi-
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gate the active diagnosis problem for untimed autonomous discrete event sys-
tems. In [21], the system is partially observable and some events are assumed
to be controllable so they can be avoided. In this context, the active diagnosis
problem consists in designing a controller over the system to ensure that if the
system becomes faulty, its behavior provides enough observable information to
decide with certainty that the system is faulty. The work of [4] extends this
framework of active diagnosis by introducing modalities for actions and states
and a new capability for the controller, namely observing that the system is
quiescent. The paper [11] then introduces parameterized active diagnosis and
proposes as solutions, a set of optimal controllers with respect to a given delay
for responses. In [25], another framework is proposed where the available set of
possible actions over the system is restricted to the activation and deactivation,
at operating time, of sensors that record some events of the system. The active
diagnosis problem then consists in selecting the best strategy to perform an
active acquisition of information by choosing which sensors to activate based on
the previous readings of the system. The work of [12] introduces the problem of
pervasive diagnosis on systems that run production plans. Pervasive diagnosis
aims at designing production plans that, once applied on the system, maximize
the observable information required for the monitoring of the health of the sys-
tem’s components. In [5], an active diagnoser is defined which monitors the
behavior of the system online. Based on this diagnoser and its current health
estimation, an active diagnosis session can be opened. In such a session, a plan-
ning problem can be drawn as finding a conditional plan of admissible actions
whose goal is to lead the system into having a diagnosable behavior. For the
active diagnoser to always be effective, the underlying system must be actively
diagnosable. In [3] the active diagnosis problem introduced in [21] is extended
to stochastic DES. In this context the objective is to define a policy that leads
the system to a set of trajectories where the probability of fault ambiguity is
null.

Active diagnosis has also been investigated in continuous and hybrid sys-
tems. For instance, the work of [23] designs an active detector over discrete-time
stochastic systems, following a closed loop information processing strategy. Its
design is formulated as an optimization problem, similar to the optimal stochas-
tic control problem. More recently, [10] proposes an active diagnosis method
for incipient faults in such systems. Active diagnosis has also been investigated
in switched systems ([26]) based on an event-based diagnoser and a testing pro-
cedure. The work of [15] considers the design of an input signal for minimizing
the time and energy required to detect and isolate faults in the outputs of a
system. Here, the faults are represented by discrete switches between affine
models with bounded disturbances and bounded measurement errors. Finally,
the active diagnosis problem has also been addressed in hybrid systems. For
instance in [2], the active diagnoser that is set up results from the discretiza-
tion of the underlying system and its observable measurements, and from the
computation of an active diagnoser similar to the one proposed in [5]. More
recently, such a technique has been applied for the active diagnosis of on-board
control procedures in satellites [6].

3



This paper addresses the active diagnosis problem for the localization of time
shift failures in non-autonomous timed event graphs that has been introduced
in our seminal work [27]. As opposed to previous work on active diagnosis,
here the set of applied actions or policies has to take into account the notion of
time and delays in order to properly generate discriminative timed observable
responses. The proposed solution relies on the (max,+) framework proposed
in [20, 14], which solves the localization problem in a passive way.

3 Timed event graph models of (max,+)-linear
systems

3.1 Timed event graphs

The set of Timed Event Graphs (TEGs for short) is a subclass of timed Petri nets
in which each place has exactly one upstream and one downstream transition
and for which arcs have weight one (see Fig. 1).

Definition 1 (Timed event graph). A timed event graph G is a 5-tuple

G = ⟨P, T ,A,M0,HT ⟩
such that

• P is a finite set of nodes called places;

• T is a finite set of nodes called transitions;

• P ∩ T = ∅;

• A ⊆ (P × T ) ∪ (T × P) is the set of arcs so that ∀p ∈ P, |{(p, t), t ∈
T } ∩ A| = 1 and |{(t,p), t ∈ T } ∩ A| = 1;

• M0 : P → N is the initial marking;

• HT : P → N is the holding time for a token in each place.

As for any type of Petri nets, the preset of a node n, denoted pre(n), is the
set of nodes

pre(n) = {n′ ∈ P ∪ T , (n′,n) ∈ A}, (1)

and the postset of a node n, denoted post(n), is the set of nodes

post(n) = {n′ ∈ P ∪ T , (n,n′) ∈ A}. (2)

By Definition of a TEG, it follows that ∀p ∈ P, |pre(p)| = 1 and |post(p)| = 1.
An input transition t ∈ T is a transition such that pre(t) = ∅, an output transi-
tion t ∈ T is a transition such that post(t) = ∅. The set of input transitions of
TEG G is denoted U , its set of output transitions is denoted Y and the set of in-
ternal transitions is denoted X = T \(Y∪U). An input transition is denoted ui,
i ∈ {1, . . . , |U|}. An output transition is denoted yi, i ∈ {1, . . . , |Y|}. An inter-
nal transition is denoted xi, i ∈ {1, . . . , |X |}. A synchronization is a transition
t that is directly downstream of two or more different places, i.e. |pre(t)| ≥ 2.
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Assumption 1 (Non-autonomous TEG). Through this paper, timed event graphs
are not autonomous, i.e.:

U ̸= ∅ and Y ≠ ∅.

Example 1. Figure 1 presents such a non-autonomous TEG. It is composed of
17 places P = {p1, . . . ,p17}. The holding time of each place is printed on the
top of the place unless the holding time is 0 (i.e. HT (p15) = 1 and HT (p1) =
0). It is composed of four input transitions U = {u1,u2,u3,u4}, three output
transitions Y = {y1, y2, y3} and six internal transitions X = {x1, . . . , x6}. In
this example, every internal transition except x3 is a synchronization.

u1

u2

u3

p1

p2

x1 p3

1

x2

p4

2
p5 x3

p6

p7

y1

x4 p10

1

y2

p9
x5p8

1

u4

p11 y3

p12

2

x6
p13

p14

2

p15

1

p16

1

p17

1

Figure 1: Non-autonomous timed event graph with four input transitions and
three output transitions.

A marking M is a function M : P → N that maps each place p to the number
of tokens M(p) present in the place. The initial marking M0 is the marking of
the TEG at the initial time.

Example 2. In Fig. 1, the initial marking M0 is such that ∀p ∈ {p12,p15,p17},M0(p) =
2, ∀p ∈ {p14,p16},M0(p) = 3, and M0(p) = 0 otherwise.

A transition t ∈ T is said to be enabled in a marking M if and only if ∀p ∈
pre(t),M(p) ≥ 1. Input transitions are always de facto enabled (pre(u) = ∅).
At the time a transition t is fired the current marking M of the TEG is modified
to become marking M ′ defined as follows:

• if p ∈ pre(t) \ post(t) then M ′(p) = M(p)− 1,

• if p ∈ post(t) \ pre(t) then M ′(p) = M(p) + 1,
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• otherwise M ′(p) = M(p).

The firing dates of a transition in a TEG rely on the fact that each place
p ∈ P is associated with a holding time HT (p) ∈ N that is the minimal time
duration for a token to stay in place p. Two cases hold:

1. if a token • is already in place p at initial time, its associated holding time
in place p is ht(p, •) = 0;

2. otherwise the holding time of a token • in place p is ht(p, •) = HT (p).

Let t be either an internal or an output transition, the transition is fired
at the earliest date df after it is enabled and the holding time of the tokens
in each place of the preset has passed. Formally, suppose pre(t) = {pi, i ∈
{1, . . . , |pre(t)|}}, let •mi be the mth token that comes in place pi, let dmi be
the date token •mi comes in the place pi (d

m
i = 0 if •mi is present at the initial

time), the mth fire of transition t is therefore at date df :

df = maxpi∈pre(t)({dmi + ht(pi, •mi )}). (3)

Regarding the input transitions, they represent the occurrence of events from
the environment, so they can be fired at any time.

Example 3. In Fig. 1, only input transitions are enabled in marking M0. As
an example, if transition u4 fires at time 0 then the new marking M1 is such
that M1(p8) = 1 and M1(p17) = 2 which enables x5. This latter transition then
necessarily fires at time 1 as well as transition y3. Note that, as M0(p17) = 2,
the holding time of place p17 has an influence only after the second fire of x5.

Path and Circuits

Definition 2 (Path/Elementary Path). Let n,n′ ∈ P ∪ T be two nodes of a
TEG G, a path from node n to node n′ is a sequence of nodes π = n1 . . . nk such
that:

1. n = n1, n
′ = nk, k ≥ 2;

2. ∀i ∈ {1, . . . , k − 1}, (ni,ni+1) ∈ A.

Moreover, such a path is elementary if the following condition also holds

∀i, j ∈ {1, . . . , k}, i ̸= j ⇒ ni ̸= nj .

A node n belonging to a path or an elementary path π is denoted by n ∈ π.
The set of paths from n to n′ is denoted Π(n,n′) and the set of elementary
paths from n to n′ is denoted ΠE(n,n

′). Symbol ↪→ (resp. ⇝) denotes a binary
relation over (P ∪ T )2 such that n ↪→ n′ (resp. n⇝ n′) means that there is an
elementary path (resp. path) from n to n′ in G: i.e. n ↪→ n′ ⇔ ΠE(n,n

′) ̸= ∅
and n⇝ n′ ⇔ Π(n,n′) ̸= ∅. PE(π) will denote the set of places involved in the
elementary path π:

6



PE(π) = {n ∈ π} ∩ P. (4)

By extension, n ↪→ n′ denotes any elementary path from ΠE(n,n
′) and n⇝

n′ denotes any path from Π(n,n′).

Example 4. In the TEG of Fig. 1, the sequence u1p1x1p15x1p3 is a path (u1 ⇝
p3 holds) but it is not elementary. An elementary path between u1 and p3 is
u1p1x1p3 (u1 ↪→ p3 holds, PE(u1p1x1p3) = {p1,p3}). There is no elementary
path (so no path) between places p1 and p2 (p1 ̸↪→ p2 ⇒ p1 ̸⇝ p2).

A circuit σ is a path from a node n to itself (σ ∈ Π(n,n)). An elementary
circuit σE is a sequence of nodes n1 . . . nk composed of an elementary path
n1 . . . nk−1 such that n1 = nk and nk−1 ∈ pre(nk). The set of elementary
circuits is therefore:

CE = {σn, σ ∈ ΠE(n,n
′), (n,n′) ∈ (P ∪ T )2 and n′ ∈ pre(n)}. (5)

Notation PE is extended to elementary circuits as follows: ∀σ ∈ CE ,PE(σ) =
{n ∈ σ} ∩ P.
Example 5. For instance, in Fig. 1, the sequence x2p5x3p13x6p14x6p12x2 char-
acterizes a circuit, but it is not elementary. However, circuit x2p5x3p13x6p12x2
is elementary and PE(x2p5x3p13x6p12x2) = {p5,p13,p12}.
Definition 3 (Structural observability [13, 16]). A TEG is structurally ob-
servable if, from every internal transition x, there exists a path to at least one
output transition y:

∀x ∈ X ,∃y ∈ Y, x⇝ y. (6)

Assumption 2 (Structural observability). All along this paper, timed event
graphs are structurally observable.

Structural observability ensures that for every internal transition x, there
is at least one output transition y whose sequence of fires may be impacted
by x. From a diagnosis viewpoint, if only output transitions are measurable
(see Section 4.1), the localization of a time failure in a place in any path from
transition x would be irrelevant if structural observability does not hold for x.
The TEG represented in Fig. 1 is visibly structurally observable.

3.2 Dioids and residuation theories

3.2.1 Dioids

The dioid theory is the mathematical framework for modeling timed event
graphs as (max,+)-linear systems. This section briefly recalls some results,
more details can be found in [1].

Definition 4 (Dioid). A dioid is a set D equipped with two binary operations
denoted ⊕ (addition) and ⊗ (multiplication) such that:
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1. ⊕ is associative and commutative;

2. ⊗ is associative;

3. ⊗ is left/right distributive with respect to ⊕ (c ⊗ (a ⊕ b) = c ⊗ a ⊕ c ⊗ b
and (a⊕ b)⊗ c = a⊗ c⊕ b⊗ c);

4. D has a zero element ε (∀a ∈ D : a⊕ ε = a);

5. ε is an absorbing element for ⊗ (∀a ∈ D : a⊗ ε = ε⊗ a = ε);

6. D has an identity element e (∀a ∈ D : a⊗ e = e⊗ a = a);

7. ⊕ is idempotent (∀a ∈ D : a⊕ a = a).

Moreover, if ⊗ is commutative (a⊗b = b⊗a) then the dioid is commutative.
A dioid (D,⊕,⊗) is complete if it is closed for infinite sums (

⊕+∞
i=0 ai ∈ D with

ai ∈ D, i ≥ 0) and left/right distributivity of ⊗ with respect to ⊕ holds for
infinite sums (b⊗⊕+∞

i=0 ai =
⊕+∞

i=0 (b⊗ ai), (
⊕+∞

i=0 ai)⊗ b =
⊕+∞

i=0 (ai ⊗ b)).

Example 6. As an example, consider the set Zmax = Z ∪ {−∞,+∞}, then
(Zmax,max,+) is a commutative dioid with ⊕ being the max operator and ⊗
being the classical addition +. Moreover, εZmax

= −∞ and eZmax
= 0. Another

example is the commutative dioid (B, or, and) = (B,⊕B,⊗B), that is the Boolean
set B = {0, 1} equipped with the logical or as the addition ⊕ and the logical and
as the multiplication ⊗ with the zero element εB = 0 and the identity element
eB = 1. Both dioids are complete.

The definition of ⊕ induces a partial order ⪰ in the dioid (D,⊕,⊗):

∀a, b ∈ D, a ⪰ b⇔ a = a⊕ b. (7)

A function f : D → D is isotone if ∀a, b ∈ D, a ⪰ b ⇒ f(a) ⪰ f(b). In the
following, for the sake of simplicity, products like a ⊗ b are simply denoted ab.
One important result in the dioid theory proposes a way to solve the equation
ax ⊕ b = x. Let a ∈ D, we denote a0 = e and ∀i ∈ N \ {0}, ai = aai−1. The
isotone Kleene star operator a∗ is then defined as a∗ =

⊕
i≥0 a

i.

Theorem 1 (Solution of ax⊕ b = x [1]). Let (D,⊕,⊗) be a complete dioid, the
least solution of ax⊕ b = x is x = a∗b.

Finally, note that addition ⊕ and multiplication ⊗ can be extended to ma-
trices with entries in a dioid (D,⊕,⊗). By extension, for a matrix M ∈ Dn×n,
matrix M∗ =

⊕
i≥0 M

i.

3.2.2 Residuation theory

The mapping Ra : x 7→ x ⊗ a induced by the operator ⊗ on a dioid is not
invertible. However, a pseudo-inverse operator can be defined based on the
residuation theory, briefly described here below.

Let f : D → C be an isotone mapping between two complete dioids D and
C.
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Definition 5 (Residuated mapping). Mapping f is residuated if for every b ∈
C, there exists a greatest solution for equation f(x) ⪯ b. This greatest solution
is denoted

f ♯(b) =
⊕

x∈D,f(x)⪯b

x.

If mapping f is residuated, then mapping f ♯ : C → D is called the residual
of f . Moreover, f ♯ is the unique isotone mapping such that f ◦ f ♯ ⪯ IdC and
f ♯ ◦ f ⪰ IdD where IdC and IdD are respectively the identity mappings on C
and D.

Mapping Ra : D → D over a dioid D is such a residuated mapping and its
residual is

R♯
a(b) =

⊕
x∈D,xa⪯b

x = b◦/a. (8)

Operator ◦/ means that b◦/a is the greatest solution to inequality x⊗ a ⪯ b.

3.3 Dioid Max
in [[γ, δ]]

Timed event graphs can be modeled as (max,+)-linear systems using the dioid
Max

in [[γ, δ]]. This dioid is defined as a quotient of the set B[[γ, δ]] of formal power
series s in two commutative variables γ and δ with exponents in Z (series of
monomials of type γnδt) and coefficients in B = {εB, eB} denoted as follows:

s =
⊕

(n,t)∈Z2

c(n, t)γnδt with c : Z2 → B. (9)

Let si =
⊕

(n,t)∈Z2 ci(n, t)γ
nδt ∈ B[[γ, δ]], i ∈ {1, 2} denote any couple of

series, addition ⊕ is then defined as:

s1 ⊕ s2 =
⊕

(n,t)∈Z2

(c1(n, t)⊕B c2(n, t))γ
nδt

and multiplication ⊗ is defined as:

s1 ⊗ s2 =
⊕

(n,t)∈Z2

c(n, t)γnδt with c(n, t) =
⊕

B
n=n1+n2
t=t1+t2

c1(n1, t1)⊗B c2(n2, t2).

Endowed with addition ⊕ and multiplication ⊗, B[[γ, δ]] is a complete com-
mutative dioid. The zero element of B[[γ, δ]] is ε =

⊕
(n,t)∈Z2 εBγ

nδt and its

identity element is e = eBγ
0δ0 ⊕⊕

(n,t)∈Z2\{0,0}) εBγ
nδt. As εB stands for the

absence of a monomial in the series and eB stands for its presence, series of
B[[γ, δ]] can be simply denoted:

s =
⊕

(n,t)∈Z2,c(n,t)=eB

γnδt with c : Z2 → B. (10)
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Example 7. For instance, the identity element of B[[γ, δ]] is denoted e = γ0δ0.
Graphically, a series of B[[γ, δ]] characterizes a collection of points of coordinates
(n, t) ∈ Z2 with γ as horizontal axis and δ as vertical axis. For instance, series
s1 = e ⊕ γ0δ1 ⊕ γ2δ3 ⊕ γ3δ2 ⊕ γ4δ5 is graphically represented in Fig. 2 as a
collection of five points (represented as 3 black squares and 2 black circles).

Definition 6 (DioidMax
in [[γ, δ]],⊕,⊗). Dioid (Max

in [[γ, δ]],⊕,⊗) is the quotient
of dioid (B[[γ, δ]],⊕,⊗) induced by the following congruence relation ≡:

∀s1, s2 ∈ B[[γ, δ]], s1 ≡ s2 ⇔ γ∗(δ−1)∗s1 = γ∗(δ−1)∗s2. (11)

An element of Max
in [[γ, δ]] is an equivalent class [s]γ∗(δ−1)∗ gathering all the

series of B[[γ, δ]] that are equivalent modulo γ∗(δ−1)∗. The zero element in
Max

in [[γ, δ]] is the class [ε]γ∗(δ−1)∗ and the identity element in Max
in [[γ, δ]] is the

class [e]γ∗(δ−1)∗ . Any series s of B[[γ, δ]] is a representation of class [s]γ∗(δ−1)∗ .

Example 8. Consider the series s1 from the previous example, it represents
the class [s1]γ∗(δ−1)∗ . This class gathers an infinite set of points, some of which
are represented by black squares, black circles and gray circles in Fig. 2. This
class can also be represented by a set of lines that delimit the set of points that
belong to the class of s1 inMax

in [[γ, δ]].

1 2 3 4 5

1

2

3

4

5

y

γ

δ

Figure 2: Graphical representation of the class [s1]γ∗δ−1 ∈ Max
in [[γ, δ]] whose

minimal representation is γ0δ1 ⊕ γ2δ3 ⊕ γ4δ5.

For the sake of simplicity through the rest of the paper, the expression
s ∈ Max

in [[γ, δ]] will denote without ambiguity the class in Max
in [[γ, δ]] which

is represented by series s from B[[γ, δ]]. It follows for instance that ε and e
represent the zero element and the identity element in Max

in [[γ, δ]] respectively
(ε ∈ Max

in [[γ, δ]], e ∈ Max
in [[γ, δ]]). For s, s′ ∈ Max

in [[γ, δ]], the expression s = s′

denotes that the class of s is equal to the class of s′ inMax
in [[γ, δ]] (which means

s ≡ s′ in B[[γ, δ]]). Then, by definition ofMax
in [[γ, δ]], the following computation
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rules hold:

γnδt ⊕ γn′
δt = γmin(n,n′)δt (12)

γnδt ⊕ γnδt
′
= γnδmax(t,t′) (13)

γnδt ⊗ γn′
δt

′
= γn+n′

δt+t′ (14)

Among the set of representations of a class of Max
in [[γ, δ]], there are two

particular representations, namely the minimal and the maximal representation.

Definition 7 (Minimal/Maximal representation). The minimal representation
of a class ofMax

in [[γ, δ]] is a series:

smin =
⊕

(n,t)∈Jsmin
⊂Z2

γnδt

where Jsmin is a set such that ∀(n, t) ∈ Jsmin ,∄(n′, t) ∈ Jsmin , n
′ < n and

∄(n, t′) ∈ Jsmin , t
′ > t. The corresponding maximal representation is:

smax =
⊕

(n,t)∈Jsmax⊂Z2

γnδt

such that Jsmax
= {(n, t) ∈ Z2,∃(n′, t), (n, t′) ∈ Jsmin

, n ≥ n′ and t ≤ t′}.
Example 9. Back to Fig. 2, the minimal representation is s1,min = γ0δ1 ⊕
γ2δ3 ⊕ γ4δ5 which corresponds to the collection of black squares. The maximal
representation then explicitly enumerates the complete collection of points asso-
ciated with the represented class: s1,max =

⊕
(n,t),n≥0,t≤1 γ

nδt⊕⊕(n,t),n≥2,t≤3 γ
nδt⊕⊕

(n,t),n≥4,t≤5 γ
nδt.

Finally, in the following, γnδ+∞ denotes the element of Max
in [[γ, δ]] whose

maximal representation is defined as:

γnδ+∞ =
⊕

(n′,t)∈Z2,n′≥n,t∈Z

γnδt (15)

3.4 Time shift function

One other interesting representation of a series s ∈Max
in [[γ, δ]] is its dater func-

tion Ds.

Definition 8 (Dater function). Let s ∈ Max
in [[γ, δ]] and smax be its maximal

representation, the dater function of s is the non-decreasing function denoted
Ds : Z→ Z such that

Ds(n) = max({t, (n, t) ∈ Jsmax
}) with smax =

⊕
(n,t)∈Jsmax⊂Z2

γnδt.

Example 10. Figure 3 graphically represents the dater function Ds1 of the
series s1 = γ0δ1 ⊕ γ2δ3 ⊕ γ4δ5 (see Fig. 2).
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Figure 3: Graphical representation of the dater function of s1 = γ0δ1 ⊕ γ2δ3 ⊕
γ4δ5: Ds1(0) = 1,Ds1(1) = 1,Ds1(2) = 3, ...

The dater function can be used as a way to compare series.

Definition 9 (Time shift function). Let s, s′ ∈ Max
in [[γ, δ]] and let Ds and Ds′

be their respective dater functions. The time shift function between s and s′ is:

Ts,s′ : Z→ Z
Ts,s′(n) = Ds′(n)−Ds(n).

T s,s′ (resp. T s,s′) denotes the lower bound (resp. upper bound) of Ts,s′ (Fig.
4):

T s,s′ = minn∈Z(Ts,s′(n)), T s,s′ = maxn∈Z(Ts,s′(n))
As formally detailed in the following theorem, the lower bound and the upper

bound of the time shift function Ts,s′ can be obtained by computing the value
of a dater function on the couple of residuals s′◦/s and s◦/s′.

Theorem 2 ([16]). Let s, s′ ∈Max
in [[γ, δ]], the time shift function Ts,s′ is bounded

as follows:

∀n ∈ Z, T s,s′ = Ds′◦/s(0) ≤ Ts,s′(n) ≤ −Ds◦/s′(0) = T s,s′ . (16)

3.5 Timed event graphs as (max,+)-linear systems

The complete dioid Max
in [[γ, δ]] aims at modeling timed sequences of events.

Indeed, series in Max
in [[γ, δ]] are non-decreasing and can be used to represent

the accumulation of event occurrences over time. It follows that series from
Max

in [[γ, δ]] can represent a firing sequence of a given transition in a timed event
graph, also called an event flow or an event trajectory. A monomial γnδt in such
a series is interpreted as the (n+ 1)th event (i.e. transition fire) that occurs at
the earliest time t. A monomial γnδ+∞ in the series then represents the fact
that the trajectory describes a finite number n of events, as the (n+ 1)th event
never happens.

12
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Figure 4: Time shift function between s1 = γ0δ1⊕γ2δ3⊕γ4δ5) and s2 = γ0δ2⊕
γ5δ3⊕γ6δ4: T s1,s2 = Ds2(4)−Ds1(4) = 2−5 = −3, T s1,s2 = Ds2(1)−Ds1(1) =
2− 1 = 1.

Let ui ∈ U be an input transition of a TEG G, the event flow associated
with this transition is denoted ui ∈ Max

in [[γ, δ]]. Then U = [u1, . . . , u|U|]
T ∈

Max
in [[γ, δ]]

|U| denotes the input vector of G. Similarly, the event flow of an
internal transition xi ∈ X (resp. an output transition yi ∈ Y) is denoted as
a series xi ∈ Max

in [[γ, δ]] (resp. yi ∈ Max
in [[γ, δ]]). Vector X = [x1, . . . , x|X |]

T

is the corresponding state vector of G and vector Y = [y1, . . . , y|Y|]
T is the

corresponding output vector of G. X and Y are defined by the following state
representation system: {

X = AX ⊕BU
Y = CX

(17)

where matrices A,B,C are such that A ∈Max
in [[γ, δ]]

|X |2 , B ∈Max
in [[γ, δ]]

|X |×|U|,
and C ∈Max

in [[γ, δ]]
|Y|×|X|.

By applying Theorem 1, a direct relation between Y and U can be obtained:

Y = HU with H = CA∗B. (18)

Matrix H ∈Max
in [[γ, δ]]

|Y|×|U| is called the transfer matrix.

Example 11. Back to the TEG of Fig. 1, its state representation is therefore
characterized by matrices A ∈Max

in [[γ, δ]]
6×6, B ∈Max

in [[γ, δ]]
6×4, C ∈Max

in [[γ, δ]]
3×6.

For instance the element A2,1 of matrix A is A2,1 = γ0δ1 which means that the
nth fire of x2 is at least 1 time unit after the nth fire of x1 while the element
A2,6 of matrix A is A2,6 = γ2δ2 which means that the nth fire of x2 is at least
2 time units after the nth − 2 fire of x6. Finally, any element like A4,2 is as-
signed with ε as pre(x4) ∩ post(x2) = ∅. Matrix B involves input transitions,

13



so for instance B5,4 = γ0δ1 (between input u4 and transition x5) and B6,4 = ε.
Similarly, Matrix C involves output transitions (C1,3 = γ0δ0, C3,2 = ε,. . . ).
The transfer matrix then is a matrix H ∈Max

in [[γ, δ]]
3×4. For instance, element

H1,1 = γ0δ1(γ2δ2)∗ rules the fires of output y1 with respect to input u1; the full
transfer matrix is detailed in Section 6.3 by Equation (32).

Finally, the next property trivially follows from Equation (18):

Proposition 3. Let uj ∈ U , yi ∈ Y, a path uj ⇝ yi exists if and only if the
transfer function H is such that Hij ̸= ε.

4 Active diagnosis of a TEG: tools and assump-
tions

Active diagnosis is the generic problem of setting up and applying an action plan
or a control policy on the system in order to monitor its observable response
and refine a previous diagnosis. The success of an active diagnosis process relies
on the synthesis of action plans or control policies that, once applied, ensure
that the observable response is discriminative enough and leads to the pruning
of diagnostic candidates that were determined by a previous diagnosis stage. In
this paper, we address the problem of active diagnosis of time failures in systems
modeled as timed event graphs. The objective is to synthesize a sequence of
controls to finally better localize the origin of the time failure within the sys-
tem. The effective application of this sequence of controls and the analysis of
their respective observable responses with the help of health indicators is called
an active diagnosis session [5]. To design such an active diagnosis session, two
subtasks are necessary: the control task in charge of synthesizing and apply-
ing a control sequence and the diagnosis task that is in charge of monitoring
the observable response and determining the new set of potential time failure
sources. Subsection 4.1 formally describes the diagnosis task that is used by the
proposed active diagnosis method. This task is based on a set of time failure
indicators defined in [20, 14] over a (max,+)-linear system that are designed for
the detection and localization of such failures. Note that it is nonetheless possi-
ble to use other time failure indicators such as the ones of [18] or any other time
failure indicators as long as they are sound. Then, Subsection 4.2 briefly recalls
the control theory in (max,+)-linear systems that is used all along this paper
for the implementation of the control task. Subsection 4.3 introduces the active
diagnosis problem investigated in this paper and details the global assumptions
required by the proposed method.

4.1 Diagnosis of time failures in TEGs

All along this paper, we consider that the behavior of the supervised underlying
system is modeled as a timed event graph G = ⟨P, T ,A,M0,HT ⟩ which has at
least one input transition (U ̸= ∅) and one output transition (Y ̸= ∅). A tran-
sition t ∈ T is said to be measurable if the date of every fire of the transition t is

14



known by the supervisor in charge of performing an active diagnosis session. In
this paper, we consider that the system is partially measurable. More precisely,
only input and output transitions are measurable: i.e. the timed sequence of
fires of an input transition ui ∈ U (resp. an output transition yi ∈ Y) is known
by the supervisor at any operating time; in other words, its corresponding series
ui (resp. yi) is known. This is not the case of internal transitions (X ), whose
information on events is considered to be unavailable to the supervisor.

4.1.1 Time failures

The purpose that is addressed is to improve the way of localizing the origin
of a time failure within a partially observable system G. A time failure is a
phenomenon that occurs on a system processing resources and which produces
a delay. For instance, in an automated assembly line, a machine tool may work
in a degraded mode and operate with unexpected delays. A resource can also
be a transport resource impacted by delays from the environment to go from a
site A to a site B, etc. In the context of systems modeled as TEGs, a resource is
modeled by a place p ∈ P and its processing duration is modeled by the duration
d = HT (p). In this setting, a time failure is formally defined as follows.

Definition 10 (Time failure). A time failure held by a place p ∈ P whose
normal duration is d = HT (p), is a relative delay θ ∈ N \ {0} so that the real
duration associated with p is d+ θ ∈ N+.

Assumption 3 (Permanent time failure). All along this paper, only permanent
time failures are considered, i.e. HT (p)+ θ holds at any time within the system
G.

Assumption 3 states that the effect of a time failure is permanent on the
holding time in the involved place p and has an effect on any token reaching
and then waiting in that place p.

Proposition 4. Let H be the normal transfer function of a system with normal
output Ỹ = HU , if the system holds a set of permanent time shift failures then
there exists a transfer function H ′ such that

1. Y = H ′U is the real output of the system;

2. H ′ ⪰ H.

Proof. Firstly, let us prove the result for the presence of a single time failure held
on place pf ∈ P with a duration θ > 0. Let G = (P, T ,A,M0,HT ) be the TEG
of the system and H = CA∗B with A,B,C as defined in Equation (17). As it
is permanent, it is possible to design the TEG G′ = (P, T ,A,M0,HT ′) of the
failing system by simply replacing the holding time pf : HT ′(pf ) = HT (pf )+ θ
and ∀p ∈ P \ {pf},HT ′(p) = HT (p). Let H ′ be the transfer function of G′, it
follows that Y = H ′U .
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1. Suppose first that post(pf ) = {yf} ⊆ Y. As H = CA∗B, it follows that
there exists C ′ such that H ′ = C ′A∗B with A,B,C ′ being the matrices

in the state representation of TEG G′. It follows yf =
⊕|X |

i=1 C
′
fixi. By

construction of G′ and G, if Cfi = ε, then C ′
fi = ε, otherwise, Cfi =

γnfiδtfi and C ′
fi = γnfiδtfi+θ. Now remark that γnfiδtfi ⊕ γnfiδtfi+θ =

γnfiδmax(tfi,tfi+θ) = γnfiδtfi+θ, it follows that C ′
fi ⪰ Cfi and C ′ ⪰ C.

Finally, H ′ ⪰ H.

2. Now suppose pre(pf ) = {uf} ⊆ U . Let {xf} = post(pf ) ⊆ X . It follows

that xf =
⊕|X |

i=1 Afixi ⊕
⊕|U|

i=1 B
′
fiui. By construction of G′ and G, if

Bfi = ε, then B′
fi = ε, otherwise, Bfi = γnif δtif and B′

fi = γnif δtif+θ.
Similarly, as in Case 1, B′ ⪰ B, so H ′ ⪰ H.

3. The last case is when pre(pf ) = {x ℓ} ⊆ X and post(pf ) = {xm} ⊆ X . It
follows that xm =

⊕|X |
i=1 A

′
mixi ⊕

⊕|U|
i=1 Bmiui. By construction, the only

difference between A and A′ is their respective elements A ℓm and A′
ℓm

with A ℓm = γn ℓmδt ℓm and A′
ℓm = γn ℓmδt ℓm+θ. It follows that A′ ⪰ A.

As the Kleene operator is isotone, it follows that (A′)∗ ⪰ (A)∗. Hence
H ′ ⪰ H.

Finally, the proof of the result for any finite set of time failures in G is by
induction on the set of failures. Indeed, considering the normal system now
as the system modeled by G′ and considering a second time failure, the same
previous reasoning applies.

Among the possible set of time failures, there are two subclasses. The first
class gathers the time failures that do indeed have an observable effect by delay-
ing at least one measurable output yi. In this case the time failure is detectable.
The other class contains the time failures that have no observable effect. This
is usually due to a downstream synchronization that compensates the effect of
the time failure by waiting for tokens from healthy places.

Definition 11 (Detectable time failure). A time failure is said to be detectable
if it leads to the production of a real output Y that is different from the normal
output Ỹ .

Corollary 5. If a permanent time failure is detectable then H ′ ≻ H.

Proof. By Proposition 4, we know that H ′ ⪰ H. As the time failure is de-
tectable, Ỹ ̸= Y , therefore H ′ ̸= H.

Assumption 4 (Detectability of time failure). All along this paper, only de-
tectable time failures are considered.

Assumption 4 asserts that the aim of the diagnosis task is to localize the
source of detectable time failures only. The case when a time failure is indeed
present in G but not detectable is not addressed. For the sake of simplicity
in the following, the notion of time failure will stand for permanent detectable
time failure.
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4.1.2 Indicators

The diagnosis task involved in the proposed active diagnosis method is com-
posed of two subtasks: detection and localization. The detection task consists
in measuring the inputs and the outputs of the real system and comparing them
to the expected inputs and outputs. A difference between the reality and the
expectation means that the modeled behavior does not represent the real behav-
ior, hence the occurrence of a time failure. The localization task then consists
in identifying, among the set of places, which ones hold the time failure.

Regarding the detection, as input U is measurable, the real input is always
the expected input, however the real output Y might be different from the
expected output Ỹ = HU (the expectation is that the output Ỹ results from
the model defined in Equation (17) based on the real input U). In [20], a method
that exploits this is proposed, relying on the set of indicators explained in the
following.

Definition 12 (Indicator of time failures). Let U be the measurable input of G
such that HU ̸= ε and let Y = [y1, . . . , y|Y|]

T ̸= ε be its measurable output.
Indicator I(U, yi) for single output yi ̸= ε is the Boolean function:

I(U, yi) =

{
false if ∆(yi, ỹi) = [0; 0] for ỹi such that [ỹ1, . . . , ỹ|Y|]

T = HU,

true otherwise

with
∆(yi, ỹi) = [T ỹi,yi

; T ỹi,yi
], (19)

the time interval of yi, and the bounds of Tỹi,yi as defined in Theorem 2.

As detailed in [13], the following result holds.

Theorem 6 (Sound indicators). Let U be the measurable input of G such that
HU ̸= ε and let Y = [y1, . . . , y|Y|]

T ̸= ε be its measurable output, at least one
detectable time failure is present in the system if there is at least one output yi
such that I(U, yi) = true.

In the following, any output yi that raises the indicator I will be called a
delayed output, formally:

Definition 13 (Delayed output). Let U be an input for system G, and Y =
[y1, . . . , y|Y|]

T be the real output of G when operating U , yi is a delayed output
if

I(U, yi) = true.

The set of delayed output transitions of G is therefore denoted:

Ydel,U = {yi ∈ Y|I(U, yi) = true}.
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4.1.3 Localization of time failures

Once the detection task concludes that at least one time failure is present in
the system, the localization task can start in order to identify the set of places
p that could hold the time failure. Based on the parsimony principle in model-
based diagnosis, we will suppose that the detection results from the presence of
one time failure only.

Assumption 5 (Single time failure). The localization task assumes that only
one time failure is present in the system.

The objective of the localization task is therefore to exploit the results from
the set of indicators in order to determine a set of places that could potentially
hold the time failure and ultimately the unique place p that holds the time
failure.

Proposition 7. The place pf holding the time failure is upstream of all the
delayed outputs, i.e.

∀y ∈ Ydel,u,pf ⇝ y. (20)

Proof. This property is a direct consequence of Assumption 2 on the structural
observability of the TEG.

In [14], a method for localizing such a time failure exploiting the structure
of G has been proposed.

Definition 14 (Structure-based localization). Let U be the measurable input
of G such that HU ̸= ε and let Y ̸= ε be its measurable output such that
∃Ytrue ⊆ Y,Ytrue ̸= ∅ and ∀yi ∈ Ytrue , I(U, yi) = true, the Structure-based
localization of the time failure in G is the set:

Loc(G, U, Y ) = {p ∈ P,∀yi ∈ Y, yi ∈ Ytrue ⇒ p⇝ yi}.

Intuitively speaking, a place p is a candidate for holding the time failure if the
place is in the upstream of every output transition for which the corresponding
indicator is true. As proved in [14], the next result follows.

Theorem 8. Under the assumption of a single time failure, place p holds the
time failure only if p ∈ Loc(G, U, Y ).

4.2 Control in (max,+)-linear systems

The principle of active diagnosis is to set up control policies over the supervised
system G in order to analyze the response of G and refine the localization of
time failures. In this paper, the proposed method for controlling the system
G relies on the control theory of (max,+)-linear systems. Generally speaking,
the control aims at designing a specific input U that ensures that the system G
achieves a behavior X among a set of pre-specified target behaviors.
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Definition 15 (Control Problem). Let TB ⊆ Max
in [[γ, δ]]

|X | be a set of pre-
specified target behaviors of the TEG G, the control problem over G is the syn-
thesis of an input U to ensure that, at any time, state X (with X = AX ⊕BU)
is such a target behavior (X ∈ TB).

The result of a control problem is a synthesized input U also called control
U . In (max,+)-linear systems, control U usually aims at delaying specific events
of the input flows to finally get a target behavior of the system.

Example 12. For example, among existing controllers, the so-called optimal
control for TEG ([7]) is an open-loop strategy that consists in computing the
greatest input flow Uopt to ensure that state Xopt is such that Xopt = AXopt ⊕
BUopt, Yopt = CXopt, Yopt ⪯ Yr where Yr is a known reference output [17].

With series ofMax
in [[γ, δ]], the “greatest series” is the most delayed series and

a lesser series is faster.

4.3 Active diagnosis: objectives and assumptions

This paper details an algorithm to be used in an active diagnosis session over a
system G. An active diagnosis session can start as soon as a time shift failure has
been detected in the system at operating time. Let Uop be the vector of inputs
that has been applied at operating time and Yop the corresponding measured
output. A time shift failure has been detected in the system as soon as there
exists a delayed output in Yop (see Definition 13), in other words, as soon as:

Ydel,Uop
̸= ∅. (21)

Instead of directly performing a structure-based localization based on Uop, Yop

only, the objective of the active diagnosis is to design a sequence of controls
U1, . . . , Uk, . . . to get more information and a more precise diagnosis (see Fig. 5).
At each step k of the active diagnosis session, the first stage is to synthesize a
new input Uk that is then applied to the real system. The system then pro-
duces the output Yk as an observable response. The failure detection module
then computes the expected output Ỹk = HUk and the results of the indicator
I(Uk, Yk) =

∨
1≤i≤|Y| I(Uk, yi). Based on these new results, a new localization

analysis is performed to provide a new set of candidate places Pcand . Then,
based on the active diagnosis strategy, either a new step k + 1 is performed or
the active diagnosis session ends and provides Pcand as the result.

Throughout this paper, the stages consisting in applying control Uk on the
real system, recording Yk and computing Ỹk and I(Uk, Yk) will be simply rep-
resented in the proposed algorithms by a call to the function:

(Yk, Ỹk, I(Uk, Yk))← ApplyControl(Uk).

The key to success when starting an active diagnosis session is to perfectly
know the initial marking of the system G before applying any control. The
proposed method thus requires a set of assumptions on the timed event graph
G.
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Figure 5: Active diagnosis architecture

Definition 16 (Output in phase with input). Let H be the transfer function of
G based on its initial marking M0 (Y = HU), an output yi ∈ Y of G is said to
be in phase with an input uj ∈ U if

(uj ⇝ yi)⇒ (Hij ⪰ γ0δ0). (22)

Intuitively speaking, if yi is in phase with uj, the first fire of yi requires the
first fire of uj. Note that the definition of Hij depends on the initial marking
M0.

Definition 17 (In phase). A TEG G is said to be in phase if every output
transition yi of G is in phase with the set of input transitions uj upstream of it,
formally:

∀yi ∈ Y,∀uj ∈ U , (uj ⇝ yi)⇒ (Hij ⪰ γ0δ0). (23)

Intuitively speaking, when a TEG is in phase, it means that, starting at
time t = 0 from the initial marking M0, the first fire of an output transition yi
is due to the presence of tokens in the preset of yi that are all resulting from
the first fire of every input transition uj that leads to transition yi. Transition
yi cannot be fired as long as every input transition uj has been fired once and
the resulting produced tokens are not present in the preset of yi. The proposed
active diagnosis method requires this property.

Example 13. A single-input single-ouput TEG G1 with the transfer function
h1 = γ0δ1 ⊕ γ1δ2 would be in phase. A TEG G2 with the transfer function
h2 = γ1δ1 would not be in phase (h2 ̸⪰ γ0δ0): the first event of its output takes
places before the first event of its input.
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Assumption 6 (G is in phase). TEG G is assumed to be in phase: condi-
tion (23) holds in G.

This first assumption is structural and also depends on the initial marking
M0, but it does not depend on the behavior of the TEG at a given time t > 0.
The next assumption states some properties regarding the marking that are
required to properly start an active diagnosis session at t > 0.

Definition 18 (Stuck TEG). The TEG G is stuck at time t if none of the
internal and output transitions of G are enabled at time t.

In other words, in a stuck TEG at time t, internal or output transitions
cannot fire as long as no input transitions are fired. The first transition that
can be fired in G after time t is an input transition.

Definition 19 (Empty TEG). A TEG G is empty at time t if

1. G is stuck at time t;

2. all the tokens in G are contained in places that belong to circuits;

3. for every elementary circuit, the current marking M is such that M(p) ≥ 1
for one and only one place p in the elementary circuit.

When G is empty at time t, it firstly means that the underlying system does
not operate anymore at time t and waits for new environmental inputs. The
second and third conditions also mean that the processes involved in the system
are properly reinitialized, and there are no blocked resources waiting only for a
synchronization.

As Assumption 6 must hold and depends on M0, the second assumption that
is required to start a diagnostic session follows.

Assumption 7 (G is empty). G is empty in the initial marking M0. Any active
diagnosis session starts at a time t only when the current marking is the initial
marking M0.

It is very likely that when a failure has been detected based on the inputs
Uop, the current resulting marking M does not fulfill the previous assumptions.
In this case, to start the diagnostic session, the system must be reset, either
by synthesizing a supplementary input U to empty the system as required by
Assumption 7 or by performing a hard reset on the system represented by a new
marking compatible with Assumption 7. Moreover, the clock is reset (t = 0)
when the active diagnosis session starts and at any step k.

Finally, for the sake of generality, note that an active diagnosis session may
start on a marking M1 different from the initial marking by redefining the TEG
as ⟨P, T ,A,M1,HT ⟩ if it is in phase and empty for the marking M1 (which
would now be considered the initial marking). This would lead to a new transfer
matrix H, but the structure of the TEG remains unchanged.
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Figure 6: TEG with four inputs and three outputs.

5 Active localization for Multiple-Input TEGs

This section introduces a method for the localization of time failures in TEGs
which constitutes an active diagnosis algorithm as introduced in Section 4.3.

The section is divided in four parts: Section 5.1 introduces the theoretical el-
ements related to the localization of time failures, Section 5.2 describes an active
localization algorithm for multiple-input TEGs, Section 5.3 contains the prop-
erties of this algorithm, and finally, Section 5.4 details the general localization
method.

5.1 Localization of failures in multiple-input TEGs

This section introduces the properties of the inputs and paths of TEGs that
contain time failures. Specifically, these properties concern the place containing
the failure and allow for a more precise localization of this place if the TEG
contains multiple inputs.

Definition 20 (Udel,U ). The set of input transitions leading to all the delayed
outputs for a given control U is:

Udel,U = {uk|∀yi ∈ Ydel,U ,uk ⇝ yi}. (24)

This set contains the inputs that could potentially be upstream of the place
containing the time failure pf . Udel,U can be obtained by determining which
series in the transfer matrix H are different from ε because uk ⇝ yi is true if
and only if Hik ̸= ε (see Proposition 3).

Example 14. Let us consider the TEG in Fig. 6. It is a MIMO TEG with four
inputs and three outputs. Its transfer matrix is:

H =

γ0δ1 γ0δ1 γ0δ2 ε
γ0δ2 γ0δ2 γ0δ3 γ0δ2

ε ε ε γ0δ1

 . (25)
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Let us assume that there is a time failure of 1 time unit on place p5 (the value
and the place of the failure are unknown). An input U results in the detection of
a time shift on outputs y1 and y2. The set of delayed outputs is Ydel,U = {y1, y2}
and the set of inputs leading to all the delayed outputs is Udel,U = {u1,u2,u3}.
u4 is not included in the latter because it is not upstream of y1, as shown by the
transfer matrix (H14 = ε).

Proposition 9. If an input uk is upstream of the place containing the failure
pf , then it belongs to Udel,U : uk ⇝ pf ⇒ uk ∈ Udel,U .

Proof. The relation ⇝ (see Definition 2) is transitive. Therefore,

uk ⇝ pf and ∀yi ∈ Ydel,U , pf ⇝ yi (By Proposition 7)

⇒ ∀yi ∈ Ydel,U ,uk ⇝ yi ⇔ uk ∈ Udel,U .

Remark 1. Udel,U cannot be empty: Udel,U ̸= ∅. This is a direct consequence
of Proposition 9.

Proposition 10. If Udel,U contains only one input uk, then uk is the only input
upstream of the place containing the failure: |Udel,U | = 1⇒ ∃! uk |uk ⇝ pf .

Proof. The existence of at least one uk ∈ Udel,U upstream of the place containing
the failure was proven in the previous propositions. At present let us prove that
if an input uj is different from uk (which belongs to the singleton Udel,U ) then
it is not upstream of the place containing the failure pf :

|Udel,U | = 1⇔ ∃! uk |uk ∈ Udel,U
⇒ ∀uj ̸= uk,uj /∈ Udel,U

⇒ ∀uj ̸= uk,uj ̸⇝ pf . (by Proposition 9)

Example 15. Let us consider the TEG in Fig. 6 and its transfer matrix (Equa-
tion (25)), but this time, a time failure occurs on place p11. An input U which
leads to the detection of a time failure on y3 would lead us to the set of delayed
outputs Ydel,U = {y3} and the set of inputs leading to all the delayed outputs
Udel,U = {u4}.

Since u1, u2 and u3 are not upstream of the delayed output y3, they cannot
be upstream of the failure. The only remaining input is u4, so it is necessarily
upstream of the time failure (see Proposition 10).

The control algorithm for multiple inputs described in the following section
helps determine which inputs are actually upstream of the place containing the
time failure. After the normal operation of the system has concluded, let us
consider Uop as defined in Section 4.3. If Udel,Uop

contains a single input, then
this input is upstream of the place containing the failure (Proposition 10) and
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the control algorithm cannot provide any more information (see Example 15).
However, if Udel,Uop contains at least two different inputs (as in Example 14),
this set can be used to improve the localization of the time failure.

5.2 Control Algorithm for Multiple Inputs (CAMI)

This section describes an active localization algorithm called Control Algorithm
for Multiple Inputs (CAMI). Throughout this section, the sets Udel,Uop

and
Ydel,Uop

introduced in the previous section will simply be denoted Udel and Ydel
respectively.

CAMI is designed to determine which inputs among those in Udel are actually
upstream of the place containing the time failure. This algorithm uses an ad hoc
control sequence containing |Udel| independent control steps. Each control step
k helps determine whether input uk ∈ Udel is upstream of the place containing
the failure.

In empty TEGs, one of the setbacks in the detection of time failures is the
fact that the delays on places containing tokens (which are all contained in
circuits, see Assumption 7) only intervene after these initial tokens have been
used. Therefore, the choice of the number of events for each input Uk in an active
diagnosis session is important, as one of the targets is to allow the durations of
all places in all circuits to be expressed in order to properly observe the behavior
of the system.

Let us begin by defining the necessary concepts for the synthesis of a relevant
control sequence for the active localization of failures in TEGs.

Let Ω be defined as follows:

Ω = 1 +

|P |∑
i=1

M0(pi). (26)

An input containing Ω events guarantees that the transitions on the elemen-
tary paths from inputs to outputs are fired enough times to express the durations
(and therefore the delays) of all places outside these elementary paths.

Ω is designed to be conservative and a lesser number of events may be suf-
ficient to achieve its goal for certain TEGs, which could be determined on a
case-by-case basis.

Example 16. For the TEG in Fig. 1, Ω = 1 + 12 = 13. This number of
events ensures that, for instance, transition x2 is fired enough times to effectively
observe the durations of places p12, p13 and p14, so even though these places are
outside the elementary paths from the inputs to the outputs, any delay could still
be detected.

Ω will therefore be used as the number of events for the inputs in the pro-
posed active diagnosis algorithm. The following two definitions will be used
when establishing the dates of the events of said inputs.
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Definition 21 (Traversal time tij). tij is the traversal time for Ω tokens to
travel from uj to yi:

tij = DHij
(Ω− 1).

This traversal time is equal to the dater of event Ω− 1 of the transfer function
from input uj to output yi.

For TEGs that do not contain any circuits, tij is simply the sum of the
holding times of the places on the slowest path going from uj to yi.

Example 17. For the TEG in Fig. 6, Ω = 1. The traversal times from each
input to each output are:

• for input u1: t11 = 1, t21 = 2, t31 = −∞,

• for input u2: t12 = 1, t22 = 2, t32 = −∞,

• for input u3: t13 = 2, t23 = 3, t33 = −∞,

• for input u4: t14 = −∞, t24 = 2, t34 = 1.

Definition 22. The time tmax,k, where k is the number of an input transition
of the TEG, is defined as:

tmax,k = max
i,j

(tij) + 1 with 1 ≤ i ≤ |Y| and uj ∈ U \ uk.

The traversal times used to compute tmax,k are those from the inputs in U
except uk to all outputs yi. tmax,k is therefore the greatest traversal time for Ω
tokens to travel along all paths uj ̸=k ⇝ yi plus one.

tmax,k can be computed as follows: let Sk be the sum in Max
in [[γ, δ]] of the

series in matrix H corresponding to the inputs in U \ {uk}:

Sk =

|Y|⊕
i≥1

|U|⊕
j≥1,j ̸=k

Hij .

The time tmax,k used for control sequence k can be computed as:

tmax,k = DSk
(Ω− 1) + 1. (27)

tmax,k is one plus the dater of Ω − 1 of the sum of the series in H on all
columns except column k.

Example 18. In Example 14 (Fig. 6), the set Udel,U = {u1,u2,u3} was obtained
for Ydel,U = {y1, y2}.

The following traversal times are considered in the definition of tmax,1:

tmax,1 = max(t12, t13, t14, t22, t23, t24t32, t33, t34) + 1 = max(−∞, 1, 2, 3) + 1.

tmax,2 and tmax,3 are defined in a similar fashion. The resulting times for
k = 1, 2, 3 are:

tmax,1 = 4, tmax,2 = 4, tmax,3 = 3.
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Definition 23. Let UMI,k ∈ Max
in [[γ, δ]]

|U| be the input vector used in control
step k: UMI,k = (r1 ... r|U|)

T . Each row rj of UMI,k is defined as:

rj =

{
γ0δ0 ⊕ γΩδ+∞ if j ̸= k,

γ0δtmax,k ⊕ γΩδ+∞ if j = k.
(28)

Both trajectories rk and rj ̸=k introduce the same amount of tokens (Ω), but
the former does it at t = 0, making it faster than the latter, which introduces
them at t = tmax,k.

The trajectory on input uk (for step k) is therefore slower than the trajecto-
ries of all other inputs. The tokens introduced on the other inputs at t = 0 will
be stopped at any synchronization merging paths from uk and will not reach the
outputs downstream of it at least until tokens are injected on uk at t = tmax,k.
This choice is aimed at maximizing the delay caused by the failure if the failure
is on a place downstream of uk.

In the following, the computation of UMI,k in the context of an algorithm
will be denoted ComputeUMI,k(H,Ω, k).

Example 19. Following Example 18, the generated inputs are:

UMI,1 =


γ0δ4 ⊕ γ1δ+∞

γ0δ0 ⊕ γ1δ+∞

γ0δ0 ⊕ γ1δ+∞

γ0δ0 ⊕ γ1δ+∞

 , UMI,2 =


γ0δ0 ⊕ γ1δ+∞

γ0δ4 ⊕ γ1δ+∞

γ0δ0 ⊕ γ1δ+∞

γ0δ0 ⊕ γ1δ+∞

 ,

UMI,3 =


γ0δ0 ⊕ γ1δ+∞

γ0δ0 ⊕ γ1δ+∞

γ0δ3 ⊕ γ1δ+∞

γ0δ0 ⊕ γ1δ+∞

 .

After controlling the system with input UMI,k on step k of the active diag-
nosis session, the analysis of the effect of this input can be done by computing
the set of delayed outputs Ydel,UMI,k

.
Another relevant concept is the amount of time by which these outputs are

delayed. Using the indicators introduced in Definition 12, for an output yi, this
is equal to T ỹi,yi = max0≤n<Ω(Dyi(n) − Dỹi(n)). However, any indicator that
provides this information can be used.

Definition 24. Let Di,k be the greatest time shift found on output yi for step
k:

Di,k = max
0≤n<Ω

(Dyi
(n)−Dỹi

(n)).

It follows that yi ∈ Ydel,UMI,k
⇔ Di,k > 0.

After all steps of an active diagnosis session are concluded, the following
elements provide a summary of the information needed to make a decision con-
cerning the place containing the failure.

26



Definition 25 (Greatest delay). The greatest delay for any input on any out-
put, obtained after all the control steps of an active diagnosis algorithm are
completed, is:

Dmax = max
i,k

(Di,k).

Definition 26. Let UMI be the set of input transitions such that the associated
control step generates the greatest delay, it is defined by:

UMI = {uj |∃i,Di,j = Dmax}.
Definition 27. Let YMI be the set of delayed outputs obtained after all steps:

YMI = Ydel ∪
⋃

k|uk∈Udel

Ydel,UMI,k
,

where Ydel is the set of delayed outputs for original control Uop.

This set constitutes a new “global” set of delayed outputs that factor both
the initial information and the information provided by the applied control
sequences.

Example 20. Continuing on the results of Examples 14 and 18, step 1 (in-
put UMI,1) results in the following expected output and measured output (the
differences in dates are in bold):

Ỹ =

ỹ1
ỹ2
ỹ3

 =

γ0δ5 ⊕ γ1δ+∞

γ0δ6 ⊕ γ1δ+∞

γ0δ1 ⊕ γ1δ+∞

 , Y =

y1
y2
y3

 =

γ0δ6 ⊕ γ1δ+∞

γ0δ7 ⊕ γ1δ+∞

γ0δ1 ⊕ γ1δ+∞

 .

This leads to D1,1 = 1, D2,1 = 1, and D3,1 = 0.
The delays for the following steps are:

• step 2: D1,2 = 1, D2,2 = 1, D3,1 = 0,

• step 3: D1,3 = 0, D2,3 = 0, D3,1 = 0,

which results in D = 1.
The inputs that generate the delay Dmax = 1 form the set UMI :

UMI = {u1,u2}.
In this example, the set of delayed outputs remains unchanged: YMI =

Ydel,Uop
= {y1, y2}.

Finally, since the purpose of the active diagnosis session is to localize the
time failure, a set of candidate places must be defined. For CAMI, this set will
be noted PCAMI .

Definition 28 (Set of candidate places found with CAMI).

PCAMI = {pm|∀uj ∈ UMI ,∀yi ∈ YMI ,uj ⇝ pm ⇝ yi, }.
PCAMI is composed of the places upstream of all the delayed outputs and down-
stream of all the inputs in UMI .
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Step-by-step description of CAMI

CAMI (Algorithm 1) takes an empty TEG G and the sets Ydel and Udel as
inputs. It returns a set of candidate places.

CAMI runs as follows: after initializing Ω (line 1), the algorithm iterates on
each step k (loop starting in line 2) to compute input vector UMI,k (line 3).
It then applies this control to the system; the output Y is measured and the
expected output Ỹ is computed (line 4). For each individual output in these
vectors, the greatest time shift is computed (line 6). This will be used in the
definition of Dmax in line 9.

After all inputs in Udel have been studied, the sets UMI and YMI are com-
puted (lines 10 and 11 respectively).

CAMI returns a set of candidate places as defined in Definition 28.

Algorithm 1 Control Algorithm for Multiple Inputs (CAMI)

Input: G,Ydel,Udel
Output: PCAMI

1: Ω← 1 +
∑|P |

i=1 M0(pi) ▷ Eq. 26
2: for uk ∈ Udel do ▷ Loop on each control step k
3: UMI,k ← ComputeUMI,k(H,Ω, k) ▷ Def. 23

4: (Y, Ỹ , I(UMI,k, Y ))← ApplyControl(UMI,k)
5: for yi ∈ Y do ▷ Loop on each output
6: Di,k ← max0≤n<Ω(Dyi

(n)−Dỹi
(n)) ▷ Def. 24

7: end for
8: end for
9: Dmax ← maxi,k(Di,k) ▷ Def. 25

10: UMI ← {uj |∃i,Di,j = Dmax} ▷ Def. 26
11: YMI ← Ydel ∪

⋃
k|uk∈Udel

Ydel,UMI,k
▷ Def. 27

12: PCAMI ← {pm|∀uj ∈ UMI ,∀yi ∈ YMI ,uj ⇝ pm ⇝ yi} ▷ Def. 28
13: return PCAMI

Example 21. Following Example 20 for the TEG in Fig. 6, the set of candidate
places resulting from this algorithm is composed of the places downstream of
UMI = {u1,u2} and upstream of YMI = {y1, y2}:

PCAMI = {p3,p5}.

5.3 Results and properties of CAMI

Proposition 11. If a time failure on a multiple-input TEG is detectable, there
is a step k for which input vector UMI,k generates a delayed output:

∃k|(Y, Ỹ , I(UMI,k, Y ) = True)← ApplyControl(UMI,k).

Proof. Let us begin by defining Ỹ and Y for an input UMI,k. Let UMI,k ∈
Max

in [[γ, δ]]
|U| be the input vector for step k of CAMI:
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UMI,k =


r1
r2
...

r|U|

 ,

with rj as defined in Definition 23.
For simplicity, let us consider an empty MISO system G and its expected

transfer matrix H ∈ Max
in [[γ, δ]]

1×|U|, |U| > 1. All the results that follow hold
for MIMO systems (this proof can be repeated for each output). We have:

H =
(
H1 . . . H|U|

)
.

The presence of a detectable time failure in G results in a change of its
dynamics and the system therefore behaves according to a new, unknown trans-
fer matrix denoted H ′ ∈ Max

in [[γ, δ]]
1×|U| different from H (see Corollary 5).

For each step k, the expected output ỹ ∈ Max
in [[γ, δ]] and the measured output

y ∈Max
in [[γ, δ]] are therefore:

ỹ = HUMI,k =
(
H1 H2 . . . H|U|

) r1
...

r|U|

 = H1r1 ⊕H2r2 ⊕ ...⊕H|U|r|U|.

y = H ′UMI,k =
(
H ′

1 H ′
2 . . . H ′

|U|

) r1
...

r|U|

 = H ′
1r1 ⊕H ′

2r2 ⊕ ...⊕H ′
|U|r|U|.

Since H ′ ̸= H, there exists at least one H ′
l ̸= Hl.

Let us develop ỹ for step k:

ỹ = H1r1 ⊕H2r2 ⊕ ...⊕H|U|r|U|

ỹ = Hkrk ⊕
|U|⊕

j=1,j ̸=k

Hjrj (by grouping all rj ̸=k in a sum)

ỹ = Hk(γ
0δtmax,k ⊕ γΩδ+∞)⊕

|U|⊕
j=1,j ̸=k

Hj(γ
0δ0 ⊕ γΩδ+∞)

(by replacing rj and rk)

ỹ = Hkγ
0δtmax,k ⊕

|U|⊕
j=1,j ̸=k

Hj ⊕
|U|⊕
j=1

Hjγ
Ωδ+∞.

(by factorizing by γΩδ+∞, and γ0δ0 = e)
By Assumption 6, the system is in phase, so it follows that ∀iHi ⪰ e,

and Hk ⪰ e in particular. Due to the congruence that defines Max
in [[γ, δ]] (see

29



Definition 6), Hk can then be rewritten as an infinite sum of monomials starting
on γ0δt0 :

Hk =

∞⊕
n=0

γnδtn

⇒ Hkγ
0δtmax,k =

∞⊕
n=0

γnδtnγ0δtmax,k =

∞⊕
n=0

γnδtn+tmax,k .

Let us proceed similarly with any Hj , j ̸= k:

Hj =

∞⊕
m=0

γmδdj,m

⇒
|U|⊕

j=1,j ̸=k

Hj =

|U|⊕
j=1,j ̸=k

∞⊕
m=0

γmδdj,m .

The factor γΩδ+∞ in the last term of ỹ absorbs all other factors Hj in the
sum:

|U|⊕
j=1

Hjγ
Ωδ+∞ =

|U|⊕
j=1

∞⊕
m=0

γmδdj,mγΩδ+∞

⇔
|U|⊕
j=1

Hjγ
Ωδ+∞ =

|U|⊕
j=1

∞⊕
m=0

γm+Ωδdj,m+∞

⇔
|U|⊕
j=1

Hjγ
Ωδ+∞ =

|U|⊕
j=1

∞⊕
m=0

γm+Ωδ+∞

⇔
|U|⊕
j=1

Hjγ
Ωδ+∞ =

∞⊕
m=0

γm+Ωδ+∞

(the addition inMax
in [[γ, δ]] is idempotent and the terms don’t depend on j)

⇔
|U|⊕
j=1

Hjγ
Ωδ+∞ = γminm≥0(m+Ω)δ+∞

(adition of monomials with the same date)

⇔
|U|⊕
j=1

Hjγ
Ωδ+∞ = γΩδ+∞.

Therefore, we can rewrite ỹ as:

ỹ =

∞⊕
n=0

γnδtn+tmax,k ⊕
|U|⊕

j=1,j ̸=k

∞⊕
m=0

γmδdj,m ⊕ γΩδ+∞.

30



All terms for n ≥ Ω and m ≥ Ω are absorbed by γΩδ+∞:

ỹ =

Ω−1⊕
n=0

γnδtn+tmax,k ⊕
|U|⊕

j=1,j ̸=k

Ω−1⊕
m=0

γmδdj,m ⊕ γΩδ+∞.

Additionally, we have tmax,k > dj,m ∀m < Ω (see Definition 22), so the
second term in ỹ is absorbed by the first term and:

ỹ =

Ω−1⊕
n=0

γnδtn+tmax,k ⊕ γΩδ+∞. (29)

Therefore, the value of the expected output ỹ for step k does not depend
on any dj,n, which are the expected traversal times for n+ 1 tokens from input
uj ̸=k to the output, or, equivalently, the daters of series Hj ̸=k for event n.

The development of y = H ′UMI,k is similar except for the last passage
because whether tmax,k is greater than the daters of H ′

j is unknown. With

H ′
k =

⊕∞
n=0 γ

nδt
′
n and H ′

j =
⊕∞

m=0 γ
mδd

′
j,m , we have:

y =

Ω−1⊕
n=0

γnδt
′
n+tmax,k ⊕

|U|⊕
j=1,j ̸=k

Ω−1⊕
m=0

γmδd
′
j,m ⊕ γΩδ+∞.

As previously stated, a detectable time failure being present in the system
means that at least one transfer function H ′

l is different from its expected coun-
terpart Hl. The number of events Ω as defined in Equation (26) ensures that
the duration of all places intervene in the dates of the output series when pos-
sible, as discussed in Section 5.2. This number of events is therefore sufficient
to detect any time failures, so there exists n < Ω such that t′n > tn or d′n > dn
or both (since the time failure causes a delay).

Let us name d′M,m = max(d′j ̸=k,m) for a given m. This is by definition the
greatest dater among those of all series H ′

j ̸=k for event m, or, equivalently, the
greatest traversal time for m+1 tokens from the inputs uj ̸=k to the output. We
have:

y =

Ω−1⊕
n=0

γnδmax(d′
M,n,t

′
n+tmax,k) ⊕ γΩδ+∞, (30)

by grouping the sums on n and m according to the rules for the addition
of monomials in Max

in [[γ, δ]]. The value of the measured output y for step k
therefore depends on both d′M,n and t′n (the latter being the dater of series Hk

for event n and representing the traversal time for n+ 1 tokens from uk to the
output).

Regarding the date max(d′M,n, t
′
n + tmax,k) in Equation (30), if it is equal to

d′M,n, then there exists another a step during which t′n will receive that value
and the max will be equal to t′n + tmax,k.

Then, since there exists a step k and an event number n such that t′n > tn,
y will be different from ỹ and the time failure will be detected.
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Proposition 12. All inputs in UMI are upstream of the place containing the
failure pf : uj ∈ UMI ⇒ uj ⇝ pf .

Proof. The proof can be done in two steps:

• Determining the requirements for an input transition to belong to UMI .

• Establishing the implication that such an input transition is upstream of
the place containing the failure pf .

The expected output ỹ and the output y for the input UMI,k were defined
in Equations 29 and 30 respectively. Now let us determine under which circum-
stances an input transition belongs to UMI .

We are interested in the greatest time shift between ỹ and y, Dk. This is
equal to the difference between the dates of y and ỹ for the same event, as shown
in Definition 24. For a given step k:

Dk = max
0≤n<Ω

(Dy(n)−Dỹ(n))

⇔ Dk = max
0≤n<Ω

(max(d′M,n, t
′
n + tmax,k)− (tn + tmax,k)),

where n is an event number from series ỹ and y.
By definition, input uk belongs to UMI if and only if Dk is equal to the

greatest upper bound found with CAMI, Dmax.
We can separate the results in two cases depending on the value of

max(d′M,n, t
′
n + tmax,k):

• d′M,n > t′n + tmax,k: this means that there is an input uj ̸=k for which a
subsequent step j will generate t′n > d′M,n, which will then fall under the
next case. Regarding step k, we will obtain Dk = max0≤n<Ω(d

′
M,n − tn −

tmax,k). This will be equal to the greatest delay Dmax for all steps if:

max
0≤n<Ω

(d′M,n − tn − tmax,k) ≥ max
0≤n<Ω, 1≤j≤|Y|

(d′j,n − dj,n),

since the term on the right side of the inequality will be the value of Dj

at a subsequent step j (see next case).

For a given j, d′j,n = d′M,n, so

max
0≤n<Ω

(d′M,n − tn − tmax,k) ≥ max
0≤n<Ω

(d′M,n − dM,n)

⇔ max
0≤n<Ω

(−tn − tmax,k) ≥ max
0≤n<Ω

(−dM,n). (31)

Yet, by definition, tn ≥ 0 and tmax,k > dM,n ∀n, so we have

tn + tmax,k > dM,n ∀n
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⇔ −tn − tmax,k < −dM,n ∀n,

and Inequality 31 does not hold. Therefore, in this case, uk cannot belong
to UMI .

• t′n + tmax,k ≥ d′M,n: this results in Dk = max0≤n<Ω(t
′
n − tn). Since there

is at least one step for which t′n > tn (because a time failure has been
detected), for this expression to be the greatest delay Dmax for all steps
(and obtain uk ∈ UMI), t

′
n must be greater than tn.

Therefore, for uk to belong to UMI , there needs to exist n such that t′n > tn.
This means that the unknown transfer functionH ′

k is different from the expected
transfer function Hk, so there is a failure on a place downstream of uk: uk ⇝ pf .

Note: there may be inputs upstream of the place containing the failure that
do not belong to UMI .

Since the place containing the time failure is downstream of all inputs in
UMI , it can be localized more precisely via a structural analysis by calculating
the intersection of the sets of places downstream of the inputs in this set. This
is what is done in the definition of PCAMI (Definition 28).

Proposition 13. CAMI is sound: the place containing the time failure pf is
necessarily contained in the resulting set: pf ∈ PCAMI .

Proof. As stated in Proposition 7, the place containing the failure pf is upstream
of all delayed outputs for a given input U : yi ∈ Ydel,U ⇒ pf ⇝ yi. Since the
time failure is permanent, this also holds for the set of delayed outputs for the
different control steps of CAMI, YMI : yi ∈ YMI ⇒ pf ⇝ yi. Proposition 12
states that the place containing the failure is downstream of all the inputs in
UMI : uj ∈ UMI ⇒ uj ⇝ pf . Since PCAMI is combination of both of these
results, the place where the time failure occurs is necessarily contained in this
set: pf ∈ PCAMI .

Proposition 14. The set of candidates obtained with CAMI is a subset of
the set obtained with the structure-based localization for original control U :
PCAMI ⊆ Loc(G, U, Y ).

Proof. Let us divide the definition of PCAMI in two parts:

PCAMI = {pm|∀yi ∈ YMI ,pm ⇝ yi, } ∩ {pm|∀uj ∈ UMI ,uj ⇝ pm}.

Let us name the set on the left PY : PY = {pm|∀yi ∈ YMI ,pm ⇝ yi, }. Since
YMI = Ydel ∪

⋃
k|uk∈Udel

Ydel,UMI,k
, PY can also be defined as:

PY = {pm|∀yi ∈ Ydel,pm ⇝ yi, } ∩ {pm|∀yi ∈ Ydel,UMI,k
,pm ⇝ yi, }
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⇔ PY = Loc(G, U, Y ) ∩
⋂
k

Loc(G, UMI,k, Y ). (by Definition 14)

PCAMI is an intersection involving PY , and PY is an intersection involving
Loc(G, U, Y ), so:

PCAMI ⊆ PY and PY ⊆ Loc(G, U, Y )⇒ PCAMI ⊆ Loc(G, U, Y ).

Hence the result.

5.4 Localization method

The localization method is shown in Algorithm 2. It is a combination of an
analysis that uses the definitions and propositions in Section 5.1 and the control
algorithm in Section 5.2 (CAMI). Its inputs are an empty TEG denoted G,
control Uop and its associated measured output Y .

The algorithm can be briefly described as follows: let us consider an empty
TEG G in which a time failure has been detected for control Uop. If G is
a single-input TEG, the resulting set of candidates is Loc(G, Uop, Y ) (Defini-
tion 14). Otherwise, a study of the input transitions of G using the properties
in Section 5.1 and potentially the control algorithm in Section 5.2 will be exe-
cuted.

More precisely, the algorithm begins by defining the resulting set of outputs
as Loc(G, Uop, Y ) if the TEG only has one input (line 2). Otherwise, the set
Udel,Uop

is defined (line 5) using Ydel,Uop
(defined in line 4). This is equivalent

to determining whether there are multiple inputs upstream of all the delayed
outputs obtained for control Uop.

If the set Udel,Uop is a singleton, then the set of candidates is once again
Loc(G, Uop, Y ) (line 7); however, if Udel,Uop

contains more than once input,
CAMI is executed and provides the set of candidates (line 9).

Proposition 15. The localization method for multiple-input TEGs is sound.

Proof. The resulting set of the active localization Pcand is defined as either
Loc(G, Uop, Y ) or PCAMI ; since both of these sets result from sound algorithms,
the active localization for multiple-input TEG is also sound.

6 Extension for circuits

6.1 Overview

This section introduces an extension of the localization method described in
the previous section. The extension is called Active Time Failure Localization
Algorithm for TEG (ATFLAT) and it is aimed at reducing the set of candidate
places for TEG that contain circuits, whether they contain multiple inputs or
not.
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Algorithm 2 Time Failure Localization Method

Input: G, Uop, Y
Output: Pcand

1: if |U| = 1 then
2: Pcand ← Loc(G, Uop, Y ) ▷ Def. 14
3: else
4: Ydel,Uop

← {yi ∈ Y|I(Uop, yi) = true} ▷ Def. 13
5: Udel,Uop

← {uk|∀yi ∈ Ydel,Uop
,uk ⇝ yi} ▷ Def. 20

6: if |Udel,Uop | = 1 then
7: Pcand ← Loc(G, Uop, Y )
8: else
9: Pcand ← CAMI(G,Ydel,Uop

,Udel,Uop
) ▷ Algorithm 1

10: end if
11: end if
12: return Pcand

This section is divided in four parts. Section 6.2 introduces properties related
to the presence of time failures in elementary paths and circuits. Section 6.3
describes a localization algorithm which exploits these analytical properties.
Section 6.4 introduces an extension of CAMI that improves the localization
by exploiting an analysis of circuits. Finally, Section 6.5 explains the global
algorithm ATFLAT.

6.2 Localization of failures in TEGs that contain circuits

The objective of the proposed extension is to reduce the set of candidate places
that is proposed by the localization method of Section 5, either by differentiating
places that are contained in circuits from those that are not, or by distinguishing
between circuits holding different amounts of tokens. ATFLAT relies on the
following properties of a TEG. The next property offers a way to differentiate
failing places that are part of elementary paths between inputs and outputs
from those that aren’t.

Proposition 16. For a given control U , a time failure can be detected as soon
as a first event (event number zero) occurs in an output yi ∈ Y if and only if
the time failure is on a place contained in the elementary path from an input
transition u to the output yi:

∃i|Dyi(0) ̸= Dỹi(0)⇔ ∃u|pf ∈
⋃

π∈ΠE(u,yi)

PE(π).

Proof. (⇒) As Dyi(0) ̸= Dỹi(0) and TEG G is in phase and empty, the first
event occurrence of yi depends on the first event occurrence of any input
u such that u ↪→ yi. Suppose that pf does not belong to at least one
elementary path from such an input u to the output yi, it means that it
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is in a circuit and by the firing rules of a TEG, the holding time of pf is
not involved in the propagation of the first event of u. Contradiction.

(⇐) If pf is in an elementary path between input u and output y, as TEG G is
in phase and empty, the result is straightforward.

The second proposition provides a way to distinguish between a failing place
that is in an elementary circuit holding n tokens and a failing place that is in
an elementary circuit holding m < n tokens. Let CE(n) be the set of elementary
circuits of CE such that they contain a place p with M0(p) = n.

Proposition 17. Suppose pf is in an elementary circuit of CE(n) and not part
of an elementary path between an input and an output of the TEG. Suppose also
that pf is not part of any elementary circuit of CE(m),m < n. The time failure
of pf cannot be detected before the (n + 1)th event (event number n) on any
output of the TEG.

Proof. Let C ∈ CE(n) be one of the elementary circuits containing pf . Either
Circuit C contains at least a synchronization transition t ∈ T involved in a
path π ∈ ΠE(u, y),u ∈ U , y ∈ Y or not. If t exists, by the firing rules of a TEG,
the time failure of pf has an effect only on the (n + 1)th fire of transition t
so then potentially on the (n + 1)th fire of transition y. If C does not contain
such a transition t, it contains at least a synchronization transition t′ involved
in another circuit. For the same reason as above, the time failure of pf has an
effect only on the (n+ 1)th fire of transition t′ and still no effect on transitions
involved in elementary paths from an input to an output.

Corollary 18. If a time failure is detected on event m > 0 of an output, then it
cannot be on a place which is only contained in elementary circuits with n > m
tokens.

Proof. Direct consequence of Proposition 17.

For a failure detected on the (n+1)th event, Proposition 17 and Corollary 18
prune out places that are only contained in elementary circuits with more than
n tokens. pf must be in at least one elementary circuit with n or fewer tokens,
but may also belong to other circuits with more tokens.

6.3 Analysis Algorithm for Circuits

Algorithm 3 (denoted CircuitAnalysis) details the Analysis Algorithm for Cir-
cuits. This algorithm is part of the global localization algorithm ATFLAT. Its
first objective is to return a set of candidate places Pcirc by exploiting Propo-
sition 16 and Corollary 18 on the current measured output Y and the expected
output Ỹ at a given step k. It also returns two boolean variables: TestCircuits
and TestContinue.
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TestCircuits is True as long as it is necessary to analyze circuits for the lo-
calization of candidate places. It is set to False as soon as the analysis concludes
that:

1. the candidate place must be in an elementary path (by Proposition 16);
or

2. Pcirc only contains one place; or

3. Pcirc contains only one circuit of CE(m),m ≤ n while the failure is detected
on a output yi with event number n (by Corollary 18).

The boolean variable TestContinue is true as long as the analysis does not
provide any definitive conclusions (that are Cases 2 and 3 here above): if Test-
Continue is set to False, so is TestCircuits.

The analysis starts with a loop that iterates on each output (line 6). It then
defines the elementary paths from any input to the current output (line 7) and
exploits Proposition 16 to define the set of candidates if the first event of the
output (event zero) presents a time shift (line 9). In this case, TestCircuits is
set to False (line 10). Otherwise, if the place containing the failure may be in
a circuit, it iterates on the events of the series (n) (loop starting in line 13) in
order to reduce the set of candidate places to those in circuits containing fewer
tokens than the number of the event presenting a time shift (lines 17 and 18),
which exploits Corollary 18.

TestContinue is set to False if the resulting set contains only one place or if
there is only one circuit with fewer tokens than the number of the first event
where the time shift is detected (line 20). This is done because all the places
in a circuit are downstream of the same input transitions and upstream of the
same output transitions, no additional information can come from the available
data (which is the input series and the output series). TestContinue being set to
False is an exit condition for the loop iterating on the outputs. Otherwise, the
algorithm continues to iterate to attempt to further reduce the set of candidates
Pcirc.

Example 22. To illustrate the proposed circuit analysis, let us again consider
the TEG in Fig. 1. This multiple-input multiple-output TEG is similar to the
TEG in Fig. 6 (see the examples in Section 5), but six places contained in
circuits have been added, namely: p12, p13, p14, p15, p16 and p17. Note that p5
is now contained in a circuit as well.

There are five elementary circuits in this TEG. Three of them contain two
tokens (on transitions x1, x2, x3, x6 and x5) and two of them contain three
tokens (on transitions x6 and x4). For this TEG, Ω = 13 (see Equation (26)).

Its transfer matrix is:

H =

γ0δ1(γ2δ2)∗ γ0δ1(γ2δ2)∗ γ0δ2(γ2δ2)∗ ε
γ0δ2(γ2δ2)∗ γ0δ2(γ2δ2)∗ γ0δ3(γ2δ2)∗ γ0δ2(γ2δ1)∗

ε ε ε γ0δ1(γ2δ1)∗

 . (32)

37



Algorithm 3 Analysis Algorithm for Circuits (CircuitAnalysis)

Input: G, Y, Ỹ
Output: Pcirc, TestCircuits, TestContinue
1: Pcirc ← P
2: Ω← 1 +

∑|P |
i=1 M0(pi) ▷ Eq. 26

3: TestCircuits ← True
4: TestContinue ← True
5: i← 1
6: while (i ≤ |Y|) and (TestContinue) do ▷ Loop on each output
7: PE ←

⋃
π∈ΠE(uj ,yi)

PE(π)∀uj
8: if Dyi

(0) ̸= Dỹi
(0) then

9: Pcirc ← Pcirc ∩ PE ▷ Exploits Prop. 16
10: TestCircuits ← False
11: else if TestCircuits then
12: n← 1
13: while (n < Ω) and (Dyi

(n) = Dỹi
(n)) do ▷ Loop on the events

14: n← n+ 1
15: end while
16: if Dyi(n) ̸= Dỹi(n) then

17: Pn ←
⋃n−1

m=1 CE(m) ∩ {p|p⇝ yi}
18: Pcirc ← Pcirc ∩ (Pn \ PE) ▷ Exploits Cor. 18
19: if (|Pcirc| = 1) or (∃!p ∈ Pcirc| 0 < M0(p) ≤ n) then
20: TestContinue ← False
21: TestCircuits ← False
22: end if
23: end if
24: end if
25: i← i+ 1
26: if |Pcirc| = 1 then ▷ If there is only one candidate place
27: TestContinue ← False
28: TestCircuits ← False
29: end if
30: end while
31: return (Pcirc, TestCircuits, TestContinue)

38



Let us consider a time failure of 3 time units on place p17 (this information
is unknown). The following input and output are measured:

U=


u1

u2

u3

u4

=


γ0δ1 ⊕ γ6δ+∞

γ0δ1 ⊕ γ6δ+∞

γ0δ1 ⊕ γ6δ+∞

γ0δ1 ⊕ γ6δ+∞

, Y =

y1
y2
y3

=

 γ0δ3 ⊕ γ2δ5 ⊕ γ4δ7 ⊕ γ6δ+∞

γ0δ4 ⊕ γ2δ7 ⊕ γ4δ11 ⊕ γ6δ+∞

γ0δ2 ⊕ γ2δ6 ⊕ γ4δ10 ⊕ γ6δ+∞

.

The expected output for this input is:

Ỹ =

ỹ1
ỹ2
ỹ3

 =

γ0δ3 ⊕ γ2δ5 ⊕ γ4δ7 ⊕ γ6δ+∞

γ0δ4 ⊕ γ2δ6 ⊕ γ4δ8 ⊕ γ6δ+∞

γ0δ2 ⊕ γ2δ3 ⊕ γ4δ4 ⊕ γ6δ+∞

 .

The differences in dates between the expected output and the measured output
are in bold. In the analysis for circuits, the algorithm begins with i = 1 by
computing PE = {p1, ...,p6}. It then starts comparing y1 and ỹ1 event by event
and no time shift is found, so Pcirc remains unchanged as the whole set of places
P.

For i = 2, PE = {p1, ...,p5,p7, ...,p10}. There is no difference between the
dates for the first event; the first difference is found for the third event (denoted
2). This results in the set P2 = {p5,p12,p13,p15,p17}. The set of candidates
is therefore Pcirc = {p12,p13,p15,p17}. Since there are three places containing
2 tokens in this set (p12,p15 and p17) (which means there are three elementary
circuits with two tokens upstream of y2), the algorithm continues.

It proceeds similarly for i = 3 up until line 18. In this case, Pcirc becomes
a singleton at that point (additionally, there is only one circuit containing two
tokens upstream of y3), so the algorithm stops at n = 2. The resulting set of
candidates is Pcirc = {p17}. TestContinue and TestCircuits are both returned
set to False.

Proposition 19. The analysis algorithm for circuits is sound: pf ∈ Pcirc.

Proof. This algorithm exploits the results regarding pf and the sets PE and CE
proven in Proposition 16 and Corollary 18. The algorithm keeps removing from
Pcirc places that cannot be pf .

Proposition 20. The set of candidate places returned by CircuitAnalysis is a
subset of Loc(G, U, Y ): Pcirc ⊆ Loc(G, U, Y ).

Proof. Loc(G, U, Y ) is defined as the set of places upstream of all the delayed
outputs. The analysis algorithm for circuits initializes the set of candidates as
the entire set of places, and for each output yi, it intersects it with another
set of places if a time shift is found, which means the output is delayed. The
sets that are used in the intersections are all subsets of {p|p ⇝ yi} (the set
of places leading to yi), so the resulting set is an intersection of the sets of
places upstream of each of the delayed outputs, which means it is a subset of
Loc(G, U, Y ).
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6.4 Control Algorithm for Multiple Inputs and Circuits
(CAMIC)

The algorithm CircuitAnalysis performs an analysis in the context of an ac-
tive diagnosis session as described in Section 4. Therefore, it is suitable to be
integrated in a control algorithm in the case where the investigated TEG has
multiple inputs.

The Control Algorithm for Multiple Inputs and Circuits (CAMIC) proposed
in this section is a modified version of CAMI that takes into account the fact that
there may be elementary circuits in the diagnosed TEG. The steps of CAMIC
are very similar to those in CAMI, except that at each step k, as an analysis for
circuits is performed and may be conclusive (with TestContinue set to false),
CAMIC may end before performing all the steps that CAMI would have carried
out.

CAMIC is detailed in Algorithm 4. The main novelties when compared with
CAMI are the circuit analysis in line 12, which may modify the TestContinue
variable (to stop all further testing), the TestCircuits variable (to stop the test-
ing on circuits), and the set of candidates (to reduce it according the analysis of
the previous section). If TestContinue is kept as True until the end of the loop
on the inputs, it means that CircuitAnalysis is not conclusive but has filtered
out some places that are certainly not holding the time failure. In this case, all
the control steps have been performed and CAMIC has also computed the set
of candidate places as CAMI would have done. So, the final result is the in-
tersection of the candidate places in PCAMI and the ones from CircuitAnalysis
(lines 25 and 26).

Example 23. Let us consider the TEG in Fig. 1 and its transfer function H
(32). Let us now consider a time failure of 1 time unit on place p13. For the
input in Example 22, the following output is measured (date differences are in
bold):

Y =

y1
y2
y3

 =

 γ0δ3 ⊕ γ2δ6 ⊕ γ4δ9 ⊕ γ6δ+∞

γ0δ4 ⊕ γ2δ7 ⊕ γ4δ10 ⊕ γ6δ+∞

γ0δ2 ⊕ γ2δ3 ⊕ γ4δ4 ⊕ γ6δ+∞

 .

This results in the set of delayed outputs Ydel = {y1, y2} and the associated set
of inputs Udel = {u1,u2,u3}.

The inputs computed by CAMIC are:

UMI,1 =


γ0δ16 ⊕ γ13δ+∞

γ0δ0 ⊕ γ13δ+∞

γ0δ0 ⊕ γ13δ+∞

γ0δ0 ⊕ γ13δ+∞

 , UMI,2 =


γ0δ0 ⊕ γ13δ+∞

γ0δ16 ⊕ γ13δ+∞

γ0δ0 ⊕ γ13δ+∞

γ0δ0 ⊕ γ13δ+∞

 ,

UMI,3 =


γ0δ0 ⊕ γ13δ+∞

γ0δ0 ⊕ γ13δ+∞

γ0δ15 ⊕ γ13δ+∞

γ0δ0 ⊕ γ13δ+∞

 .
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Algorithm 4 Control Algorithm for Multiple Inputs and Circuits (CAMIC)

Input: G,Ydel,Udel
Output: PCAMIC

1: Ω← 1 +
∑|P |

i=1 M0(pi) ▷ Eq. 26
2: TestCircuits ← True
3: TestContinue ← True
4: PCAMIC ← P
5: Uleft ← Udel
6: while (Uleft ̸= ∅) and (TestContinue) do ▷ Loop on each control step k
7: Let uk ∈ Uleft
8: Uleft ← Udel \ {uk}
9: UMI,k ← ComputeUMI,k(H,Ω, k) ▷ Def. 23

10: (Y, Ỹ , I(UMI,k, Y ))← ApplyControl(UMI,k)
11: if TestCircuits then
12: (Pcirc, TestCircuits, TestContinue) ← CircuitAnalysis(G, Y, Ỹ )
13: PCAMIC ← PCAMIC ∩ Pcirc

14: end if
15: if TestContinue then
16: for yi ∈ Y do ▷ Loop on each output
17: Di,k ← max0≤n<Ω(Dyi

(n)−Dỹi
(n)) ▷ Def. 24

18: end for
19: end if
20: end while
21: if TestContinue then
22: Dmax ← maxi,k(Di,k) ▷ Def. 25
23: UMI ← {uj |∃i,Di,j = Dmax} ▷ Def. 26
24: YMI ← Ydel ∪

⋃
k|uk∈Udel

Ydel,UMI,k
▷ Def. 27

25: PCAMI ← {pm|∀uj ∈ UMI ,∀yi ∈ YMI ,uj ⇝ pm ⇝ yi} ▷ Def. 28
26: PCAMIC ← PCAMIC ∩ PCAMI

27: end if
28: return PCAMIC
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In this case, variables TestContinue and TestCircuits remain True, so the
control sequence is executed for the three inputs in Udel and the set PCAMIC

at the end of the loop is PCAMIC = {p12,p13,p15}. After the loop, PCAMI =
{p5,p12,p13,p14} and PCAMIC is finally defined as the intersection of both of
these sets: PCAMIC = {p12,p13}. CAMIC is more precise than CAMI as the
circuit analysis has pruned places p5 and p14 from the list of candidate places.
Place p5 has been pruned as it is involved in an elementary path from an input to
an output but there is no failure detection based on event zero in any output (see
Propostion 16). Place p14 has been pruned as it is part of only one elementary
circuit that holds 3 tokens so the potential detection of a time failure in p14
should have occurred on an event n ≥ 3 (at least the 4th event) in an output y,
however, here n = 2.

Proposition 21. CAMIC is sound.

Proof. The set of candidate places computed with CAMIC results from the
analysis of circuits and CAMI. Since both of these methods have been proven
to be sound, so is CAMIC. Place pf is always part of the candidates returned
by CAMIC.

6.5 Active Time Failure Localization Algorithm for TEGs
(ATFLAT)

The Active Time Failure Localization Algorithm for TEGs (ATFLAT) is a global
algorithm designed to localize time failures in TEGs regardless of the number
of inputs or circuits. ATFLAT takes advantage of the results described in the
previous sections to reduce the set of candidates by controlling the system with
new inputs only when this reveals additional information.

In contrast with the previous localization method introduced in Section 5,
ATFLAT tests properties of the TEG that relate to the presence of circuits
and may apply new inputs to the system in situations where the previous al-
gorithm would only return the worst-case scenario set of candidates, that is,
Loc(G, Uop, Y ).

Algorithm 5 introduces ATFLAT. It begins by determining whether the sys-
tem contains circuits (line 1). As stated in Section 4.3, for an empty TEG, this is
equivalent to whether the system contains places with an initial marking greater
than zero. This information is first used on lines 3 through 10. As stated in the
following Proposition 22, an input as defined in line 5 for a single-input TEG
will reveal any detectable time failures in the system. The measured output for
this input is then used in a circuit analysis as defined in Section 6.3.

Proposition 22. An input series that can be written as γ0δt0 ⊕γΩδ+∞, t0 ≥ 0
on a single-input TEG containing a detectable time failure results in an output
y different from ỹ.

Proof. The reasoning is the same as the proof for Proposition 11. More precisely,
we can consider u = UMI,1 with t0 ≥ 0 replacing tmax,1 and chosen arbitrarily
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Algorithm 5 Active Time Failure Localization Algorithm for TEGs (ATFLAT)

Input: G, Uop, Y
Output: Pcand

1: TestCircuits ← ∃p ∈ P|M0(p) > 0 ▷ True if there is at least one circuit
2: if |U| = 1 then
3: if TestCircuits then
4: Ω← 1 +

∑|P |
i=1 M0(pi) ▷ Eq. 26

5: U0 = e⊕ γΩδ+∞

6: (Y, Ỹ , I(U0, Y ))← ApplyControl(U0)
7: (Pcand, TestCircuits, TestContinue) ← CircuitAnalysis(G, Y, Ỹ )
8: else
9: Pcand ← Loc(G, Uop, Y ) ▷ Def. 14

10: end if
11: else
12: Ydel,Uop

← {yi ∈ Y|I(Uop, yi) = true} ▷ Def. 13
13: Udel,Uop

← {uk|∀yi ∈ Ydel,Uop
,uk ⇝ yi} ▷ Def. 20

14: if |Udel,Uop | = 1 then
15: if TestCircuits then
16: Let Udel,Uop

= {uk}
17: PM ← {p|∀yi ∈ Ydel,Uop

,uk ∈ Udel,Uop
,uk ⇝ p ⇝ yi and

M0(p) > 0}
18: if PM ̸= ∅ then

19: Ω← 1 +
∑|P |

i=1 M0(pi) ▷ Eq. 26
20: UMI,k ← ComputeUMI,k(H,Ω, k)

21: (Y, Ỹ , I(UMI,k, Y ))← ApplyControl(UMI,k)
22: (Pcand, TestCircuits, TestContinue) ←

CircuitAnalysis(G, Y, Ỹ )
23: else
24: Pcand ← Loc(G, Uop, Y )
25: end if
26: else
27: Pcand ← Loc(G, Uop, Y )
28: end if
29: else
30: if TestCircuits then
31: Pcand ← CAMIC(G,Ydel,Uop ,Udel,Uop) ▷ Algorithm 1
32: else
33: Pcand ← CAMI(G,Ydel,Uop

,Udel,Uop
) ▷ Algorithm 4

34: end if
35: end if
36: end if
37: return Pcand
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because there is only one input. The assumptions regarding H and H ′ are the
same and the resulting outputs Y and Ỹ are similar.

The same logic is used in lines 15 through 28; however, in this case the
analysis is only executed if there is a circuit in a relevant path, that is, between
the input that is upstream of the place containing the failure (uk) and all the
delayed outputs (Ydel,U ).

Finally, if there may be multiple inputs upstream of the place containing the
time failure, CAMIC is executed if circuits are present in the TEG, CAMI is
executed otherwise (lines 30 through 34).

Proposition 23. ATFLAT is sound.

Proof. The set of candidate places computed with ATFLAT results from either
the structure-based localization method, the analysis of circuits, CAMIC or
CAMI. Since all of these methods are sound, so is ATFLAT.

Proposition 24. The set of candidate places Pcand returned by ATFLAT is
such that Pcand ⊆ Loc(G, Y, Ỹ ).

Proof. In the worst case Pcand = Loc(G, Y, Ỹ ). Pcand may also result from one
call to CircuitAnalysis so Pcand ⊆ Loc(G, Y, Ỹ ) by Proposition 20. Otherwise,
Pcand results from a call to CAMIC or CAMI, therefore Pcand ⊆ Loc(G, Y, Ỹ ).

In practice, ATFLAT is more precise than Loc(G, Y, Ỹ ) for several reasons.
As soon as the suspected paths from the inputs to the outputs are better identi-
fied by the use of CAMIC, Pcand ⊂ Loc(G, Y, Ỹ ). ATFLAT is also more precise
as soon as CircuitAnalysis prunes out some places from the candidate set. AT-
FLAT may also be more conclusive by suspecting either a single place or a set
of places in one elementary circuit.

6.6 Complexity Analysis and Implementation

The main objective of the ATFLAT algorithm is to first design a set of control se-
quences to be applied on the system and then call the functionApplyControl(UMI,k)
to exploit the results of the indicators for the localization. To analyze the
overall complexity of ATFLAT, let firstly analyze the worst-case time com-
plexity of ApplyControl . This complexity is actually the complexity of the
|Y | available time failure indicators I(U, yi). As detailed in [13], the com-
plexity of I(U, yi) is in O(Ω2log(Ω)) so the complexity of ApplyControl is in
O(|Y |×Ω2log(Ω)). Algorithm 1 iterates over a subset of the inputs U and succes-
sively calls ComputeUMI,k and ApplyControl . Complexity of ComputeUMI,k

is in O(|U |) (see Definition 23), it follows that the worst-case complexity of
CAMI is in O(|U |2 × |Y |Ω2log(Ω)) (which is by the way also the complexity
of Algorithm 2). Now consider CAMIC (see Algorithm 4) and notice that the
complexity of CircuitAnalysis is in O(|Y | ×Ω) so it is negligible with respect to
the complexity of ApplyControl , so CAMIC is also in O(|U |2 × |Y |Ω2log(Ω)).
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Finally, in the worst-case ATFLAT calls either CAMI or CAMIC so ATFLAT
has the same worst-case complexity as CAMIC and CAMI.

All the algorithms presented in this paper, namely CAMI, CircuitAnalysis,
CAMIC and ATFLAT have been included in the C++ library MaxPlusDiag
([13]) which relies on MinMaxGD ([9]). The examples in this paper were com-
puted using this library.

7 Conclusion

This paper describes methods for the synthesis of control sequences and the
analysis of the measurable elements of timed event graphs modeled as (max,+)-
linear systems in the context of the active diagnosis of time failures.

Time failures are defined as changes in the normal delays imposed by the
system. The objective of an active diagnosis session is to determine the origin
of such failures, namely the place of the timed event graph that has had its
duration altered, by applying carefully selected inputs to the system offline.
This process is called active localization.

The definition of sets of transitions and places based on the analysis of the
timed event graph is proposed in order to target the parts of the system that may
contain the failure. The analysis is based on existing methods for detecting time
failures online. These sets of input transitions, output transitions and places of
the timed event graph are then used in a decision-making process to establish if
the control of the system may indeed provide new, relevant information. In the
first proposed method of failure localization, this is done by taking advantage
of the presence of multiple inputs in the system if that is the case. The second
method does the same by considering the presence of circuits.

In the control algorithms introduced in this paper, the analytical properties
of the system are used to define the necessary elements for designing inputs
for the system, namely the number and dates of events of input series for the
timed event graph. Then, the inputs are applied, the outputs of the system are
measured, and a new analysis and decision-making process is conducted. These
steps are repeated until the set of places that may contain the time failure is
considered to be irreducible. This is the case of both the Control Algorithm
for Multiple Inputs (CAMI) and its extension that considers circuits (CAMIC).
The outcome of both of these algorithms has been proven to be a subset of the
set obtained with the pre-existing localization method.

The combination of the analysis algorithms and the control algorithms con-
stitutes a global Active Time Failure Localization Algorithm for TEGs (AT-
FLAT). This algorithm works by using the specialized methods in the cases in
which they are relevant, by determining for instance if there are multiple inputs,
if there are circuits, if different inputs could potentially lead to the place con-
taining the failure... Since all the different parts of this global algorithm provide
a smaller set than a simple structure-based localization, the choice of executing
ATFLAT on a system containing a time failure provides a real advantage.

The design of this active localization algorithm leads to several perspectives.
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First, the problem of studying timed event graphs containing multiple time
failures can be addressed; although this case was not considered in this paper,
an adaptation of the algorithm and the assumptions on the system could make
its consideration possible. Furthermore, this paper addresses time failures that
slow the system down, but accelerations of the normal the durations of the
system can also be taken into account. Other types of failures, such as the
event-shift failures defined in [13], could also be considered. Finally, another
step of the diagnosis of the system could be combined with the detection and
localization, specifically the estimation of the value of the time failure.
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